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Abstract. We present results on the second order behavior and the expected maximal increments
of Lamperti transforms of self-similar Gaussian processes and their exponentials. The Ornstein
Uhlenbeck processes driven by fractional Brownian motion (fBM) and its exponentials have been
recently studied in [20] and [21], where we essentially make use of some particular properties, e.g.,
stationary increments of fBM. Here the treated processes are fBM, bi-fBM and sub-fBM; the latter
two are not of stationary increments. We utilize decompositions of self-similar Gaussian processes
and effectively evaluate the maxima and correlations of each decomposed process. We also present
discussion on the usage of the exponential stationary processes for stochastic modelling.

1. Introduction

In this paper we consider stationary processes constructed from self-similar Gaussian processes,
among which we especially focus on the fractional Brownian motion and its variants, namely the
bi- and the sub- versions . For H ∈ (0, 1), a fractional Brownian motion (fBM) BH := {BH(t)}t∈R
is a centered Gaussian process with BH(0) = 0 and

Cov
(
BH(s), BH(t)

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, (t, s) ∈ R2.

It is well known that fBM has both stationary increments and self-similarity with index H, i.e.,

for any c > 0 {BH(ct)}t∈R
d
= {cHBH(t)}t∈R, where

d
= denotes equality in all finite dimensional

distributions. The fBM has the only stationary increments among self similar Gaussian processes,
of which a considerable number of theoretical studies have been conducted (see e.g. [11, 22]). These
studies include p-variation of its paths with p < H, and the long memory property of the increments
for H ∈ (12 , 1), as often observed in real-life data.

For Brownian motion (H = 1/2), we may generate the stationary processes in two ways: one
is by the stochastic integration of exponential function with respect to Brownian motion which
yields the famous Ornstein-Uhlenbeck process, and the other is the Lamperti transform which is
introduced in a seminal paper [13]. These two transforms are well-known to be law equivalent; that
is, both processes have the same finite dimensional distributions deduced from the corresponding
strictly stationary Gaussian process. However, when we replace BM by fBM in the construction, in
[10] the authors proved that these two transforms produce different stationary Gaussian processes.

In general, these two transforms yield different stationary processes, which reflect the different
focus of constructions; the stationarity by Ornstein-Uhlenbeck (OU) transform is based on the
stationary increments property, while the stationarity by Lamperti transform is based on the self-
similarity. The OU processes driven by fBM have recently been studied in [20], and the research
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is continued in [21], where the continuous time autoregressive moving average processes driven by
fBM are intensively studied.

The purpose of this article is to study the Lamperti transform of fBM. As we have mentioned, for
the Lamperti transform to be stationary it is sufficient that the underlying process be self-similar;
thus we may study carefully the Lamperti transform for some more general self-similar Gaussian
processes. We remark that a reason for the focus on stationary processes is that the such property
is inevitable for statistical applications; for example, the statistical treatment of non-stationary
processes requires non-standard asymptotic theory which requires considerable amount of technical
complexity in practice.

We pay attention to the following two processes, which are variants of fBM.

Definition 1.1. Let H ∈ (0, 1)∩K ∈ (0, 2) such that HK ∈ (0, 1). A bifractional Brownian motion
(bfBM) is a centered Gaussian process BH,K := {BH,K(t)}t∈R+ with BH,K(0) = 0 and

Cov
(
BH,K(s), BH,K(t)

)
=

1

2K

{(
t2H + s2H

)K − |t− s|2HK
}
, (t, s) ∈ R2

+.

A sub-fractional Brownian motion (sfBM) is a centered Gaussian process SH := {SH(t)}t∈R+ with

SH(0) = 0 and

Cov(SH(s), SH(t)) =
1

2− 22H−1

(
s2H + t2H − 1

2
{(s+ t)2H + |s− t|2H}

)
, (t, s) ∈ R2

+.

Note that we multiply 1/
√
2− 22H−1 to the original process so that we equalize all variances

Var(SHK(s)) = s2HK = Var(BHK(s)) = Var(BH,K(s)).
The process BH,K was introduced in [12], aiming to broaden the modelling related to fBM; it

namely discards the whole stationarity of increments, which as the authors remarked that the fBM
is inadequate for large increments in modelling turbulence. The process is known to be HK self-
similar, Hölder continuous of order δ for any δ < HK and BH,1 corresponds to fBM. Notably, BH,K

for K ̸= 1 does not have stationary increments; as fBM, BH,K is not a semimartingale except for
B1/2,1. Other interesting properties have been investigated, e.g., the variational property [28], the
path properties [31] and relation to the solution of some stochastic partial differential equations [17],
to name just a few. The process SH is derived from certain particle systems by [6], which contributes
as an intermediate process between the standard BM and fBM in the sense of the correlation decay
of increments. The process SH is H self-similar, Hölder continuous and could have long memory
increments such that S1/2 corresponds to BM. For H ̸= 1/2 it is not a semimartingale, nor of
stationary increments. Similarly, as BH,K , some generic properties have been intensively studied,
e.g., in [32]. The reason for our study of these two processes is that, besides the interesting properties
stated above, their structures which one can see in covariance functions are simple and useful for
applications; meanwhile, they retain several important properties of fBM, e.g., both processes are
quasi-helix in the sense of J.P. Kahane [15, 16]. We also mention that our methodology in this
article may work for other extensions of fBM.

Each self-similar process has the correspondence with a stationary process by the following well-
known transform (see [13]): for H > 0 a stochastic process {X(t)}t≥0 is H-self-similar if and only
if for all λ > 0, the process

(1.1) X̂(t) = e−λtX(e
λ
H
t)

is stationary. See book [11] devoted to the self-similar processes, in which the significance of
Lamperti transforms is well illustrated.

In this article, we discuss the Lamperti transform of self-similar Gaussian processes; we denote
the Lamperti transform of BH , BH,K and of SH by

B̂H(t) := e−λtBH(e
λ
H
t),
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B̂H,K(t) := e−λtBH,K(e
λ

HK
t),

ŜH(t) := e−λtSH(e
λ
H
t),

respectively. We remark that the Ornstein-Uhlenbeck transform is another prominent way to
produce a stationary process from fBM ; it is by an exponential integration with respect to fBM:

(1.2) Y H(t) :=

∫ t

−∞
e−λ(t−u)dBH(u),

and is known as a fractional Ornstein-Uhlenbeck process. Although for H = 1
2 (Brownian motion

case) B̂H d
= Y H holds, for H ̸= 1

2 the finite dimensional distributions of B̂H and Y H are different
[10]. In this article, we will study the correlation decay and the expected maximal increments of

B̂H and the two related processes B̂H,K and ŜH ; which exhibit quite different behavior from those
of Y H .

This article is organized as follows. In Section 2, we list some preliminaries, including important
decompositions for the bfBM and the sfBM. We present our main results in Section 3. A discussion
on the role of the exponential stationary processes is given in Section 4. All the proofs are given in
the final Section 5.

2. Some preliminaries

In this section we present some tools for our purpose. Firstly we describe known results about the
decompositions for BH,K and SH , which are the key to analyze the expected maximal increments of
the processes. For the decompositions we introduce another centered Gaussian process XK (defined
by [17]),

(2.1) XK(t) =

∫ ∞

0
(1− e−ut)u−

1+K
2 dB(u), K ∈ (0, 1) ∪ (1, 2),

such that the covariance function satisfies

Cov(XK(t), XK(s)) =


Γ(1−K)

K [tK + sK − (t+ s)K ] if K ∈ (0, 1),

Γ(2−K)
K(K−1) [(t+ s)K − tK − sK ] if K ∈ (1, 2).

