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Abstract

The solution of linear systems with a parameter is an important
problem in engineering applications, especially in structural dynam-
ics, acoustics, and electronic circuit simulations and related modelre-
duction methods such as Padé via Lanczos. In this paper, we present
a method for solving parameterized symmetric linear systems with
multiple right-hand sides, based on the Lanczos method. We show
that for this class of applications, a simple deflation method can be
used.
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THE LANCZOS METHOD FOR PARAMETERIZED SYMMETRIC
LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES

ZHAOJUN BAI∗ AND KARL MEERBERGEN†

Abstract. The solution of linear systems with a parameter is an important problem in engineer-
ing applications, especially in structural dynamics, acoustics, and electronic circuit simulations and
related modelreduction methods such as Padé via Lanczos. In this paper, we present a method for
solving parameterized symmetric linear systems with multiple right-hand sides, based on the Lanczos
method. We show that for this class of applications, a simple deflation method can be used.

Key words. Parameterized linear system, Lanczos method, recycling Ritz vectors.

AMS subject classification. 65F15,65F50

1. Introduction. In engineering applications including structural dynamics and
acoustics, the computation of the frequency response function of a vibrating system
over a given frequency range Ω = [ωmin, ωmax] can be a time consuming operation.
In applications on closed domains without damping, the frequency response function
often is the solution of the parameterized linear system

Ax = f with A = K − ω2M(1.1)

with K real symmetric, and M symmetric positive definite. The matrices K and M
are large and sparse. We have chosen ω to be the frequency, but it could also be
the angular frequency, the wave number or the characteristic (dimensionless) wave
number. The frequency range Ω is discretized into the set {ω1, ω2, . . . , ωm} where m
can be of the order 100 or 1000. This solution process is called frequency sweeping.
Since A is large, the solution of (1.1) is expensive when (1.1) is solved for the frequency
points ω = ω1, ω2, . . . , ωm independently. In this paper, we study frequency sweeping
with multiple right-hand sides, i.e. f can take different values f1, f2, . . . , fs in (1.1).

Efficient solution methods to this parameterized linear system have been proposed
in the literature. The most famous method in engineering is undoubtfully modal
superposition. References can be found in text books on engineering, e.g. [10]. The
method projects the right-hand side and solution vectors on a basis of eigenvectors of
the underlying eigenvalue problem

Ku = λMu(1.2)

in Λ = [λmin, λmax], where λmin ≪ min(Ω2) and λmax ≫ max(Ω2). This method is
usually experienced as efficient when the eigenvectors and eigenvalues are available,
since (1.1) is transformed to a diagonal linear system. The practical problem is that
it is not always clear how λmin and λmax need to be chosen. For example, when
min(Ω) = 0, we could use λmin = 0 and λmax = η max(Ω2) with η ∈ [2, 10]. The
eigenvalues and eigenvectors of (1.2) are in practice computed by the (block) Lanczos
method, see e.g. [17] or the automated multi-level substructuring (AMLS) method
[6, 5, 7] which is advocated for very large scale problems.
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2 Z. BAI AND K. MEERBERGEN

Another technique that received quite some attention is based on Krylov iterative
methods on the preconditioned system

(K − σM)−1Ax = (K − σM)−1f,(1.3)

where σ is a properly chosen point within the interval Ω2. We do not discuss how
to choose σ It should be chosen somewhere inside or close to Ω2. See the discussion
for the associated eigenvalue problem [17, 21] and the rational Krylov method for
modelreduction [15]. The solution vector x is approximated by a truncated vector
Padé series, which is computed by the Lanczos method [13, 2, 3]. See also [31, 22] in the
context of parameterized iterative linear system solvers and [23] for Rayleigh damping.
This method is related to the Lanczos eigenvalue solver and the conjugate gradient
method, which we will discuss further in the paper. The limitation of the method
is that the right-hand side vector f should not have a spatial dependency on ω, i.e.
f = f̃φ(ω) where f̃ does not depend on ω and φ is a scalar function. In the engineering
literature, this is called the Ritz vector technique [33]. The connection between the
Lanczos method and a vector Padé series around σ is important in applications, since
the frequency response function is a rational function with the eigenvalues as poles.
The approximation preferably respects this rational nature. This is one reason why
the Lanczos method is preferred to the MINRES method [22].

