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1. INTRODUCTION 

In an earlier paper [13], some algorithms based on orthogonalization 

techniques have been proposed for solving large unsymmetric systems. Of 

particular interest is the incomplete orthogonalization method without 

correction, where at every step the solution is taken such as to make the 

new residual orthogonal to the p previous residuals where p is some small 

integer. As will be seen, this method can be regarded as an 

oblique projection method. By nonorthogonal or oblique projection method 

we mean a method which seeks a solution x of Ax = b by requiring that x 

belongs to a certain subspace K (called the right space) and that the 

residual b - Ax be orthogonal to another subspace L (called the left subspace). 

The best example of an oblique projection method for solving 

linear systems is provided by the method of Lanczos [7] which is a version 

of the well known conjugate gradient method in the symmetric case [3]. 

In that method the right space K is a Krylov subspace K = spanfv , Av ,... , 

A v1 ] where v.. is a starting vector, while L is a Krylov subspace 

associated with A , L = span[w, A w. (A ) w.. ]. The Lanczos 

algorithm has been neglected for a long time because of its instability 

as a method for tridiagonalizing a nonsymmetric matrix and computing its 

eigenvalues, although recently this fact has been reconsidered by Parlett 

and Taylor [11]. For solving linear systems, however, the method can be 

quite useful, especially when it is used in conjunction with a preconditioning 

technique. We should point out that the presence of A in the definition 

of L does not mean at all that the Lanczos method solves the normal 

equations A Ax = A D . 
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It is not the purpose of this paper to introduce a specific 

method effective for any large unsymmetric system, but rather to present 

and analyze a class ofmethods based upon oblique projection processes. 

Some of the algorithms presented are already known or can be trivially 

derived from known algorithms. 

Section 2 sets the basic definitions and notations of the 

oblique projection methods and treats the important example of the 

Lanczos method. In section 3 other oblique projection methods, such as 

the Incomplete orthogonalization method and the .Orthomin (p) method [14], 

are considered. The convergence properties of the algorithm are studied 

in section 4 and some numerical experiments are described in the last 

section comparing some of the methods treated. 
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2. OBLIQUE PROJECTION METHODS AND THE LANCZOS ALGORITHM 

2.1. Oblique Projection Methods. Basic Theory and Notations 

Let us consider the linear system 

b - Ax = 0 (2.1) 

where A is an n x n nonsymmetric matrix. Let V = [v,,..., v ] and 

m l m 
W = [w.,..., w ] be two systems of m linearly independent vectors in 
m l m 

<fc . The span of V (resp. W ) wi l l be denoted by K (resp. L ) and wil l 
m m m m 

often be referred to as the right (resp. left) space. An oblique 

projection method onto K and orthogonally to L is any process that 
m m 

obtains an approximate solution x to problem (2.1), which belongs to 

K and which satisfies the relations: 
m 

b - Ax J.W., j = 1,..., m (2.2) 
m J 

If a good guess x at the solution is available, it is more 

appropriate to seek an approximate solution of the form 

x = x + z (2.3) 

where z belongs to K and where x is required to satisfy the same 
m 

condition (2.2). In that case the new unknown z is the solution of 

the problem 

r - Az J. w. , j = 1,... , m (2.4) 

where r. is the initial residual b - Ax_. 

Note that the first formulation is a particular case of the 

second with xn = 0 and that the second formulation can be reduced to the 

first because it amounts to solving the problem 

rQ - Az = 0 (2.5) 

by the oblique projection method. 
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The second formulation is important for restarting the algorithm. 

The more general formulation (2.3), (2.4) will be often adopted. It will 

be assumed throughout that r. belongs to K . Another important assumption 

u m 
that we shall make is that 

(H): no vector of L is orthogonal to either K or AK , 
m m m 

or equivalently that 

W v and W AV are both inversible. 
m m m m 

In that case the problem (2.5) has a solution z which can be obtained as 
m 

z = V y (2 .6) 
m mm 

where y i s given by 
m 

y = (WHAV T 1 WHrn (2.7) 
m m m m 0 

In section 4 we will give an interpretation of the oblique projection 

method in terms of operators. 

Indeed it will be seen that the above method replaces problem 

(2.1) by an approximate problem involving an operator of rank less than n. 

2.2. The Lanczos Method of Biorthogonalization 

2.2.1. The biorthonormalization process 

A very attractive example of the oblique projection process 

described above is the method proposed by Lanczos in [7]. In 

that method, Lanczos suggested a simple way to generate biorthogonal 

ti 

systems W , V such that the matrix W AV in (2.7) has a tridiagonal form. 
m m m m 

A simple version of his algorithm can be described as follows: 
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Algorithm 1 

1. Choose v and w such that (v , w ) = 1. 

2. For j = 1, 2 , . . . , mdo 

• 0 . . . := Av. - a .v . - 6.v. , (2.10) 
J+ l J J J J J - l 

u 

• w. i n := A w. - a.w. - 6.w. , (2.11) 
3+1 3 3 3 3 3-1 

(when i = 1 take 3..V := $ w := 0) 

with a. := (Av., w.) (2.12) 
• choose 6.,n and 3.,, such that 

J+l J+l 

V i V ■ ( V r Vi> (2-13) 

Vj+1 : = " j + l / 6 j + l (2.14) 
V i := V i / B j + i (2-15) 

It can be shown easily that when the algorithm does not break 

down for a null inner product (v..-, w....), then the vectors v. and w. 
J+l J+l i i 

satisfy the biorthonormality property: 
(v±, w ) = 6 i,j = 1,..., m (2.16) 

Some in teres t ing choices for 6 and 3 . . , in (2.13) are the following: 

« j + l " K v j + r w j + 1 ) | 1 / 2 , 3 j + 1 = « j + 1 s ign(v . + 1 , 0 j + 1 ) (2.17) 

b. V I = I I V I | I ; B J + I = ( V r V I ) / 6 J + I (2-18) 
This makes v.,.. of norm unity. J+l 

Vl (Vi' Vi^Vi'^'Vi' 
1/2 (2.18) 

3 j + 1 = ( v j + r w. + 1 ) / 6 . + 1 (2.19) 
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This last choice makes v.,, and w.,, having the same norm. 
J+l J+l 

Practically, the formulae (2.17) are to be preferred as they are more 

economical. Numerically, the purpose of (2.17), (2.19) is to attempt 

to balance the norms of the vectors v.,, and w..,. It is, however, necessary 
J+l J+l J 

to remark that the product ||w || f| v. || will not depend upon 

which of a, b, or c is applied because 
II ~ II II ^ || | U /■. II 

V-_l_1 W-_Ll V-_L1» W-_l_-l l|v.+1 II l|w.+1 || = f 1 1 J + 1 - U I \\ 
j + l " " j + l " 6 j + 1 3 . + 1 T(v j + 1 . w. + 1 ) | 

w. j + l " " j + l " cos 6(v , V ) 

where 0(x, y) denotes the acute angle between the vectors x and y. The 

angle 9(v. .. , w ..) is a function of A, v.. , w.. and j only because, as will 

be seen later on, the vectors v . , w . are uniquely determined by v , w.. 

apart from a normalizing factor. This angle can be equal to TT/2 causing 

the algorithm to stop. As shown in an example by Wilkinson [15, p. 390], 

this can occur even when A is well conditioned, and should not be incurred 

to any shortcoming in the matrix A. It is interesting to note that v.+1 
u 

and w.,, can be written as v.,., = p. (A) v., w#11 = p. (A )w, where p. J+l J+l J 1 J+l J 1 J 
denotes a polynomial of degree j, so that a sufficient condition for the 

feasibility of Lanczos algorithm is that 

VP , d°p < m , (p(A)vr p(AH)W;L) * 0 (2.21) 

This generalizes the condition of the symmetric case which requires 

that the degree of the annihilating polynomial of v must not exceed m. 