By definition the process XK is self-similar with index K/2, and its paths are shown to be
absolutely-continuous on [0,∞) and infinitely-differentiable on (0,∞) in [17] for K ∈ (0, 1), which
are also extended to the case K ∈ (1, 2) by [3] and [27]. We prepare some normalizing constants
ci, i = 1, 2, . . . , 5 as

c1 =

√
2−KK

Γ(1−K)
, c2 = 2

1−K
2 , c3 =

√
K(K − 1)

2KΓ(2−K)
, c4 =

√
H

Γ(1− 2H)
, c5 =

√
H(2H − 1)

Γ(2− 2H)
.

Now the decompositions are as follows.

♢ Decompositions of bfBM BH,K by XK and fBM BH :

(B1, by [17]) For H ∈ (0, 1) ∩K ∈ (0, 1) it follows that

(2.2) {c1XK(t2H) +BH,K(t)} d
= {c2BHK(t)},

where BH,K and B of integrator in the definition of XK are independent.
(B2, by [4]) For H ∈ (0, 1) and K ∈ (1, 2) with HK ∈ (0, 1), bfBM BH,K has the decomposition,

(2.3) {BH,K(t)} d
= {c2BHK(t) + c3X

K(t2H)},
where BHK and B of integrator in the definition of XK are independent.
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♢ Decomposition of sfBM SH by XH and fBM BH by [27] (cf. [3]):

(S1) For H ∈ (0, 12), S
H has a decomposition,

(2.4) {dHSH(t)} d
= {c4X2H(t) +BH(t)}

where dH =
√
2− 22H−1 and BH and B of the integrator in X2H are independent.

(S2) For H ∈ (12 , 1), it follows that

(2.5) {c5X2H(t) + dHSH(t)} d
= {BH(t)}

where SH and B of the integrator in X2H are independent.
Now we characterize the sizes of covariance functions for BH , BH,K and SH and bound the

probability for the maximum of the processes BH,K and SH . As a basis process for comparisons,

we consider a Gaussian Markov process B
H

:= {BH
(t)}t∈[0,1], which is a centered Gaussian process

with B
H
(0) = 0 and

Cov(B
H
(s), B

H
(t)) = s2H , 0 < s < t ≤ 1,

such that its increments are independent. This process is found in, e.g., [29, Lemma 5.7] or [24,
Theorem 3.1] where they intensively use the process to investigate properties of fBM. Moreover,

we impose two additional self-similar Gaussian processes to our analysis. The first one S
H

is the

original (non-normalized) sfBM, i.e., S
H

:= dHSH , which is a centered Gaussian with covariance

Cov(S
H
(s), S

H
(t)) = s2H + t2H − 1

2
{(s+ t)2H + |s− t|2H}.

The other one is the process X
H
, H ∈ (0, 12) ∪H ∈ (12 , 1) defined by

X
H

:=


√

2H
Γ(1−2H)

1
2−22H

X2H if H ∈ (0, 12),√
2H(2H−1)
Γ(2−2H)

1
22H−2

X2H if H ∈ (12 , 1),

such that its covariance function is

Cov(X
H
(s), X

H
(t)) =

1

|2− 22H |
∣∣t2H + s2H − (t+ s)2H

∣∣.
The process X

H
is the standardized version of X2H , namely Var(X

H
(s)) = s2H .

Firstly, we present the following relations of sizes of covariance with B
H

as our standard, and
from which we derive the bounds for the probabilities of maxima for self-similar Gaussian processes.
All covariance functions are easily shown to be positive on s, t ∈ [0, 1] and all variances are equal

except that of S
H
.

Lemma 2.1. Let H ∈ (0, 1), K ∈ (0, 1) ∪ (1, 2) and HK ∈ (0, 1), and we write

Cov(BH(s), BH(t)) =: ΥH(s, t),

Cov(BH,K(s), BH,K(t)) =: ΥH,K(s, t),

Cov(B
H
(s), B

H
(t)) =: ΥH(s, t),

Cov(S
H
(s), S

H
(t)) =: SH(s, t),

Cov(SH(s), SH(t)) =: SH(s, t),

Cov(X
H
(s), X

H
(t)) =: χH(s, t).

Then we have the following relations. (1) bfBM case : for s, t ∈ [0, 1],
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HK \K K ∈ (0, 1) K ∈ (1, 2)

HK ∈ (0, 12) ΥH,K(s, t) ≤ ΥHK(s, t) (i)

HK ∈ (12 , 1) ΥH,K(s, t) ≥ ΥHK(s, t)

In the above table for the range (i), if H ∈ ( 1
2(2K−1) ,

1
2) then ΥH,K(s, t) ≥ ΥHK(s, t). If HK ∈ (12 , 1)

or H ∈ ( 1
2(2K−1) ,

1
2) ∩K ∈ (1, 2)

P
(
max
0≤t≤1

BH,K(t) ≥ a
)
≤ 2P

(
B

HK
(1) ≥ a

)
, a ≥ 0.

(2) sfBM case : for s, t ∈ [0, 1],

ΥH(s, t) ⪌ SH(s, t) ⪌ ΥH(s, t) ⪌ SH(s, t) if H ⪌ 1

2

which yields for H ∈ (12 , 1) and for a > 0,

P
(
max
0≤t≤1

SH(t) ≥ a
)
≤ 2P

(
B

H
(1) ≥ a

)
, a ≥ 0.

(3) XH or X
H

case : for s, t ∈ [0, 1],

χH(s, t) ≥ ΥH(s, t) ≥ ΥH(s, t) if H ∈ (0,
1

2
),

χH(s, t) ≥ ΥH(s, t) ≥ ΥH(s, t) if H ∈ (
1

2
, 1),

which yields

P
(
max
0≤t≤1

X
H
(t) ≥ a

)
≤ 2P

(
B

H
(1) ≥ a

)
, a ≥ 0.

We remark that at a = 0 probability inequalities are trivially satisfied. However, since our goal
is the expected maxima of processes, the bounds for tail probabilities (for large a) are significant.

Since B
H
(1) follows the standard normal distribution, we can explicitly calculate the upper bound

as

P
(
B

H
(1) ≥ a

)
=

1√
2π

∫ ∞

a
e−x2/2dx.

Note that if we extend the processes on the unit interval s, t ∈ [0, 1] to the whole real line, their
covariance functions may be negative, e.g., ΥH(−s, s) ≤ 0 for H ∈ (12 , 1) and s > 0. Therefore,
the study of covariance relations for these extended ones would be a future topic. Moreover, since
results of Lemma 2.1 do not cover all comparisons of the covariances, the complete characterizations
of their sizes would be in itself interesting. It would presumably depend on values of both H and
K.

Next we consider the maximal increments of XK ; we recall Lemma 2.2 in [20],

Lemma 2.2. Let H ∈ [12 , 1), a ≥ 0, r ≥ 0.

P

(
max
0≤t≤1

BH
t ≥ a

)
≤

√
2

π

∫ ∞

a
e−x2/2dx.

P

(
max
0≤t≤1

∣∣BH
t

∣∣ ≥ a

)
≤ 2

√
2√
π

∫ ∞

a
e−x2/2dx.
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E

[(
max
0≤t≤r

∣∣BH
t

∣∣)m]
≤

{
rHm 2

√
2√
π
(m− 1)!! if m is odd

rHm 2 (m− 1)!! if m is even.

Finally we give the maximal inequalities for the self-similar Gaussian process XK which is use-
ful for the analysis of expected maximal increments. Note that, since XK is not of stationary
increments, we cannot employ the tools used in the previous works.

Lemma 2.3. Let m = 1, 2, . . . and (s, t) ∈ R2
+. Let XK be a Gaussian process defined by (2.1).

Then m-th power of maximal increments satisfy

E
[

max
s≤t≤s+r

|XK(t)−XK(s)|m
]
≤ rm s

m
2
(K−1)−1Cm

K (m− 1)!! if K ∈ (0, 1),(2.6)

E
[

max
s≤t≤s+r

|XK(t)−XK(s)|m
]
≤ rm s

m
2
(K−2)Cm

K (m− 1)!! if K ∈ (1, 2),(2.7)

where CK is a positive constant depending on K.