In contrast to the Lanczos method, modal superposition does not pose a condi-
tion on the right-hand side. The difficulty with the modal superposition method is
that a relatively large number of eigenvectors may be required with a relatively high
precision. In [5, 18], the AMLS frequency sweeping method is studied which makes a
combination of modal superposition and a stationary iterative method. The method
only uses the modes corresponding to the frequency range of interest, i.e. eigenvalues
outside this interval are not used in modal superposition. Superposition on this re-
duced set of eigenvectors does produce the peaks in the frequency response function,
but the zeroes are wrong. Therefore, the AMLS frequency sweeping method uses
an iterative method to improve the solution obtained by superposition on a reduced
modal basis. The iterative method uses the eigenbasis as a preconditioner. This is
also known as deflation preconditioning or augmented Krylov subspace methods [29].
It can be viewed as an iterative method on the subspace orthogonal to the given eigen-
vectors. Since the eigenvalues play an important role in the convergence of iterative
methods, eliminating the eigenvalues that hinder convergence can be very effective
indeed.

The use of deflation preconditioning and recycling Ritz vectors is not new in
the context of iterative linear system solvers [8, 29, 26, 32]. In [29], a sequence
of linear systems {Axk = fk for k = 1, 2, . . .} is solved. The Ritz values of A,
computed by the conjugate gradient method for solving the first system, are used in a
deflation preconditioner for the second. Recycling subspaces for linear systems with a
parameter was recently introduced in [12, 11]. In both papers, the Ritz vectors for the
solution of the first right-hand side are recycled for preconditioning the systems with
the remaining right-hand sides. In [12], the GCRO method was extended to linear
systems with a parameter. The authors prefer the situation where eigenvectors are
recycled (or Ritz vectors with small residual norm), since this simplifies the method.
In [11], recycling was proposed for the GMRES method. It was argued that the
fact the residual vectors for the additional right-hand sides are not parallel to the
GMRES residual vector, creates difficulties in recycling. A remedy was proposed
to this problem. The key point in the current paper is that we can show that the
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recycled Ritz vectors have a small residual norm, which allows for efficient deflation
and recycling. The difference with the cited work and frequency sweeping is that the
number of iterations is typically low for frequency sweeping, i.e. typically less than a
hundred.

Our contributions can be summarized as follows. First, we show that the Lanczos
method converges very quickly when Ritz vectors are recycled. This allows us to
propose a simple algorithm. Second, we show that the residual norms of the Ritz
pairs associated with the interval Ω2 = [min(Ω)2, max(Ω)2] computed by the Lanczos
method are small. Third, we show a connection with the Padé via Lanczos method
(PVL) [13, 2, 3] for the model order reduction problem. If the deflated Ritz values
have zero residual norms, we have an exact vector Padé approximation.

The plan of the paper is as follows. In §2, we introduce the numerical method
based on deflation and the Lanczos method. In §3, we perform a spectral analysis
and we show spectral properties of the deflated linear system. In §4, we discuss how
Ritz values can be computed using the Lanczos method and how accurate they are:
we show that the residual norm is small for the eigenvalues corresponding to the
interval Ω. Section 5 presents a practical procedure for solving (1.1) with multiple
right-hand sides recycling Ritz vectors from the first right-hand side. Section 6 shows
a numerical example for an application from structural engineering. We close the
paper with concluding remarks.

We introduce the following notation. The interval of ω’s for which x needs to be
computed is denoted by Ω = [ωmin, ωmax]. In our applications, ωmin ≥ 0. We also
define Ω2 = [ω2

min, ω
2
max]. The transpose is denoted by xT . The M norm ‖x‖M is

defined as the induced norm from the M inner product:
√

xT Mx.