2.2.2. Solution of the linear system by the Lanczos method. 

The previous algorithm builds a system of biorthonormal vectors 

{v , w.} but does not provide explicitly an approximate solution for 
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(2.1). In [7] Lanczos has proposed an interesting way to build up such 

an approximation. His algorithm, which was published at about the same 

time as the conjugate gradient method of Hesleness and Stiefel [3], can 

be considered as a version of the C.G. algorithm. The algorithm proposed 

by Lanczos decouples each of the relations (2.10) and (2.11) in two other 

relations involving a new sequence of vectors (the conjugate directions) 

in which the. solution is easily expressed. The approximate solution x 

provided by Lanczos' algorithm belongs to {x̂ .} + K and its residual, 

which is proportional to the vector v ,.. , is orthonormal to the 

m+± 

left space L . It is therefore equal to the solution that would be 

obtained by an oblique projection method using the subspaces K = span(V ) 

as a right space and L = span(W ) as a left space, where V , W is the 

m m m m 

biorthonormal system built by Algorithm 1. 

In the following we show how the approximate solution can also 

be obtained directly as a combination of the vectors v . Note that 

another algorithm simpler and closer -to the C.G. method will be 

given in the next subsection. 

Suppose that Algorithm 1 is started with v.. = r /||rn|| and w = v 

and let us consider the component vector y. of z given by (2.6). From the 

m m 
algorithm and the biorthonormality property (2.16), it can be easily shown 
[16] that the m x m matrix T = w AV has the tridiagonal form 

m m m 

It is not necessary to start with w.. = v.. but it is somehow simplifying. 
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T = 
m 

a„ 2 
\ 

\ 
\ \ \ \ 

6 a 
m m 

(2.23) 

(Notice that with the determination (a) of 6 -, T has the interesting 

additional property that 

3. = + 6. 
J ~ J 

j = 2,..., m . ) 

Furthermore, the right hand side of the system (2.6) is equal to 3e 

where 3 = II r ||; e , = ( 1 , 0 , . . . , 0 ) T because \Pvn = 3WHvn = Be, . 
" 0" i m U m l l 

The approximate solution x is therefore quite easy to obtain 

practically since we have 

x = xn + V y = x. + 3V T e. 
m 0 m m 0 m m l 

(2.24) 

Computing the approximate solution by (2.20) and (2.21) requires the 

storage of the vectors v., v.,..., v but this does not constitute a 
1 z m 

major drawback because the formation of the solution by (2.21) takes 

place only when the convergence has occurred, and therefore the v 's can 

be saved in secondary storage until then. This means, however, that we 

have to provide some means for determining whether the convergence is 

achieved, without explicitly using the approximate solution. Fortunately, 

this can be done quite easily thanks to the following formula, well known 

and tremendously useful in the symmetric case [10], [11] which expresses the 

residual norm in terms of y and v ,, 
m " m+1' 

b - Ax = v |eTy I 
1 nr m' 

m " " m+1 

Equality (2.25) enables us to compute the residual norm very 

economically and one can afford to make use of (2.25) periodically to 

monitor the convergence. Let us mention that it is not even necessary 

(2.25) 
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to actually compute y in order to estimate the residual norm. (See 
m 

similar point in [11] and [14].) 

Algorithm 2 

1. Choose an initial vector x , compute 

ro 

V l 

" b " A V 

-Hr0ll 

° wi := V B 

2 . For j = 1 , 2 , . . . , s do 
J max 

a. compute v. ., w , a., 3.,,, 6 ... By formulae (2.10) to (2.15) of 
J+1 J+1 J J+i J+i 

Algorithm 1. 

b. Periodically (e.g., when [j/5]*5 = j) update the estimate p 

of the residual norm. 

If p. _< e goto 3 else continue 

3. Form the approximate solution 

x. = xn + 3V.y . 
J 0 J J 

2.3. Equivalent Versions and the Bi-Conjugate Gradient Method 

We shall now give some equivalent versions of the basic 

Algorithms 1 and 2. We first introduce for a theoretical purpose'a 

generalization of Algorithm 1. Then on the practical side a simpler 

version of Algorithm 2 will be studied. 

r 

2.3.1. A generalization of Algorithm 1 

The following algorithm generalizes Algorithm 1 into a whole 

class of equivalent versions. 
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Algorithm 3 

1. Choose v1 and w as in Algorithm 1. 

2. For j = 1, 2,..., mdo 

v#11 := Av. - a.v. - 3.v. . 
J+l J J J J J-l 

w.^ := AHw. - I h.. w. (2.26) 
1+1 J i=i XJ x 

where a. = (Av., w.) - (Av. _,w. _)+h. . .. 
J J J J-l J-l J-l,J-l 

(when j = 1 take 3,v = 0 and a = (Av , v )) 

and where the h 's are arbitrary. 

� Normalize v. .. and w. . by using formulae (2.13), (2.14), 

(2.15), (2.17) of Algorithm 1. 

Obviously, Algorithm 1 is a particular case of the above algorithm with 

h . = (Av., v.); h. , . = 6. and h_, . = 0 for i < j-l . 
j.J J J J-l,J J ij 

For every particular choice of the parameters h . one obtains a 

set of vectors V = [v., v„,..., v ] and a tridiagonal matrix T defined 
ra - 1 z m m 

by (2.23). What is surprising is that, theoretically, whatever the h 's 

are, the above algorithm will always produce the same right vectors v., 

the same tridiagonal matrix T and therefore the same approximate solution 

m 
x as is stated in the next proposition. 
m 

Proposition 1 

Suppose that Algorithm 3 is feasible for a given pair of starting 

vectors v. and w1. Then 

( i ) (v , wk) = 6 j k , l < k < j < m + l (2.27) 

(ii) The system V = [v., v„,..., v ] and the matrix T produced by 
m 1 z m m 

Algorithm 3 do not depend upon the choice of the parameters h . used 

in (2.26). 
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Proof 

1. The proof is by induction. Suppose that (v., w ) = 0; k <̂  j and 
J K 

let us show that (v , w ) = 0; k £ j+l. We consider three cases: 

a. k = j-l 

(Vi» Vi} = ( A Y W J - I } " V Y W J - I } " 3 j ( v j - i ' W J - I } 

H j" 1 

= (v., A w. n) - 3. = (v., 3.w. + Z h. . _w ) - 3. 
J J-l J J J J i = 1 lj-1 i J 

j-l 
= 3. + (v., I h.. _w.) - 3. = 0 

J J i = 1 iJ-1 i J 

b. k = j 

(vj+1. w.) = (Av., w.) - a. (v., w.) - 3 . ^ , w.) 

