mactur

THE JANCZOS BIORTHOGONALIZATION ALGORITHM and OTHER OBLIQUE PROJECTION METHODS FOR SOLVING LARGE UNSYMMETRIC SYSTEMS

Y. Saad

December 1980

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA, ILLINOIS 61801

Supported in part by DOE grant DE-ACO2-76ERO2383.A003. Professor Saad is on leave from Laboratoire d^{\dagger} Informatique et de Mathematiques Appliquees de Grenoble.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereot, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

1. INTRODUCTIION

In an earlier paper [13], some algorithms based on orthogonalization techniques have been proposed for solving large unsymmetric systems, of particular interest is the incomplete orthogonalization method without correction, where at every step the solution is taken such as to make the new residual orthogonal to the p previous residuals where p is some small integer. As will be seen, this method can be regarded as an oblique projection method. By nonorthoganal or oblique projection method we mean a method which seeks a solution \tilde{x} of $A x=b$ by reguiring that \tilde{x} belongs to a certain subspace K (called the tight space) and that the residual b - Ax be orthogonal to another subspace L (called the left subspace). The best example of an oblique projection method for solving linear systems is provided by the method of Lanczos [7] which is a version of the well known conjugate gradient method in the symmetric case [3], In that method the right space K is a Krylov subspace $K=\operatorname{span} \mathbf{v}_{1}, A v_{1}, \ldots$, $A^{0-1} v_{1}$] where v_{1} is a starting vector, while L is a Krylov subspace associated with $A^{H}, L=\operatorname{span}\left[W, A^{H} W_{1}, \ldots,\left(A^{H}\right)^{m-1} W_{1}\right]$. The Lanczos algorithm has been neglected for a long time because of its dnstability as a method for tridiagonalizing a nonsymmetric matrix and computing its elgenvalues, although recently this fact has been reconsidered by Parlett and Taylor [11]. For solving linear systems, however, the method can be quite useful, especially when it is used in conjunction with a preconditioning technique. We should point out that the presence of A^{H} in the definition of L does not mean at all that the Lanczos method solves the normal equations $A^{H} A x=A^{H} b$.

It is not the purpose of this paper to introduce a specific method effective for any large unsymetric system, but rather to present and analyze a class ofnethods based upon ablique projection processes. Some of the algorithms presented are already known or can be trivially derived from known algorithms.

Section 2 sets the basic definitions and notations of the oblique projection methods and treats the important example of the Lanczos method. In section 3 other oblique projection methods, such as the Incomplete orthogonalization method and the orthomin (p) method [14], are considered. The convergence properties of the algorithm are studied in section 4 and some numerical experiments are described in the last section comparing some of the methods treated.

2. OBLIQUE PROJECTION METHODS AND THE LANCZOS ALGORITHM

2.1. Oblique Projection Methods. Basic Theory and Notations

Let us consider the linear system

$$
\begin{equation*}
b-A x=0 \tag{2.1}
\end{equation*}
$$

where A is an $n x n$ nonsymuetric matrix. Let $V_{m} \equiv\left[v_{1}, \ldots, v_{m}\right]$ and $W_{W} \equiv\left[W_{1} \ldots, W_{m}\right]$ be two systems of m linearly independent vectors in \boldsymbol{f}^{n}. The span of v_{m} (resp. W_{m}) will be denoted by K_{m} (resp. L_{m}) and will often be refezred to as the right (resp. 1eft) space. An oblique projection method onto K_{m} and orthogonally to L_{m} is any process that obtains an approximate solution x_{m} to problew (2.1), which belongs to K_{m} and which satisfies the relations:

$$
\begin{equation*}
b-A x_{m} \perp w_{j}, \quad j=1, \ldots, m \tag{2,2}
\end{equation*}
$$

If a good guess x_{0} at the solution is available, it is more appropriate to seek an approximate solution of the form

$$
\begin{equation*}
x=x_{0}+z \tag{2.3}
\end{equation*}
$$

where z belongs to K_{m} and where x is required to satisfy the same condition (2.2), In that case the new unknown z is the solution of the problem

$$
\begin{equation*}
r_{0}-A z \perp w_{j}, \quad j=1, \ldots, m \tag{2.4}
\end{equation*}
$$

where r_{0} is the initial residual $b-A x_{0}$.
Note that the first formulation is a particular case of the second with $X_{0}=0$ and that the second formulation can be reduced to the first because it amounts to solving the problen

$$
\begin{equation*}
\mathbf{t}_{0}-A z=0 \tag{2,5}
\end{equation*}
$$

by the oblique projection method.

The second formulation is important for restarting the algorithn. The more general formulation (2.3), (2.4) will be often adopted. It will be assuned throughout that r_{0} belongs to K_{m}. Another important assumption that we shall make is that
(H): no vector of L_{m} is orthogonal to either K_{m} or $A K_{\mathrm{m}}$, or equivalently that

$$
W_{m}^{H} v_{m} \text { and } W_{m}^{H} A V_{m} \text { are both inversible. }
$$

In that case the problem (2.5) has a solution 2_{m} which can be obtained as

$$
\begin{equation*}
z_{\mathrm{ra}}=v_{\mathrm{rin}} y_{\mathrm{ma}} \tag{2.6}
\end{equation*}
$$

where y_{m} is given by

$$
\begin{equation*}
y_{m}=\left(W_{m}^{H} A V_{m}\right)^{-1} W_{m}^{H} r_{0} \tag{2,7}
\end{equation*}
$$

In section 4 we will give an interpretation of the oblique projection method in terns of operators.

Indeed it will be seen that the above method replaces probleat
(2.1) by an approximate problen involving an operator of rank less than n.

2.2. The Lanczos Method of Biorthogonalization

2.2.1. The biorthonormalization process

A very attractive exsmple of the oblique projection process described above is the method proposed by Lanczos in [7]. In that method, Lanczos suggested a simple way to generate biorthogonal syatems W_{m}, V_{n} such that the matrix $W_{m}^{H_{A V}}{ }_{m}$ in (2.7) has a tridiagonal form. A simple version of his algorithm can be described as follows:

Algorithn 1

1. Choose v_{1} and w_{1} such that $\left(v_{1}, w_{1}\right)=I$.
2. For $j=1,2, \ldots, n$ do

$$
\begin{align*}
& \cdot \hat{v}_{j+1}:=A v_{j}-\alpha_{j} v_{j}-\beta_{j} v_{j-1} \tag{2.10}\\
& -\hat{w}_{j+1}:=A_{w_{j}}^{H}-\alpha_{j} w_{j}-\delta_{j} w_{j-1} \tag{2.11}\\
& \left.\quad \text { (when } i=1 \text { take } \beta_{1} v_{0}:=\delta_{1} w_{0}:=0\right) \\
& \text { with } \alpha_{j}:=\left(A v_{j}, w_{j}\right) \tag{2.12}
\end{align*}
$$

- choose δ_{j+1} and β_{j+1} such that

$$
\begin{align*}
& \delta_{j+1} \beta_{j+1}=\left(\hat{v}_{j+1} \hat{w}_{j+1}\right) \tag{2.13}\\
& v_{j+1}:=\hat{v}_{j+1} / \delta_{j+1} \tag{2.14}\\
& w_{j+1}:=\hat{w}_{j+1} / \beta_{j+1} \tag{2.15}
\end{align*}
$$

It can be shown easily that when the algorithm does not break
down for a null inner product $\left(\hat{v}_{j+1}, \hat{\omega}_{j+1}\right)$, then the vectors v_{i} and w_{i} satisfy the biorthonornality property:

$$
\begin{equation*}
\left(v_{i}, w_{j}\right)=\delta_{i j}, \quad 1, j=1, \ldots, m \tag{2.16}
\end{equation*}
$$

Some interesting choices for δ_{j+1} and β_{j+1} in (2.13) are the following:
a. $\quad \delta_{j+1}=\left|\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right)\right|^{1 / 2}, \beta_{j+1}=\hat{\delta}_{j+1} \operatorname{sign}\left(\hat{v}_{j+1}, \hat{\omega}_{j+1}\right)$
b.

$$
\begin{gather*}
\delta_{j+1}=\left\|\theta_{j+1}\right\| ; \beta_{j+1}=\left(\hat{\theta}_{j+1}, \hat{w}_{j+1}\right) / \delta_{j+1} \tag{2.18}\\
\text { This makes } v_{j+1} \text { of norm woity. }
\end{gather*}
$$

c. $\quad \delta_{j+1}=\left|\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right)\left\|\hat{v}_{j+1}\right\| /\left\|\hat{w}_{j+1}\right\|\right|^{1 / 2}$

$$
\begin{equation*}
B_{j+1}=\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right) / \delta_{j+1} \tag{2.18}
\end{equation*}
$$

This last choice makes v_{j+1} and w_{j+1} having the same norm. Practically, the fornulae (2.17) are to be preferred as they are more economical. Numerically, the purpose of (2.17), (2.19) is to attempt to balance the norms of the vectors v_{j+1} and w_{j+1}. It is, however, necessary to remark that the product $\left\|_{w_{j+1}}\right\|\left\|_{v_{j+1}}\right\|$ will not depend upon with of a, b, or c is applied because

$$
\begin{gathered}
\left\|v_{j+1}\right\|\left\|w_{j+1}\right\|=\frac{\left\|\hat{v}_{j+1}\right\|\left\|\hat{w}_{j+1}\right\|}{\delta_{j+1}^{\beta_{j+1}}}=\frac{\left\|\hat{v}_{j+1}, \hat{w}_{j+1}\right\|}{T\left(\hat{v}_{j+1}, \hat{v}_{j+1}\right) T} \\
\left\|v_{j+1}\right\|\left\|w_{j+1}\right\|=\frac{1}{\cos \theta\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right)}
\end{gathered}
$$

where $\theta(x, y)$ denotes the acute angle between the vectors x and y. The angle $\theta\left(\hat{v}_{j+1}, \hat{W}_{j+1}\right)$ is a function of A, v_{1}, w_{1} and j only because, as will be seen later on, the vectors $\hat{v}_{j+1}, \hat{w}_{j+1}$ are uniquely deterained by v_{1}, w_{1} apart from a normalizing factor. This angle can be equal to $\pi / 2$ causing the algorithm to stop. As shown in an example by Wilkinson [15, p. 390], this can occur even when A is well conditioned, and shauld not be incurred to any shortcoming in the matrix A. It is interesting to note that v_{j+1} and w_{j+1} can be written as $\hat{v}_{j+1}=P_{j}(A) v_{1}, \hat{w}_{j+1}=P_{j}\left(A^{H}\right) w_{1}$ where P_{j} denotes a polynomial of degree j, so that a sufficient condition for the feasibilfty of Lanczos algorithm is that

$$
\begin{equation*}
\forall p, d^{0} p \leq m,\left\langle p(A) v_{1}, p\left(A^{H}\right)_{w_{1}}\right) \neq 0 \tag{2.21}
\end{equation*}
$$

This generalizes the condition of the symmetric case which requires that the degree of the annihilating polynomial of v_{1} mast not exceed n.

