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1. INTRODUCTION

In an earlier papar [13], some algorithms based on orchogonalization
techniques have been proposed for solving large unsymmerric systems, OfF
particular Interest 1s the incomplete orchogonalizatcion method without
correction, where at every step the solucion 13 taken such ags Fo make the
new resldual orchogenal to the p previcas reslduals where p is some small
integer. As will be seen, this method can be reparded as an
oblique projection method. By noncrthogonal cr obligue projectlon method
we mean a method which saeks a solution X of Ax = b by reguiring that x
belongs to a certain subspace K {called the right space) and that the
residual b - AX be orthogonal to another subspace L (called the left subspace).

The Lest example of an oblique projection methad for solving
linear systews is provided by the methed of Lanczos [?] which 1s a verslon
of the well known conjugate gradient method In the symmetrlc case [3].

In that method the right space K is a Krylov subspace K = spanf[v., AV, ...,
Am-lvi] where vy is a starting vector, while L iz a Krylov subspace

agsociaced with AF, L = spani{w, &le,..., {AH}EFLw ]. The Lanczos

1
aglgorithe has keen neglected for a long time because of 1lts instabllity

as a method for tridiagonalizing a nonsymmetric matrix and computing Lts
elpenvalues, although recently this fact has heén reconsidered by Parlett

and Taylor [ll]. For solving linear systems, however, thz method can be

quite useful, especially when it is used In conmjunction with a preconditioning
technique. We should point out that the presence of a1 in the definition

of L does not mean at all that the Lanczos method solwes the normal

eguations &Hﬁx - ﬁﬂb.
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It is not the purpose of this paper to introduce a specific
method effective for any large unsymmetric system, but rather to present
and analyze a class ofnmethods based upon ablique prajection processes.
Some of the algorithms presented are already knowm or can be trivially
derived from known algorithms.

Section 2 sets the basic definitions and notations ¢f the
cblique projection methods and treats the important example cof the
Lanczos method. In section 3 other oblique projection methods, such as
the Incomplete orthogonalization method and the Orthonin (p) methad [14].
are considered. The convergence propertias of the alpeorithm are studied
in section 4 and some numerlical experiments are described in the lasr

gection comparing some of the methode treated.
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2. OBLIQUE PROJECTICH METHODS AND THE LANCZOS ALGORITHM

2.1. Obligque Projection Methods. BEBasic Theory and Hotarions

Let us consider the linear system
b~ Ax =0 (2.1}

whete & 15 2o n = 0 aonsymeetrlsc matrix. Let vm = Ivl,..., vm] and
Hﬂ = [Wl,..., wm] be two systems of m linearly independent vactors in
t“. The span of ?m (resp. Hm) will be denoted by Km {resp. L“) and will
often be referzed to as the right (resp. left) space. An obligue
projection method onto Km and orthogonally to L“1 1z any process that
obtains an approximate soluticon X, Lo problem (2.1}, which belongs to

Km and which satisfies the relations:

b—.ﬁ.xm_l_'ﬁl'j, j-li.--,m (242}

If a good guess x_. at the solutdon Is available, it 1Is mwore

1]
appropriate to seek an approximate solution of the form

X=X, + z (2.3}

where z belonge to Km and wvhere x is regqulred to satisfy the same
condition {2.2}. In that case the new unknown 2z 1ls the scolution of
the problem

Ty = Az i,wj, j=l,c..y m (2.4}

whate rﬂ is the ipnicial residual b - Axﬂ.
Hote that the first formulationm is a particular case of the
second with xn = ) and that the second formulatlon can be reduced to the

first because it amounts to solving the problem

. — Az = {0 (2.5

by the obligue projection method.
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The second formulation is important for restarting the algorithm.
The more general formulation {(2.3), (2.4) will be ofren adopred. Tr will
be zssumed throughout thar ¥y belonge to Km. Anothey important z2asunptiom
that we shall make is that

{R}: no vector of L 1is orthogensl to either K ot ﬁKm,
or equivalently that

Hﬁ?ﬂ and w:avm are both inversible.
In that case the problem {2.5) has a solution zm wvhich can be cbtained as

z = ﬂmgm {2.6)

whera Yo is given by
-1
y, = LAV )T e, 2.7
In seceion 4 we will pive an interpretation of the oblique projection
method 1n terms of operators.

Indead it will be sesn that the above method replaces problem

(2.1) by an approximate problem involving an cperator of rank less than n.

2.2, The Lanczog Method of Biorthogonmalization

2,2.1. The blorthonormalization process

A very artractive example of the shlique projection procese
described above is the method proposed by Lanczos in [7]. Inm
that method, Lanczos suggested a simple way to generate biorthagonzl
syatems Wm, vn guch that the matrix H:gﬂm in {2.7) hasg a tridiaponal farm.

A simple version of his algorithm cen be described as follows:




Algorithm 1

1. Choose

2. For j

L]

L]

a. Gj

vy and wl guch that (vl. wl] = 1.
a1, %,..., mndo "
vj+1 i= ﬂyj - ujvj - Ejvj-l (2.10)
G, maly —aw -6w (2.11)
j+l k| 1 3 i-1
{(vhan 4 = 1 take Elvb ta Elwﬁ = 0)
ith a, 1= (Av,, Z2.12
w i (vj wj) { )
choose ﬁj+l and Ej+1 Such that
Gj+1 Bj+1 = (Qj+1' ﬁj+1) (2.13)
Vel 7 %1/ (2.14)
w /B {2.15)

141 7 *41'Fn

It can be shown eaelly that when the algorichm does not break

down for a null inner produce (ﬁj+l’ ﬁj+l]’ then the vectors v, and wi

1

satisfy the biorthonormallty property:

{vi‘ wj} = 61-1, 1,ij = lyere, @ (2.16)
Some interesting cholces for ﬁj+1 and ﬁj+l in (2.13) are the following:
= | (% & }luz B,.. =5, . sign{d €...) {2.17)
+1 1T T4+ * Pl 3+1 3+1° T+ ’

Sopn =9l s Bypy = (O B8 (2.18)

This makes vj+1 of porm wmailey,

s ) A ~ 1!2

o ™ | Cpunr Fpal¥ g MR, I {2.18)
(2.19)

Buyg = (Oyyg» 6440008

jt+l 34177 T+l
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This last cholce makes “5*1 and “j+1 having the same norm.