It is interesting to observe that, for XK , the maximum increments on the interval [s, s + r]
for r > 0 is a decreasing function in s, which is similar to that of expected squared increments
E[(XK(s+ r)−XK(s))2].

3. Main results

3.1. Correlation decay. In this section, we rigorously investigate the autocovariane functions of

our target processes. We begin with the following correlation decay of B̂H , which is cited from [10].

Proposition 3.1. Let H ∈ (0, 1] and t, s ∈ R.

Cov
(
B̂H(t), B̂H(t+ s)

)
=

1

2
eλ|s|

{
1 + e−2λ|s| −

(
1− e−

λ
H
|s|
)2H

}
=

1

2

{
e−λ|s| +

∞∑
n=1

(−1)n−1

(
2H

n

)
e−λ( n

H
−1)|s|

}
.

Thus the leading term of the correlating decay of B̂H is, for |s| → ∞,

Cov(B̂H(t), B̂H(t+ s)) =


1
2e

−λ|s| +O
(
e−λ( 1

H
−1)|s|

)
if H ∈ (0, 12)

He−λ( 1
H
−1)|s| +O

(
e−λ|s|) if H ∈ [12 , 1).

In the following, we denote the Lamperti transform of fBM by LfBM, and that for bfBM and
sfBM are denoted by LbfBM and LsfBM respectively. From the lemma below, we see that the

correlation decay of LbfBM B̂H,K and LsfBM ŜH are both different from that of LfBM B̂H .

Lemma 3.2. Let H ∈ (0, 1) and K ∈ (0, 2) such that HK ∈ (0, 1) and t, s ≥ 0.

(1) The correlation of B̂H,K has an expansion

Cov(B̂H,K(t), B̂H,K(t+ s)) =
1

2K
eλs

{(
1 + e−

2λ
K

s
)K

−
(
1− e−

λ
HK

s
)2HK}

=
1

2K
eλs

{ ∞∑
n=1

(
K

n

)
e−

2λ
K

ns −
∞∑
n=1

(−1)n
(
2HK

n

)
e−

λ
HK

ns

}
.

Hence as s → ∞, the asymptotic behavior is

Cov(B̂H,K(t), B̂H,K(t+ s)) =


K
2K

eλs(1−
2
K
) +O

(
eλs(1−

4
K
) ∨ eλs(1−

1
HK

)
)

if H ∈ (0, 12)

2HK
2K

eλs(1−
1

HK
) +O

(
eλs(1−

2
K
)
)

if H ∈ (12 , 1).
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(2) The correlation of ŜH has an expansion

Cov(ŜH(t), ŜH(t+ s)) =
eλs

2− 22H−1

(
e−2λs + 1− 1

2

{(
1 + e−

λ
H
s
)2H

+
(
1− e−

λ
H
s
)2H})

=
e−λs

2− 22H−1

(
1−

∞∑
n=1

(
2H

2n

)
e2λs(1−

n
H
)
)

=
e−λs

2− 22H−1
+O(eλs(1−

2
H
)), as s → ∞.

Note that for B̂H,K , K = 1, the result reduces to that of Proposition 3.1 for B̂H . Similarly for

ŜH with H = 1/2, the result reduces to that by BM. However for K ̸= 1 and H ̸= 1/2, this is not
the case as one sees in Remark 3.3. In [31, Proposition 2.1], they also analyze the correlation decay
for the Lamberti transform of BH,K with different parameterizations; our result is consistent with
theirs, if we set λ = HK.

Remark 3.3. In view of Proposition 3.1 and Lemma 3.2 , although all of processes exhibit the
short memory property, autocorrelations decay in different ways. For λ > 0, the autocorrelation of

s-distant points for B̂H decreases faster than or the same as e−λs as s → ∞, whereas B̂H,K has the
more flexible asymptotic, i.e., it decreases as e−λcH,Ks where cH,K is any positive number adjusted

by H and K. Moreover, the autocorrelation of s-distant points for ŜH decreases as e−λs only.

We mention that, for a stationary Gaussian process Y , the correlation decay of the power process
Y m ,m = 1, 2, . . . and of the exponential process Z := eY obey the following relation, which are
straightforward generalizations of Proposition 2.2 in [20] (for (a) in Lemma 3.4) and Lemma 2.2
in [21] (for (b) in Lemma 3.4). In fact Proposition 2.2 in [20] is derived for fractional Ornstein-
Uhlenbeck processes, but the result holds for stationary Gaussian processes in exactly the same
way.

Lemma 3.4. Let m = 1, 2, . . . and let {Y (t)}t∈R be a stationary Gaussian with variance σ2 :=
Var(Y (0)).
(a) Assume that Cov(Y (0), Y (s)) → 0 as s → ∞, then for s → ∞,

Cov ((Y (t))m, (Y (t+ s))m)

=


m2((m− 2)!!)2σ2(m−1)Cov(Y (0), Y (s)) +O

(
(Cov(Y (0), Y (s)))2

)
if m is odd,

1
2

(
m!(m−3)!!
(m−2)!

)2
σ2(m−2)(Cov(Y (0), Y (s)))2 +O

(
(Cov(Y (0), Y (s)))4

)
if m is even.

(b) Let Z := eY be the exponential stationary process determined by Y (t). Then

Cov(Z(0), Z(s)) ⪌ 0 if and only if Cov(Y (0), Y (s)) ⪌ 0.

Moreover, assume that as s → ∞, Cov(Y (0), Y (s)) → 0. Then it follows that

(3.1) Cov(Z(0), Z(s)) = eσ
2 {Cov(Y (0), Y (s)) + o(Cov(Y (0), Y (s)))} .

Since the correlations of the LfBM, LbfBM and LsfBM are all positive-correlated, we thus have

Proposition 3.5. Let H ∈ (0, 1]. We denote LfBM by B̂H and the associated exponential process

by B̃H := eB̂
H
. Then for fixed t ∈ R, m = 1, 3, . . . and s → ∞,

Cov((B̂H(t))m, (B̂H(t+ s))m)

= m2((m− 2)!!)2


1
2e

−λ|s| +O
(
e−λ( 1

H
−1)|s|

)
, if H ∈ (0, 12),

e−λ( 1
H
−1)|s| +O(e−λ|s|), if H ∈ [12 , 1).
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Then for fixed t ∈ R, m = 2, 4, . . . and s → ∞,

Cov((B̂H(t))m, (B̂H(t+ s))m)

=
1

2

(
m!(m− 3)!!

(m− 2)!

)2


1
2e

−λ|s| +O
(
e−λ( 1

H
−1)|s|

)
if H ∈ (0, 12),

e−λ( 1
H
−1)|s| +O(e−λ|s|) if H ∈ [12 , 1).

Moreover, for fixed t ∈ R and s → ∞,

Cov(B̃H(t), B̃H(t+ s))

=


1
2e

1−λ|s| +O
(
e−λ( 1

H
−1)|s|

)
if H ∈ (0, 12),

He1−λ( 1
H
−1)|s| +O

(
e−λ|s|) if H ∈ [12 , 1).

Proposition 3.6. Let H ∈ (0, 1) and K ∈ (0, 2) such that HK ∈ (0, 1). Denote LbfBM by B̂H,K

and its exponential by B̃H,K := eB̂
H,K

. Then for m = 1, 3, 5, . . . and t ∈ R, the covariance decay as
s → ∞ is given by

Cov((B̂H,K(t))m, (B̂H,K(t+ s))m),

= m2((m− 2)!!)2


K
2K

eλs(1−
2
K
) +O

(
e2λs(1−

2
K
) ∨ eλs(1−

1
HK

)
)

if H ∈ (0, 12),

2HK
2K

eλs(1−
1

HK
) +O

(
eλs(1−

2
K
) ∨ e2λs(1−

1
HK

)
)

if H ∈ (12 , 1),

and that for m = 2, 4, 6, . . . is

Cov((B̂H,K(t))m, (B̂H,K(t+ s))m)

=
1

2

(
m!(m− 3)!!