2.2.2. Solution of the linear system by the Lanczos trethod.

The previous algorithm builds a system of biorthonormal vectors $\left\{v_{i}, w_{i}\right\}_{i=1, m}$ but does not provide explicitly an approximate solution for
(2.1). In [7] Lanczos has proposed an interesting way to build up such an approximation. His algorithm, which sas published at about the same time as the conjugate gradient method of Hesleness and. Stitefel [3], can be considered as a version of the C.G. algorithn. The algorithr proposed by Lanczos decouples each of the relations (2.10) and (2.11) in two other relations involving a new sequence of vectors (the conjugate directions) 1n which the solution is easily expressed. The approximate solution x_{m} provided by Lanczos' algorithm belongs to $\left\{x_{0}\right\}+K_{i n}$ and its residual, thich is proportional to the vector $v_{\text {wfl }}$, is orthonormal to the left space L_{m}. It is therefore equal to the solution that would be obtained by an oblique projection wethod using the subspaces $K_{m}=\operatorname{span}\left(V_{n}\right)$ as a right space and $L_{u}=\operatorname{span}\left(W_{m}\right)$ as a left space, vhere $V_{m}{ }^{*} W_{m}$ is the biorthonormal system built by Algorithm 1.

In the following we show how the approximate solution can also be obtained directly as a combination of the vectors v_{i}. Note that another algotithm simpler and closer to the G.G. method will be given in the nert subsection.

Suppose that Algorithm 1 is started with $v_{1}=r_{0} /\left\|r_{0}\right\|$ and $w_{1}=v_{1}$ and let us consider the component vector $y_{\text {d }}$ of $z_{\text {m }}$ given by (2.6). From the algoritho and the biorthonormality property (2,16), it can be easily shown [16] that the on x m matrix $T_{m}=W_{m}^{H_{m}}$ has the tridiagonal form

[^0](Notice that with the deternination (a) of δ_{j+1}, T_{m} has the interesting additional property that
$$
\left.\beta_{j}= \pm \delta_{j}, \quad j=2, \ldots, n,\right)
$$

Furthermore, the right hand side of the system (2.6) is equal to Be_{1} where $\beta=\left\|r_{0}\right\| ; e_{1}=(I, 0, \ldots, 0)^{T}$ because $W_{m}^{H} r_{0}=\beta W_{m}^{H} v_{1}=\beta e_{1}$.

The approximate solution x_{m} is therefore quite easy to obtain practically since we have

$$
\begin{equation*}
x_{m}=x_{0}+v_{m} y_{m}=x_{0}+B v_{m} q_{m}^{-1} e_{1} \tag{2.24}
\end{equation*}
$$

Computing the approximate solution by $(2,20)$ and $(2,21)$ requires the storage of the vectors $v_{1}, v_{2}, \ldots, v_{m}$ but this does not constitute a major drawback because the formation of the solution by (2.21) takes place only when the convergence has occurred, and therefore the v_{f} 's can be saved in secondary storage until then. This means, however, that we have to provide same means for determining whether the convergence is achieved, without explicitly using the approximate solution. Fortumately, this can be done quite easily thanks to the following formula, well known and tremendously useful in the symmetric case [10], [11] which expresses the residual norm in termes of y_{m} and $\left\|\hat{v}_{m+1}\right\|$

$$
\begin{equation*}
\left\|b-A x_{m}\right\|=\left\|\hat{v}_{m+1}\right\| \| e_{m}^{T} y_{m} \mid \tag{2,25}
\end{equation*}
$$

Equality (2.25) enables us to computa the residual norm very
economically and one can afford to make use of (2.25) periodically to monitor the convergence. Let $u s$ mention that it is not even necessary
to actually compute y_{k} in order to estimate the residual norm. (See similar point in \{II] and (14].)

A1gorithm 2

1. Choose an infitial vector x_{0}, compute

$$
\begin{aligned}
& r_{0}:=b-A x_{0} ; \\
& 6:=\left\|r_{0}\right\| \\
& v_{1}:=w_{1}:=r_{0} / \beta
\end{aligned}
$$

2. For $j=1,2, \ldots, s_{\text {max }}$ do
a. compute $v_{j+1}, w_{j+1}+\alpha_{j}, \beta_{j+1}, \hat{\delta}_{j+1}$. By formulae (2.10) to (2.15) of A1gorithan 1.
b. Periodically (e.g., when $[j / 5] \cdot 5=1$) update the estimate ρ_{j} of the residual norn.

If $\rho_{j} \leq \varepsilon$ goto 3 else continue
3. Form the approximate solution

$$
x_{j}=x_{0}+\beta v_{j} y_{j}
$$

2.3. Equivalent Versions and the Bi-Conjugate Gradient Method

We shall now give some equivalent versions of the basic
Algorithms 1 and 2. We first introduce for theoretical purpose a generalization of ALgorithm 1 . Then on the practical side a simpler version of Algorithm 2 will be studied.

2.3.1. A generalization of Algorithm 1

The following algorithm generalizes Algorithm 1 Into a whole class of equivalent versions.

Algorithm 3

1. Choose v_{1} and w_{1} as in Algorithm 1 .
2. For $j=1,2, \ldots, m$ do

$$
\left\{\begin{array}{l}
\hat{v}_{j+1}:=A v_{j}-a_{j} v_{j}-\beta_{j} v_{j-1} \tag{2.26}\\
\hat{w}_{j+1}:=A^{H} w_{j}-\sum_{i=1}^{j} h_{i j} w_{i}
\end{array}\right.
$$

where $\alpha_{j}=\left(A v_{j}, w_{j}\right)-\left(A v_{j-1}, w_{j-1}\right)+h_{j-1, j-1}$
(when $j=1$ take $\beta_{1} v_{0}=0$ and $\alpha_{1}=\left(A v_{1}, v_{1}\right)$)
and where the $h_{i j}$ ' i are arbitrary.

- Normalize \mathbf{v}_{j+1} and \mathbf{w}_{j+1} by using formulae (2.13), (2.14), (2.15), (2.17) of Algorithm 1 .

Obviously, Algorithm 1 is a particular case of the above algorithm with $h_{j, j}=\left(A v_{j}, v_{j}\right) ; h_{j-1, j}=\delta_{j}$ and $h_{i j}=0$ for $i<j-1$.

For every particular choice of the parameters $h_{1 j}$ one obtains a set of vectors $v_{v o}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$ and a tridiagonal matrix T_{m} defined by (2.23). What is surprising is that, theoretically, whatever the $h_{i j}$ "s are, the above algorithn will always produce the same right vectors v_{i}, the same tridiagonal matrix T_{m} and therefore the same approximate solution x_{w} as is stated in the next proposition.

Proposition 1

Suppose that Algorithm 3 is feasible for a given pair of starting vectors v_{1} and w_{1}. Then

$$
\begin{equation*}
\left(v_{j}, w_{k}\right)=\delta_{j k}, \quad 1 \leq k \leq j \leq m+1 \tag{1}
\end{equation*}
$$

(ii) The systen $v_{m}=\left[v_{1}, v_{2}, \ldots, v_{n]}\right]$ and the matrix T_{m} produced by Algorithm 3 do not depend upon the choice of the parameters $h_{i j}$ used in (2.26).

Proof

1. The proof is by induction. Suppose that $\left(v_{j}, v_{k}\right)=0_{i} k \leq j$ and let us show that $\left(v_{j+1}, w_{k}\right)=0 ; k \leq j+1$. We consider three cases:
a. $k=j-1$

$$
\begin{aligned}
& \left(\hat{v}_{j+1}, w_{j-1}\right)=\left(A v_{j}, w_{j-1}\right)-\alpha_{j}\left(v_{j}, w_{j-1}\right)-\beta_{j}\left(v_{j-1}, w_{j-1}\right) \\
& =\left(A v_{j}, w_{j-1}\right)-\beta_{j} \\
& =\left(v_{j}, A^{H} w_{j-1}\right)-\beta_{j}=\left(v_{j}, \beta_{j} w_{j}+\sum_{i=1}^{j-1} h_{i j-1} w_{i}\right)-\beta_{j} \\
& =\beta_{j}+\left(v_{j}, \sum_{i=1}^{j-1} h_{i j-1} w_{i}\right)-\beta_{j}=0
\end{aligned}
$$

b. $k=j$

$$
\begin{aligned}
& \left(\hat{v}_{j+1}, w_{j}\right)=\left(A v_{j}, w_{j}\right)-\alpha_{j}\left(v_{j}, w_{j}\right)-\beta_{j}\left(v_{j-1}, v_{j}\right) \\
& =\left(A v_{j}, v_{j}\right)-\alpha_{j}-\beta_{j}\left(v_{j-1}, \beta_{j}^{-1}\left[A^{H} w_{j-1}-\sum_{i=1}^{j-1} h_{i j-1} w_{i}\right]\right) \\
& =-h_{j-1, j-1}+h_{j-1, j-1}=0 .
\end{aligned}
$$

c. $k<j-1$

$$
\begin{aligned}
\left(\hat{w}_{j+1}, w_{k}\right) & =\left(A v_{j}, w_{k}\right)-\alpha_{j}\left(v_{j}, w_{k}\right)-B_{j}\left(v_{j-1}, w_{k}\right) \\
& =\left(A v_{j}, w_{k}\right) \\
& =\left(v_{j}, A{ }_{w_{k}}\right)=\left(v_{j}, \hat{w}_{k+1}+\sum_{i=1}^{k} h_{i k} w_{i}\right) \\
& =0 \text { by the induction hypothesis. }
\end{aligned}
$$

2. a. In order to prove the second part of the proposition we shall need the following lemma:

Lemma 1
If the first m steps of Algorithm 1 can be realized then the $k \times k$ moment matrices M_{k} whose general terms are $m_{i j}=\left(A^{i+j-2} v_{1}\right.$, $\left.w_{i}\right)$, $1, j=1, \ldots, k$, are regular for $k=1,2, \ldots, m$.