2. Deflation in parameterized linear systems. In this section, we explain
the ideas of deflation for solving (1.1). We start from the viewpoint of rational approx-
imation, since x is a rational function in ω2. Next, we deflate a part of the spectrum
and obtain a linear system for the remainder which will be solved iteratively.

2.1. Rational function splitting. Let

KU = MUΛ(2.1)

be an eigendecomposition of (1.2), where Λ is a diagonal matrix and UT MU = I. By
(2.1), we have that M = U−T U−1 and K = U−T ΛU−1. Therefore, the solution x of
(1.1) can be written as

x = U(Λ − ω2I)−1UT f =

n∑

j=1

uj

uT
j f

λj − ω2
.(2.2)

This is a rational function with the eigenvalues of (1.2) as poles. The vector x, as a
function of ω2, has a vertical asymptote in λj ∈ Ω2.

The idea in [5, 18] is to first compute the eigenvalues in Ω2 and then compute the
solution vector x as the sum of

x = x(1) + x(2)

with

x(1) =

p∑

j=1

uj

uT
j f

λj − ω2
and x(2) =

n∑

j=p+1

uj

uT
j f

λj − ω2
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where the λ1, λ2, . . . , λp are the eigenvalues of (1.2) in Ω2. The first term x(1) is then
computed straightforwardly as a sum whereas the second term x(2) is computed by
an iterative process.

2.2. Deflated linear system. Denote by L the set of eigenvalues of (1.2). Let
the columns of Up ∈ Rn×p be a selection of eigenvectors of (1.2). The associated
eigenvalues are the set Lp. We define the projector Pp = UpU

T
p M that maps Rn

onto Up = range(Up). Similarly, the projector P⊥ = I − UpU
T
p M maps Rn onto the

M -orthogonal complement of Up.
Lemma 2.1. Consider the linear systems

PT
p APpx

(1) = PT
p f(2.3)

PT
⊥AP⊥x(2) = PT

⊥f(2.4)

then x = x(1) + x(2).
Proof. The proof follows from the spectral decomposition of A.

By Lemma 2.1, we can solve the problem in two steps:
1. Compute x(1) = Upz with (Λ2

p−ω2I)z = UT
p f ; this is a p×p diagonal system.

2. Solve x(2) from (2.4) using an iterative method.
For the iterative solution of (2.4), we use the following preconditioner:

P⊥K−1
σ PT

⊥ ,(2.5)

with Kσ = K − σM , where σ is a shift chosen in Ω2.
Preconditioning (2.4) by (2.5) leads to

(P⊥K−1
σ PT

⊥ )(PT
⊥AP⊥)x(2) = (P⊥K−1

σ PT
⊥ )PT

⊥ f .(2.6)

Lemma 2.2. The solution of (2.6) corresponds to solving

P⊥K−1
σ AP⊥x(2) = P⊥K−1

σ f(2.7)

or

K−1
σ Ax(2) = P⊥K−1

σ f .(2.8)

Proof. The projectors PT
⊥ can be dropped from (2.6) since

P⊥K−1
σ PT

⊥ = P⊥K−1
σ ,

This leads to (2.7). Since P⊥x(2) = x(2) and P⊥KσAx(2) = KσAx(2), (2.8) follows.
We define

B = P⊥K−1
σ AP⊥ ,(2.9)

so that (2.7) becomes

Bx(2) = P⊥K−1
σ f .

In [18], a stationary iterative solver was used for each value of ω for which x is
computed. Experiments showed that only a few iterations (less than ten) for each
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ωj are usually sufficient for convergence, where x(ωj−1) is used as starting vector for
computing x(ωj). The explanation relies on the fact that x(2) does not have vertical
asymptotes in Ω2 and that x(2) is a much smoother function than x(1). When the
number of ω’s is a few hundred, the total cost is still significant. Instead of a stationary
solver, we can use the parameterized Lanczos method [22] when f is independent of
ω. This reduces the cost even more since x is computed for all ω’s at once with a
marginal additional cost per ω. We will discuss this in §2.3 and §2.4.