(m− 2)!

)2


K2

22K
e2λs(1−

2
K
) +O

(
e3λs(1−

2
K
) ∨ eλs(2−

2
K
− 1

HK
)
)

if H ∈ (0, 12),

(2HK)2

22K
e2λs(1−

1
HK

) +O
(
eλs(2−

2
K
− 1

HK
) ∨ e3λs(1−

1
HK

)
)

if H ∈ (12 , 1).

Moreover, for fixed t ∈ R and s → ∞,

Cov(B̃H,K(t), B̃H,K(t+ s)) =


Ke
2K

eλs(1−
2
K
) + o

(
eλs(1−

2
K
)
)

if H ∈ (0, 12),

2HKe
2K

eλs(1−
1

HK
) + o

(
eλs(1−

1
HK

)
)

if H ∈ (12 , 1).

Proposition 3.7. Let H ∈ (0, 1) and denote LsfBM by ŜH its exponential by S̃H := eŜ
H
. Then

for t ∈ R and m = 1, 3, 5, . . ., the correlation decay by s → ∞ is

Cov((ŜH(t))m, (ŜH(t+ s))m) = m2
(
(m− 2)!!

)2 e−λs

2− 22H−1
+O(eλs(1−

2
H
))

and for m = 2, 4, 6, . . .,

Cov((ŜH(t))m, (ŜH(t+ s))m) =
1

2

(m!(m− 3)!!

(m− 2)!

)2 e−2λs

(2− 22H−1)2
+O(e−

2λs
H ∨ e−4λs).

Moreover, for t ∈ R and s → ∞

Cov(S̃H(t), S̃H(t+ s)) =
e1−λs

2− 22H−1
+O(eλs(1−

2
H
)).
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3.2. Expected maximal increments. We present maximal inequalities for the Lamperti pro-

cesses LfBM B̂H , LbfBM B̂H,K and LsfBM ŜH treated in this article and their exponentials B̃H ,

B̃H,K and S̃H . The idea is to make use of the stationarity of Lamperti processes and decompositions
of self-similar processes. As far as exponentials of stationary processes generated by self-similar
Gaussian processes are concerned, expect for that by BM, only a few results are known, e.g., that
of fractional Ornstein-Uhlenbeck process or CARMA processes; see [20] or [21].

We start with LfBM B̃H and its exponential.

Proposition 3.8. Let H ∈ [12 , 1) and m = 1, 2, . . . and denote LfBM by B̂H and its exponential by

B̃H := eB̂
H
. Then for s ∈ R and r ∈ (0, 1),

(3.2)
E
[
maxs≤t≤s+r |B̂H(t)− B̂H(s)|m

]
m!

≤ Cm rHm

√
m!

,

and

(3.3) E

[
max

s≤t≤s+r
|B̃H(t)− B̃H(s)|

]
≤ C ′rH ,

where C and C ′ are positive constants which are taken uniformly in m.

Next we analyze LbfBM B̂H,K and its exponential B̃H,K , using of decompositions (2.2) and (2.3).

Proposition 3.9. Let H ∈ (0, 1), K ∈ (0, 2) such that HK ∈ (12 , 1) and m = 1, 2, . . . denote

LbfBM by B̂H,K and its exponential by B̃H,K := eB̂
H,K

, then for s ∈ R and r ∈ (0, 1),

(3.4)
E
[
maxs≤t≤s+r |B̂H,K(t)− B̂H,K(s)|m

]
m!

≤ Cm rHKm

√
m!

,

and

(3.5) E

[
max

s≤t≤s+r
|B̃H,K(t)− B̃H,K(s)|

]
≤ C ′rHK ,

where C and C ′ are positive constants and we take these constants uniformly in m.

Finally, we present results for LsfBM ŜH and its exponential ŜH ; similarly as before we utilize
decompositions (2.5).

Proposition 3.10. Let H ∈ (12 , 1) and m = 1, 2, . . . denote LsfBM by ŜH and its exponential by

S̃H := eŜ
H
, then for s ∈ R and r ∈ (0, 1),

(3.6)
E
[
maxs≤t≤s+r |ŜH(t)− ŜH(s)|m

]
m!

≤ Cm rHm

√
m!

,

and

(3.7) E

[
max

s≤t≤s+r
|S̃H(t)− S̃H(s)|

]
≤ C ′rH ,

where C and C ′ are positive constants and we take these constant uniformly in m.

Remark 3.11. 1. All Lamperti transforms and their exponentials have analogous bounds for their
expected maxima of small increments. The results are naturally understandable, since they are de-
rived from the self-similar Gaussian processes and each bound reflects the corresponding self-similar
parameter of the underlying process.
2. There is literature to discuss the maximum distribution and inequality of fBM; one can see such
results in [23], in the monographs [11, 22]), and in a recent overview [26]. Most of them combine
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a Gaussian-Markov process B
H

with the Slepian’s lemma or combine martingale inequalities with
a Gaussian martingale process M(t) such that its variance is ct2−2H for some constant c > 0. All
the derived bounds have relations with the self-similar parameter H. Our results on maximal incre-
ments for fBM are comparable with these existing literature, since fBM is of stationary increments
with BH(0) = 0. However, our results on maximal increments for other two processes, bfBM and
sfBM, are different, since they are not stationary increments, and have not been studied so far. In
view of Propositions 3.9, our results for maximal increments have similar relations with self-similar
parameters as in that for fBM; in this sense the results are nearly optimal.
3. As for the distribution of maximum of stationary Gaussian processes, a large number of stud-
ies have been conducted: the tail probability of maximum, ([14], [19], and [7]), the inequality for
distributions of maximum of two different Gaussian processes ([30]). Variations of these are found
in the monograph for general Gaussian processes [1], and also in [2]. In [8] and [9] the authors
evaluate the supremum distribution of Gaussian processes with the stationary increments based on
extreme value theory and apply the result to queueing analysis. However, these are not applicable
to our purpose. Note that our target processes (Lamperti transforms and their exponentials) are
based on self-similar processes and every bound for maximal increments is as a whole controlled by
the self-similar parameter.

4. Discussion

This section discusses the role of the exponential stationary processes in stochastic modelling.

Consider the exponential processes B̃H , B̃H,K , S̃H(t), and denote each of them by a common Z̃(t),

then by the results presented in Section 3, Z̃(t) has features: (1) strictly stationary in t; (2) positive
valued; (3) positive correlated in any two time instants s, t ; (4) the correlation decay in the time lag
[t, t+ s] is fast in s, indeed it is of exponential decay; and (5) for an arbitrarily fixed s, the expected
maximum increments can form a summable sequence,

E

[
max

s≤t≤s+b−k
|Z̃(t)− Z̃(s)|

]
≤ C ′b−kH , k = 1, 2, . . .

where we may choose any suitable b > 1, uniformly over all s.
Therefore, the mean 1 process,

Z̃(t)

E[Z̃(t)]
,

can be used as a mother process to generate a certain multifractal stochastic infinite-product
process, which is related to the burst phenomenon of Internet communications; see Section 3 of [20]
(this paper studied the exponential OU transform of fBM), and an earlier paper [18] (this paper
studied the general schemes to generate infinite-product processes).