= (Av., v.) - a. - 3. ( V l, 3"1 [ A V ^ - g hjy_iWi]) 

= -h. .,. . + h. . = 0 . 
J-l J-l J-l,J-l 

c. k < j-l 

(w.+1, wk) = (Av., wk) - a. (v., wk) - ^(v.^, wk) 

= (Av., wk) 

H k 

= (v Aw k) = (v w k + 1 + E hikw±) 

= 0 by the induction hypothesis. 

2. a. In order to prove the second part of the proposition we shall need 

the following lemma: 

Lemma 1 

If the first m steps of Algorithm 1 can be realized then the 

k x k moment matrices K, whose general terms are m . = (A v., w ), 

i,j = 1,..., k, are regular for k = 1, 2,..., m. 
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Proof of Lemma 

- _ H H k-1 - k-1 
Let us set W = [w A w, (A ) w. ] and V, = [v , Av ,. .. , A v. ]. 

Since V, and V, are both bases of the same subspace K , there exists a 
k k m 

regular k x k matrix S, such that V = V, S . Similarly there exists a 

k x k regular matrix S' such that W, = W,S'. But the matrix VL is equal 

to 

'< \ -
 S
C < \ \'

 s
i
H
 \ 

which is regular. D 

b. Let us now show that the v 's are the same apart from a multiplicative 

factor. We can write v... = r| A v. + H„ A v-,.. . , + n«v1 . 

Consider the vector r|, V.,, which we denote by v..,. The vector 

1 J+l J+l 
v.,, can be written as 
J+l 

i j _ 1 i 
v. = AJVT - E £.A v. 

J+1 X i=0 i X 

and it satisfies the following equations 

(vj+1, (A
H)k

Wl) = 0 , k = 0, 1,..., j-l 

because it is orthogonal to all the subspace spanned by w1, w„,..., w. 

which is nothing but the left space L. = Spanfw.., (A )w1 ,.. . , 

H i—1 
(A ) w 1]. Hence the C's will be solutions of the linear system 

of equations: 

E (A 1"^, (AH)k_1w )K, = ( A V , (AH)k_1w ), k = 1,..., j (2.28) 
i = 1 i l i x 

Since the moment matrices M, are assumed to be regular, then the 

solution of (2.28) is unique showing that v. . does not depend 

upon the choice of the h..'s in Algorithm 3. 
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Next we must show that if we normalize the vector v.., so that 
J+l 

it makes with w. . an inner product equal to unity, we obtain the 
same result with any choice of the h..'s. Let us consider the 

ij 
inner product (v. ., w ): 

(Vi' Vi> = ( V i ' ( A H ) J WI " V A H > J " 1 W I > " - > Vjwi> 
(Vi» Vi} = (V i * ( A H ) 3 W I ) 

H k because v is orthogonal to (A ) w , k < j-l. Therefore, the 
j+l ! ~ 

normalizing factor does not depend upon the parameters h.., which 

finally proves the fact that the v 's are independent of the h .'s. 

c. To complete the proof, there remains to show that T is independent 
m 

on the parameters h .. From the algorithm we have 

AV = V T + 3_j, v ._ eT (2.29) 
m m m m+1 m+1 m 

where T is the tridiagonal matrix obtained from Algorithm 3 m 
for a given choice of the parameters h . On multiplying both 

sides of (2.31) by VT, where W = [v., Aw,, — , (A ) w, ], we get 
m m i l 1 

WH AV = WH V T + 3_^n W11 v , eT (2.30) 
m m m m m m+1 m m+1 m 

Because of ( 2 . 27 ) , v , . i s orthogonal to a l l the subspace L and 
m+1 m 

so W v = 0. Furthermore by a proof similar to that of Lemma 1, m m+1 
it can be shown that the matrix W V is regular such that from 

m m 
(2.30) we have 

T = (WH V ) - 1 WH AV m m m m m 

This and the fact that the v 's are independent upon the h .'s 

shows that T is independent upon the h,.'s. □ m ij 
One might wonder whether it is possible to find among all the 

possible choices of the parameters h.. one which makes the algorithm more 
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efficient than Algorithm 1. 

Although the result of Proposition 1 may seem powerful, it has 

little practical value as it turns out that the most stable and economical 

version is just the Algorithm 1. Its only practical interest lies in 

the problem of reorthogonalization. In effect the above results show that 

it is only important that v. - be orthogonal to the previous w., i _< j. 

Therefore, if reorthogonalization is needed in Algorithm 1, one must apply 

it only on the set of vectors v.; that is, one only needs to reorthogonalize 

the v 's against the w 's. 

This, however, might be more important for eigenvalue problems 

than for the solution of linear equations. 

2.3.2. The biconjugate gradient algorithm 

The solution x provided by Algorithm 3 can be obtained by a 
m 

conjugate gradient-like method which may be derived in the same way as 

the C.G. Method is derived from the Lanczos algorithm in the symmetric 

case [see, e.g., Paige and Saunders [9]]. 

Algorithm 4 

1. Choose an initial guess x_ of the solution 

2. Compute r = b - Ax. and take p* := r* := p := r 

3. For k = 1,2 m,... compute 

Vi : = \ + \ pk 

r k + l : = r k " a k A p k ( 2 - 3 1 ) 

rk+i := r£ - \ AH K (2-32) 

p k+l := r k + l + *k p k ( 2 ' 3 3 ) 
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pk+i : = r^+i + \ K ( 2 - 3 4 ) 

with 

°k := (rk' rk)/(Apk' Pk } (2*35) 

\ := (rk+r t + i ) / ( V rP (2-36) 

The purpose of the above determination of OL and 3, is to make 

the residual satisfy the relation (r, 1, r*) = 0 and the direction p, 

satisfy (p, 1, A p*) = 0. In fact, the following proposition can be 

shown. 

Proposition 2 

The vectors r, , r* and p , p* produced by Algorithm 4 are 

such that: 

a. (r , r*) = 0 for j ̂  k (biorthogonality property) 
k J 

b. (Ap, , p*) = 0 for j / k (biconjugacy property) 
k j 

Proof 

Clearly, because of the duality of the vectors r and r*, p, 

and p*, it is sufficient to show that k 
(rk, r*) = (Apk, p*) = 0 , j < k (2.37) 

The proof is by induction. For k = 1 (2.37) is satisfied. 