2.3. Lanczos method. In this section, we present the parameterized Lanczos
method for the solution of (1.1), first without deflation and then with deflation. The
method starts with the following so-called Lanczos procedure [19, 20]:

Algorithm 2.1 (Lanczos procedure).
1. Let v0 6= 0 be an initial vector, and set β0 = 0
2. Solve Kσb = f for b.
3. Normalize v1 = b/‖b‖M .
4. For j = 1, 2, . . . , k do:

4.1. Solve Kσwj = Mvj for wj .
4.2. Compute ŵj = wj − vj−1βj−1.
4.3. Compute αj = vT

j Mŵj .
4.4. Compute w̃j = ŵj − vjαj .
4.5. Normalize βj = ‖w̃j‖M and vj+1 = w̃j/βj .

This is the spectral transformation Lanczos procedure using M orthogonaliza-
tion. The computation of wj in Step 4.1 requires a linear system solve with Kσ.
In frequency response function computations in structural dynamics usually a direct
solver is used, since linear systems are often strongly ill-conditioned. Alternatively,
the AMLS method leads to a diagonal Kσ.

Define the tridiagonal matrix

Tk =




α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk




and Vk = [v1, . . . , vk]. The following equations readily follow from Algorithm 2.1:

K−1
σ MVk = VkTk + vk+1βkeT

k(2.10)

V T
k+1MVk+1 = I .

The parameterized Lanczos method for the solution of (1.1) is first proposed in
papers on model order reduction by the Padé via Lanczos method [13, 2, 3] and
later studied in the context of frequency response computation by the shifted Lanczos
method [14, 30, 31, 22]. The solution of (1.1) is computed by first preconditioning
into (1.3). Applying the Lanczos procedure with M–inner product to solving (1.3)
produces

K−1
σ (K − ω2M)Vk = Vk(I − (ω2 − σ)Tk) − (ω2 − σ)vk+1βkeT

k

with Vk and Tk satisfying (2.10). An approximate solution x̃ of (1.1) is given by

x̃ = Vkz,(2.11)
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where z is the solution of the linear system

(I − (ω2 − σ)Tk)z = e1‖b‖M .

This requires the solution of a k × k tridiagonal linear system. If k is small, its cost
is low. The residual is

r = K−1
σ (f − (K − ω2M)x̃) = (ω2 − σ)vk+1βkeT

k z .

We assume that the Lanczos method is able to compute x̃ with a small enough residual
norm for ω ∈ Ω. If not, a larger value of k could be used or a restarting strategy with
a new σ as for the eigenvalue problem [17]. This is out of the scope of this paper.
Therefore, we assume that ‖r(ω)‖M is ‘small’ for all ω ∈ Ω.

Note that the vectors Vk need not be stored when x̃ is updated on each Lanczos it-
eration. Often, only a few components of x are wanted and so we only need to store the
desired components of x̃ for all wanted ω’s. In finite precision arithmetic, the columns
of Vk lose orthogonality. Reorthogonalization can be used to restore the orthogonality
although this is strictly speaking not required for convergence. Reorthogonalization,
however, can produce a smaller residual norm: see e.g. the numerical examples in
[22].

2.4. Deflation. In exact arithmetic, the Lanczos method can be used for solving
the deflated system (2.4) when applied to K−1

σ M with starting vector P⊥b, since U⊥
p

is an invariant subspace of K−1
σ M and P⊥b ∈ U⊥

p all columns of Vk lie in U⊥
p . See

also (2.8). The iteration vectors stay in the invariant subspace M -orthogonal to the
columns of Up. In practical computations, the eigenpairs are not available to full
accuracy. Alternatively, if we do not need accurate eigenvalue estimates, we may save
computation time in the eigenvalue computation.