Moreover, positive stationary processes are often required in applications since many real life
data are non-negative. For instance, in the continuous time stochastic volatility models ([5]), the
log-price of risky asset P (t) is represented as

dP (t) = (µ+ βσ(t))dt+
√
σ(t−)dW (t),

where σ(t) is a positive stationary process and W is BM. The simplest one for σ is the exponential
of the ordinary OU process. More complex alternatives include OU by non-negative Lévy processes
and their variations. The solutions of different SDEs involving W are also considered (e.g., Hull-
White model or Vasicek model). In financial time-series, both stationarity and positivity (sometimes
long memory or jumps) are essential for the volatility processes σ(t). Then noticing that the OU

process is the Lamperti transform of BM, the exponential of other transformed processes Z̃(t) could
be good candidates. They are simply defined and model correlation decay more flexibly than that
by OU; in addition we could theoretically characterize the sign of auto-correlation functions.
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5. Proofs

Proof of Lemma 2.1. (1) Without loss of generality we let t ≥ s. We observe a function

f1(t; s) := ΥH,K(s, t)−Υ
H̃K

(s, t)

=
1

2K
{(t2H + s2H)K − (2s2H)K − (t− s)2HK}

and its partial derivative with t,

f ′
1(t; s) =

2HK

2K
t2HK−1{(1 + (s/t)2H)K−1 − (1− s/t)2HK−1},

such that f1(t; s) is a function of t with parameter s. Then noticing the sign in the brace of
f ′
1(t; s), for K ∈ (1, 2) ∩ HK ∈ (12 , 1) we have f ′

1(t; s) ≥ 0 which yields f1(t; s) ≥ f1(s; s) = 0.

On the contrary for K ∈ (0, 1) ∩ HK ∈ (0, 12), it follows that f ′
1(t; s) ≤ 0, which concludes

f1(t; s) ≤ f1(s; s) = 0.
In order to obtain results for (i) K ∈ (0, 1) ∩HK ∈ (12 , 1) and (ii) K ∈ (1, 2) ∩HK ∈ (0, 12), we

further analyze the sign of f ′
1(t; s); namely we analyze

g(x) = (1 + x2H)K−1 − (1− x)2HK−1, x ∈ [0, 1]

with g(0) = 0 and g(1) = 2K−1. (i) Noticing H ∈ (12 , 1) and the derivative

g′(x) = 2H(K − 1)(1 + x2H)K−2x2H−1 + (2HK − 1)(1− x)2HK−2,

we have g′(x) ≥ 0 for 2H(1 − K) ≥ 2HK − 1, which implies f ′
1(s, t) ≥ 0. Hence we obtain the

result (i). (ii) Noticing H ∈ (12 , 1), we observe that

g′′(x) = 2H(K − 1)(K − 2)(1 + x2H)K−32H(x2H−1)2

+2H(K − 1)(2H − 1)(1 + x2H)K−2x2H−2

−(2HK − 1)(2HK − 2)(1− x)2HK−3 ≤ 0.

Now the concavity of g(x) implies g(x) ≥ 0.
Finally the last inequality follows from Slepian’s lemma,

P
(
max
0≤t≤1

BH,K(t) ≥ a
)
≤ P

(
max
0≤t≤1

B
HK

(t) ≥ a
)

and the symmetric property and the reflection principle of a Gaussian Markov process as in the

proof of Lemma 2.3 in [20]. Notice that B
HK

is a deterministic time change of B.
(2) Without loss of generality we let t ≥ s. The inequality of the right hand side is implied by

S
H̃
(s, t)−Υ

H̃
(s, t) = t2H − 1

2
{(t+ s)2H + (t− s)2H} ⪋ 0 if H ⪌ 1

2
.

Regarding the inequality of the center, we let

f2(t; s) := SH(s, t)−Υ
H̃
(s, t)

=
1

2− 22H−1
[t2H − s2H − 1

2
{(s+ t)2H − (2s)2H + (t− s)2H}],

which we regard as a function of t given s. Since the differential with t yields

f ′
2(t; s) =

2H

2− 22H−1

{
t2H−1 − (s+ t)2H−1 + (t− s)2H−1

2

}
⪌ 0 if H ⪌ 1

2
,

noticing f2(s; s) = 0 we conclude that

SH(s, t) ⪌ Υ
H̃
(s, t) if H ⪌ 1

2
.
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In order to analyze

SH(s, t)−ΥH(s, t)

=
22H−1

2− 22H−1

{s2H + t2H

2
−

( t+ s

2

)2H
+

( t− s

2

)2H
− (t− s)2H

2

}
,

we define a function of a with parameter b as

f3(a; b) =
a2H + (a+ b)2H

2
−

(2a+ b

2

)2H
, a ≥ 0, b ≥ 0,

such that its derivative satisfies

f ′
3(a; b) = 2H

(a2H−1 + (a+ b)2H−1

2
−

(2a+ b

2

)2H−1)
⪋ 0 for H ⪌ 1

2
,

from which we know that f3 is non-increasing (resp. non-decreasing) for H ∈ (12 , 1) (resp. H ∈
(0, 12)) as a function of a. Now putting b = t− s, we observe that

SH(s, t)−ΥH(s, t) =
22H−1

2− 22H−1

(
g(s)− g(0)

)
⪋ 0 for H ⪌ 1

2
.

The probability of maximal increments is bounded in the same manner as before.
(3) For H ∈ (0, 12), the result is implied by

χH(s, t)−ΥH(s, t) =
1

2− 22H
[
t2H − s2H − {(t+ s)2H − (2s)2H}

]
≥ 0.

For H ∈ (12 , 1), it suffices to observe

χH(s, t)−ΥH(s, t) :=
2− 22H−1

2(22H − 2)
(ΥH(s, t)− SH(s, t)) ≥ 0.

Hence the maxima of the process is bounded by that of B
H

for H ∈ (0, 12)∪H ∈ (12 , 1) similarly as
in the proof for (1). □

Proof of Lemma 2.3. In the proof, constants cKi , i = 1, 2, . . . will denote positive constants depend-
ing on K ∈ (0, 2) for which the exact values are irrelevant and may vary from line to line.
(1) The law of the iterated logarithm for B at 0 and ∞ assures the existence of the pathwise integral
and the integral by parts for XK , K ∈ (0, 1), which yields

XK(t)−XK(s) =

∫ ∞

0
(e−us − e−ut)u−

1+K
2 dB(u)

=

∫ ∞

0
(se−us − te−ut)u−

1+K
2 B(u)du

+
1 +K

2

∫ ∞

0
(e−ut − e−us)u−

3+K
2 B(u)du, t ≥ s > 0.

By applying the inequality 1− e−x ≤ x, x ≥ 0 and the triangle inequality several times we obtain

|XK(t)−XK(s)| ≤
∫ ∞

0
|se−us − te−ut|u−

1+K
2 |B(u)|du

+
1 +K

2

∫ ∞

0
|e−ut − e−us|u−

3+K
2 |B(u)|du

≤ (t− s)

∫ ∞

0
e−utu−

1+K
2 |B(u)|du+ s

∫ ∞

0
|e−u(t−s) − 1|e−usu−

1+K
2 |B(u)|du

+
1 +K

2

∫ ∞

0
|e−u(t−s) − 1|e−usu−

3+K
2 |B(u)|du
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≤ (t− s)

∫ ∞

0

(3 +K

2
+ us

)
u−

1+K
2 e−us|B(u)|du,

which yields via Hölder’s inequality,

max
s≤t≤s+r

|XK(t)−XK(s)|m

≤ max
s≤t≤s+r

(t− s)m
(∫ ∞

0

(3 +K

2
+ us

)2
u−

1+K
2 e−usdu

)m
2

×
(∫ ∞

0
e−usu−

1+K
2 |B(u)|2du

)m
2

≤ rm
(
cK1 s

K−1
2

)m
2

∫ ∞

0
e−

m
2
suu−

m
4
(1+K)|B(u)|mdu,

where in the last step we directly bound the fisrt integral by

2

∫ ∞

0

{(
3 +K

2

)2

+ s2u2

}
e−usu−

1+K
2 du = 2

(
3 +K

2

)2

s
K−1

2 Γ

(
1−K

2

)
+ 2s

K−1
2 Γ

(
5−K

2

)
=: cK1 s

K−1
2 .