Practically, the formulae (2.17) are to be preferred as they are more
economical. Humerigally, the purpose of (2.17), (2.19) 1s to attempt

to balance the norma of the vectors vj+1 and u&+l*

to remark that the product "wa+1IJHVH+1

It is, however, necessary
" will not depend upon

witich of a2, b, or ¢ is applied because

"v " "u II - "ﬁ'i‘l"l” "ﬁ1+1" - "“ +]_!' ﬁ +l||
JHLT T L Sy41 Bina T(ﬁjﬂ_" %jﬂ]l
1
"vj+1||”“j+1||= cos B(ﬁ5+1. ﬁj+1}

whara &(x, v) denotes the acute angle barween tha vectoers x and y. The

angle 8(% W +1} is a function of A, v;, w; and j only because, as will

I+ )
be zeen lgter on, the vectors vj+1' wj+l 1

apart from a notmalizing factor. This angle can be equal to T/Z causing

1

are unfquely determined by v., w

1

the algorithm to stop. As shown in an example by Wilkinson [153, p. 3901,
this can occur even when A is well conditioned, and should not he incurred

to any shortcoming in the macrix A, It {s interesting te note that vj+l

and wj+1 can bg writtan as vj+1 = pj

denotes a polynomial of degree j. so that a sufficlent condicion for the

{ﬁ}vli ﬁj {ﬂH}WI where Py

+ - P
feasibllity of Lanczos algorithm 1= thac

w, % <n. GWv, pADw) # 0 (2.21)
This generalize=s the condition of the symmetric case which requires

that the degree of the annibhilating polynomizl of v, must noL exceed m.

Z.2.2. Solution of the linear s=ystem by the Lanczos method.

The previous algorithm bullds a system of blorthonormal vectors

{vi. wi}i=l o but does not provide explicitly an approximate solucion for
F
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{(2.1). 1In [7] Lanczos has proposed an interesting way te builld up such
an approximation. His aléﬂrithm, which was published at about the same '
time as the Ennjugata gradient method of Heslenegs and.S;iefal {3], can
ba considered as a version of the C.G. algorithm, Tﬁe algorithe proposed
by Lanczos daconples each of the relations (2.10) and (2.11} in two other
relations involvieg 2 new sequence of vectors (the conjugate directions)
in which the solution is easily expressed. The approximate solutiom X
provided by Lanczos' algarithm beloungs tn'{xh} + K and its residual,
which ia proportional teo the vector v

m-'.-
left epace Lm' It is therefore equal to the solution that would be

» 18 orthonormal to the

obtained by an oblique projectlon methed using the subspaces Km_= Bﬁanf?m}
as & right space and Lm - span{wﬁ) as a lefr space, vhere vmf Hﬁ is the
blorthonormal system bullt by Algorithm 1.

In the fellowing we show.hﬂw the’appruximate solutlon can alsc

be obtalned directly as a combination of the vectors v Hote that

i.
another algorithm simpler and closer -to the ¢.G. method will be

given in the next subsectlon.

(1)
ﬂ![and w, =

and let us consider the component vector Y of 0 glven by (2.6), From the

Suppose that Algorithm 1 1s started with v, = rﬁf"r

algorithm and the biorthonermality property (2,163}, it can be easily shown

[16] that the m x m matrix Tm - ﬂ:ﬁ?m has the tridiagonal form

{1}

It is not necessary to start with v, =V but 1t is somehow simplifying.




o
A “
5, NN
LY Y \ \\
T = oo By (2.23)
v N
8 o

{Motice that with the determination {a) of Gj+1’Tm hag the interesting

addirional property that

; 8 1= 2,...,m.)

Furchermore, the right hand side of che system (2.6) is equal to Eel
= . T = =
where B = "rulL 2, = (1, 0,..., 0) because W:Fﬂ BW:VI Be, -
The approximace solution x is therefore quite easy to ohtain
practically since we have

+ Evmr‘le (2.24)

xm = ¥+ mem = n 51

0 0
Computing the approximate solucilon by {2.20) and {é.21} requires the
storage of the vectors Vys Vaue
major drawback because the formation of the solution by (2.21) takes

‘ay Um but this does not constitute a

place only when the convergence has occurrad, and therefore the v can

1'5
he saved In secandary scorage until then. This means, hawever, that we
have to provide some means for determining whether the convergence is
achieved, without explicitly using the approximate solution. Fortunately,
this can be done quite easily thanks to the following formula, well known

and tremendously useful in the symmetric case [10], [11] which expresses the

residual norm in terms of Ym and "$m+1"

~ T
o = axg 11 =14, 1l 1<%y (2.25)

Equality {2.25) enables us to compute the residual norm very

economlrally and one can afford to make use of (2.25) periodically to

monitor the convergence. Let us meneion that it is not even necessary
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to actually compute ¥ in order to estimate the residual norm. ({5ee

similar point in {11] and (147.)

Algorithm 2

1. Choose an initial vector Xy compute

rﬂ =k - ﬁxﬂ;
8 = Il
v 8= W s rnfﬂ

s W, o4 X, 4 B §, ... By formulae (2.10) to (2.15) of

a. <compute v 1t Y j417 %41

1+l
Algorithm 1.

%. Periodically {e.g., when [§/5]*5 = j) update the estimate ﬂj
of the Tesidual norm.

If p, £ € goto 3 else continue

1
3. Form the approximate sclution

LT LA

2.3. Eguivalent Vevsicns and the Bi-Conjugate Cradient Method

We shall noew give some equivalent versions of the basic
Algorithms 1 and 2, We first Intreduce for a theoretical purpose‘a
generalization of Algorithm 1, Then on the practical side a2 simpler

version of Algorithe 2 will be studied.

2.3.1. A generalization of Algorithm 1

The following algorithm generalizes Algorithm 1 into a whole

class of equivalant versioms.
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Algovithm 3
1. Choose vy and wy as in Alporichm 1.

2, For j=1,2,..., mdo

Gj+1 1= Avj - ajvj - ijj—l

i
" = a8 .
wj+1 = A wj 151 hij w, (2.26)

where &, = {Av, , w,} — (Av “3—1} + h

h i1 j-1’ +-1.5-1
(when j = 1 cake B v, = 0 and o = (v, v )

and where the h, "5 ara arbitrary.

1j
* Hormalize ?j+1 and “j+1 by using formulae {2.13), (2.14),

(2.15), €2.17Y of Alpowithm 1.

Obviouwsly, Alporichm ] iz a2 paretileular caze of the above algorichm with

Byg = vy v By g 1

For every particular choice of the parameters hij one ohtains a

set of vectors Un =_[vl, Vyreers vm] and a tridiagonal macrix Tm definad

- ﬁj and h,, = 0 for L < j-1 .

by (2.23). What {is surprising is that, theoretically, whatever the hij's
are, the above algorithm will always produce the zame right vactors vys

the same tridiagomal matrix Tm and therefore the game approximate solution

X as is gtated in the next proposition.

Proposition 1

Suppose that Algorithm 3 is feasible for a given pair of starting

vackors v, and w,. Then

1 1

(1} {vj, “k} = ajk . 1<k <)< mbl (2,27)

{il) The system vm = [vl, Vysrees vm] and the matyix Tm produced by

Algorithm 3 de not depend upon the chodce of the parameters hij tged

in {2.26},




Proof
1. The
let
a.
b.
o,
2. a
Lamma 1

k x & moment matrices Hk those peneral cteyms are m

1,y =1,..

proof is by induction. Suppose that (v

j'l
We consider three cagses:

uk) a0 k< jand
us show that (v

j410 " T
k = j-1

(ﬁj+l’ w&_l] - (&Hj, w&-l} - uj(vﬁ, i

= (hﬂﬁ. wj_l) - B

0 k < 3+,

) =B (v

3510 Y1)

Ngd T By S g By R TR

j=1
= + E
Ej [vj im]l

k:i

(v

Byj-1¥e) - B, =0

(vj+1’ wj} = (hvj. wj) - uJ[vJ, wj} - Bj(vj_l,
-1 ,E izl

wjl

= Ay , v ) =0 =R (¥

") 3 y il

R R T S

E < j=1

(ﬁ3+1, wk} = {A”j' wk) - uj[vj. wk) - Bj(vj_l, wk}

{Avj. wk)

B 4
(vj, A wi} {v,, & + I h,w)}

f A= B (i

= J by the induction hypothesis.