Suppose that (2.37) is satisfied and let us show that 

(r, ,,, r*) = (Ap, ̂ , p*) = 0, j < k+1. For j = k this is true by k+1 j k+1 j 

construction so we must show it for j < k. 

a- (rk+l> rj> = (rk " ak Apk' r j } 

■ (rk> rV - ak ( Av -V 
Since (r,, r*) = 0 and using (2.34) we get k j 
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(rk+l> r j } = - VA pk ' rj> = " VA pk ' Pj + B j-1 Pj-1> 

= - a k (Ap k , p*) - a k 3 ._ 1 (A P k , p * ^ ) - 0 ■ 

b. (Apk+1, Pj) - (P k+1 , AHpJ) 

= ( rk+l + \ V A" P? by ( 2 ' 3 3 ) 

= (r ., A p*) by the induction assumption k+1 j 

(Apk+i« pj*> • ( r k+ r AH p f = ^ ( rk+r rJ " rJ+i> 

= 0 since j < k □ 

Let us mention that all the relations that hold for the classica 

C.G. method will hold for the bi-conjugate gradient method if the vectors 

on the right parts of the inner products are replaced by the corresponding 

vectors p*, r*, etc. 

It is important not to confuse this algorithm with the 

bidiagonalization method [8], where one essentially solves the normal 

equations. The bidiagonalization methods are. projection methods on the 

subspaces Span[r , (A A)r_ (A A) r_] while here we are dealing 

with an oblique projection method on the subspace K = Span[r , Ar ,..., 

A-V 
That Algorithm 4 is theoretically equivalent to Algorithm 3 can 

be simply established as follows: 

The solutions obtained by both algorithms satisfy 
x, = x„ + z, where z, is such that K 0 k k 

( 

k-1 zk G K^ = Span[rQ, ArQ,..., A rQ] 

Lrk = rQ - Azk J_ Lk = Span[rQ, A rQ,..., (A ) ~ rQ] 
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k i-1 ' 
Therefore, z = E n A r„ for both methods and the l.'s are solutions 

of the linear system 

k 
(rQ - A E n± A

i_1r0, ( A V " 1 ^ ) = 0 , j = 1, 2 k (2.38) 

Assuming that the moment matrix M? , whose general elements m' 

are m'. . = (A r0, r ), is regular , we conclude that the vectors z 

ij 

produced by both algorithms are the same because of the unicity of the 

solution of the system (2.38). D 

On the practical side, Algorithm 4 presents the advantage of 

requiring less storage than Algorithm 2. It can be coded with six 

vectors of length N in core memory while the Lanczos algorithm needed 

five vectors in main memory and m vectors in secondary storage (when m 

is large, the latter may involve substantial input/output operation times), 

Furthermore, the number of arithmetic operations required is 

slightly in favor of Algorithm 4 because there is no tridiagonal system 

to solve. Finally, because stable methods can be used to solve the m x m 

system, Algorithm 2 is, in general, more stable than Algorithm 4. 

2.4. Feasibility of the Lanczos Algorithm and the Biconjugate Algorithm 

Thus far we have not discussed under which conditions the 

Algorithms 2 and 4 are feasible. The moment matrices K and MJ" 

mentioned in the previous subsection play an important role as is seen 

in the next proposition. 

In Section 2.4 we shall see that this assumption is necessary for 
the feasibility of Algorithm 2. 
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Proposition 3 

Let K and M/ be the k x k moment matrices whose general terms 

are defined by m = (A -1 v , v ) and m'. = (A J v.. , v ), respectively. 

Then the m-th approximate solutions x can be computed by 

Algorithm 2 if and only if 

a. det(tt) 4 0 , k = 1, 2 m (2.39) 

b. det(M;) ̂  o (2.40) 

Proof 

First we must show that if Algorithm 1 is feasible then (2.39), (2.40) 

are satisfied. That (2.39) is true has already been established in 

Lemma 1. Using the same matrices S and S' defined in that Lemma, it 

is also easy to prove (2.40). 

Second we must show that under the assumptions (2.39) and (2.40), it 

is possible to compute x by Algorithm 2. Let us establish by 

m 

induction that v , w, can be computed for k = 1, 2,..., m. This is 

trivially true when k = 1. Suppose that it is true for k-1 and 

consider the vectors v, and w . All that is needed in order to compute 

v, , w is that (v , w ) ̂  0. Suppose this is not true; that is, that 

( v V = ° (2,41) 

The vector v, can be expressed as 
k 

k . 
v, = E 6. A1~1v. (2.42) 
k . . l 1 

i=l 

Since v, is orthogonal to w., w ,.. . , w 1 (with w = v..), it is 

H H k—2 
also orthogonal to v , A v.. ,..., (A ) v. and (2.41) shows that it 

k-1 
is also orthogonal to A v.. because the vector w, can be written as 



-19-

' H i-1 w = E 6'(A ) v with 6' ̂  0'. Hence v, is orthogonal to 

v , (A )v ,..., (A ) v1, which can be expressed as 

( E 6 A1_1v (A*V-1v ) = 0, j = 1,..., k or R d = 0 where 
i = 1 i 1 1 k 

d = (6,,..., 6,) is a non null vector. This contradicts the fact 1 k 
that det(K) ^ 0. Let us show that the solution x can be computed 

by the formula x„ = x. + 3Vm T e., that is that T is nonsingular. J m O m m l m 

We can use the same argument as in Lemma 1. Let S , S' be two 
° m m 

nonsingular k x k matrices such that V_ = V_S . W_ = W S' where ° m m m m m m 
Vm = [v.̂  Av ,.. . , A v^, Wffl = [v , A v1». . . , (A ) v^^]. We 

have T = W^ AV = (S , H) _ 1 w" AVm S"1 = (S , H) - 1 M' S"1 which in m m m ' m m m m m 
view of (2.40) gives det(T ) 4 0 and completes the proof. □ 

An important remark which can be derived immediately from the 

proof is that the condition (2.39) ensures that vn, v„,..., v and 
1 z m w,, w„,..., w can be built while (2.40) ensures that the tridiagonal L 2. m 

matrix T is nonsingular. It is therefore obvious that m 
the proposition can be generalized as follows: 

The approximations x , x ,..., x can be built by Algorithm 2 
1 2 m 

iff det(M.) i 0, j = 1, 2,. . . , k and det(M,' ) ± 0, j = 1, 2,. . . , m. i m k. J 
For the biconjugate gradient method we have the following analogue of 
the above result. 

Proposition 4 

The first m steps of Algorithm 4 can be performed iff : 

a. det(Mfc) ± 0 , k = 1, 2,..., m (2.43) 

b. det(Mk) ̂  0 , k = 1, 2,..., m (2.44) 
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Proof. 

1. Necessary condition. If m steps of Algorithm 4 are realizable, then 

for 1 < k < m we have four systems R^ = [r ,..., r ], R* = [r*,... , r*], 

Pk " tpi'"-' pk^' Pk " fP*»--'» P^ s u c h t h a t 

f(r., r*) = 0 , i < k, j < k, i * j 

"(p±, AHp*) = 0 , i < k, j < k, i ^ j 

l(Pk. AH
P*) / 0 

H H 
This means that (P*) R^ is diagonal and nonsingular while (P*) AT is 

triangular and nonsingular. But R, , R*, P , P* are four different 

bases of the same subspace K, and so from the above we can show in 

a way similar to the first part of the proof of Proposition 3 that 

K, and M^ are nonsingular. 