Proof of Lemma

Let ua aet $\bar{W}_{k} \equiv\left[w_{1} A^{H},\left(A^{H}\right)^{k-1} w_{1}\right]$ and $\vec{V}_{k}=\left[v_{1}, A v_{1}, \ldots, A^{k-1} v_{1}\right]$. Since V_{k} and \bar{V}_{k} are both bases of the same subspace K_{m}, there exista a regular $k \times k$ natrix S_{k} such that $\bar{V}_{k}=V_{k} S_{k}$. Similarly there exista a $k \times k$ regular matrix S_{k}^{\prime} such that $\bar{W}_{k}=W_{k} S_{k}^{\prime}$. But the matrix M_{k} is equal to

$$
\bar{w}_{k}^{H} \bar{v}_{k}=S_{k}^{1^{H}} W_{k}^{H} v_{k} S_{k}=S_{k}^{, H} S_{k}
$$

which is regutar.
b. Let ua now show that the $v_{i}{ }^{\prime} s$ are the same apart from a multiplicative factor. We can write $v_{j+1}=\eta_{1} A^{j} v_{1}+\eta_{2} A^{j-1} v_{1}, \ldots,+n_{0} v_{1}$. Consider the vector $\eta_{I}^{-1} v_{j+1}$ which we denote by \vec{v}_{j+1}. The vector v_{j+1} can be written as

$$
v_{j+1}=A^{j} v_{1}-\sum_{i=0}^{j-1} \xi_{i} A^{i} v_{1}
$$

and it satiofies the following equations

$$
\left(\tilde{v}_{j+1},\left(A^{H}\right)^{k} w_{1}\right)=0, \quad k=0,1, \ldots, j-1
$$

because it is orthogonal to all the subspace spanned by $w_{1}, w_{2}, \ldots, w_{j}$ which is nothing but the left space $L_{j}=\operatorname{Span}\left[w_{1},\left(A^{H}\right)_{w_{1}}, \ldots\right.$, $\left.\left(A^{H}\right)^{j-1} w_{1}\right]$. Hence the ξ_{i} 's will be solutions of the innear systen of equations:
$\sum_{i=1}^{f}\left(A^{1-1} v_{1},\left(A^{H}\right)^{k-1} w_{1}\right) \xi_{1}=\left(A^{j} v_{1},\left(A^{H}\right)^{k-1} w_{1}\right), \quad k=1, \ldots, j$
Since the moment matrices M_{k} are assumed to be regular, then the solution of (2,28) is unique showing that $\tilde{\mathbf{v}}_{\mathbf{j}+1}$ does not depend upon the choice of the $h_{i j}{ }^{\prime} s$ in Algorithm 3 .

Next we must show that if we nornalize the vector \tilde{v}_{j+1} so that it makes with \tilde{w}_{j+1} an inner product equal to unity, we obtain the same result with any choice of the $h_{1 j}$'s. Let us consider the Enner product $\left(\tilde{v}_{j+1}, \tilde{w}_{j+1}\right)$:
$\left(\tilde{v}_{j+1}, \tilde{\omega}_{j+1}\right)=\left(\tilde{v}_{j+1},\left(A^{H}\right)^{j} w_{1}-v_{1}\left(A^{H}\right)^{j-1} w_{1}, \ldots, v_{j} w_{1}\right)$
$\left(\tilde{v}_{j+1}, \tilde{w}_{j+1}\right)=\left(\tilde{v}_{j+1}, \quad\left(A^{H}\right)_{w_{1}}\right\rangle$
because \tilde{v}_{j+1} is arthogonal to $\left(A^{H}\right)^{k} \mathbf{w}_{1}, k \leq j-1$. Therefore, the normalizing factor does not depend upon the parameters $h_{i j}$, which finally proves the fact that the v_{i} 's are independent of the $\mathrm{h}_{\mathrm{ij}}{ }^{\prime} \mathrm{s}$. c. To complete the proof, there remains to show that T_{m} is independent on the parameters $h_{i j}$. From the algorithm we have

$$
\begin{equation*}
A V_{m}=V_{m} T_{m}+\beta_{m+1} v_{m+1} e_{m}^{T} \tag{2.29}
\end{equation*}
$$

where T_{m} is the tridiagonal matrix obtained from Algorithm 3 for a given choice of the parameters $h_{i j}$. On multiplying both sides of (2.31) by \bar{W}_{m}^{H}, where ${\overline{W_{m}}}_{m}=\left[v_{1}, A^{H} \mathrm{w}_{1}, \ldots,\left(A^{\mathrm{H}}\right)^{\mathrm{m}-1} \mathbf{w}_{1}\right]$, we get

$$
\begin{equation*}
\bar{W}_{m}^{H} A V_{m}=\bar{W}_{m}^{H} v_{m} T_{m}+\beta_{m+1} \bar{W}_{m}^{H} v_{m+1} e_{m}^{T} \tag{2.30}
\end{equation*}
$$

Because of (2.27), v_{m+1} is orthogonal to all the subspace L_{m} and so $\bar{W}_{m}^{H} v_{m+1}=0$. Furthermore by a proof similar to that of Lemma 1 , it can be shown that the matrix $\bar{W}_{m}^{H} v_{m}$ is regular such that from (2.30) we have

$$
T_{m}=\left(\bar{W}_{m}^{H} V_{m}\right)^{-1} \bar{W}_{\mathrm{m}}^{\mathrm{H}} A V_{\mathrm{m}}
$$

This and the fact that the $v_{i}{ }^{\prime} s$ are independent upon the $h_{i j}$'s shows that T_{m} is independent upon the $h_{i j}{ }^{1} \mathrm{~s}$. \quad O

One might wonder whether it is possible to find anong all the possible choices of the parameters $h_{i j}$ one which makes the algorithri more
efficient than Algorithm 1.
Although the result of Propoaition 1 may aeem poverful, it has little practical value as it turns out that the most atable and economical version is just the Algorithm 1 . Its only practical interest lies in the problem of reorthogonalization. In effect the above results show that it is only important that v_{j+1} be orthogonal to the previous w_{i}, $i \leq j$. Therefore, if reorthogonalization is needed 1n Algorithm $l_{\text {, }}$ one must apply i.t only on the set of vectors v_{i}; that is, one only needs to reorthogonalize the v_{i} 's against the w_{i} 's.

This, however, might be more important for eigenvalue problens than for the solution of inear equations.

2.3.2. The biconjugate gradient algorithm

The solution x_{m} provided by Algorithn 3 can be obtzined by a conjugate gradient-like method which may be derived in the same way as the C.G. Method is derived from the Lanczos algorithm in the symmetric case [see, e.g., Paige and Saunders [9]].

ALgorithm 4

1. Choose an initial guess x_{0} of the solution
2. Compute $r_{0}=b-A x_{0}$ and take $P_{0}^{*}:=r_{0}^{*}:=P_{0}:=r_{0}$
3. For $k=1,2, \ldots, m, \ldots$ compute

$$
\begin{align*}
& x_{k+1}:=x_{k}+\alpha_{k} P_{k} \\
& r_{k+1}:=r_{k}-\alpha_{k} A p_{k} \tag{2.31}\\
& r_{k+1}^{*}:=r_{k}^{*}-\alpha_{k} A^{H} P_{k}^{*} \\
& P_{k+1}:=r_{k+1}+\beta_{k} p_{k} \tag{2.33}
\end{align*}
$$

$$
\begin{equation*}
P_{k+1}^{\star}:=r_{k+1}^{\star}+\beta_{k} P_{k}^{\star} \tag{2.34}
\end{equation*}
$$

with

$$
\begin{align*}
& \alpha_{k}:=\left(r_{k}, r_{k}^{*}\right) /\left(A p_{k}, p_{k}^{*}\right) \tag{2.35}\\
& \beta_{k}:=\left(r_{k+1}, r_{k+1}^{*}\right) /\left(r_{k}, r_{k}^{*}\right) \tag{2.36}
\end{align*}
$$

The purpose of the above determination of α_{k} and β_{k} is to make the residual satisfy the relation $\left(r_{k+1}, r_{k}^{*}\right)=0$ and the direction p_{k} satisfy ($\mathrm{p}_{\mathrm{k}+1}, \mathrm{~A}^{\mathrm{H}} \mathrm{P}_{\mathbf{k}}$) $=0$. In fact, the following proposition can be shown.

Proposition 2

The vectors $\mathbf{r}_{\mathbf{k}}$, $\mathbf{r}_{\mathbf{k}}^{*}$ and $\mathrm{P}_{\mathbf{k}}$, P_{k}^{*} produced by Algorithm 4 are such that:
a. $\left(r_{k}, k_{j}^{*}\right)=0$ for $j \neq k$ (biorthogonality property)
b. ($A p_{k}, P_{j}^{*}$) $=0$ for $j \neq k$ (biconjugacy property)

Proof

Clearly, because of the duality of the vectors r_{k} and r_{k}^{*}, P_{k} and p_{k}^{*}, it is sufficient to show that

$$
\begin{equation*}
\left(r_{k}, r_{j}^{*}\right)=\left(A p_{k}, P_{j}^{k}\right)=0, \quad j<k \tag{2,37}
\end{equation*}
$$

The proof is by induction. For $k=1(2,37)$ is satisfied.
Suppose that (2.37) is satisfied and let us show that
$\left(r_{k+1}, r_{j}^{*}\right)=\left(A P_{k+1}, P_{j}^{*}\right)=0, j<k+1$. For $j=k$ this is true by construction so we must show it for $j<k$.
A. $\left(r_{k+1}, r_{j}^{*}\right)=\left(r_{k}-\alpha_{k} A P_{k}, r_{j}^{\star}\right)$
$=\left(r_{k}, r_{j}^{*}\right)-\alpha_{k}\left(A p_{k}, r_{j}^{*}\right)$
Since $\left(r_{k}, r_{j}^{*}\right)=0$ and using (2.34) we get

$$
\begin{aligned}
\left(r_{k+1}, r_{j}^{*}\right) & =-\alpha_{k}\left(A p_{k}, r_{j}\right)=-\alpha_{k}\left(A p_{k}, p_{j}^{*}+\beta_{j-1} p_{j-1}^{*}\right) \\
& =-\alpha_{k}\left(A p_{k}, p_{j}^{*}\right)-\alpha_{k} \beta_{j-1}\left(A p_{k}, p_{j-1}^{*}\right)=0
\end{aligned}
$$

b. $\quad\left(A_{p_{k+1}}, P_{j}^{\star}\right)=\left(P_{k+1}, A^{H} p_{j}^{\star}\right)$

$$
\begin{aligned}
& =\left(r_{k+1}+\beta_{k} P_{k}, A^{H} P_{j}^{*}\right) \text { by (2.33) } \\
& =\left(r_{k+1}, A^{H} p_{j}^{*}\right) \text { by the induction assumption } \\
& \left(A p_{k+1}, p_{j}^{*}\right)=\left(r_{k+1}, A^{H} p_{j}^{*}\right)=\frac{1}{\alpha_{j}}\left(r_{k+1}, r_{j}^{*}-r_{j+1}^{*}\right) \\
& =0 \text { since } \mathbf{j}<k
\end{aligned}
$$

Let us mention that all the relations that hold for the classical C.G. method will hold for the bi-conjugate gradient method if the vectors on the right parts of the inner products are replaced by the corresponding vectors p_{k}^{*}, r_{k}^{*}, etc.