In order to prove the second part of the proposition we shall need

the following lemma:

If the first m steps of Algorithm 1 can be realized then the

P £ 2
ij - (A. '“'l, wI_]’

.y ¥k, are regular for k=1, 2,..., o




~]0-

Proof of Lemma

. . k-1
Let us set Hk = [u A {ﬁ ] 1} and Vk = {v., ﬁvl...., A vl].

8ince V, and ¥, are both bases of the same subspace Km’ there exists a

k k
regular k x k matrix Sk such that Ek - ?k Sk. Similerly there existz a
k x k regular matrix Si such that ﬁk ﬂkSﬂ But the matrix Hi is equal
to

g sty 5 «sBg

which 1s regular, O

b. Let ua now show that the v, 's are the same apart from a multiplicative

i
- i i-1
feceox. We can write vj+1 “1 A vy + n2 A vl,..., + nuvl.
-1 -
Conslder the vector Ny vj+1 vhich we denore by v3+1. The wvector
“j+1 can be written as
-1
cady e
Viel T ATV 1En T

and it satisfies the following equaticns

(v Vi1 (A } w } = 0, k=0, 1,..., j-1

because it is crthogonal to all the subspace spanned by Wis Waaeees wj
which is nothing bur the left space I.j = Span[wl, (&H]wi,.,.,

{ﬁH]j-lwI]. Hence the Ei's will be zolutions of the linear system

of equations:

k| _ - -
Doy, aht 1w1}§1 = e, WH N, k=13 228
11

fince the moment matrices Hk are assuned to be regulay, then the

solutien of (2,28) is unique showing that ¥ does not depend

j+1

uport the chodce of the h,,'s in Algorithm 3,

1]




wlin~

Bext we must show that if we normalize the vactor Gj+1 so that

it makes with Gj+1 an inner product equal to unity, we obtain che

same result with any choice of thsa hi 's. Let wé consider the

3

Inner product {vj+1* uj+1}:

E;'-rj_l_lr {Aﬂ}jwl = ul{AH}j-lw s MWW }

(:'}j+1' T:"_1+1} 1*°0 41

" - . : A
Gy ¥yp) = gy W)

becanse $j+1 iz orthoagonal to {Aﬂ}kw s+ k£ < J-1. Therefore, the
nermalizing factor does not depend upon the paramecers hij’ which

finally proves the fact that the v 's are independent of the h

1
1 1 -

¢. To complete the proof, there remains teo show that Tm is independent

on the parameters h From the algorithm we have

13

AV =y T + 8 T
m m

™ el Vel En {Z2.29)

vhers tm is the tridiagonal matrix obtained from Algorithm 3

for & given choice of the parameters hi . Om multiplying both

3
sides of (2.31} by W, vhere ¥ = [v., A% ..., (AH™ 1y 1, we get
b1 m 1 1 1
- . - T
w:mrm “:vam-'- Bm+1":"m+1 e (2.30)

Recsupe of (2.27), vm+1

aq ﬁﬂ vm+l = ), Furchermore by a proof similar to that of Lepma 1,

iz orthogonal to all the subspace Lm and

it can be shown that the matrix ﬁﬁ.vm ig regular such chat from

(2.30) we have
e -1 =H
T = (@ V)T AV

This and the fact that the vi‘s are independent upon the b

shows that TIn ie independent upon the hii‘s. a

Une might wonder whether it ig possible to find among all the

T

poggible choicese of che parameterz h,, one which makes the glgorithm more

1
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eff{icient than Algorichm 1,

Although the rezult of Propoaltien 1 may aeem powerful, it has
little practical wvalue ar it turns out that the most atable and econonical
vérsinn iz just the Algorithm 1. Its cnly practical interest lies in
the prablem of reorthogonalization. In effect the aﬁuve results show that

it is only important that + be urtﬁugnnal to the previous w

3+1 i<1.

i?
Therefore, 1f recrthegonalization is needed in Algorithm 1, one must apply
it only on the set'uf vectors vi; that is, one only needs tq rearthogenalize
the v, 's against the wi's.

This, however, might be mote important for eigenvalue.ﬁrnblems

"than for the sclution of linear equations.

2,3.2. The blconjugate gradiest algorithm

The solution ® provided by Algorithm 3 cazn be obtained by a
conjugate gradient-like method which may be derived in the same way ag
the C.G. Method £5 derived from the Lanczos alpgerithm in the symmetric

case [see, e.g., Paige sand Saunders [9]].

Algorichm 4
1. Chooze an initial guesza Xy of the solution
- - X = ¥ = ]
2. Compute t, b Axﬂ and take P T I§ =Py =Y,

3., For k=1,2,..., m,... compute
Xwl TR T O Py
Trel T T T % ARy
¥ 1=y o AH P*
k+1 k% k

Prar *T Tl T R Py




PR *° Vi Y B P (2.34)
with

@y = {rk, rﬁ)ffﬂpk, p;) {2.35)

ﬂk 1= {rk+1, r§+1)f{rk, r;) {2.36)

The purpose of the above determination of o and Bk 1e toc make
the reeidusl satisfy the relarion {rk+1’ IEJ = ) and the directicn pk
satisfy {Pk+1’ ﬁﬂpﬁ} = 0. In fact, the following proposition can be

shown.

Proposition 2

The wvectors tk, ri and pk, pi produced by Algorithwm 4 arxe
such that:

#) = 0 for j # k (biorthegenalicy propercy)

. (rk: tj

b. {ﬁpk, p;] =0 for j # k {biconjugacy property)

Proct
Clearly, becauge ¢f cthe dusliey of the vectors T, and rﬁ, Py
and pt, it is sufficient to show that

{Ikl IEI"] = (-ﬁpk! P;] =0, 1<k {2,37)

The proof 1s by induction. For & = 1 (2,37} 1s satisfdied.
Suppose that (2.37) is satdiefled and let ue show that
* = *] = - . -
{rk+1’ Ij] {ﬁpk+l’ pj] 0, j < k#1, For § = k this is true by
construceion so we must show it for | < k.
* = - #
A {rk+1, Ij} {rk &y Apk, IJJ
- *y o *
{rk: rjj ﬂk(ﬁpk; Ij]

Since {rk, r;} = {0 and uveing (2.34) we get
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{rk_'_l! r;} = - ﬂk{&pk! Ij] " - uk(ﬁpk! p; + Ej_l p?_lj

== uk{ﬁpk! p;) - ﬂj 1{ﬂpk! p_] 1} - u
_ H

1]
= {rk+l + ﬂk Py A p;] by (2.33)
= {rk+1. a" p;] by the induction assumption
H 1l )
) = = L % - pi
(Apyyp» PJ) 7 (o0 A7 PP 0, I Bl T —

0 since j < kO

Latf us mention that all the relations that hold for vthe eclassical
€.G, method will hold for the bi-conjugate gradient method if the vectors
cn the right pares of the inner products are Teplaced by the corresponding

vectors pi, ri, etc.