Let Ûp and Θ̂p be approximate eigenpairs of K−1
σ M , e.g. computed with the Lanc-

zos procedure. We introduce the projectors P̂p = ÛpÛ
T
p M and P̂⊥ = I − ÛpÛ

T
p M .

The Lanczos method can be used to solve the deflation system (2.8) using the pro-

jectors P̂p and P̂⊥. However, if the basis vectors Ûp are no eigenvectors, the spectral
splitting from Lemma 2.1 is no longer valid.

Furthermore, the deflated matrix B from the deflated equation from (2.8) becomes

B̂ = P̂⊥K−1
σ AP̂⊥ .

Note that the residual of the approximate eigenpairs Ûp and Θ̂p is

Rp = K−1
σ MÛp − ÛpΘ̂p(2.12)

where ÛT
p MRp = 0. Therefore, Θ̂p = ÛT

p MK−1
σ MÛp.

2.4.1. Deflated right-hand side Lanczos (DRHSL). The simplest method
is to apply the parameterized Lanczos method to the preconditioned equation with
deflated right-hand side:

K−1
σ Ax(2) = P̂⊥b.

By the Lanczos procedure, we have the recurrence relation

K−1
σ MVk = VkTk + βkvk+1e

T
k
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where Vk is not necessarily orthogonal to Ûp. An approximate solution x̃ to (1.1)
takes the form

x̃ = Ûpz
(1) + Vkz(2)

with

z(1) = (I + (σ − ω2)Θ̂p)
−1ÛT

p Mb

z(2) = (I + (σ − ω2)Tk)−1e1‖P̂⊥b‖M

The residual for this solution takes the form

r = K−1
σ (Ax̃ − f) = (σ − ω2)Rpz

(1) + (σ − ω2)vk+1βkeT
k z(2)(2.13)

where the second term can be made arbitrarily small by increasing k. The first term is
only small if Rp is small enough, i.e. if the Ritz values are chosen accurately enough.
We shall see in §3.5 that this is usually the case, when the Ritz values arise from a
recycling process in the Lanczos method.

2.4.2. Deflated Matrix Lanczos (DML). In finite precision arithmetic and
large k, the latter method is not advised since due to rounding errors the components
in the deflated eigenvectors can grow in the Lanczos method. It is therefore usually
wise to explicitly orthogonalize, i.e. the Lanczos method is now applied to the deflated
matrix

Ĉ = P̂⊥K−1
σ MP̂⊥.

We then have the recurrence relation

(P̂⊥K−1
σ MP̂⊥)Vk = VkTk + βkvk+1e

T
k

where P̂⊥Vk = Vk. We thus obtain

(I − ÛpÛ
T
p M)K−1

σ MVk = VkTk + βkvk+1e
T
k

and by moving the second term of the left-hand side to the right-hand side

K−1
σ MVk = VkTk + ÛpC + βkvk+1e

T
k(2.14)

Since ÛT
p MVk+1 = I is imposed, this leads us to C = ÛT

p MK−1
σ MVk. From (2.12),

we have that C = RT
p MVk.

We compute the solution by projecting (1.1) on the space spanned by the Krylov
vectors and the Ritz vectors [12], i.e. compute z from

[
Ûp Vk

]T
MK−1

σ A
[
Ûp Vk

]
z =

[
ÛT

p Mb
V T

k Mb

]
,

which is equivalent to the system
[

I + (σ − ω2)Θ̂p (σ − ω2)RT
p MVk

(σ − ω2)V T
k MRp I + (σ − ω2)Tk

] [
z(1)

z(2)

]
=

[
ÛT

p Mb
V T

k Mb

]
.(2.15)

It is easy to see that the residual is

r = K−1
σ (f − A(Ûpz

(1) + Vkz(2)))

= (ω2 − σ)βkvk+1e
T
k z(2) + (ω2 − σ)(I − VkV T

k M)Rpz
(1) .(2.16)

There is no guarantee that it is small unless ‖Rpz
(1)‖ is small. We will discuss this

in §3.5.
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3. Convergence analysis. We show spectral properties in order to understand
the convergence behaviour of the iterative process. Since in practical computations,
we do not have exact eigenvalues at hand, but approximations, often called Ritz
values, we analyze the impact on the quality of deflation.