2. Sufficient condition. Suppose that (2.43) and (2.44) are satisfied 

and let us show by induction that x., x0,..., x can be obtained 
1 I m 

from Algorithm 4 or equivalently that (r , r*) ^ 0; (p , A p*) ̂ 0 , 

k = 1,..., m. This is true for k = 1. Let us assume that it is 

true for k-1: (r , r* ) i 0; (Pk-1» A p£ ,) + 0. That the first 

relation holds for k can be shown in the same way as in part 2 of 

Proposition 3. (Note that r and r* are proportional to v and w, , 

respectively.) The second relation to show is (p , A p*) ̂  0. 

Suppose.the contrary is true, then using the notations of the first 

part of this proof we get that the matrix (P*) AP is singular and, 

using again the fact that V = PkSk , W = P*Sk ' where Sk ' and (4) S are both k x k and nonsingular, we get that M/ is singular 
which contradicts (2.40) and completes the proof. □ 
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As a consequence of the remark following Proposition 3, if we 

assume that only the condition (2.39) is satisfied and that det(M') # 0, 
m 

then Algorithm 4 may break down before the m-th step while Algorithm 2 
does not because the tridiagonal systems T.y. = 3e., need not be solved 

J J J 
for j ̂  m. Only the solution y of the last system T y = 3e_ is 

m m m 1 
actually necessary to obtain x . From this point of view Algorithm 2 is 

m ■ 
superior to Algorithm 4. 
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3. OTHER OBLIQUE PROJECTION METHODS 

The purpose of this section is to attempt to derive some other 

oblique projection methods. It will first be seen that the Incomplete 

orthogonalization method without correction presented in [14] is nothing 

but an oblique projection method. Then, based upon an analogue of 

Proposition 1, we shall describe a particular class of the oblique 

projection methods for the solution of linear systems. 

3.1. The Incomplete Orthogonalization Method 

Among the methods proposed in [14], the Incomplete orthogonalization 

method without correction was found to be the most attractive. A simple 

description of the method is the following: 

Algorithm 5 

a. Choose two integers p and m and construct a system of vectors 

V V--" Vmby 

1. v± := rQ/(3 := ||r0||) with rQ = b - AxQ 

2. For j = 1,..., m 

vj+1 == Av. - E h..v. (3.1) 
1 10 

where i_ = max{l, j-p+l} 

h.. = (Av., v.) (3.2) 

b. Take as approximate solution 

x = x„ + 3 V H_1e1 (3.4) 
m 0 m m 1 

where V = [v,,..., v ] and where H is the (band) Hessenberg matrix 
m 1 m m 
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whose nonzero elements are the h.. computed by (3.2) and (3.3). 

Note that v is obtained by orthogonalizing Av. against the previous 

p vectors. 

The above method was founded upon the fact that if we compare 

the solution (3.4) with that provided by Arnoldi's method (an orthogonal 

projection method upon the Krylov subspace K ), we would find that the 

m 
difference between them is negligible provided that the system [v.,..., v ] 

1 m 

remains not too far from orthogonal [14], a fact which is often observed 

(see comments following Proposition 6 below). 

We now would like to give an interpretation of the method in 

terms of oblique projection methods.- More precisely, we shall exhibit 

a system of left vectors w,,..., w such that the I.O.M. algorithm will 

1 m 
amount to performing an (oblique) projection method onto 
K = span[v., Av,,..., A v, ] and orthogonally to L = span[W ]. 
m i l l m m 

Consider the system of vectors w obtained from v , v ,..., 

v , v ,, as follows 
m m+1 

Wi = Vi " ( V Vm+l)Vm+l » 1 = 1, 2,..., m (3.5) 

Each of the vectors w. is orthogonal to v ,,, so that if we set" 
i m+1 

W = [w,,..., w ] we get 
m l m 

W m V m + l = 0 (3'6) 

we can then state the next result. 

Proposition 5 

Let V = [v,,..., v ] be the system obtained from Algorithm 5 
m l m 

and let W = [w, ,..., w ] be defined by (3.5). Then the approximate 
m l m 

solution provided by the Incomplete orthogonalization method is equal to 
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that obtained by the oblique projection method using K = span[V ] as 

the right space and L = span[W ] as the left space. 
m m 

Proof 

From (3.1) it can be shown that 

AV = V H + h _ v ^ eT 
m m m m+l,m m+1 m 

which gives, on multiplying both sides by w , W AV = W V H + e v J b ' m ' m m m m m 
h ,, W v ,, e . Using (3.6) and assuming that w V is nonsingular m+l,m m m+1 m ° m m 
we get 

(W**V )_1WHAV = H (3.7) 
m m m m m 

From (2.6) it is seen that the solution x' obtained by the oblique 

projection method, using as left space span[W ] and right space span[V ] 

i s given by 

x ' = x . + V (W1^ )_1WHAV MPT. m 0 m m m m m m O 

and s ince r_. = v, = 3V e we have 0 1 m l 

+ 3V (W^V ) 1WHV e„ 
m 0 m m m m m l 

which in view of (3.7) gives 

x ' = x_ + 3V H - 1e , . m 0 m m l 

But this is just the solution (3.4) provided by the I.O.M. method and 

the proof is complete. □ 

Notice that in the case when v ,, is orthonormal to 
m+1 

v,, v„,..., v , the w 's coincide with the v.'s which means that Q 1 2 m l l m 
becomes an orthonormal projection. In that case the method would give 
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theoretically the same result as Arnoldi's method [14]A It was precisely 

the aim of the Incomplete orthogonalization method with correction, 

described in [14 ], to attempt to orthogonalize v ., against all previous 

m+1 
vectors v,,..., v by finding scalars h, , i=l,...,m such that 

1 m im 

m 
Av - E h. v. Vj, i = 1,..., m. 
n , . in l ± i 

This, however, is difficult to achieve in practice because the 

previous v 's, i = 1,..., m do no longer form an orthonormal system, and 

therefore the coefficients h can be found only by solving a least 

square problem. 

This raises the interesting question to know under which 

condition on A, the I.O.M. method reduces to an orthogonal projection 

method. The answer is given by the next proposition. 

Proposition 6 

Suppose that there exists a polynomial q of degree p - 1 such 

that 

AH = q (A) (3.8) 

Then the vectors v computed from the I.O.M. algorithm (Algorithm 5) are 

orthonormal and therefore the Incomplete orthogonalization method 

realizes an orthogonal projection method onto the Krylov subspace K 

m 
(Arnoldi's method). 

Proof 

We must show that (v.., v.) = 0, 1 £ j for j = 1, 2,..., m. 

The proof is by induction. Suppose v. J_v-» 1 = 1> 2,..., j-l (which is 
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clearly true for j = 1 by construction) and let us consider (v. . , v ) 

where k _< j (v. , v, ) = 0 if j < k < i = max(l, j-p+1) because by 

construction v. - is orthonormal to the previous p vectors 

v._ , v._ ,. . . , v. (see [13]) . For k j< j-p we have 

j 
(v , v ) = (Av., v - E h (v , v , ) . By the induc t ion assumption 

j + l k j k . _ . i j i k 

0 

(v±, vk) = 0, i = iQ, j, hence 

(Vi' V = ( v j ' A V = ( v q p ( A ) V 
(3.9) 

But v belongs to K, and therefore there exists a polynomial s of degree 

not exceeding k-1 such that v, = s(A)v which implies that the vector 

q (A)v, in (3.9) can be written as q (A)v, = t(A)v, where t is the product 
p k p k 1 

of the polynomials s and q and has degree not exceeding (p-1) + k-1. 