It iz important not £¢ confuse this algorithm with the
bidiagonalization wethod [8], where one essentially solves the normal
equations. The bidiagﬂnalization.mEthuds are projection methods on the
subspaces Span[rﬂ, (Agﬁ)rﬂ,..., {ﬁH&)nrlrﬂ] while here we are dealing
with an oblique prejection method on the subspace Km = Span[rn, &rﬂ,*‘¢,

m-1 )

A rﬂ].

That Algcrithm 4 is theoretically equivaient to Algorithm 3 can
ke simply established.as follows; |

The golutionsz obtained by both algerithms sarisfy
X = Fg + Z, where 2y is such that

k-1

2, £ K, = Epan[rﬂ, ﬁrﬂ,..., A ﬂ]

Lr - Az, 1L = Span[r ; &Hru,--¢, (ﬂH)k‘ ﬂ]




m]li=

k
Therofora, =z = [ 1-1

k ﬂi A Ty for hoih methods and rhe 7 'e are solutions
1=1 1
af the linear sysiem
k

(rﬂ = A I M Ai-lr

H jﬂl = -
‘el i 0 {47) ru} a., 3=1, 2,...,. k {3.38)

Apsuming that the momene matrix Hﬂ, whose general elements m)

ij
i+j-1

are m. , = (A Yy ru), is tagulat“‘,} we conclude that the vectors z

14 L
produced by both algorithms are the same because of the unicity of the

solution of the system (2.38). O

Un the practlcal side, Algorithm 4 presents the advantage of
requiring less storage than Algorithm 2. It can be coded with six
vectors of length N in core memory while the Lanczos algorithm needed
Eive vactors In main memory and ® vectors in secondary storage {when m
is large, the latter may involve substantial input/cutput cperaticn times)}.
Furthermore, the number of arithmetic operations requlred is
slipghtly in faver of Alporithm 4 because there is no tridiagonal system
to solve. Finally, because stable methods can be used to solve the mx m

system, Algorithm 2 iz, in peneral, more stable than Algerithm 4.

2.4, FPeasibility of the Lanczos Alporithm and the Bilconjupate Algorithm

Thuzs far we have not discussed wnder which condicions the
Algorichms 2 and 4 are feasible. The moment matrices Hk and Hi
mentioned in the previoue subgsection play an important role ss is seen

in the next proposition.

(I}In Section 2.4 we shall see that thils assumpticn Is necessary for

the feasibllity of Algorithm 2.




Proposition 3

Let Hk and H; be the k x k moment matrices whose general rerms

L g it3-2 R
are defined by mij {4 Vo vl} and mij {A

Then the m~th approximate solutions xm can be computed by

V) vl}, respectively.

Algorithm 2 1f and only if

a, det{Hk) # 0, k=1, 2,..., m (2.37)
b. det{H;} ¢ (2.4
Proof

l. First we must show that if Algorithm 1 is feasible then (2.358), (2.40)
are satisfied. That (2.39} is crue has alreadv been established in

Lemma 1. Using the Same matyYices 5. and Eé defined in that Lemma, it

k
13 also easy to prove (2.40).

2. Second we must show that under the assumptions (2.39) and (2.4Q), it
is poesible to compute x by Algorithm 2. Let us establish by
inducticn that Vi s W can be computed for &k = 1, 2,..., m. This 1s
txivially true when k = 1. Suppose that it is true for k-1 and

consider the vectors ¥, and %, . &ll that is needed in order to compute

[ i
Vs W, 18 that (ﬁk, ﬁk} # 0. Suppose this Is not true; that is, that
{vk, wk} = { {2,41)
The vector 'T-‘rk ran be expressed as
k
8 = I 8 Ay (2,42)
i=1

Since ﬂk is ortheogonal to wl, wz..... Wk—l {fwith w

1
yesas (&ij—zvl and (2.41) shows thar it

= ulj, it is

alsc orthogonal eo v, ﬁﬂv

1
is also orthogonal to Akblvl because the wvector ﬁk can be written as
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k 4
ﬁk = T Ei{iﬁ}i-lvl with ﬁ& ¥ 0. Hence ﬁk is orthogonal to
1=]

[AH)vl...., [Aﬂ}k-lv which can be expressed as

1?

(% 6, Al_lvl, [aH}j'lvl} 0,5 =1,..., kor Wd = 0 vhere

d = {ﬁl,..., ﬁk}H iz a non aull vettor. This contradicts the fact
that det{Hk] # 0. Let us show that the scluticn ¥ ean be computed

by the fermula x = X5 + B? T ~ El, that is that T is norsinpular.
Ve can use the same argument as in Lemma 1. Let Sm’ Sa_be two

nonsingelar k x k mattices such that ﬁm =¥ S W =y mSq Where

mm m
= n-1 = H H m-l
Um = [vl, Avl,..., A vl], Hm - [v A Vyarres (A ] He
H H,-1 = = H.-1 -1
have Tm = Um AV = {s1) Hﬁ AV, 5 = {3'y HE 8, which in

view of (2.40) gives det(T ) ¥ 0 and completes the proof. Li
An Important remark which can be derived immediarely from the

proof ie that the condition (2.3%) ensures that v . vm and

Vasr

w v . wm cant be built while (2.40) ensures that the tridiagonal

l! 2!""
matrix Tm is nonsingalar. It is therefore obvicus that
the proposition can be generalized as follows!

The approximations Ky 2 Ky 2rovs xk can be built by Algorithm 2
iff det{Hj] #F0,i=1, 2,..., km and det(H& Y#0,3=1,2,,.,, n
For the biconjugate gradient method we have the follewing analogue of

the above resulr.

Proposition 4

The fivst m steps of Algorithm 4 can be performed iff
a. dat(ﬂk} £0, k=1, 2,..., n {2.43)

b, dec(M ) # 0, k=1, 2,..., n (2.44)




'-‘2 n-‘ +

Proof. .
1. Hecesgary comdition, If m steps of Alporichm 4 are realizable, then
2 k< = - * = [ph__ .. *
for 1 < k £ m we have four systems R, [rl, . rk], R¥ [r1 . rk],

Pk = [pl,..., pk], PE = [pg,..., pi] such chat
frp e =0, 1<k J<k, 14

&k,r? ¥ D

P> APP =0, 12k Ik, 1¥

H
7t

ApR) 40

H

This means that {Pi)HRk iz diagonal and nonsingular while (Pi] EPk is
triangular and nonsingular. But Rk’ Rﬁ, Pn' P: are four different
bases of the same subspace Kk amd g0 from the above we can show in
a way similar to the firsc part of the proof of Propositiom 3 that
Hﬁ and H£ ara nonslngukar.