It is important not to confuse this algorithm with the bidiagonalization method [8], where one essentially solves the normsl equations. The bidiagonalization methods are projection methods on the subspaces $\operatorname{Span}\left[r_{0},\left(A^{H} A\right) r_{0}, \ldots,\left(A^{H} A\right)^{n-1} r_{0}\right]$ while here we are dealing with an oblique projection method on the subspace $K_{m}=\operatorname{Span}\left[r_{0}, A r_{0}, \ldots\right.$, $\left.A^{m-1} r_{0}\right]$.

That Algorithm 4 is theoretically equivalent to Algorithm 3 can be simply established as follows:

The solutions obtained by both algorithms satisfy $x_{k}=x_{0}+z_{k}$ where z_{k} is such that

$$
\left\{\begin{array}{l}
z_{k} \in K_{k}=\operatorname{Span}\left[r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right] \\
r_{k}=r_{0}-A z_{k} \perp L_{k}=\operatorname{Span}\left[r_{0}, A^{H} r_{0}, \ldots,\left(A^{H}\right)^{k-1} r_{0}\right]
\end{array}\right.
$$

Therefore, $z_{k}=\sum_{i=1}^{k} \eta_{i} A^{i-1} r_{0}$ for both methods and the η_{i} 's are solutions of the linear system

$$
\begin{equation*}
\left(r_{0}-A \sum_{i=1}^{k} \eta_{i} A^{1-1} r_{0},\left(A^{H}\right)^{j-1} r_{0}\right)=0, \quad j=1,2, \ldots, k \tag{2.38}
\end{equation*}
$$

Assuming that the moment matrix M_{k}^{\prime}, whose general elements $\mathrm{m}_{\mathrm{ij}}^{\prime}$ are $m_{i j}^{t}=\left(A^{i+j-1} r_{0}, r_{0}\right)$, is regular (2) we conclude that the vectors z_{k} produced by both algorithns are the same because of the unicity of the solution of the system (2.38).

On the practical side, Algorithm 4 presents the advantage of requiring less storage than Algorithm 2. It can be coded with six vectors of length N in core memory while the Lanczos algorithan needed five vectors in main memory and m vectors in secondary storage (when m is large, the latter may involve substantial input/output operation times).

Furthermore, the number of arithmetic operations required is slightly in favor of Algorithm 4 because there is no tridiagonal system to solve. Finally, because stable methods can be used to solve the min m system, Algorithm 2 is, in general, more stable than Algorithm 4.

2.4. Feasibility of the Lanczos Algorithm and the Biconjugate Algorithm

Thus far we have not discussed under which conditions the Algorichms 2 and 4 are feasible. The moment matrices M_{k} and M_{k}^{\prime} mentioned in the previous subsection play an important role as is seen in the next proposition.
${ }^{(2)}$ In Section 2.4 we shall see that this assumption is necessary for the feasibility of Algorithm 2.

Proposition 3

Let M_{k} and M_{k}^{*} be the $k \times k$ monent natrices whose general terms are defined by $m_{i j}=\left(A^{i+j-2} v_{1}, v_{1}\right)$ and $m_{1 j}^{+}=\left(A^{i+j-1} v_{1}, v_{1}\right)$, respectively. Then the w-th approximate solutions X_{m} can be computed by Algorithm 2 if and only if

$$
\begin{array}{ll}
\text { a. } & \operatorname{det}\left(M_{k}\right) \neq 0, k=1,2, \ldots, m \\
\text { b. } & \operatorname{det}\left(M_{n}^{0}\right) \neq 0
\end{array}
$$

Proof

1. First we must show that if Algorithm 1 is feasible then (2.39), (2.40) are satisfied. That (2.39) is crue has already been established in Lemma 1. Using the same matrices S_{k} and s_{k}^{\prime} defined in that Lemma, it is also easy to prove (2,40).
2. Second we must show that under the assumptions (2.39) and (2.40), it is possible to compute x_{m} by Algorithin 2 . Let us establish by induction that v_{k}, w_{k} can be computed for $k=1,2, \ldots, m$. This is trivially true when $k=1$. Suppose that it is true for $k-1$ and consider the vectors \hat{v}_{k} and \hat{w}_{k}. All that is needed in order to compute v_{k}, w_{k} is that $\left(\hat{v}_{k}, \hat{\omega}_{k}\right) \neq 0$. Suppose this is not true; that is, that

$$
\begin{equation*}
\left(\hat{v}_{k}, \hat{w}_{k}\right)=0 \tag{2,41}
\end{equation*}
$$

The vector \hat{v}_{k} can be expressed as

$$
\begin{equation*}
\hat{v}_{k}=\sum_{i=1}^{k} \delta_{i} A^{i-1} v_{1} \tag{2.42}
\end{equation*}
$$

Since \hat{v}_{k} is orthogonal to $w_{1}, w_{2}, \ldots, w_{k-1}$ (with $w_{1}=v_{1}$), it is also orthogonal to $v_{1}, A^{H} v_{1}, \ldots,\left(A^{H}\right)^{k-2} v_{1}$ and (2.41) shows that it is also orthogonal to $A^{k-1} v_{1}$ because the vector $\hat{\omega}_{k}$ can be written as
$\hat{W}_{k}=\sum_{i=1}^{k} \delta_{i}^{r}\left(\Lambda^{H}\right)^{i-1} v_{1}$ with $\delta_{k}^{\prime} \neq 0$: Hence $\hat{\mathrm{v}}_{k}$ is orthogonal to $v_{1},\left(A^{H}\right) v_{1}, \ldots,\left(A^{H}\right)^{k-1} v_{1}$, which can be expressed as
$\left(\sum_{i=1}^{k} \delta_{1} A^{i-1} v_{1},\left(A^{H}\right)^{j-1} v_{1}\right)=0, j=I_{2} \ldots, k$ or $M_{k} d=0$ where
$d=\left(\delta_{1}, \ldots, \delta_{k}\right)^{H}$ is a non aull vector. This contradicts the fact that $\operatorname{det}\left(M_{k}\right) \neq 0$, Let us show that the solution X_{k} can be computed by the formula $x_{m}=x_{0}+\beta V_{n} T_{m}^{-1} e_{1}$, that is that T_{n} is nonsinguler.

We can use the same argument as in Lemma 1 . Let S_{m}, S_{m}^{\prime} be two nonsingular $k \times k$ matrices such that $\bar{V}_{m}=V_{m} S_{m}$, $\bar{W}_{m} \Rightarrow W_{m} S_{m}$ where $\bar{v}_{m}=\left[v_{1}, A v_{1}, \ldots, A^{m-1} v_{1}\right], \bar{W}_{m}=\left[v_{1}, A^{H} v_{1}, \ldots,\left(A^{H}\right)^{m-1} v_{1}\right]$, We have $T_{m}=W_{m}^{H} A_{m}=\left\langle S^{\prime}\right)^{-1} \bar{W}_{m}^{H} A \bar{V}_{m} S_{m}^{-1}=\left\langle S^{\prime}\right\rangle^{-1} M_{m}^{\prime} S_{m}^{-1}$ which in view of (2.40) gives $\operatorname{det}\left(T_{m}\right) \neq 0$ and completes the proof.

An important remark which can be derived innediately from the proof is that the condition (2.39) ensures that $v_{1}, v_{2}, \ldots, v_{\text {fl }}$ and $w_{1}, w_{2}, \ldots, w_{m}$ can be built while (2.40) ensures that the tridiagonsi matrix T_{p} is nonsingolar. It is therefore obvious that the proposition can be generalized as follows:

The approximations $x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{k}}$ can be built by Algorithm 2 iff $\operatorname{det}\left(M_{j}\right) \neq 0, j=1,2, \ldots, k_{m}$ and $\operatorname{det}\left(M_{k_{j}}^{\prime}\right) \neq 0, j=1,2, \ldots, m$. For the biconjugate gradient method we have the following analogue of the above resuit.

Proposition 4

The first in steps of Algorithm 4 can be performed iff;
a.

$$
\begin{array}{ll}
\operatorname{det}\left(M_{k}\right) \neq 0, & k=1,2, \ldots, m \\
\operatorname{det}\left(M_{k}^{\prime}\right) \neq 0, & k=1,2, \ldots, m \tag{2.44}
\end{array}
$$

Proof.