In the middle term of inequalities, the first deterministic integral exists with K ∈ (0, 1). Noticing

E[|B(t)|m] ≤ t
m
2 (m− 1)!! (see p. 605 of [20]), we take expectation to obtain

E
[

max
s≤t≤s+r

|XK(t)−XK(s)|m
]
≤ rm

(
cK1 s

K−1
2

)m
2

∫ ∞

0
e−

m
2
suu−

m
4
(1+K)E[|B(u)|m]du

≤ rm
(
cK1 s

K−1
2

)m
2 (m− 1)!!

∫ ∞

0
e−

m
2
suu

m
4
(1−K)du

≤ rm
(
cK1 s

K−1
2

)m
2 (m− 1)!!

(s
2

)m
4
(K−1)−1

∫ ∞

0
e−vv

1−K
4 dv

≤ rm
(
cK2 s

(K−1)
2

)m
s−1(m− 1)!!,

where in the third step we use a change of variables formula and the fact e−vv
1−K

4 ≤ 1 for v > 0.
Hence the result is concluded.
(2) In case K ∈ (1, 2), another representation for XK (refer to [17, Theorem 2] or [27, Remark
3.1]),

XK(t) =

∫ t

0
Y K(u)du where Y K(t) =

∫ ∞

0
u

1−K
2 e−utdB(u)

yields

|XK(t)−XK(s)| ≤
(∫ t

s
|Y K(u)|mdu

) 1
m
(∫ t

s
1

m
m−1du

)m−1
m

≤ (t− s)
m−1
m

(∫ t

s
|Y K(u)|mdu

) 1
m
,

where we use the Hölder’s inequality. Accordingly

E[ max
s≤t≤s+r

|XK(t)−XK(s)|m] ≤ rm−1

∫ s+r

s
E[|Y K(u)|m]du

≤ (Γ(2− k)2K−2)
m
2 (m− 1)!!rm−1

∫ s+r

s
u

m
2
(K−2)du

≤ rm(s
K−2

2 cK3 )m(m− 1)!!,

where we use E[|Y K(u)|m] =
(
Γ(2−K)2K−2

)m
2 (m− 1)!!u

m
2
(K−2). □
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Proof of Lemma 3.2. Let X be a centered Gaussian process and then the covariance of Lamperti

transform X̂(u) = e−λuX(e
λ
H
u) for s, t > 0 has the expression

Cov
(
X̂(t), X̂(t+ s)

)
= e−λ(2t+s)Cov

(
X(e

λ
H
t), X(e

λ
H
(t+s))

)
.

Substituting BH,K and SH into X respectively and using expressions in Definition 1.1, we obtain
the first expressions of covariances for BH,K and SH , which do not depend on t ≥ 0 by the
stationarity. To obtain asymptotic behavior, it suffices to apply the binomial expansions before
taking s → ∞. □
Proof of Proposition 3.8. Throughout the proof, di, i = 1, 2, . . . will denote positive constants for
which the exact values are irrelevant and may vary from line to line. We start to see the distribution
of increments for s ≤ t ≤ s+ r:

B̂H(t)− B̂H(s)
d
= B̂H(t− s)− B̂H(0)

= e−λ(t−s)BH(e
λ
H
(t−s))−BH(1)

= (e−λ(t−s) − 1)BH(e
λ
H
(t−s)) +BH(e

λ
H
(t−s))−BH(1),

where we use the stationarity of B̂H . Then we have

E
[(

max
s≤t≤s+r

|B̂H(t)− B̂H(s)|
)m]

≤ E
[(

max
s≤t≤s+r

∣∣(e−λ(t−s) − 1)BH(e
λ
H
(t−s))

∣∣+ max
s≤t≤s+r

∣∣BH(e
λ
H
(t−s))−BH(1)

∣∣)m]
≤

m∑
k=0

(
m

k

)
E
[(

max
s≤t≤s+r

(1− e−λ(t−s))
∣∣BH(e

λ
H
(t−s))

∣∣)k
×

(
max

s≤t≤s+r

∣∣BH(e
λ
H
(t−s))−BH(1)

∣∣)m−k
]

≤
m∑
k=0

(
m

k

)
(1− e−λr)k

(
E
[(

max
s≤t≤s+r

|BH(e
λ
H
(t−s))|

)2k])1/2

×
(
E
[(

max
s≤t≤s+r

|BH(e
λ
H
(t−s) − 1)|

)2(m−k)])1/2
.(5.1)

From Lemma 2.2, the calculation proceeds as

E
[(

max
s≤t≤s+r

|BH(e
λ
H
(t−s))|

)2k]
= E

[(
max
0≤t≤r

|BH(e
λ
H
t)|
)2k]

≤
(
e

λ
H
r
)2kH

2 (2k − 1)!!

≤
(
eλr

)2k
2k k!

and

E
[(

max
s≤t≤s+r

|BH(e
λ
H
(t−s) − 1)|

)2(m−k)
]
= E

[(
max
0≤t≤r

|BH(e
λ
H
t − 1)|

)2(m−k)
]

= E
[(

max
0≤ t≤ (e

λ
H

r−1)

|BH(t)|
)2(m−k)

]
≤

(
e

λ
H
r − 1

)2(m−k)H
2 (2(m− k)− 1)!!

≤
(
e

λ
H
r − 1

)2(m−k)H
2m−k (m− k)!,

where we use relations

(2n)!! = 2nn! and (2n− 1)!! = (2n)!/(2nn!).
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Put these two bounds in (5.1) to obtain

E
[(

maxs≤t≤s+r |B̂H(t)− B̂H(s)|
)m]

m!

≤ 1√
m!

m∑
k=0

(
m

k

)√
k!(m− k)!

m!

{
(1− e−λr)

√
2eλr

}k{√
2(e

λ
H
r − 1)H

}m−k

≤ 1√
m!

{
(1− e−λr)

√
2eλr +

√
2(e

λ
H
r − 1)H

}m

=
(
√
2eλr)m√
m!

{
(1− e−λr) + (1− e−

λ
H
r)H

}m

≤ dm1√
m!

(λr + (λ/H · r)H)m

≤ dm2√
m!

rHm,

where in the last step we use r ∈ (0, 1) and H ∈ [12 , 1). Now we obtain the first result (3.2).

Next we show the maxima for B̃H , i.e., (3.3). The stationarity of B̃H gives

max
s≤t≤s+r

|B̃H(t)− B̃H(s)| = max
s≤t≤s+r

|eB̂H(t) − eB̂
H(s)|

d
= max

s≤t≤s+r
|eB̂H(t−s) − eB̂

H(0)|

= eB̂
H(0) max

0≤t≤r
|eB̂H(t)−B̂H(0) − 1|.

By Schwartz inequality and stationarity

E
[

max
s≤t≤s+r

|B̃H(t)− B̃H(s)|
]
≤ eVar(B̂

H(0))
(
E
[
max
0≤t≤r

|eB̂H(t)−B̂H(0) − 1|2
])1/2

.(5.2)

Since B̂H has a continuous version, it is bounded on 0 ≤ s ≤ r and we can use the expansion

ex =
∑∞

k=0
xk

k! on B̂H . Then elementary calculations show that

max
0≤s≤r

∣∣eB̂H(s)−B̂H(0) + 1
∣∣2

= max
0≤s≤r

∣∣e2(B̂H(s)−B̂H(0)) − 2eB̂
H(s)−B̂H(0) + 1

∣∣
= max

0≤s≤r

∣∣∣ ∞∑
m=1

{2(B̂H(s)− B̂H(0)}m

m!
− 2

∞∑
m=1

(B̂H(s)− B̂H(0))m

m!

∣∣∣
= max

0≤s≤r

∣∣∣(B̂H(s)− B̂H(0))2 +

∞∑
m=3

{2(B̂H(s)− B̂H(0))}m

m!
− 2

∞∑
m=3

(B̂H(s)− B̂H(0))m

m!