2, Sufficient condlclon. Suppoge rhat (2.543) and (2.544) are satisfled
and let us show by Induction that x

1
from Algorithm 4 or equlvalently that (rk’ rE] ¥ 03 (pk, AHDE) # 0,

» Hppeees X €3N be obtained

k=1,..., mi Thig i true for k= 1. L&t us assume that it is
true for k-1: {rk_l, ri;l} # 03 {pkrl, ﬁHPi-l} £ 0. That the firsc
relation holds for k can be shown in the same way as in part 2 of
Propogdition 3. (Wote that . and r; are proportional to vy and Vi
respectively.) The second relation to show is (pk, Aﬂpﬁl £ 0.
Suppose_ the contrary 18 true, then using the notations of the firet

part of this proef we get that the macrix {Pﬁ}HAP is mingular and,

k
TR & ) BN () (3
using again the fact that Uk Pksk . “k Pksk where Sk aned
Siﬂ} are both k » k and nonsingular, we get that Hi iz singular

vhich comeradicts (2.40) and complates the proof. D




4

As a consegquence of the remark following Propositlion 3. 1f we
assume that only the condition (2.39) is satisfied and that det(H;} £ 0,
then Algorithm 4 may break down before the m-th srep while Algoricthm 2

does not because the tridiagonal syscems T = fe,, need not be salved

i¥i i
for § ¥ m. Only the solution Fm of the last systenm Tn?m = EEl is

actually necessary to obhtain xm.l From this point of view Algorithm 2 is

auperior to Algorithm 4.
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3. OTHER OBLIQUE fF.GJEGTIDH METHODS

The purpose of this seetion is to attempt teo derive some pther
oblique projection methods. Tt will first be seen that the Incomplete
urthngnnalizatinﬁ methed without cerrectien presented in [14]} is nothing
but an oblique projectien methed. Then, based upon an analogue of
Proposition 1, we shall describe a particular class of the oblique

projection methods forx the seolution of Iinear syatems.

3.1, The Incomplete Drthegonalizatiem Merhed

Among the methods proposed in [14], the Incomplete orthogonzlization
methed without correction was found to be the most attractive. A simple

description of the method is the following:

Algorithm 5

a. Choose two Integers p and i and construct a sy=ten of vectors

\Fl, vzl"'l‘ vm by
Lo v := IOI{B 1= "rﬂ|h with o " b - Ax
1. For j=l,..., m
1
vj+1 (= Ay, = .? hijvi (3.1)
1i=1
q
where iU = max{1l, j-p+i}
h1j - {Avj, vi} (3.2) |
. . !
Vw1 Tllr_1+1*‘r'{“;';-|-1,_1 : ||"”'j+1"]I (3.3) |
b. ‘Take as approximate golution
-1
X, = X, + & vm ey (3.4)

where ?m [vl...., vm] and where Hm 15 the {band} Hessenberg matrix
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whose nonzero elements are che hij computed by (3.2) and (3.3}).

Hote that $j+1 is obtained by orthogonalizing Av

g veECctors.

against the previous

]

The above method was founded upon the fact that if we compare
the solution (3.4) with chat provided by Arnoldi's method {an orthegonal
prejection method upon the Krylov subspace Kn). we would find that.the
difference between them is negligible provided that the system v, ,.... vu]
remalna not too far from orthogonal [14], a fact which is often observed
(see comments followlag Proposition 6 below).

We now would like teo give an interprecation of che method in
terms of oblique projection methods.: More precisely, we shall exhibic
a system of lefr vectors Wiseeas W such that the I.0.M. algorichm will
amount to performing an (oblfque) projection meched ento

m1

K“ - span[vl, ﬁvl,..., A v1] and orthogonally to Lh.= span[ﬂm].

{onailder the systén of vectors L obrained from vi, Vyseess

vm, vm+1 as follows

)

W, = v h[vi,v

i i 1 1= 1; E,ttll, = . {3#5}

Yo+l

Each of the vectors w, ia orthogonal to v so that if we set

w+l*

=
f

Z [wysees, w ] we get |
Wy g =0 (3.6}

we can then state the next result.

Proposition 5

Let Vm - [vl,..., vu] be the system obtailned from Algorithm 5
and let Hm = [wl,..., wu] ke defined by {3.5). Then the approximate

sclurion provided by che Incampiete erthogonalization methed is equal to




that obtzined by the cblique projection method using Km = spanlvm] &3

the right zpace and Lll - span[ﬂm] as the ieft space.

Proct

From (3.1) it can be shown that

— T
lem - ?m Hm + hm+1,m vm+1 Em
H - ‘fﬁr
which glves, on multiplying both sldes by H:, wmavm =W mHm +

T
hm+1|m “: Vi % Using {3.6) and assuming that Hz v 1s nongingular

wWE per
oy Lflay = g 3.7
m @ mom m
From (2.6} it i5 seen that the solution x; obtained by the oblique

projection method, using as left space span[Hm] and right space span[vm]

i given by
= x +v oy oy Tlay Wy
™ I} D @mm m mm D

and since r, =

o ¥ = E?mg we have

1

_ -1
x; - xu t va(“ﬁﬁvm} Hﬁ?nel

which in view of {(3.7) givesz

-1
-
X T X, + E?mHm El .

But this is just the soluticon (3.4) provided by the I.0.M. method and
the proof is complete. D

Hotice that in the case when Yol is ercthenormal to

] = '
Vis Vaseass Voo the w,'s coincide with the vy 8 which means that qm

becomes an crthonormal projection. In that case the method would give
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theoretically the same result as Arnoldi's method [14)}4 It was pre&isely

the zim of the Incowplere orthogonalization method with correction,

deseribed in [14], to sttempt to orthoponalize w

okl againgt all previous

VerkDISs V.o ,.4., vm-hy finding gealars h, , 1= 1,..., ® such that

1 im

m
Avm - k himvi l_vi, i=1,..., m
1=1
This, however, i1s difficult te achleve in practice because the

previcus v _'s, 1 = I,..., m do no longer form an orthonormal system, and

1

therefare the coefficients him can be found Enly by solving a leasrt

square problem.
This ralses the interesting question to know under which
rondition on A, the I.0.M. method reduces to an orthogonal projection

method, The answer 1s given by the next propositiom.

Prnpnsitiun 6
| Suppose that there exists a pc;ynpmial qp ﬂf degree p = 1 such
that
=g ) (3.8)

Then the vectors vi computed from the I.0.H. algorithm (Algorithm 5) are
erthenermal and therefore the Incomplecte orthogenalization method
rea;izes an orthogenzl projection method onto the Krylov subspace Km

{ﬁrnulﬂi's-mﬂthud].