1. Necessary condition. If m steps of Algorithm 4 are realizable, then for $1 \leq k \leq m$ we have four systems $R_{k} \equiv\left[r_{1}, \ldots, r_{k}\right], R_{k}^{*} \equiv\left[r_{1}^{*}, \ldots, r_{k}^{*}\right]$, $P_{k} \equiv\left[p_{1}, \ldots, p_{k}\right], P_{k}^{*} \equiv\left[p_{1}^{*}, \ldots, p_{k}^{*}\right]$ such that

$$
\left\{\begin{array}{l}
\left(r_{i}, r_{j}^{\star}\right)=0, \quad 1 \leq k, j \leq k, \quad 1 \neq j \\
\left(r_{k}, r_{k}^{*}\right) \neq 0
\end{array}\right.
$$

$$
{ }^{\prime}\left(p_{1}, A^{H} P_{j}^{*}\right)=0, \quad i \leq k, j \leq k, \quad i \neq j
$$

$$
\left(p_{k}, A^{H} F_{k}^{*}\right) \neq 0
$$

This means that $\left({ }_{\left(P_{k}^{*}\right.}^{*}\right)^{H}{ }_{2}$ is diagonal and nonsingular while $\left(P_{k}^{*}\right)^{H}{ }^{H} P_{k}$ is triangular and nonsingular. But $R_{k}, R_{k}^{*}, P_{n}, P_{n}^{*}$ are four different bases of the same subspace X_{k} and so from the above we can show in a way similar to the first part of the proof of Proposition 3 that M_{k} and M_{k}^{\prime} are nonsingular.
2. Sufficient condition. Suppose that (2.43) and (2.44) are satisfied and let us show by induction that $x_{1}, x_{2}, \ldots, x_{n}$ can be obtained from Algorithm 4 or equivalently that $\left(r_{k}, r_{k}^{*}\right) \neq 0 ;\left(p_{k}, A^{H} p_{k}^{*}\right) \neq 0$, $k=1, \ldots, m$. This is true for $k=1$. Let us assume that it is true for $k-1$: $\left(r_{k-1}, r_{k-1}^{*}\right) \neq 0 ;\left(p_{k-1}, A_{p_{k-1}^{*}}^{H}\right) \neq 0$. That the firse relation holds for k can be shown in the same way as in part 2 of Proposition 3. (Note that r_{k} and r_{k}^{*} are proportional to v_{k} and w_{k}. respectively.) The second relation to show is ($P_{k}, A^{H} P_{k}^{*}$) $\geqslant 0$. Suppose. the contrary is true, then using the notations of the first part of this proof we get that the matrix $\left(P_{k}^{*}\right)^{H_{A P}}{ }_{k}$ is singular and, using again the fact that $\overline{\mathrm{V}}_{\mathrm{k}}=\mathrm{P}_{\mathrm{k}} \mathrm{S}_{\mathrm{k}}^{(3)}, \overline{\mathrm{W}}_{\mathrm{k}}=\mathrm{P}_{\mathbf{k}}^{*} \mathrm{~S}_{\mathrm{k}}^{(4)}$ where $\mathrm{S}_{\mathrm{k}}^{(3)}$ and $S_{k}^{(4)}$ are both $k \times k$ and nonsingular, we get that k_{k}^{\prime} is singular which contradicts (2.40) and completes the proof.

As a consequence of the remark following Proposition 3, If we assume that only the condition (2.39) is satisfied and that $\operatorname{det}\left(M_{m}^{*}\right) \neq 0$, then Algorithm 4 may break down before the m-th step while Algorithm 2 does not because the tridiagonal systems $T_{j} y_{j}=\beta e_{j}$, need not be solved for $f \neq m$. Only the solution y_{m} of the last systen $T_{m} y_{m}=\beta_{1}$ is actually necessary to obtain $\mathbf{x}_{\mathrm{m}}{ }^{\text {. }}$. From this point of view Algorithm 2 is superior to Algorithm 4.

3. OTHER OBLIQUE PROJECTION MEIHODS

The purpose of this section is to attempt to derive some other oblique projection methods. It will first be seen that the Incomplete orthogonalization method without correction presented in [14] is nothing but an oblique projection method. Then, based upon an analogue of Proposition 1, we shall describe a partictiar class of the oblique projection methods for the solution of Inear systems.

3.1. The Incomplete Orthogonalization Method

Among the methods proposed in [14], the Incomplete orthogonalization method without correction was found to be the most attractive. A simple description of the method is the following:

Algorithm 5

a. Choose two integers ρ and m and construct a system of vectors
$v_{1}, v_{2}, \ldots, v_{\text {m }}$ by

1. $v_{1}:=r_{0} /\left(B:=\left\|r_{0}\right\|\right)$ with $r_{0}=b-A x_{0}$
2. For $\mathrm{j}=1, \ldots, \mathrm{n}$

$$
\begin{equation*}
\hat{v}_{j+1}:=A v_{j}=\sum_{1=1}^{1} h_{i j} v_{1} \tag{3.1}
\end{equation*}
$$

where $i_{0}=\max \{1, j-p+1\}$

$$
\begin{gather*}
h_{1 j}=\left(A v_{j}, v_{1}\right) \tag{3.2}\\
v_{j+1}:=\hat{v}_{j+1} /\left(h_{j+1, j}:=\left\|\hat{v}_{j+1}\right\|\right) \tag{3,3}
\end{gather*}
$$

b. Take as approximate solution

$$
\begin{equation*}
x_{m}=x_{0}+6 V_{m} H_{m}^{-1} e_{1} \tag{3,4}
\end{equation*}
$$

where $V_{m} \equiv\left[v_{1} \ldots, v_{m}\right]$ and where H_{m} is the (band) Hessenberg matrix
whose nonzero elements are the $h_{i j}^{\prime}$ computed by (3.2) and (3.3). Note that \hat{v}_{j+1} is obtained by orthogonalizing $A v_{j}$ against the previous p vectors.

The above method was founded upon the fact that if we compare the solution (3.4) with that provided by Arnoldi's method (an orthogonal projection method upon the Krylov subspace $K_{\text {m }}$), we would find that the difference between them is negligible provided that the system $\left[v_{1}, \ldots, v_{m}\right.$] remains not too far from orthogonal [14], a fact which is often observed (see couments followiag Proposition 6 below).

We now would like to give an interpretation of the method in terms of oblique projection methods. More precisely, we shall exhibit a system of left vectors w_{1}, \ldots, w_{m} such that the I.O.M. algorithm will amount to performing an (oblique) projection method onto $K_{j u}=\operatorname{span}\left[v_{1}, A v_{1}, \ldots, A^{m-1} v_{1}\right]$ and orthogonally to $L_{m}=\operatorname{span}\left[W_{m}\right]$.

Consider the systen of vectors w_{1} obtained from v_{1}, v_{2}, \ldots, v_{m}, v_{w+1} as follows

$$
\begin{equation*}
w_{1}=v_{i}+\left(v_{i}, v_{m+1}\right) v_{m+1}, \quad 1 \Rightarrow 1,2, \ldots, m \tag{3.5}
\end{equation*}
$$

Each of the vectors w_{i} is orthogonal to v_{m+1}, so that if we set $W_{m} \equiv\left[w_{1}, \ldots, W_{m}^{\prime}\right]$ we get

$$
\begin{equation*}
W_{\mathrm{m}}^{\mathrm{H}} \mathrm{v}_{\mathrm{m}+1}=0 \tag{3.6}
\end{equation*}
$$

we can then state the next result.

Proposition 5

Let $v_{n}=\left[v_{1}, \ldots, v_{n}\right]$ be the system obtained from Algorithm 5 and let $W_{m}=\left[w_{1}, \ldots, w_{n}\right]$ be defined by (3.5). Then the approximate solution provided by the Incomplete orthogonalization method is equal to
that obtained by the oblique projection method using $K_{m}=\operatorname{span}\left[V_{m}\right]$ as the right space and $L_{n}=\operatorname{span}\left[W_{m}\right]$ as the ieft space.

Proof
From (3.1) it can be shown that

$$
A V_{m}=V_{m} H_{m}+h_{m+1, m} V_{m+1} e_{m}^{T}
$$

which gives, on multiplying both sides by $W_{m}^{H}, W_{m}^{H} V_{m}=W_{m}^{H} V_{m} H_{m}+$ $h_{m+1, m} w_{m}^{H} v_{m+1} e_{m_{n}}^{T}$ Using (3.6) and assuming that $W_{m}^{H} V_{m}$ is nonsingular we get

$$
\begin{equation*}
\left(W_{m}^{H} v_{m}\right)^{-1} W_{m} H_{A V}=H_{m} \tag{3.7}
\end{equation*}
$$

From (2.6) it is seen that the solution x_{n}^{\prime} obtained by the oblique projection arethod, using as left space $\operatorname{span}\left[\mathrm{W}_{\mathrm{m}}\right]$ and right space span$\left[\mathrm{V}_{\mathrm{m}}\right]$ is given by

$$
x_{m}^{\prime}=x_{0}+V_{m}\left(W_{m}^{H} V_{m}\right)^{-1} W_{m}^{H} A V_{m} W_{m}^{H} r_{0}
$$

and since $r_{0}=v_{1}=B V_{m} e_{1}$ we have

$$
x_{m}^{*}=x_{0}+B V_{m}\left(W_{m}^{H} A V_{m}\right)^{-1} W_{m} V_{n} e_{1}
$$

which in view of (3.7) gives

$$
x_{m}^{\prime}=x_{0}+6 V_{m} H_{m}^{-1} e_{1}
$$

But this is just the solution (3.4) provided by the I.O.M. method and the proof is complete.

Notice that in the case when v_{m+1} is orthonormal to $v_{1}, v_{2}, \ldots, v_{m}$, the w_{i} 's coincide with the $v_{i}{ }^{\prime} s$ which means that Q_{m} becomes an orthonornal projection. In that case the method would give
theoretically the same result as Arnoldi's method [14]」 It was precisely the aim of the Incomplete orthogonalization method with correction, described in [14], to attempt to orthogonalize \forall_{n+1} against all previous vectors $v_{1} \ldots, v_{m}$ by finding scalars $h_{\mathrm{Im}^{\prime}} 1=1, \ldots$, on such that $A v_{m}-\sum_{i=1}^{m} h_{i m} \bar{v}_{i} \perp v_{i}, i=1, \ldots, m$.

This, however, is difficult to achieve in practice because the previous $v_{1}{ }^{\prime} s, i=1, \ldots, m$ do no longer form an orthonornal system, and therefore the coefficients $h_{\text {dw }}$ can be found only by solving a least square problem.

This ralses the interesting question to know under which condition on A, the I.O.M. nethod reduces to an orthogonal projection method, The answer is given by the next proposition.

Proposition 6

Suppose that there exists a polynomial q_{p} of degree p-1 such that

$$
\begin{equation*}
A^{H}=q_{p}(A) \tag{3.8}
\end{equation*}
$$

Then the vectors v_{1} computed from the I.O.M. algorithm (Algorithm 5) are orthonormal and therefore the Inconplete orthogonalization method realizes an orthogonal projection method onto the Krylov subspace K_{m} (Arnold's method).