3.1. Backward error analysis on deflation. When we use Ûp for deflation,
we introduce an error because of the residual term Rp in (2.12). In this section, we
show that this introduces a backward error on the linear system. The theory for
deflation of exact eigenvectors can be applied to this perturbed system.

Theorem 3.1. Let

K̃σ = (K−1
σ − ÛpR

T
p − RpÛ

T
p )−1

and let the Lanczos method be applied to P⊥K−1
σ MP⊥ so that (2.14) holds, then

K̃−1
σ MÛp = ÛpΘ̂p

K̃−1
σ MVk = VkTk + βkvk+1e

T
k .

Proof. The proof follows from (2.12) and (2.14).

3.2. Vector Padé connection. The Lanczos method makes an approximation
to (2.2) of the form

x̃ =

k∑

j=1

ûj

ûT
j f

λ̂j − ω2

where (λ̂j , ûj) is a Ritz pair of (1.2), i.e. x̃ is a rational function whose poles correspond
to Ritz values. In the Padé–via–Lanczos (PVL) method, we have that the first k
derivatives of x(α) and x̃(α) with α = ω2 − σ evaluated at α = 0 match, see e.g.
[4, 22]. In [4], it was argued, that the error grows with |α|, i.e. when ω2 moves away
from σ.

In the presence of deflation, the first k derivatives of x(2) match with those of
the solution computed by the Lanczos method. As a result, the computed solution x
matches the first k derivatives in σ with the exact solution of (1.1). In addition, the
solution is an exact interpolation in the poles λ1, . . . , λp.

When quasi-deflation is used as in §2.4.2, we lose the connection with the vector
Padé approximation. However, we build a Padé approximation for the perturbed
matrix K̃σ defined in Theorem 3.1.

3.3. Spectral convergence analysis. The spectrum of K−1
σ A is

φj =
λj − ω2

λj − σ
, j = 1, . . . , n .(3.1)

The spectral condition number of K−1
σ A is

maxj{φj}
minj{φj}

and grows when ω2 moves away from σ. This can easily be seen as follows. If ω2 = σ,
then all φj = 1. If ω2 approaches λj , then |φj | becomes large.
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min(Lp) σ ω2 max(Lp)

Fig. 3.1. Situation where σ and ω2 lie in Lp

Lemma 3.2. The matrix B defined in (2.9) is self–adjoint with respect to the M
inner product, i.e. xT MBy = (By)T Mx. In addition, if Lp contains all eigenvalues
of (1.2) between σ and ω2, then the matrix B, restricted to Up, is positive definite.
The convergence rate of the Lanczos method for the positive definite matrix B (i.e.
the conjugate gradients method) is then bounded from above by

(√
κ − 1√
κ + 1

)k

,(3.2)

where κ is the condition number of the matrix B, see e.g. [16, Theorem 3.1.1.]. This
leads to the same conclusion as §3.2: the solution for large |ω2 − σ| is harder to
compute than for small |ω2 − σ|.

The condition number of B restricted to U⊥
p is defined by

κM (B) =
maxdet(B−φI)=0 |φ|

mindet(B−φI)=0,φ 6=0 |φ|

= max
λ∈L\Lp

∣∣∣∣
λ − ω2

λ − σ

∣∣∣∣ / min
λ∈L\Lp

∣∣∣∣
λ − ω2

λ − σ

∣∣∣∣ .

Figure 3.1 shows the situation where σ and ω2 lie in Ip = [min(Lp), max(Lp)].
We see that if ω2 is somewhere in the middle of the interval Ip, |λ − ω2| and |λ − σ|
are both large so that their ratio is almost one, leading to a small κ. When ω2 lies
close to min(Lp), then some |φj | may be small.