Since k <̂  j-p the degree of t does not exceed j-2 and therefore q (A)v 
P k 

belongs to K. 1 which means that (v., A v.) in (3.9) is zero and the 
J--1- J k 

proof is complete. D 

Any Hermitian or skew-Hermitian matrix will satisfy the 

conditions of the theorem with p = 2. Also, any matrix of the form 

A = al + 3S where S is skew-symmetric will satisfy the condition (3.8) 

with p = 2 as for example when 

A = 

a 

-3 

3 
\ 

\ \ 
\ \ 

\ v 

-3 

^3 

\ 

a 

In general, however, an arbitrary matrix A does not satisfy (3.8). 

Nevertheless, a relation of the form (3.8) is often nearly satisfied with 
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a small p which explains why one often gets nearly orthogonal systems by 

the I.O.M. algorithm with p as small as 5 or 10. 

To conclude with the I.O.M. let us mention that it is also 

possible to write an equivalent algorithm in a form similar to Algorithm 4 

which does not require to save the vectors v in secondary memory 

(see [14]). 

3.2. A Particular Class of Oblique Projection Methods for Linear Systems 

3.2.1. Generalized Hessenberg processes 

The results of the previous section can be extended to yield a 

whole class of oblique projection methods. Suppose that we start with 

v = r /3 where 3 = ||rn|| and that we build a sequence of vectors v , v_,..., 

v , by the general formula 

m 

j 
h.,-1 � v.^n = Av. - E h. . v. (3.10) 
J+l, J J+l J ± = 1 ij i 

where the h.., i = 1, 2,..., j+l, are determined such as to make the 

vector v. 1 satisfy certain conditions such as, for example, 

(v. . , v.) = 6.., i = 1,..., j+l (which gives the method of Arnoldi). 

Such processes, called the Generalized Hessenberg processes by Wilkinson 

[15], have in common the equation 

AV = V H + h _ v _ eT (3.11) 
m m m m+l,m m+1 m 

where V and H are defined as before. Let us then consider the solution 
m m 

x obtained by applying the formula (3.4) in the same way as in the 
m 

Incomplete orthogonalization method. Such an approximate solution will 

have a residual vector proportional to the last vector v ,, obtained 
m+1 

from (3.10) because from relation (3.11) we can show that 
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b - Ax = h ,1 eT y v ( 3 . 1 2 ) 
m m+l,m m m m+1 

Thus by requiring that the vector v. . satisfy certain conditions, when 

building the sequence {v.. } by (3.10), we implicitly require that the 

same conditions be satisfied for the j-th residual vector. 

Let us now show that the generalized Hessenberg processes belong 

to the class of oblique projection methods. 

Suppose that W = [w, , w„,..., w ] is any system of vectors 
m 1 2 m 

such that 

"m Vm+1 " ° (3'13) 

det(WHV ) t 0 (3.14) 
m m 

(Note that W is not unique). Then it can be shown by the same proof 
m 

as that of Proposition 6 that x is exactly the solution that would be 
m 

obtained with an oblique projection method using as right space the 

space K = span[v ,..., A v.. ] and as left space the space G = span[W ]. 

Clearly, the methods of Lanczos and the I.O.M. are particular 

cases. In the Lanczos method the h..'s, i = 1,..., j, are chosen such 
ij J 

that v.,, is orthogonal to all the left space L = span[w,, A w,,..., 
j+l m 1 1 

(A ) w ], and it turns out that this can be realized by the elegant 

Algorithm 1 of Lanczos in which h . = 0 for i < j-l. In the I.O.M., the 

coefficients h.. are taken such as to make v.., orthogonal to the p 
ij J+l 

previous v 's. Some other applications are described next. 

3.2.2. 0RTH0MIN and the conjugate residual method 

Suppose that the coefficients h . in (3.10) are determined 

such as to make at each step j the vector v - orthogonal to the vectors 

Av.. , Av„,. .. , Av.. The h..'s can then be obtained by solving the j x j system 
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E (v , Av )h = (Av., Avk) , k = 1, 2 j (3.15) 

i=l 1 1 

Notice that (v., Av ) = 0 for k < i, such that the above system is 

triangular. This is nothing but an oblique projection method with 
K = span[v,, Av,,..., A v,] as right space and L = AK as left space. 
m i l 1 m m 

It can be shown that the solution obtained by this method minimizes 

lib - Ax11 over the affine subspace xn + K . " " 0 m 

This method was first presented in a simplified version by 

Vinsome [15]. It was also analyzed by Axelsson [1] and by Eisenstat, 

Elman, and Schultz [2], who give some results on the convergence theory. 

The simplified version, called ORTHOMIN by Vinsome, produces directly 

x as a sequence of the form x = x , + a p where p is the direction 

m m m-1 m m m 
of search. 

Algorithm 6 (ORTHOMIN or Generalized Conjugate Residual Method) 

1. Start xn initial vector. Compute rn = b - Ax_, take p = r . 

2. Iterate 

- ( V Apk} 

Xk+1 " *k + V k \ ' (Apk, Apk) 

rk+l = \ " \ A pk 

k ^ (Ark+l' A pi ) 

pk+l " rk+l " f 6ikPi ' 6ik " (Ap , Ap ) 

The coefficient a, is chosen such that the residual r, .. is orthogonal 

to Ar , while the 3., 's are such that Ap, - is orthogonal to Ap , i _< k. 

Under these conditions it can be shown that (r, . , Ar.) = 0, i <_ k 

(which is equivalent to the condition (v, ,, , Av ) = 0, i <_ k of the 

previous version) and hence the residuals are "conjugate." (Notice that 
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since A is nonsymmetric, the conjugacy holds only in one side because it 

is not true that (v, . , Av.) = 0 for i >_ k. It would be more appropriate 

to say that the residulas are "semi-conjugate.") 

The amount of work and the storage required in Algorithm 6 is 

prohibitive and unless the algorithm is used iteratively with periodic 

restarting, it would be of little practical value. Vinsome has then 

suggested to perform an Incomplete orthogonalization for generating the 

p 's. The idea is similar to that of I.O.M. and consists of truncating 

the sum defining p in Algorithm 6 as follows 

k 
Pk+1 = rk+l ~ . I fik Pi 

i=k-pt-l 

Obviously this is still an oblique projection method. If we compare 

Algorithm 6 with the I.O.M. we will find that while the amount of work 

is similar, the storage is in favor of the latter. However, ORTHOMIN is 

certainly easier to study theoretically because of the minimum residual 

property. Numerical tests will compare the two methods in the last section. 