Proof

We must show that $\left(v_{j+1}, v_{i}\right)=0,1 \leq j$ for $j=1,2, \ldots$, m. The proof is by induction. Suppose $v_{j} \perp v_{i}, i=1,2, \ldots, j=1$ (which is
clearly true for $j=1$ by construction) and let us consider (\hat{v}_{j+1}, v_{k}) where $k \leq j\left(\hat{0}_{j+1}, v_{k}\right)=0$ if $j \leq k \leq i_{0}=\max (1, j-p+1)$ because by construction v_{j+1} is orthonornal to the previous p vectors $v_{j-p+1}, v_{j-p+2}, \ldots, v_{j}$ (see [13]). For $k \leq j-p$ we have $\left(\hat{v}_{j+1}, v_{k}\right)=\left(A v_{j}, v_{k}-\underset{i=i_{0}}{j} h_{i j}\left(v_{i}, i_{k}\right)\right.$, By the induction assumption $\left(v_{i}, v_{k}\right)=0, i=i_{0}, j$, hence

$$
\begin{equation*}
\left(\hat{v}_{j+1}, v_{k}\right)=\left(v_{j}, A^{H} v_{k}\right)=\left(v_{j}, q_{p}(A) v_{k}\right) \tag{3.9}
\end{equation*}
$$

But v_{k} belongs to k_{k} and therefore there exists a polynomial s of degree not exceeding $k-1$ such that $v_{k}=s(A) v_{1}$ which implies that the vector $q_{p}(A) v_{k}$ in (3.9) can be written as $q_{p}(A) v_{k}=t(A) v_{1}$ where t is the product of the polynomials s and q_{p} and has degree not exceeding ($p-I$) $+k-I$. Since $k \leq j-p$ the degree of t does not exceed $j-2$ and therefore $q_{p}(A) v_{k}$ belongs to K_{j-1} which means that $\left(v_{j}, A^{H} v_{k}\right)$ in (3.9) is zero and the proof is complete.

Any Hermitian or skew-Hermitian matrix will satisfy the conditions of the theorem with $p=2$. Also, any matrix of the form $A=\alpha I+B S$ where S is skew-symmetric will satisfy the condition (3.8) with $p=2$ as for example when

$$
A=\left[\begin{array}{lllll}
\alpha & & & & \\
& & & & \\
-\beta & & & & \\
& & & & \\
& & & & \\
& & \ddots & & \\
& & & -\beta & \\
& & & & \\
& & &
\end{array}\right]
$$

In general, however, an arbitrary matrix A does not satisfy (3.8).
Nevertheless, a relation of the form (3.8) is often nearly satisfied with
a small p which explains why one often gets nearly orthogonal systems by the I.O.M. algorithm with P as small as 5 or 10.

To conclude with the I.O.M. Let us mention that it is aiso possible to write an equivalent algorithm in a form similax to Algorithm 4 which does not require to save the vectors v_{i} in secondary memory (see [14]).

3.2. A Particular Class of Oblique Projection Methods for Linear Systems

3.2.1. Generalized Hessenberg processes

The results of the previous section can be extended to yield a whole class of oblique projection methods. Suppose thet we start with $v_{1}=r_{0} / \beta$ where $B=\left\|r_{0}\right\|$ and that we build a sequence of vectors v_{1}, v_{2}, \ldots, v_{m}, by the general formula

$$
\begin{equation*}
h_{j+1, j} v_{j+1}=A v_{j}-\sum_{i=1}^{j} h_{i j} v_{i} \tag{3.10}
\end{equation*}
$$

where the $h_{i j}, i=1,2, \ldots, j+1$, are decermined such as to make the vector v_{j+1} satisfy certain conditions such as, for example, $\left(v_{j+1}, v_{i}\right)=\delta_{i j}, i=1, \ldots, j+1$ (which gives the method of Arnoldi). Such processes, called the Generalized Hessenberg processes by Wilkinson [15], have in common the equation

$$
\begin{equation*}
\dot{A V}_{m}=V_{m} H_{m}+\dot{h}_{m+1, m} V_{m+1} e_{m}^{T} \tag{3.11}
\end{equation*}
$$

where V_{m} and H_{m} are defined as before. Let $u s$ then consider the solution x_{m} obtained by applying the formula (3.4) in the same way $a s$ in the Incomplete orthogonalization nethad. Such an approximate solution will have a residual vector proportional to the last vector v_{m+1} obtained from (3.10) because from relation (3.11) we can show that

$$
\begin{equation*}
b-A x_{m}=h_{m+1, m} e_{m}^{T} y_{m} v_{m+1} \tag{3.12}
\end{equation*}
$$

Thus by requiring that the vector v_{j+1} satisfy certain conditions, when building the sequence $\left\{v_{1}\right\}$ by (3.10), we implicitly require that the same conditions be satisfied for the j-th residual vector.

Let us now show that the generalized Hessenberg processes belong to the class of oblique projection methods.

$$
\text { Suppose that } W_{m}=\left[w_{1}, w_{2}, \ldots, w_{n}\right] \text { is any system of vectors }
$$

such that

$$
\begin{align*}
& W_{m 1}^{H} v_{m+1}=0 \tag{3.13}\\
& \operatorname{det}\left(W_{W_{m}} H_{m}\right) \neq 0 \tag{3.14}
\end{align*}
$$

(Note that W_{p} is not unique). Then it can be shown by the same proof as that of Proposition 6 that x_{m} is exactly the solution that would be obtained with an oblique projection method using as right space the space $K_{n}=\operatorname{span}\left[v_{1}, \ldots, A^{m-1} v_{1}\right]$ and as left space the space $G_{m}=\operatorname{span}\left[W_{m}\right]$.

Clearly, the methods of Lanczos and the I.O.M. are particular
cases. In the Lanczos method the $h_{i j}{ }^{\prime} s, i=1, \ldots, f$, are chosen such that v_{j+1} is orthogonal to all the left space $I_{m}=\operatorname{span}\left[w_{I}, A{ }_{w_{1}}^{H}, \ldots\right.$, $\left.\left(A^{H}\right)^{m-1} w_{1}\right]$, and $i t$ turns out that this can be realized by the elegant Algorithm 1 of Lanczos in which $h_{i j}=0$ for $i<j-1$. In the I. O.M., the coefficients $h_{i j}$ are taken such as to make v_{j+1} orthogonal to the p previous v_{1} 's. Some other applications are described next.

3.2.2. ORTHOMIN and the conjugate residual method

Suppose that the coefficients $h_{i f}$ in (3.10) are determined such as to make at each step 1 the vector v_{j+1} orthogonal to the vectors $A v_{1}, A v_{2}, \ldots, A v_{j}$. The $h_{i j}$'s can then be obtained by solving the $\mathcal{j} j$ system

$$
\begin{equation*}
\sum_{i=1}^{j}\left(v_{i}, A v_{k}\right) h_{i j}=\left(A v_{j}, A v_{k}\right), \quad k=1,2, \ldots, j \tag{3.15}
\end{equation*}
$$

Notice that $\left(v_{i}, A v_{k}\right)=0$ for $k<i$, such that the above system is triangular. This is nothing but an oblique projection method with $X_{m}=\operatorname{span}\left[v_{1}, A v_{1}, \ldots, A^{m-1} v_{1}\right]$ as right space and $L_{m}=A K_{m}$ as left space. It can be shown that the solution obtained by this method minimizes $\|b=A x\|$ over the affine subspace $x_{0}+K_{m}$.

This method was first presented in a simplified version by Vinsome [15]. It was also analyzed by Axelsson [1] and by Eisenstat, Elman, and Schultz [2], who give some results on the convergence theory. The simplified version, called ORTHOMIN by Vinsome, produces directly x_{m} as a sequence of the form $x_{m}=x_{m-I}+\alpha_{m} p_{m}$ where p_{m} is the direction of search.

Algorithm 6 (ORTHOMIN or Generalized Conjugate Residual Method)

1. Start x_{0} initial vector. Compute $r_{0}=b-A x_{0}$, take $P_{0}=I_{0}$.
2. Iterste

$$
\begin{array}{ll}
x_{k+1}=x_{k}+\alpha_{k} P_{k} & \alpha_{k}=\frac{\left(r_{k}, A p_{k}\right)}{\left(A p_{k}, A p_{k}\right)} \\
r_{k+1}=r_{k}-\alpha_{k} A p_{k} & \\
p_{k+1}=r_{k+1}-\sum_{i=1}^{k} B_{i k} P_{i}, & B_{i k}=\frac{\left(A r_{k+1}, A p_{i}\right)}{\left(A p_{i}, A p_{i}\right)}
\end{array}
$$

The coefficient α_{k} is chosen such that the tesidual r_{k+1} is orthogonal to $A r_{k}$, while the $B_{i k}$'s are such that $A p_{k+1}$ is orthogonal to $A P_{i}, 1 \leq k$. Under these conditions it can be shown that $\left(r_{k+1}, A r_{i}\right)=0, i \leq k$ (which is equivalent to the condition $\left(v_{k+1}, A v_{i}\right)=0, i \leq k$ of the previous version) and hence the residuals are "conjugate." (Notice that
since A is nonsyumetric, the conjugacy holda only in one aide because it is not true that $\left(v_{k+1}, A v_{i}\right)=0$ for $i \geq k$. It would be more appropriate to say thet the residulas are "semi-conjugate.")

The amount of work and the storage required in Algorithm 6 is prohibitive and unless the algorithm is used iteratively with periodic restarting, it would be of little practical value. Vinsome has then suggested to perform an Incomplete arthogonalization for generating the P_{k} 's. The idea is sinilar to that of I.O.M. and consists of truncating the sum defining P_{k+1} in Algorithm 6 as follows

$$
P_{k+1}=r_{k+1}-\sum_{i=k-p+1}^{k} \beta_{k} P_{i}
$$

Obviously this is still an oblique projection method. If we compare Algorithm 6 with the I.O.M. we will find that while the amount of work is similar, the storage is in favor of the latter. However, ORTHOMN is certainiy easier to study theoretically because of the minimum residual property. Numerical tests will compare the two methods in the last section.