Praof

We must show that {?j+l’ vi] =

The proof 1is by inductiun. Suppose vj l vi, 1=1, 2,..., §=1 {which is

0, 1 <jfor =1, 2,000y W
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cleatly true for i = 1 by construction) and lec us consider (Gj+1’ vk}

where k < j (¥ = max({l, j—pt+l) because by

j+1,vk)-ﬂifjikil

Q

construction v ig orthonormal to the previous p vectors

j+l

Viopit Vyopr2tterr Yy (see [13]), For k < j-p we have

]

{vj+1. vk} = (hvj, Ve T iji hij{vi’ vk}. By the induction assumption
3]

{vi, vk} =0, L= iﬁ’ j, hence

“ _ H _
(“j+l' vk} = {vj. A vk} = [vj. qp[h}vk} {3.9

But vy bzlongs to Kk and therefore there exists a polynomial a of degrae
not exceeding k-1 such that v - E(A}vl which implies that the vector
qp(&}vk in {3.9) can be written as qp[&}vk = t[&}vl where t is the product
of cthe polynomlzls = and qp and has degree not exceeding {p-1} + k-1.
Since k € j-p the degree of t dees not exceed j-2 and therefore qp(ﬁ)vk
belonge to Kj-l which means that (vj. AHvk] in (3.9) is zere aund the
procf is complete. D

Any Hermitian or skew-Hermitian macrix will satisfy the
conditions of the theorem with p = 2. Also, any matrix of the form

A = 0] + BS where 5 1s skew-symmatric will satisfy the condicion (3.8)

with p = 2 as for example when

In general, however, an arbitrary macrix A does not saciafy (3.8).

Mevertheless, a relation of the ferm {(3.8) is eoften nearly satisiied with
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arsmalllp which explainz why nn; often gets nearly orchogonal systems by
the I.0.M, algerichm wich p as small as 5 or 10.

| To conclude wicth the T,0.M, let us meocion that it is also
possible to wrice an equivalent algorithm in a form similar to Algorithn &
which does not require to save the vectors vy in secomdary memory

{sea [1413}.

J.2. A Particular Class of Obligue Projection Methods for Linear Systems

3.2.1. Generalized Hessenberg processes

The results of the previcus sectiom can be extended to yield a
whole class of cbligque projection methods. Suppose that we start with
v, - IDHB where B '||rD”-and that we bulld a segquence of wvectors vl’ Vorrrea

Vo by the general formula

3

hj+1,j vj+1 = ij - 151 hij vy {3.10)

whexre the hij’ 1=1, 2,..., 31, are determined such as te mﬂEe Ehe

vactor v

141 satisfy certain conditions such as, for egample,

(v5+1, vi] = ﬁij’ i=1,..., j¥+1 {which gives the method of Arnoldi).
Such processes, called the Generalized Hessanberg processes by Wilkinson

[15], have in common the eguation

: : T
a +
SR S

{3.11}
where Um and Hm are defined as bafors. Let us then consider the sulut;un

x obtainaed by applying the formula (3.4} in the same way as in the

. Incomplete orthogonalization method. Such an approximace zolucion will
have a resideal vector proportional ce the last vector Vel pbtained

from (3.10) becavse from relatien {3.11} we can show that
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T
b - Axm h e ¥

ml,m m'm urm+1 (3.12)

Thus by requlring that the wector v satisfy cercain condicions, when

j+i
building the sequence {?1} by (3.10), we implicitly require that the
game condicions be satisfied for the j-ch residual wvector.

iet us now show that the generalized Hessenberg processez balong
to the class of oblique projection methods.

Suppose that Hm = (v, W . wm] is any system of wvectors

1 Ve
such that

m Vol = 0 (3.13)

det{w:vm} 40 (3.14)

(Hote chac Hm 12 nat unigque). Then it can be shown by the same proof
as that of Proposition 6 thac X is exactly the solution that would be

obtailned with an oblique projection method uwsing as right space the

m1

space Km = span[vl...., A vl] and as left space the space Gm = SPaHIHm].

Clearly, the m&thods of Lanczos and the I.0.M. axre particular

cases. In the Lanczos wethed che hij's. i=1,i.., . are chosen such

that v is orthogonal to all the left spacs Lm = Bpan[wl, Aﬂw g ey

j+l
{ﬁﬂ}mrl wl], and it turns cut that this can be realized by che elegant
Algorithm 1 of Lanczos in which h1j =0 for i <« j=1. 1In the I.0.H., the
coefficlents h1 are taken such as to make v orthogonal to the p

3 1+l

previcus vi's. Some other applications are described next.

3.2.2. ORTHOHIN and the conjugate resldual method

Suppose that the coefficilents h1j in {3.10) are determined

such as to make at each step ] the vector v orthogonal to the vecters

i+l

Avi, EHE,..., hvj. The hij's can then be obtalned by solving the J x j system
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i ' .
Eo(vg, Avpdhy, = (v, An) 0 k=l 20000, (3.15)

i-1 13

Hotice that (vl’ Awk} = 0 for k ¢ i, such that the above system 1a
triangular. Thiz is nothing but an oblique projectlion methed with
K= apan[vl, Aviseres Amrlvll as right space and L = AR as left space.
Tt can be showm that the solution obtained by this method minimizes
|l - Ax|| over the affine subspace Ko ¥ K

This mE£hnd was first presented lun a simplified wersion by
Vingome [15). It was also analyzed by Axelsson [1) and by Eisenstat,
Elman, and Schultz [2], who give some results on the convergence theory.

The simplified version, called ORTHOMIN by Vinsome, produces direcely

X as 3 gequence of the form x =%

+ & p_ whare p_ 12 the direccion
m—1 m m m

of search.

Alporithm & (ORTHOMIN or Generalfized Conjugate Residual Method)

.1. Start Xy injefal vectotr. Compute rn_ﬂ b - hxn. take Po ™ To
2. Iterate
[rk, Apk)
el T T T NP “% T Tap,. Ap,)
Tl < T T NPy
Pray ™ Troq = % B, p § = jffkil:_fgi}
k+1 e+l i=1 ik"4 ik {ﬁpi. hpi}
The coafficient-mk is chosen such that the reasidual Tl iz arthogonal
1 . {
Lo Ark, vhile the Eik s are such that hpk+1 iz orthogonal to &pi, 1<k
Upnder these condirisng it ecan be shewn that (rk+1. hri) =0, 1<k
(which iz equivalent to the condition [vk+1’ Avi} =40, i E_k of the

previous version) and hence the reslduals are "comjugate." {Hotice that
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since A is nonsymmetric, the cﬂnjugaéf heldes only in one side because it
is not true that {vk+1, Avi} = 0 for 1 > k. It would be more appropriate
to say that the resjdulas are “semi-conjugate.™)

The amount of work and the storage requived in Algorithm & is
prohibieive and unless the algorithm i3 used dteratively with periodic
restarting, it would be of little practical value. Vinsome has then
sugprested to perform an Incomplete orthogonalization for generacing the
pk'$¢ The idéa is similar to thac of I.0.M. and cengists of truncating

the sum defining Pltl in Algorithm & as follows

k
Prtl = Tl T i_i_?fik Py

Obviously this ies still an oblique projecsion method, If we compare
Algorithm & with the I.0.M. we will find that while the amount of work
is gimilar, the storage is in favor of the latter. However, ORTHOMIN is
certainly easier to astudy theoretlecally becanze of the minimum residual

propexrty. Humerical tests will compara the two methods 1o the last section.