Consider as an example, the interval Ip = [0, 100] and σ = 80. Let the eigenvalues
be λj = 5 + 10j for j = 1, . . . , n = 1000. Note that λ1, . . . , λ10 lie in Ip. Then for
ω2 = 10,

φj =
−5 + 10j

−75 + 10j
.

We find that maxj{|φj |} = 25 and minj{|φj |} = 1/13, so κ = 325. When we restrict
to R\Ip, we have maxj{|φj |} = 3 and minj{|φj |} = 9995/9925 ≃ 1, so that κ ≃ 3.

Lemma 3.3. Let Lp contain all eigenvalues in Ip = [min(Lp), max(Lp)]. Let

λm = max{λ : λ ∈ L\Lp, λ ≤ min(Lp)

λM = min{λ : λ ∈ L\Lp, λ ≥ max(Lp)

and

γ =
λM − min(Ω2)

λM − σ
/
max(Ω2) − λm

σ − λm
.

If σ ∈ Ip and ω2 ∈ Ω2, then

κM (B) ≤ max(γ, γ−1) .
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If there are no eigenvalues on the left of min(Lp), then

γ =
λM − min(Ω2)

λM − σ
.

A similar conclusion holds when there are no eigenvalues to the right of max(Lp).
When Lp includes more and more eigenvalues so that λM and λm move further away
from σ, min(Ω2) and max(Ω2), γ gets closer to one. We can thus include eigenvalues
outside Ω2 into Lp. This makes γ closer to one.

3.4. Quasi deflation. In this section, we perform the spectral analysis for the
case that the exact eigenvalues Up are not available, but Ritz vectors Ûp, see (2.12).

(We will discuss in §4 how Ûp and Θ̂p can be computed by the Lanczos method.) The
matrix B from the deflated equation from (2.8) becomes

B̂ = (I − ÛpÛ
T
p M)K−1

σ A(I − ÛpÛ
T
p M) .

The algorithm in §2.4.2 can be seen as a Krylov method for B̂ augmented with the
columns of Ûp. In this section, we make a spectral analysis of B̂.

Traditional perturbation analysis allows us to prove properties about the spectrum
of B̂; see [27, 28, 9]. We now derive a bound on the eigenvalues of B̂.

Lemma 3.4. Let

Ĉ = (I − ÛpÛ
T
p M)K−1

σ M(I − ÛpÛ
T
p M) .

If θ̂j is a nonzero eigenvalue of Ĉ, then there is an eigenvalue θj of K−1
σ M such that

|θ̂j − θj | ≤ ‖
√

MRp‖2 .

Proof. First let

Θ̂p = ÛT
p MK−1

σ MÛp .

Then, note from

K−1
σ MÛp = ÛpΘ̂p + Rp

ÛT MK−1
σ M = Θ̂pÛ

T
p M + RT

p M

that

Ĉ = K−1
σ M − ÛpΘ̂pÛ

T
p M + ÛpR

T
p M + RpÛ

T
p M .(3.3)

Multiplying (3.3) on the left with
√

M produces

√
MĈ =

√
MK−1

σ M −
√

MÛpΘ̂pÛ
T
p M +

√
MÛpR

T
p M +

√
MRpÛ

T
p M .

Further note that if û 6= 0 is an eigenvector associated with θ̂j 6= 0, then ÛT
p Mû = 0.

Defining ŵ =
√

Mû, we have

√
MĈû =

√
MK−1

σ

√
Mŵ +

√
MÛpR

T
p

√
Mŵ .



SHIFTED SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES 11

By the Bauer-Fike Theorem [28], we have that there is a θj , eigenvalue of
√

MK−1
σ

√
M ,

so that

|θ̂j − θj | ≤ ‖
√

MUpR
T
p

√
M‖2

≤ ‖RT
p

√
M‖2

This proves the lemma.
Theorem 3.5. The spectral properties of B̂ can be summarized as follows :
1. B̂Ûp = 0.