3.2.3. The modified Hessenherg process

In the method of Hessenberg for reducing a matrix to Hessenberg form [16], the $h_{i j}$ ' s in (3.10) are chosen such that v_{j+1} has zero components in its j first positions. The $h_{i j}$'s are found by soiving a $j \times i$ triangular system. Therefore, $K_{m}=\operatorname{span}\left[v_{1}, A v_{2}, \ldots, A^{m-1} v_{1}\right]$ and $L_{m}=\operatorname{span}\left[e_{2}, e_{2}, \ldots, e_{m}\right]$. A natural simplification aimilar to the ideas used in I.O.M. and $\operatorname{ORTHOMIN}(\mathrm{p}$) is to save the previous p vectors only, to replace (3.10) by

$$
h_{j+1, j} v_{j+1}=A v_{j}-\sum_{i=j-p+1}^{j} h_{i j} v_{i}
$$

and to determine $h_{i j}$ such as to make $p+1$ components of the vector v_{j+1} equal to zero. An inportant question is how to choose the positions in which the zeros nust appear. Some experiments have motivated us to prefer the following choice: eliminate the components having the largest modulus among the vectors $v_{j}, v_{j-1}, \cdots, v_{j-p+1}$

Many other possibilities exist and it may be possible thet the above choice is not the best. The modified Hessenberg process described here has the advantage not to require any inner product.

4. CONVERGENCE PROPERTIES

It this section the difificult problem of the convergence of the approximate solution x_{m} toward the exact solution x^{*} will be considered. It is important to clarify what is meant by convergence. First, if we assume that the w_{i} ' $s, 1=1,2, \ldots, n$, are linearly Independent, then the approximate solution x_{m} will converge to x^{*} in at most n steps. This is because if we write the condition (2.2) in the form $W_{n}^{H}\left(b-A x_{n}\right)=0$, we obtain on multiplying by $\left(W_{n}\right)^{-1}$, $x_{n}=A^{-1} b=x^{*}$. Therefore, the sequence x_{m} is a finite sequence and by studying the convergence of x_{m} we shall mean deriving some properties which will ensure that x_{m} may be a good approximation to x^{*} even for m much smaller than the Amension n of the problem. The analysis proposed here is essentialiy the same as that given in our previous paper [14] and we shall only emphasize on those results that present nontrivial differences.

Let P_{m} be the orthogonal projector onto the subspace K_{m}, and $Q_{\text {m }}$ the (obiqque) projector onto K_{m} orthogonally to L_{m}. We shall study the convergence in terms of the distance $\varepsilon_{m}=\left\|\left(I-P_{m}\right) z^{*}\right\|$ where z^{*} is the exact solution of the problem (2.5), and where $\||| |$ denotes the Euclidean norm. This distance between z^{*} and the subspace K_{m} has been fully studied in [14] and some bounds for it have been established, showing that in general E_{m} is a quantity which decreases rapidiy to zero.

We shall need an interprecation of the oblique projection method in terns of operator equations. Let us define the operator ${ }^{3}$ $A_{m}=Q_{m} A P_{m}$, and make the assumption (H) of $\delta 2.1$. We chen have

[^1]
Lemma 2

The problem

$$
\left\{\begin{array}{c}
2 \varepsilon K_{m} \tag{4.1}\\
r_{0}-A_{m} z=0
\end{array}\right.
$$

has as its unique solution the approximate solution 2_{m} provided by the oblique projection method using K_{m} as right space and L_{m} as left space.

Próof

It is suffictent to translate problems (4.1), (4.2) into natricial notations. Since $2 \in K_{g}$, it can be uritten as

$$
\begin{equation*}
z=V_{n} y \tag{4.3}
\end{equation*}
$$

Furthermore, r_{0} and 2 belong to K_{n} and therefore $P_{m} z=z$ and $0_{n} r_{0}=r_{0}$ The matricial representation of Q_{n} in the canonical basis is $V_{m}\left(W_{m} \mathrm{H}_{\mathrm{m}}\right)^{-1} W_{\mathrm{me}}^{\mathrm{H}}$ and so (4.1), (4.2) give

$$
V_{m}\left(W_{m} H_{m}\right)^{-1} W_{m} H_{0} r_{0}-V_{m}\left(W_{m}^{H} V_{m}\right)^{-1_{w_{m}} H_{A V_{m}} y=0}
$$

which yields

$$
\begin{equation*}
y=\left(W_{m}^{H} A V_{m}\right)^{-1} W_{m}^{H} r_{0} \tag{4.4}
\end{equation*}
$$

This means that the problem (4.1), (4.2) has a unique solution and a comparison between (4.3), (4.4) on the one hand and (2.6), (2.7) on the other hand show that the solution is just that obtained by the prajection method.

We shall refer to problem (4.1), (4.2) as the approximate problem. What the lema shows is that the projection method described in $\$ 2.1$ anounts to replacing the problem (2.1) by the approximate problem. Our next task is naturally to relate the solutions of the two
problems. A simple way to relate z^{*} to z_{m} is to give a bound for either the residual of z_{m} for problem (2.5) or for the residual of z^{*} for problem (4.2). The latter case is considered fin the next proposition.

Proposition 5

$$
\begin{align*}
& \text { Let } Y_{m}=\left\|Q_{m} A\left(I-P_{m}\right)\right\| \text { then } \\
& \qquad\left\|r_{0}-A_{m} z^{*}\right\| \leq \gamma_{m} E_{m} \tag{4.5}
\end{align*}
$$

Proof
We have

$$
\begin{aligned}
\left\|r_{0}-A_{m} x^{*}\right\| & =\left\|Q_{m}\left(r_{0}-A P_{m} z^{*}\right)\right\|=\left\|Q_{m}\left(A z^{*}-A P_{m} z^{*}\right)\right\| \\
& =\left\|Q_{m} A\left(I-P_{m}\right) z^{*}\right\|=\left\|Q_{m} A\left(I-P_{m}\right)\left(I-P_{m}\right) z^{*}\right\| \\
& \leq Y_{m} \varepsilon_{m} \cdot \square
\end{aligned}
$$

Corollary 1

Let γ_{m} be defined as above and let $K_{m}=\left\|\left(A_{m} \mid K_{m}\right)^{-1}\right\|$. Then

$$
\begin{equation*}
\left\|z_{\mathrm{m}}-z^{\star}\right\| \leq\left(1+\gamma_{\mathrm{m}}^{2} \kappa_{\mathrm{m}}^{2}\right)^{1 / 2} \varepsilon_{\mathrm{m}} \tag{4.6}
\end{equation*}
$$

Proof

See analogue result in [14].
The number of $\gamma_{n}{ }^{k}{ }_{m}$ plays the role of a condition number for the approximate prablem. The corollary therefore neans that the error made in approximating z^{*} by z_{m} (which is the same as the error $x^{*}-x_{n t}$) will be of the same order as ε_{m} provided that the approximate problem is not too badly conditioned.

We believe that there is no simple way of bounding either K_{m} or γ_{m} because Q_{n} is an oblique projector. Thus γ_{m} can be bounded as $\gamma_{m} \leq\left\|Q_{m}\right\|\|A\|$ where $\left\|Q_{m}\right\|$ is not known. (In the orthogonal projection case we have $\left\|Q_{m}\right\|=1$.)

Note that we do not have at our disposal optimality properties such as the very helpful ones involved in the confugate gradient method. An interesting bound for the residual of z_{m} for problem (2.5) can also be established by adapting a result shown by Vainikko (see [5]) for arthoganal projection methods.

Proposition 6

and $\varepsilon_{m}^{\prime}=\min _{z \in K_{m}}\left\|r_{0}-A z\right\|$, then

$$
\begin{equation*}
E_{m}^{\prime} \leq\left\|r_{0}-A z_{m}\right\| \leq\left(1+c_{m} / \tau_{m}\right) \varepsilon_{m}^{\prime} \tag{4,7}
\end{equation*}
$$

Proof
Consider the restriction \tilde{Q}_{n} of Q_{m} to the subspace $A X_{\mathrm{m}}$. If $\tau_{m} \neq 0$ then \tilde{Q}_{m} is a bifection from $A K_{m}$ to $Q_{m} A K_{m}$. Furthermore from equation (4.2) we get

$$
r_{0}=Q_{m} A z_{\mathrm{n}}
$$

and since $A z_{m}$ belongs to $A K_{m}$ we have

$$
A z_{m}=\tilde{Q}_{m}^{-1} r_{0}=\tilde{Q}_{m}^{-1} Q_{n} r_{0}
$$

Hence

$$
\begin{equation*}
r_{0}-A z_{m}=\left(I-\tilde{Q}_{m}^{-1} Q_{m}\right) r_{0} \tag{4.8}
\end{equation*}
$$

Let now x be any vector of $A K_{m 1}$. Then ($\left.I-\ddot{Q}_{m}^{-1} q_{m}\right) x=0$ and hence (4.8) can also be written as

$$
r_{0}-A z_{m}=\left\langle I-\tilde{Q}_{m}^{-1} Q_{m}\right\rangle\left(r_{0}-x\right) \quad \forall \in A K_{m} .
$$

Thus

$$
\left\|r_{0}-A z_{m}\right\| \leq\left\|I-\tilde{U}_{m}^{-1} Q_{m}\right\|\left\|r_{0}-x\right\| \quad \Psi \in A K_{m}
$$

and

$$
\left\|r_{0}-A z_{m}\right\| \leq\left(1+\left\|\tilde{Q}_{m}^{-1}\right\|\left\|Q_{m}\right\|\right\}_{m}\left\|r_{0}-A x\right\|
$$

Since $\left\|\tilde{Q}_{\mathrm{m}}^{-1}\right\|=\tau_{\mathrm{m}}$ this establishes the second part of (4.7). The first part is obvious. \square

It is important to remark that in the case where K_{m} is the
Krylov subspace, then

$$
\epsilon_{\mathrm{m}}^{\prime}=\left\{\begin{array}{l}
\min _{\mathrm{p} \in \mathrm{P}_{\mathrm{m}-1}} \| \mathrm{P}(\mathrm{~A}){r_{0} \|}^{P(0)=1} \mid \tag{4.9}
\end{array}\right.
$$

where P_{m-1} denotes the space of polynomishs of degree not exceeding m-1. This quantity is very similar to the quantity ε_{m} and the bounds for ε_{m}^{\prime} are of the same nature as thase for ε_{m}.

It may seem at first that inequality (4.7) is more powerful than the previous inequality (4.6) because the condition number of the approximate problen does not appear in ft. This is not true, however, because the number $T_{f l}^{-1}$ can be shown to be equal to

$$
\left\|A\left(A_{m K}\right)^{-1}\right\|
$$

The inverse of $A_{m K}$ is therefore implicitly involved in the constant τ_{m}^{-1} and we have $\tau_{m}^{\mathbf{- 1}} \leq\|A\| k_{m}$ where k_{m} is defined in Corollary 1.