3.2.3. The modified Hessenberg process

In the method of Hessenberg for reducing 2 mstrix to Hessenberg

form [16], the h,,'s 1n (3.10) are chosen such that v 1 has zero

i) i+
components in its j first pasitions. The hij's are found by solving a
i % j triangular system. Therefore, Km = span[vl, sz,..., Am-lvll and

Lm - span[el, L L LEED) em]. A natural simplification similar to the ideas
used in I1.0.M. and ORTHOMIHN(p} 1s te save the previous p vectors only,

to replace (3.10) by
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. . j
- av, - I
hiv,g Vi1 T AYy - j_p:{ij ¥i

and to deteymine hij such as to make ptl components of the vector “j+1
equal to zer0. An important question is how to choose the positions in
which the zercos nust appear. Sope experiments have metivated vs to prefer
the following cheodce: eliminate the components having the larzest modulus
among the vecktors vj, vj—l""' vj-F+l
Many other possibilities exist and it may be possible thatc the
above choice is not the best. The modified Hessenberg procass described

here has the advantage not to reguire any inner product,
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4. LCONVERGENCE PROPERTIES

In this section the difficult problem of the convergence of
the approximate salution X toward the exact solution x* will be
congldered. 1t is important to clarify what iz meamt by convergence.

First, if we assume that the w,'s, 1 = 1, 2_..., n, are linearly

i
independent, then the approwimate solutiom X will converge to x¥ in

at most n steps. This i3 beczuse if we write the condieion (2.2} in

the form W:{b - Axn} = (0, we obtain on multiplying by fﬁﬂ}-l,

xn = A-Ib = x*, Therefore, the segquence xm is a finite zequence and

by studying the convergence of X, ve shall mean deriving some properties
which will ensure that X may be a2 good approximation to x* even for

m much smaller than the dimension n of the problem. The analysis
proposed here is essentially the same as that given in our previous
paper [14] and we shall only emphasize on those Tesults that present
nontrivial differences.

Lek Pm be the orthogonzl projector onto the subspace Km’ and
qm the {cblique) projerctor onto Km orthogonally to Lm' We shall study
the convergence in terms of the distsance € -||(I - Pm}z*l|where z¥* 1ig
the exact solution of the problem (2.5}, and where]{ﬂf denotes the
Euclidean motm. This distance between z#* and the subspace Km has been
fully =ztudled in [14] and some bounds for it have been established,
ghowing that In general Em iz 2 quanrity which decreszses rapldly to zero.

We shall need an interpretation of the ablique projectiom
3

method in Céerms of cperator equations. Let us define the operzator

ﬁm - Qm&Pm, and make the assumption (H) of §2.1. We then have

3Hnte thar here & denoteg at the same time 2 matrlx znd 1ts associated

linear operator.
4
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Lenmsa 2

The problemn

zZE Kn (4.1)

!
r, - Ans = . {4.2)

0
hae ag 1ts unique solution the approximate szolution zm_provided by the

oblique projection method using Km ag right space and Lm as left spaca.

Proof
It is sufficient to translate problems (4.1), {&4.2) into

matricial notatioms. Since z £ Kﬁ, it ¢an be written as

2 = vm? (4.3)
Furthermore, rﬂ and z belong to Km and therefore sz ="z and eru - ru.
The macricial prrEsﬁntatinn of Q; in the canonical basis is
v v )™l W and so t4.1), (4.2) give
m ©m ™ '

?mﬁw:?mJ-lerﬂ - ?m{ﬂﬁﬁm}-lﬁgﬁ¥my =1
which wields
y = (Pav Y i (6.4).

This means that the problem {4.1}, {4{2} hes & wnigue solutien
and a comparison hetween {4.3}, {#.ﬁ}.onftﬁe one hand and (2.6), (2.7)
on the other hand show that the solution isljust that ¢btained by the
projection method. O

We shall refer to problem {4.1), (4.2} as the approximate
preblem. What the lemma shows 1s cthat the prﬁjectiuﬂ method described

in 52.1 amounts to replacing the problem (2.1) by the approximate

problem. ©Our next task is naturally to relate the solutions of the two




T

problems, 4 simple way to relate z* to z is to give a bound for either
the resdidual of z. for problem (2,5} or far the residual of z* for

problem (4.2). The latter case ig conzidered in the next proposicion.

Proposition 5

Let T, - "QmA(I - Pm)u then

”rn - ﬂmz*lff_TmEm (4.5}

Proof
He have
g - agell = llagtrg - 4B 2% | = [lq, CAe* - AB 2]
- ||%A{I - Pm}z*|| - ||01nﬁ{1 - B I - Pm}z*||

= Vota =

Corgllary 1
Let ¥, be defined as sbove and let K_ =||{Am|K Y. Then
m
Iz, - =#ll < (1 + v2 D% 4.6)

Proof

See analogue result in [14].

The nunber of Tme plays the role of a condition number for
the spproximate prcblem. The corollary therefore means that the error
made in approximating z* by z {which 1s the same as the error x* - xm)
will be of the same arder as €, provided that the approximate problem

iz not too badly conditioned.
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H; beliéve that there 1s no simﬁle way of bounding either Km oY Ym
because Qm iz an oblique projector. Thus Y, can be bounded as

LN §||Qm|["&” where|]umu is not known. {In the orthogenal preojection
case we have "QmH = L.)

Nore that we do pot have ar our Jdisposal oprimalicy propercies
such as the very helpful ones 1lnvolved in che conjugace gradlenc method.
An interesting bound for the residual of e for problem (2.53) can also be
established by adapting a result shown by Vainikbko (zee [ 5]} for

arthogonal projaction methods.

Proposition 6

Assume that T = min [lQ x| is nonzerc and ler c =l ||,

i

and ﬁé - ndn.||rﬁ - AzIL then

ZEK
]

er Slleg - Az ll < @+ e frodel (4. 7)

Preaf
Conaider the restriction En of Qm te the subspace AKm. If
T ¥ 0 then am iz a bijection from AK to Q AK . Furthermore from
m m L
equation (4.2} we get
o © Qm Azn

and eince &zm belongs to AKﬁ we have

Henee

Qm)r0 {4.8}
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Lat now x he any vector of AKm. Then (I - a;l Qm}x = () and hence (4.8)
can also be written as

To = Azm = {1 - a;l Qm}{rﬂ - ®) ¥ E AR

m .
Thus

e |
lzg - &zl < |1 - &2 o g - x| ¥ € ax

and

ljrg - 2 fl < L+ 161 o i o Mo - el

Since !|5;1|| = T this estsblishes the second part of (4.7). The first

part is obvicus. O

It is impertant to remark that in the case where Km is the

Erylov subspace, then

(-
Em m%n |Jp{A]rﬂ“ (4.9
m-1,
p(0)=1
where P denotes the space of polynomisls of degree not exceeding wm - 1.

o1
Thiz quantity is very similar to the quantity € and the bounds for E;

are of the game nature as those for €

It may seem at first that inequality (4.7) is more powerful than
the previous inequality {4.6) beacause the condition number of the
approximate problem does not appear in ft. This is not true, however,
because the nunber 1;1 can be showm to be equal to

laca, ¢ 370

m

1

The inversze of ﬂn is therefore implicitly involwved in the conatant T;

E

and we have 1;1 < |l k where K 1s defined in Corollary 1.
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5. MNUMERICAL EXPERIMENTS

The numerical experiments described in this section have been
run on the CIX CYBER 175 at the Univergity of Tllinols at Urbana-Champaign.