∣∣∣
≤ max

0≤s≤r
(B̂H(s)−BH(0))2 +

∞∑
m=3

max
0≤s≤r

{2|B̂H(s)− B̂H(0)|}m

m!

+
∞∑

m=3

max0≤s≤r |B̂H(s)−BH(0)|m

m!
.

Due to the first result (3.2), it follows that

E
[
max
0≤s≤r

|eB̂H(s)−B̂H(0) − 1|2
]

≤ E
[
max
0≤s≤r

(B̂H(s)− B̂H(0))2
]
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+

∞∑
m=3

E[max0≤s≤r 2
m|B̂H(s)− B̂H(0)|m]

m!

+

∞∑
m=3

E[max0≤s≤r |B̂H(s)− B̂H(0)|m]

m!

=
√
2d21r

2H +
∞∑

m=3

dm1 2mrHm

√
m!

+
∞∑

m=3

dm1 rHm

√
m!

=
√
2d21r

2H + r3H
∞∑

m=3

dm1 2mrH(m−3)

√
m!

+ r3H
∞∑

m=3

dm1√
m!

rH(m−3)

= r2H(d2 + d3r
H)

for all r ∈ (0, 1), where in the last step, we use Stirling’s formula for the convergence of infinite
sums. Substitute this into (5.2) and observe that

E
[
max
0≤s≤r

∣∣B̂H(s)− B̂H(0)
∣∣] ≤ d6e

Var(B̂H(0))
√

d4 + d5 · rH .

Now putting

C ′ := d6e
Var(B̂H(0))

√
d4 + d5,

we obtain the result. □
Proof of Proposition 3.9. For the proof we rely on the following lemma.

Lemma 5.1. Let H ∈ (0, 1), K ∈ (0, 2) and HK ∈ (12 , 1). Then for r ∈ (0, 1) we have

E
[(

max
1≤t≤1+r

|BH,K(t)|
)m]

≤ (1 + r)HKm2(m− 1)!!(5.3)

and

(5.4) E
[(

max
1≤t≤1+r

|BH,K(t)−BH,K(1)|
)m]

≤ rHKmDm
1

√
m!,

where D1 is a bounded positive constant which we can take uniformly in m.

Proof of Lemma 5.1. We observe from Lemma 2.1 that for a ≥ 0,

P
(

max
1≤t≤1+r

|BH,K(t)| ≥ a
)

= P
(

max
(1+r)−1≤t≤1

|BH,K(t)| ≥ a(1 + r)−HK
)

≤ P
(
max
0≤t≤1

|BH,K(t)| ≥ a(1 + r)−HK
)

≤ P
(
max
0≤t≤1

BH,K(t) ≥ a(1 + r)−HK
)

+P
(

min
0≤t≤1

BH,K(t) ≤ −a(1 + r)−HK
)

= 2P
(
max
0≤t≤1

BH,K(t) ≥ a(1 + r)−HK
)

≤ 4P
(
B

HK
(1) ≥ a(1 + r)−HK

)
,

where in the third step we use the symmetry of a Gaussian process. This together with Lemma 2.2
yields

E

[(
max

1≤t≤1+r
|BH,K(t)|

)m
]

≤
∫ ∞

0
mym−1P

(
max

1≤t≤1+r
|BH,K(t)| ≥ y

)
dy

≤ 4

∫ ∞

0
mym−1P

(
B

HK
(1) ≥ (1 + r)−HKy

)
dy
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≤ 2

√
2

π

∫ ∞

0
mym−1dy

∫ ∞

(1+r)−HKy
e−x2/2dx

= (1 + r)HKm2

√
2

π

∫ ∞

0
xme−x2/2dx

≤ (1 + r)HKm2(m− 1)!!.

Hence we prove (5.3).
Next we show (5.4) for K ∈ (0, 1) with the triangular inequality

|BH,K(t)−BH,K(s)| ≤ c1|XK(t2H)−XK(s2H)|(5.5)

+|BH,K(t)−BH,K(s) + c1(X
K(t2H)−XK(s2H))|

and the relation

max
1≤t≤1+r

{BH,K(t)−BH,K(1) + c1(X
K(t2H)−XK(1))} d

= max
1≤t≤1+r

{c2(BHK(t)−BHK(1))},

which follows from the decomposition (2.2) and the continuity of the processes BH,K , BHK and
XK . From these facts the expected maximal increments satisfy

E
[(

max
1≤t≤1+r

|BH,K(t)−BH,K(1)|
)m]

≤
m∑
k=0

(
m

k

)√
E
[(

max
1≤t≤1+r

|BHK(t)−BHK(1)|
)2k]

×cm−k
1

√
E
[(

max
1≤t≤1+r

|XK(t2H)−XK(1)|
)2(m−k)

]
≤

m∑
k=0

(
m

k

)
ck2

√
E
[(

max
0≤t≤r

|BHK(t)|
)2k]

cm−k
1

√
E
[(

max
1≤t≤(1+r)2H

|XK(t)−XK(1)|
)2(m−k)

]
≤

m∑
k=0

(
m

k

)
ck2c

m−k
1

√
r2HKk2(2k − 1)!!

√{
CK((1 + r)2H − 1)

}2(m−k)
(2(m− k)− 1)!!

=
m∑
k=0

(
m

k

)
ck2c

m−k
1 rHKk

{
CK((1 + r)2H − 1)

}m−k
√
2kk!

√
2m−k(m− k)!

≤
√
2
m

m∑
k=0

(
m

k

)
(c2r

HK)k
{
c1CK((1 + r)2H − 1)

}m−k√
m!

=
√
2
m{

c2r
HK + c1CK((1 + r)2H − 1)

}m√
m!,

where in the third step we used inequalities in Lemma 2.2 for BHK and Lemma 2.3 for XK with
K ∈ (0, 1). Note that in the first step we can not use the independence of BH,K and XK since we
take the power of (5.5). Now putting

√
2c2 +

√
2c1CK((1 + r)2H − 1)/rHK = D1 , we obtain the

first result.
Finally we show (5.4) for K ∈ (1, 2) by using

max
1≤t≤1+r

|BH,K(t)−BH,K(1)|m d
= max

1≤t≤1+r
|c2(BHK(t)−BHK(1)) + c3(X

K(t2H)−XK(1))|m,

which follows from the decomposition (2.3). Noticing the independence of BHK and XK , we have

E
[

max
1≤t≤1+r

|BH,K(t)−BH,K(1)|m
]
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≤
m∑
k=0

(
m

k

)
ck2c

m−k
3 E

[
max

1≤t≤1+r
|BHK(t)−BHK(1)|k

]
E
[

max
1≤t≤1+r

|XK(t2H)−XK(1)|m−k
]

=
m∑
k=0

(
m

k

)
ck2c

m−k
3 E

[
max
0≤t≤r

|BHK(t)|k
]
E
[

max
1≤t≤(1+r)2H

|XK(t)−XK(1)|m−k
]

≤
m∑
k=0

(
m

k

)
ck2c

m−k
3 · rHKk2(k − 1)!! · ((1 + r)2H − 1)m−kCm−k

K (m− k − 1)!!

≤ 2

m∑
k=0

(
m

k

)
(c2r

HK)k
{
c3CK((1 + r)2H − 1)

}m−k
(m− 1)!!