5. NIIMERICAL EXPERIMENTS

The numerical experiments described in this section have been run on the CDC CYBER 175 at the University of Illinois at Urbana-Champaign. The single precision has been used throughout (mantissa of 48 bits).

5.1. Comparison of I.O.M, and Lanczos

We shall first compare the Yncomplete orthogonalization method (see 3.1) with the Lanczos method (Algorithm 2) on the following example.

and $a=-1+\hat{\delta}, b=-1-\delta$.
B is of dimension 20 and A has dimension $N=100$. These matrices represent the S-point discretization of the operator $-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}+\gamma \frac{\partial}{\partial x}$ on a rectangular region.

The right hand side b is taken to be $b=A e$ where $e=(1,1, \ldots, 1)^{T}$, such that the solution of the system is $\mathfrak{j u s t} \mathrm{e}$. The paraneter δ is taken equal to 0.5 in this first example. The next figure compares the convergence of the I.O.M. algorithm with two values of the parameter p, $p=2$ (upper curve) and $p=4$ (middle curve), with Algorithm 2 (lower curve). It is seen that the convergence is faster with the Lanczos algoritha. However, each step of the Lanczos algorithm requires two matrix by vector multiplications while I.O.M. reguires only one. It should be mentioned that the I.O.M. algorithm applied here is the Algorithm 5 of [13] and that it includes a restarting strategy. (Two restarts have been necessary for $p=2$ while no restart has been needed when $p=4$.)

Figure 1. Upper curve: IOM(2), middle: IOM(4), lower: Lanczos

Figure 2. Lanczos and IOM(4)

Figure 2 shows the same example with $\delta=10$ treated with Aigorithen 2 and I.O.M.(4). Notice the peaks presented by the Lanczos method. The Lanczos algorithm often behaves in a way similar to that of Figure 2, especially in situations where there are large imaginary eigenvalues. It is to remark that these peaks do not seriously affect the overall convergence. When the residual north increases rapidly after a certain step, it decreases even more rapidly in the following steps.

5.2. I.O.M. Lanczos and ORTHOMIN

It was mentioned by Paige and Saunders [9] and by other authors that, in the symmetric case, the conjugate residual method (or minimum residual method) and the conjugate gradient method often exhibit a similar convergence behavior. As the next experiment will show, we can make a similar remark for the I.O.M. and the ORTHOMIN-G.C.R. methods. Let A be defined as in section 5.1 , with the same right hand stde and the same δ. Figure 3 shows the convergence behaviors of I.O.M. (4) (upper bound), ORTHOMIN(4) (middle curve), and the Lanczos method (lower curve) for this example.

Recall that the ORTHOMIN(P) requires twice as much memory as I.O.M. (p) and that in each step of ORTHOMIN(P) we have to perform two matrix by vector maltiplications against only one such operation for I.O.M. (p). This means that for this example, I.O.M. is superior if we do not take into account the fact that for the I.O.M. there are some additional 1.0 . operations (necessary for the preservation of the v_{1} ' s until convergence). Algorithm 3 converges nuch faster than I.O.M. (p) and ORTHOMN() but uses two matrix by vector multiplications. However, it
has the advantage nat to require fron the uber to aupply the parameter p that is needed both in I.O.M. and ORTHOMLN.

ITERATIDNS

Figure 3. IOM(4), ORTHOMIN(4) and Lanczoa

5.3. Complex Elgenyalues and the Lanczos Method

The purpose of the following example is to show how the behavior of the Lanczos method can vary when the ohape of spectrum changes. Let E be the 100×100 block-diagonal matrix with 2×2 blocks c_{k} defined by

$$
c_{k}=\left[\begin{array}{cc}
a_{k} & -b_{k} \\
b_{k} & a_{k}
\end{array}\right], k=1,2, \ldots, 50
$$

with $a_{k}=k, b_{k}=\delta a_{k}$ where δ is a parameter. The eigenvalues of B are $\lambda_{k}^{ \pm}=k(1 \pm i \delta)$ where $1=\sqrt{-1}, k=1,2, \ldots, 50$. When δ is small the eigenvalues are almost real positive and B is almost symetric. The theory

Indicates that in that case a fast convergence can be expected because the distance $\left\|\left(I-\Pi_{n}\right) x *\right\|$ decreases rapidly to zero [13]. When δ increases, the spectrum apreads out in ϕ and in that case the theory does not guarantee a good rate of convergence. Figure 4 shows the behavior of the Lanczos method for the following values of $\delta: \delta=0.1$ (curve a) , $\delta=0.4$ (curve b), $\delta=0.7$ (curve c), $\delta=1$ (curve d), $\delta=10$ (curve e). The graphs obtained confirn the theoretical indications. We emphasize here that in the case where a preconditioning is applied, the eigenvalues of the resulting matrix are closer to 1 than those of the original matrix such that the situations of poor convergence, similar to the case $\delta=10$ here, can be avoided.

5.4. Generalized Hessenberg Process

Finally we will describe an experiment with a generalized Hessenberg process belonging to the class of methods outined in section 3. Let us again take the example given in section 5,1 and consider the generallzed Hessenberg process which builds a sequence of vectors $\mathbf{v}_{\mathbf{j}}$ as follows

$$
\begin{equation*}
h_{j+1, j} v_{j+1}=A v_{j}-{\underset{\Sigma}{1=j-p+1}}_{h_{1 j}} v_{i} \tag{5.2}
\end{equation*}
$$

where $h_{j+1, j}$ is a normalizing factor for v_{j+1} and where the $h_{i f}$. $i \neq j+1$ are chosen such as to make p components of v_{j+1} equal to zero. An important question is to determine which components of v_{j+1} should be zero for more efficiency. Several tests have been made, yielding various rates of convergence, depending on the strategies adopted. It was found that for this exauple a good strategy consists in eliminating

Figure 4. Behavior of Lanczos algorithen on different shapes of spectrun
in (5.2) the components $j, j-1, \ldots, j-p+1$. A comparison of this strategy When $p=2$, with I. O.M. (2) and ORTHCHIN(2) is shown in Figure 5. It can be seen that the convergence of the generalized Hessenberg method compares well with that of I.O.M. (2) or ORTHOMIN(2), and the fact that there are no innerproducts involved for building the $v_{i}{ }^{\prime} g$ makes the Generalized Hessenberg method quite attractive, More general and more powerful strategies remain, however, to be investigated. Another strategy, that has appeared effective, isto eliminate the components in v_{j+1} corresponding to the large components in the previous $v_{i}{ }^{\prime} s$.

F1gure 5. A generalized Hessenberg method (upper curve), IOM(2) (middle curve), and ORTHOMIN(2) (lower curve).

REFERENCESS

[1] Axelsson, 0., Conjugate gradient type methods for unsymetric and inconsistent syatems of linear equations, Lin. Algebra and its Applications 29, 1980, 1-16.
[2] Eisenstat, S.C., H. Elman, M.H. Schuitz, A. Sherman, Solving approximations to the convection diffusion equation, Proceedings Fifth SPE Symposium on Reservoir Simulation, Denver, Colorado, 1979, 127-132.
[3] Hestenes, M. and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. NBS 49, 1952, 409-436.
[4] Householder, A.S., The Theory of Matricea in Nunerical Analygis. Blaisdell Publishing Company: New York, 1964.
[5] Krasnoselskii, et. al., Approximate Solution of Operator Equations. Walters Nordproof: Groningen, 1972.
[6] Lanczos, C., An iteration method for the solution of the eigenvalue problem of linear differential and integral operator, J. Res. NBS 45, 1950, 255-282.
[7] Lanczos, C., Solution of systems of linear equations by minimized iterations, J. Res. NBS 49, 1952, 33-53.
[8] Paige, C.G., Bidiagonalization of matrices and aolution of linear equations, SIAM J. Numer. Anal. 11, 1974, 197-209.
[9] Paige, C.G. and M.A. Saundera, Solution of sparse indefinite systems of 1 inear equations, SIAM J. Nuner. Anal. 12, 1975, 617-629.
[10] Parlett, B.N., The Synonetric Elgenvalue Problem. Prentice-Hall, Inc.: Englewood Cliffs, New Jersey, 1980.
[11] Parlett, B.N., A new look at the Lanczos algorithm for solving symetric systems of 1inear equations, Lin. AIg. Appl. 29, 1980, 323-346.
[12] Parlett, B.N. and D. Taylor, Lanczos for large nonsymetric matrices, Sparse Matrix Meeting, March 1980, Seattle, Washington.
[13] Saad, Y., Variations on Arnoldi's method for computing eigenelenents of large unsymetric matrices. To appear, Lin. Alg. Appl.
[14] Saad, Y., The Krylov subspace methods for solving large unsymmetric systems. To appear Math. Comp.
[15] Vinsome, P.K.N., Orthomin, an iterative method for solving sparse sets of simulteneous linear equations," Proceedings of 4th Symposium on Numerical Simulation of Reservoir Simulation of the SPE, Los Angeles, 1976, 149-160.
[16! Wilkinson, J.E., The Algebraic Eigenvalue Problem. Clarendon Press: Oxford, 1965.

U.S. DEPARTMENT OF ENERGY

UNIVERSITY-TYPE CONTRACTOR AND GRANTEE RECOMMENDATIONS FOR OISPOSITION OF SCIENTIFIC AND TECHNICAL DOCLMENT

Soe instructions on fievewe Side

FOR OOE USE ONLY

9. Puitent Clarante ("x" and

Dat OOE patant clearance has been grantes by cutpansible 00E prtent wroup.
$\square \mathrm{h}$. Repan hes been sent to responaible DOEE patent group lar clesranct.
\square t. Patant cleminace not requirad.

17b. Idemiliers/Open-Ended Terms

17e. COSATIField/Group
16. Availability Statement
unlimited

19. Seckrity Class (This Repart) UMKLASSIEHD	$\begin{gathered} \text { 21. No. of Pages } \\ 48 \end{gathered}$
20. Smentity Cl los 5 (Thit Page LiNClASSIFIED	22. Price

[^0]: (1) It is not necessary to start with $w_{1}=v_{1}$ but it is somehow simplifying.

[^1]: ${ }^{3}$ Note that here A denotes at the same time a matrix and its associated linear operator.