3.2.3. The modified Hessenberg process 

In the method of Hessenberg for reducing a matrix to Hessenberg 

form [16], the h ' s in (3.10) are chosen such that v.,, has zero 
ij J+l 

components in its j first positions. The h 's are found by solving a 

j x j triangular system. Therefore, K = span[v , Av.,..., A v ] and 

L = spanfe,, e„,..., e ]. A natural simplification similar to the ideas 
m 1 2 m 

used in I.O.M. and ORTHOMIN(p) is to save the previous p vectors only, 

to replace (3.10) by 
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j 
h . , T . v . , n = Av. - E h . v 

J + 1 , J J + l J l a s j _ p + 1 i J 1 

and to determine h.. such as to make p+1 components of the vector v. . 

equal to zero. An important question is how to choose the positions in 

which the zeros must appear. Some experiments have motivated us to prefer 

the following choice: eliminate the components having the largest modulus 

among the vectors v., v. ,,..., v. 

J J-l J-P+l 

Many other possibilities exist and it may be possible that the 

above choice is not the best. The modified Hessenberg process described 

here has the advantage not to require any inner product. 
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CONVERGENCE PROPERTIES 

In this section the difficult problem of the convergence of 

the approximate solution x toward the exact solution x* will be 
m 

considered. It is important to clarify what is meant by convergence. 

First, if we assume that the w.'s, i = 1, 2,..., n, are linearly 

independent, then the approximate solution x will converge to x* in 

m 
at most n steps. This is because if we write the condition (2.2) in 
the form W (b - Ax ) = 0, we obtain on multiplying by (W ) , 

x = A b = x*. Therefore, the sequence x is a finite sequence and 
n m 

by studying the convergence of x we shall mean deriving some properties 

which will ensure that x may be a good approximation to x* even for 
m 

m much smaller than the dimension n of the problem. The analysis 

proposed here is essentially the same as that given in our previous 

paper [14] and we shall only emphasize on those results that present 

nontrivial differences. 
Let P be the orthogonal projector onto the subspace K , and 

m m 

Q the (oblique) projector onto K orthogonally to L . We shall study 
m m m 

the convergence in terms of the distance £ = (I - P )z* where z* is 
m ' m 

the exact solution of the problem (2.5), and where ||*|| denotes the 

Euclidean norm. This distance between z* and the subspace K has been 
m 

fully studied in [14] and some bounds for it have been established, 

showing that in general £ is a quantity which decreases rapidly to zero. 
m 

We shall need an interpretation of the oblique projection 

3 
method in terms of operator equations. Let us define the operator 

A = Q AP , and make the assumption (H) of §2.1. We then have 
m m m 

3 
Note that here A denotes at the same time a matrix and its associated 
linear operator. 
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Lemma 2 

The problem 

z £ K (4.1) 
m 

/ 
r_ - A z = 0 (4.2) 
u m 

has as its unique solution the approximate solution z provided by the 
m 

oblique projection method using K as right space and L as left space. 

Proof 

It is sufficient to translate problems (4.1), (4.2) into 

matricial notations. Since z £ K , it can be written as 
m 
z = V y (4.3) 

m 
Furthermore, vn and z belong to K and therefore P z = z and Q r_= r„. 0 m m m 0 0 
The matricial representation of Q in the canonical basis is 

m 
V (WHV ) _ 1 WH and so (4.1), (4.2) give m m m m 

which yields 

V (WHV ) V r f t - V (W1^ )~1WHAV y = 0 m m m mO m m m m m 

y = (WHAV ) - 1WH r n (4 .4) 
m m m 0 

This, means that the problem (4.1), (4.2) has a unique solution 

and a comparison between (4.3), (4.4) on the one hand and (2.6), (2.7) 

on the other hand show that the solution is just that obtained by the 

projection method. □ 

We shall refer to problem (4.1), (4.2) as the approximate 

problem. What the lemma shows is that the projection method described 

in §2.1 amounts to replacing the problem (2.1) by the approximate 

problem. Our next task is naturally to relate the solutions of the two 
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problems. A simple way to relate z* to z is to give a bound for either 
m 

the residual of z for problem (2.5) or for the residual of z* for 
m 

problem (4.2). The latter case is considered in the next proposition. 

Proposition 5 

Let Y = Q A(I - P ) then 
m m m 

||r_ - A z*|| < y e (4.5) 
0 m ' — m m 

Proof 

We have 

||r. - A x*|| = ||Q (r. - AP z*) || = ||Q (AZ* - AP z*) || 
" 0 m, " " m 0 m " " m m 

= || Q A(I - P)z*|| = ||QmA(I - P)(I - P)z*| " m m " " m m m 

< Y £ . D 
— m m 

Corollary 1 

Let Y be defined as above and let K = || (A iT, ) ||. Then 
m m " m|K " 

z - z*|| < (1 + Y2 K2)1/2£ (4.6) 
m " — m m m 

Proof 

See analogue result in [14]. 

The number of v K plays the role of a condition number for 
m m 

the approximate problem. The corollary therefore means that the error 

made in approximating z* by z (which is the same as the error x* - x ) 
m m 

will be of the same order as £ provided that the approximate problem 
m 

is not too badly conditioned. 
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We believe that there is no simple way of bounding either K or Y 

because Q is an oblique projector. Thus y c a n De bounded as 

Y < llQ II I|A|| where 11Q || is not known. (In the orthogonal projection 

'm — " m" " " " m" 
case we have 11Q || = 1.) 

m 

Note that we do not have at our disposal optimality properties 

such as the very helpful ones involved in the conjugate gradient method. 

An interesting bound for the residual of z for problem (2.5) can also be 

m 

established by adapting a result shown by Vainikko (see [5]) for 

orthogonal projection methods. 

Proposition 6 

Assume that T = „ min Q x is nonzero and let c = Q , 

{x£AK IMP 

and £* = min r_ - Az , then 
m ZGK ° 

m 

£' < || r_ - Az | < (1 + c /T )£* (4.7) 
m — " 0 m" — m m m 

Proof 

Consider the restriction Q of Q to the subspace AK . If 
m m m 

T / 0 then Q is a bijection from AK to Q AK . Furthermore from 
m m m m m 

equation (4.2) we get 

r. = Q Az 
O m m 

and since Az belongs to AK we have 
m m 

Hence 

Az = Q 1 r_ = Q_1 Q r. 
m ^m 0 m m 0 

r - Az = (I - Q"1 Q )r (4.8) 
U m m m u 
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Let now x be any vector of AK . Then (I - Q Q )x = 0 and hence (4.8) 
m m m 

can also be written as 
r - Az = ( I - Q" 1 Q ) ( r - x) V 6 AK 
U m m m U m . 

Thus 

and 

| | r_ - Az || < | | l - Q X Q || | | r - x | | V e AK ii 0 m" — " m m" " 0 " m 

Hr 0 -A 2 J |< ( l + | |Q ; 1 |N I< ' J I ) £K ll'o-ta« 
m 

■ ~ — J L I Since Q = T this establishes the second part of (4.7). The first " m " m 
part is obvious. □ 

It is important to remark that in the case where K is the 
m 

Kry lov s u b s p a c e , t h en 

£^ = min | | p ( A ) r 0 | | ( 4 . 9 ) 
f p ^ i / m-1 
\p(0)=l 

where P , denotes the space of polynomials of degree not exceeding m - 1 . m-I 
This quantity is very similar to the quantity £ and the bounds for e' 

are of the same nature as those for £ . 
m 

It may seem at first that inequality (4.7) is more powerful than 

the previous inequality (4.6) because the condition number of the 

approximate problem does not appear in it. This is not true, however, 

because the number T can be shown to be equal to 
m H^K^H m 

The inverse of A T, is therefore implicitly involved in the constant T m K m 
and we have x < \]k K where K is defined in Corollary 1. 

m — Ir " m m J 
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5. NUMERICAL'EXPERIMENTS 

The numerical experiments described in this section have been 

run on the CDC CYBER 175 at the University of Illinois at Urbana-Champaign. 