The singla precision has bean usad throughout (mantissa of 48 bits).

5.1. Comparison of I.0.H. and Lanczos

We shall first compare the Incomplete orthogonalization method

{gee 3.1) with the Lanczos methed (Algoyithm 2) on the following exampla.

B -1 4 a
\.\ \‘ 5 "
-1 N> b T,
A = AN with B = ‘-\\\ \ £5.1)
\\ "*-\ =1 |
"\ LY %\ A
3 -1 B B b &

and a = =1 + 35, b= -1 - §.
B iz of dimensiom 20 and A has dimension H = 100. Thase

matrices represent the 5-point discretization of the operator
Fi i

- a_ . + ¥ 2, on a rectangular region.
2 2 ox
3% dy

The right hand side b is taken to be b = Ae where e = €1, 1,..., I}T,
such that rhe solution of the system is just e. The parameter ¢ is taken
equal to §.5 In chis first example. The next figure cowpares the
convergence of rhe I.0.M. a2lgorithm with two values of the parameter p.
p = 2 (upper curve) and p = & (middle curve), with Algorithm 2 {lower curve).
It i= seen that the convergence 1s faster with the Lanczos algorithm.
However, each step of the Lancros algorithm requires two matrix by vector
multiplications while I.0.M, reguiyes only one. It showld be mentioned
that the I.0.M. algoritlm applisd here iz the Algorithm 5 of [13] and that
it includes a restarting strategy. (Two restarts have been necessary for

p = 2 wvhile no restart has bean needed when p = 4.}
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5 e =1
10 1
13 s i : .
Q2 40, 218
20 . Go.
ITERATIINS

Figure 1. Upper curve: I0M{2}, middle: TOM{4),
lower: Lanczics

IOz r»c0Henma Tg

Mo

25. T5.
ITERATIONS

Figure 2. Lanczos and IOM(4)
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Figure 2 ghows the same example withlﬁ * I0 treated with Algorithm 2
and I[.0.M.{4). MHotice the peaks prasented by the Lanczoa mathod.

The Lanczos algorithm often behaves in a way s{milar to
that of Fipgure 2, eszpaclally in situations whera there are large
imaginary eipganvaluag. It ie to remark that thesze peaks do not geriously
affect the overall convergence, When the resfidval norn Increases
rapidly after a certain gtep, 1t dacreases even wmore rapidly in tha

Eal)owing steps.

5.2. IL.0.H., Lanczoas and ORTHOMIN

It was mentioned by Paipe and Saunders [9] and by other
anthore that, in the symmecric case, the conjupgate regidual machod {or
minimum residual method) and the conjugate gradient method often exhibit
a similar convergence bahavior. As the next experiment will show, wa
can make a simllar remark for the I.0.M. and the ORTHOMIN-G.C.R. methods.
Let A be defined ag in section 5.1, with the pame right hand sida and
the same &, Flgure 3 shows the convergence behaviors of I.0.M. (4)
{upper bound), ORTHOMIN(4} (middie curve)}, and the Lanczos method (lower
curve) for this example.

REecall that the ORTHOMIN(P) requires twice as much memary as
I.0.M.(p} and that in each step of ORTHOMIN(F) we have to perform two
matrix by wvector multiplications against only one such operation for
I.0.M.(p}. This means that for this example, I.0.M. is superior 1f
we do not take Lnto account the fact that for the I.0.M. there are some
addicional I.0. operactions (necessary for the praservation of the vi's

until convergence). Algerithm 3 converges much faster than I.O.M. (p) and

GRTHDHIHt } bur uwses two matrix by vector multiplicarione. However, 1t
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haz the advaneage not to require from the user to supply the parametay

p that 1z needed both in I.0.M. and ORTHOMIN.

L > T

D

G

0 4

i ]

(+3

E

S

I -5 T

D

|}

A

L

N =10 7

O

F.

M

=

15 | } ; { .
Q. 4, BO.
20 . GO,
ITERATIDONG

Figure 3. IOM(4), ORTHOMIN{4) and Lanczos

5.3, Complex Elgenvalues and the Lanczos Method

Tha purpose of the followlng examplse is to show how the behavior
of the Lanczog method can vary when the ahape of spectrum changes. Lat
B be the 100 x 100 block-diagonal matrix with 2 x 2 blocks ey defined by
" By

c, = , k=1, 2,..., 50

by %%

with a, - k, hk - ﬁak where § 1s a parameter. Tha eigenvalues of B are
*
A, = k{1l * i8) where 1 = v=I, k=1, 2,..., 50. When & iz small the

eigenvalues are almost real positive and B iz almose symmetric. The ctheory
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i;dicaéea that in that case a fh$t convergence can be expected because

the dlstance || (I - ﬂmgx*lldecreases rapidly tc zere [13]. When &
inecreases, the spectrum apreads cut in ¢ and in that case the theory

does not guarantee a good rate of convergenca. Figure 4 shows the
behavior of the Lanczos methed for the following values of & § = 0,1
{corve a), 6 = 0.4 (curve b), 6 = 0,7 (curve ¢), § = 1 (eurve d),

6 = 10 {(curve ). The graphs obtained confirm the theoretical indicatioms.
We emphasize here that in the case where a preconditioning iz applied, the
eipenvalues of the resvlting matrix are clager to 1 than thosze of the
original matrix sweh that che situations of poor convergence, similar

to the caze § = 10 here, can be aveided.

5.4. Generalized Hessenberg Frecess

Finally we will describe an experiment with a genaralized
HYaggenberg process belonging to the class of methods outlined in
gection 3. Let us again take the axample given in section 5.1 and
congider the generalired Hessenberg process which builds a sequence of

vertors vj as follows

3
h v, = Ay - z h,,6 v (5.2)
141,174 37 jegepr 1301
vhere hj+lij iz a normalizing factor for vj+1 and where the hij‘
1 ¥ j+l are chosen such as o mske p components of v equal to zero.

1+l
in important question 1s to determine which components of vj+1 shonld
be 2era for more efficiency. Several tests have been made, vielding

various rates of convergence, depending on the strategies sdopted. It

wag found thar for this example a good strategy comsiste in eliminating
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in (5.2) the components j, j-1,..., j=p+l. A comparison of this strategy
vhen p=2, with 1.0.M.(2) and ORTHOMIN(2} iz shown in Figure 5. It csn
be saen that the convergence of the generalized Hessenberg methad
compares well with that of I.0.M. (2} or ORTHOMIN(2), and the fact that
thers are no innerproduocts invelved for bullding the v&‘s makes the
Generalized Hessemberg machod quite atcractive, More general and more
powerful strategiles remain, however, to be investipated. Another

strategy, that has appeared effective, isto eliminate the components

in vj+1 corregponding to the large components in the previous vi's.

5. T

mor

r»CcOHwem» T3

nIA0Z

ITERATIOMS

Figure 5. A generalized Hessenberg method {upper curve), IOM(2)}
{middle curve), end ORTHOMIN{2) {lower curva)
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