≤ 2(m− 1)!!
{
c2r

HK + c3CK((1 + r)2H − 1)
}m

,

where in the third step the inequality and constant CK in Lemmas 2.2 and 2.3 are used. The result

is obtained by setting 2
1
m

{
c2+c3CK((1+r)2H−1)/rHK

}
= D1 and the fact {(m−1)!!}2 ≤ m!. □

(Proof of Proposition 3.9). First we prove the former result (3.4) with an application of (5.3) and
(5.4) in Lemma 5.1. Similarly as in the proof of Proposition 3.8, it follows that

E
[

max
s≤t≤s+r

|B̂H,K(t)− B̂H,K(s)|m
]

= E
[

max
s≤t≤s+r

|(e−λ(t−s) − 1)BH,K(e
λ

HK
(t−s)) +BH,K(e

λ
HK

(t−s))−BH,K(1)|m
]

≤
m∑
k=0

(
m

k

)
|1− e−λr|k

√
E
[
max
0≤t≤r

|BH,K(e
λ

HK
t)|2k

]
×
√

E
[
max
0≤t≤r

|BH,K(e
λ

HK
t)−BH,K(1)|2(m−k)

]
≤

m∑
k=0

(
m

k

)
|1− e−λr|k

√
(e

λ
HK

r)2HKk2(2k − 1)!!

√
(e

λ
HK

r − 1)2HK(m−k)D
2(m−k)
1

√
(2(m− k))!

≤
m∑
k=0

(
m

k

)
|1− e−λr|k(eλr)k

√
2kk!{D1(e

λ
HK

r − 1)HK}m−k
√

2m−k(m− k)!

≤
m∑
k=0

(
m

k

)(√
2(eλr − 1)

)k{√2D1(e
λ

HK
r − 1)HK}m−k

√
k!
√

(m− k)!

≤
√
m!

√
2
m{eλr − 1 +D1(e

λ
HK

r − 1)HK}m

≤
√
m!

√
2
m
rHKm{(eλr − 1)/rHK +D1(e

λ
HK

r − 1)HK/rHK}m

≤
√
m!

√
2
m
rHKm{eλrλr1−HK +D1e

λr(λ/HK)HK}m

≤ rHKm
√
m! dm,

where d is some bounded positive constant. In the third step we use inequalities

2(2n− 1)!! ≤ 2nn! and (2n)! = 2nn!(2n− 1)!! ≤ 22n(n!)2.

Now dividing both sides with m!, we obtain the result.

Next we prove (3.5) in the same way as the proof of B̃H in Proposition 3.8 and we replace B̂H

with B̂H,K in the proof to obtain

(5.6) E
[

max
s≤t≤s+r

|B̃H,K(t)− B̃H,K(s)|
]
≤ eVar(B̂

H,K(0))
(
E
[
max
0≤t≤r

|eB̂H,K(t)−B̂H,K(0) − 1|2
])1/2

.
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Again we follow the proof of B̃H in Proposition 3.8 and obtain

E
[
max
0≤s≤r

(
eB̂

H,K(s)−B̂H,K(0) − 1
)2] ≤ E

[
max
0≤s≤r

(
B̂H,K(s)− B̂H,K(0)

)2]
+

∞∑
m=3

E
[
max0≤s≤r |2(B̂H,K(s)− B̂H,K(0))|m

]
m!

+

∞∑
m=3

E
[
max0≤s≤r |B̂H,K(s)− B̂H,K(0)|m

]
m!

=
√
2C2r2HK + r3HK

∞∑
m=3

Cm2mrHK(m−3)

√
m!

+r3HK
∞∑

m=3

Cm

√
m!

rHK(m−3)

≤ r2HK(d1 + d2r
HK)

for all r ∈ (0, 1), where di, i = 1, 2 are positive constants and we use (3.4) in the second step. In
the last step, we use the Stirling formula for the convergence of infinite sums. Substitute this into
(5.6) and observe that

E
[
max
0≤s≤r

|B̂H,K(s)− B̂H,K(0)|
]
≤ d3e

Var(B̂H,K(0))
√

d1 + d2 · rHK ,

where d3 > 0 is a constant. Then putting

C ′ = d3e
Var(B̂H,K(0))

√
d1 + d2,

we obtain the result. □

Proof of Proposition 3.10. Again we start with the related lemma.

Lemma 5.2. Let H ∈ (12 , 1) and m = 1, 2, . . ., then for r ∈ (0, 1)

(5.7) E
[

max
0≤t≤1+r

|SH(t)|m
]
≤ (1 + r)Hm2(m− 1)!!

and

(5.8) E
[

max
1≤t≤1+r

|SH(t)− SH(1)|m
]
≤ rHmDm

1

√
m!,

where D1 > 0 is a constant which we can take uniformly in m.

Proof of Lemma 5.2. We omit the proof of (5.7) since it is the same as that of (5.3) in Lemma 5.1
if we replace BH,K by SH . Next we prove (5.8). The triangular inequality yields

max
1≤t≤1+r

|dH(SH(t)− SH(1))| ≤ max
1≤t≤1+r

|c5(X2H(t)−X2H(1))|

+ max
1≤t≤1+r

|c5(X2H(t)−X2H(1)) + dH(SH(t)− SH(1))|.

Due to the decomposition (2.5) with the continuity of concerning processes, we have

E
[

max
1≤t≤1+r

|dH(SH(t)− SH(1))|m
]

≤ E
[(

max
1≤t≤1+r

|c5(X2H(t)−X2H(1))|

+ max
1≤t≤1+r

|c5(X2H(t)−X2H(1)) + dH(SH(t)− SH(1))|
)m]
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≤
m∑
k=0

(
m

k

)√
E
[
( max
1≤t≤1+r

|BH(t)−BH(1)|)2k
]

×cm−k
5

√
E
[
( max
1≤t≤1+r

|X2H(t)−X2H(1)|)2(m−k)
]

≤
m∑
k=0

(
m

k

)
cm−k
5

√
r2Hk2(2k − 1)!!

√
r2(m−k)C

2(m−k)
K (2(m− k)− 1)!!

≤
m∑
k=0

(
m

k

)
(rH)k

√
2kk! (c5CKr)m−k

√
2m−k(m− k)!

≤
√
2
m√

m!(rH + c5CKr)m

:= rH
√
2
m√

m!dm,

where d is a positive constant and in the third step we use Lemma 2.2 and (2.7) of Lemma 2.3 with
stationary increments of BH . Now dividing both sides with dmH , we obtain the result. □

(Proof of Proposition 3.10). In a similar manner as before, we proceed the proof by using the
stationarity and the results of Lemma 5.2. It follows that

E
[
( max
s≤t≤s+r

|ŜH(t)− ŜH(s)|)m
]

≤ E
[(

max
s≤t≤s+r

|(e−λ(t−s) − 1)SH(e
λ
H
(t−s)) + SH(e

λ
H
(t−s))− SH(1)|

)m]
≤

m∑
k=0

(
m

k

)
(1− e−λr)k

√
E
[

max
s≤t≤s+r

|SH(e
λ
H
(t−s))|2k

]√
E
[

max
s≤t≤s+r

|SH(e
λ
H
(t−s))− SH(1)|2(m−k)

]
≤

m∑
k=0

(
m

k

)
(1− e−λr)k

√
(1 + e

λ
H
r)2Hk2(2k − 1)!!

√
(e

λ
H
r − 1)2(m−k)HD

2(m−k)
1

√
2(m− k)!!

≤
m∑
k=0

(
m

k

){
(1 + e

λ
H
r)H(1− e−λr)

}k√
2kk!

{
(e

λ
H
r − 1)HD1

}m−k
√

2m−k(m− k)!

≤
√
m!

√
2
m
{
(1 + e

λ
H
r)(1− e−λr) +D1(e

λ
H
r − 1)H

}m

≤ rHm
√
m!

√
2
m
{
(1 + e

λ
H
r)(1− e−λr)/rH +D1(e

λ
H
r − 1)H/rH

}m

≤ rHm
√
m!

√
2
m
dm1 ,

where d1 > 0 is a constant and in the 4th step we apply (5.7) and (5.8) of Lemma 5.2. Hence we
obtain the first result (3.6).

The proof of (3.7) is almost the same as that of B̃H in Proposition 3.8 if we replace Lemma 5.1
with Lemma 5.2, and we omit it. □
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