The single precision has been used throughout (mantissa of 48 bits). 

5.1. Comparison of I.O.M. and Lanczos 

We shall first compare the Incomplete orthogonalization method 

(see 3.1) with the Lanczos method (Algorithm 2) on the following example. 

(5.1) 

and a = -1 + 6, b = -1 - 6. 

B is of dimension 20 and A has dimension N = 100. These 

matrices represent the 5-point discretization of the operator 

3 9 d 
- —7T + Y ~5~ on a r e c t a n g u l a r r eg ion . 

~ 2 ~ i. dx 
dx dy 

T 
The right hand side b is taken to be b = Ae where e = (1, 1,..., 1) , 

such that the solution of the system is just e. The parameter 6 is taken 

equal to 0.5 in this first example. The next figure compares the 

convergence of the I.O.M. algorithm with two values of the parameter p, 

p = 2 (upper curve) and p = 4 (middle curve), with Algorithm 2 (lower curve). 

It is seen that the convergence is faster with the Lanczos algorithm. 

However, each step of the Lanczos algorithm requires two matrix by vector 

multiplications while I.O.M. requires only one. It should be mentioned 

that the I.O.M. algorithm applied here is the Algorithm 5 of [13] and that 

it includes a restarting strategy. (Two restarts have been necessary for 

p = 2 while no restart has been needed when p = 4.) 

A = 

B -I 
\ x 

\ \ 

_I \ ^ 

\ \ -I 
\ 

-I B 

with B = 

4 a 

\ \ 
\ \ 

b 4 
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Figure 1. Upper curve : I0M(2), middle : I0M(4), 
lower: Lanczos 
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Figure 2. Lanczos and I0M(4) 
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Figure 2 shows the same example with 6 = 10 treated with Algorithm 2 

and I.O.M.(4). Notice the peaks presented by the Lanczos method. 

The Lanczos algorithm often behaves in a way similar to 

that of Figure 2, especially in situations where there are large 

imaginary eigenvalues. It is to remark that these peaks do not seriously 

affect the overall convergence. When the residual norm increases 

rapidly after a certain step, it decreases even more rapidly in the 

following steps. 

5.2. I.O.M., Lanczos and ORTHOMIN 

It was mentioned by Paige and Saunders [9] and by other 

authors that, in the symmetric case, the conjugate residual method (or 

minimum residual method) and the conjugate gradient method often exhibit 

a similar convergence behavior. As the next experiment will show, we 

can make a similar remark for the I.O.M. and the ORTHOMIN-G.C.R. methods. 

Let A be defined as in section 5.1, with the same right hand side and 

the same 6. Figure 3 shows the convergence behaviors of I.O.M. (4) 

(upper bound), 0RTH0MIN(4) (middle curve), and the Lanczos method (lower 

curve) for this example. 

Recall that the ORTHOMIN(P) requires twice as much memory as 

I.O.M.(p) and that in each step of ORTHOMIN(P) we have to perform two 

matrix by vector multiplications against only one such operation for 

I.O.M.(p). This means that for this example, I.O.M. is superior if 

we do not take into account the fact that for the I.O.M. there are some 

additional 1.0. operations (necessary for the preservation of the v.'s 

until convergence). Algorithm 3 converges much faster than I.O.M.(p) and 

ORTHOMIN( ) but uses two matrix by vector multiplications. However, it 
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has the advantage not to require from the user to supply the parameter 

p that is needed both in I.O.M. and ORTHOMIN. 

20 60-

ITERATIONS 

Figure 3. I0M(4), 0RTH0MIN(4) and Lanczos 

5.3. Complex Eigenvalues and the Lanczos Method 

The purpose of the following example is to show how the behavior 

of the Lanczos method can vary when the shape of spectrum changes. Let 

B be the 100 x 100 block-diagonal matrix with 2 x 2 blocks c defined by 

Ck = 

ak" \ 

\ \ 

y IV *~~ J.) ^ 9 � � � 9 J\J 

with a = k, b, = 6a, where 6 is a parameter. The eigenvalues of B are 

A" = k(l + ±6) where i = / T , k = 1, 2,..., 50. When 6 is small the 

eigenvalues are almost real positive and B is almost symmetric. The theory 
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indicates that in that case a fast convergence can be expected because 

the distance (I — IT )x*|| decreases rapidly to zero [13]. When 6 
m ' 

increases, the spectrum spreads out in (f and in that case the theory 

does not guarantee a good rate of convergence. Figure 4 shows the 

behavior of the Lanczos method for the following values of 6: 6 = 0.1 

(curve a), 6 = 0.4 (curve b), 6 = 0.7 (curve c), 6 = 1 (curve d), 

6 = 10 (curve e). The graphs obtained confirm the theoretical indications. 

We emphasize here that in the case where a preconditioning is applied, the 

eigenvalues of the resulting matrix are closer to 1 than those of the 

original matrix such that the situations of poor convergence, similar 

to the case 6 = 10 here, can be avoided. 

5.4. Generalized Hessenberg Process 

Finally we will describe an experiment with a generalized 

Hessenberg process belonging to the class of methods outlined in 

section 3. Let us again take the example given in section 5.1 and 

consider the generalized Hessenberg process which builds a sequence of 

vectors v. as follows 
J 

j 
h-j-i -v-j-i = Av. - E h. . v. (5.2) 
J+l,J J+l J i = j_ p + 1 U x 

where h.., . is a normalizing factor for v.,, and where the h.., 
J+l,J J+l ij 

i ^ j+l are chosen such as to make p components of v equal to zero. 

An important question is to determine which components of v should 

be zero for more efficiency. Several tests have been made, yielding 

various rates of convergence, depending on the strategies adopted. It 

was found that for this example a good strategy consists in eliminating 
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in (5.2) the components j, j-l,..., j-p+1. A comparison of this strategy 

when p=2, with I.O.M.(2) and 0RTH0MIN(2) is shown in Figure 5. It can 

be seen that the convergence of the generalized Hessenberg method 

compares well with that of I.O.M.(2) or 0RTH0MIN(2), and the fact that 

there are no innerproducts involved for building the v 's makes the 

Generalized Hessenberg method quite attractive. More general and more 

powerful strategies remain, however, to be investigated. Another 

strategy, that has appeared effective, isto eliminate the components 

in v corresponding to the large components in the previous v.'s. 
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Figure 5. A generalized Hessenberg method (upper curve), I0M(2) 
(middle curve), and 0RTH0MIN(2) (lower curve) . 
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