2. B̂ has n − p nonzero eigenvalues φ̂j with eigenvectors M orthogonal to the

columns of Ûp. For each nonzero eigenvalue φ̂j, there is an eigenvalue φj of
B so that

|φ̂j − φj | ≤ |ω2 − σ|‖
√

MRp‖2 .

Proof. The proof follows from Lemma 3.4. Note that

B̂ = (I − ÛpÛ
T
p M) + (σ − ω2)Ĉ .

If the eigenvalues of B̂ are close to the eigenvalues of B, the condition number
κ(B̂) ≃ κ(B). Let φj = 1 + (ω2 − σ)θj for j = 1, . . . , n be the eigenvalues of B,

and φ̂j be the eigenvalues of B̂. Recall that the spectral condition number κ(B) =

max |φ|/ minφ 6=0 |φ|. With ξ = |ω2 − σ|‖
√

MRT
p ‖2, and assuming that |φj | > ξ, we

have that

κ(B̂) ≤ max |φ| + ξ

minφ 6=0 |φ| − ξ

≤ κ(B)
max |φ| + ξ

max |φ|
minφ 6=0 |φ|

minφ 6=0 |φ| − ξ

If Lp contains all eigenvalues in [min(Ω2), max(Ω2], the eigenvalues of B are never

significantly smaller than one. This implies that the θ̂j ’s need not be very close to

eigenvalues of K−1
σ M in order to have κ(B̂) ≃ κ(B).

3.5. Residual terms. The residual in (2.13) and (2.16) have two terms. The
second term is driven to zero by selecting k high enough. The first term is constant
in (2.13) and depends on k in (2.16). In the residual term in (2.13), we have the term

(σ − ω2)Rpej

ûT
j Mb

1 + (ω2 − σ)θ̂j

≃ Rpej
σ − ω2

λ̂j − ω2
ûT

j f

which is small if λ̂j lies far away from ω2. If we want ‖Rpz
(1)‖ smaller than some

tolerance, we do not have to put a strong condition on the columns of Rp associated
with Ritz values far away from Ω2.

This also holds to some extent for (2.16). Indeed, by multiplying (2.15) on the
left with eT

j with 1 ≤ j ≤ p, we see that

∣∣∣∣∣e
T
j z(1) −

ûT
j Mb

1 + (ω2 − σ)θ̂j

∣∣∣∣∣ ≤
∣∣∣∣∣

ω2 − σ

1 + (ω2 − σ)θ̂j

∣∣∣∣∣ ‖R
T
p MVkz(2)‖2
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If ‖RT
p MVk‖ is not too large, eT

j z
(1)
j does not vary much in a relative sense and lies

around

ûT
j Mb

1 + (ω2 − σ)θ̂j

≃
ûT

j f

λ̂j − ω2
.

In (2.13) and (2.16), the residual has a term of the order

‖Rpej‖
∣∣∣∣∣

ûT
j f

λ̂j − ω2

∣∣∣∣∣ ,

which is small if λ̂j lies far away from ω2. If |eT
j z

(1)
j | is small, ‖Rpej‖ does not have

to be tiny to obtain a small residual norm.

4. Lanczos Ritz values. At this stage, we have not explained how we compute
Up and solve the parameterized linear system (2.8).

Let

TkY = Y Θ̂k(4.1)

be the eigendecomposition of Tk, where Y = [y1, . . . , yk] and Θ̂k = diag(θ̂1, . . . , θ̂k).

The θ̂j ’s are called Ritz values and the columns of Ûk = VkY = [û1, . . . , ûk] Ritz
vectors. From (2.10), we find that

ρj = ‖K−1
σ Mûj − θ̂j ûj‖M

= ‖vk+1βkeT
k yj‖M

= βk|eT
k yj | .

Then define λ̂j = σ + θ̂−1
j . If ρj is small, we have that

Kûj ≃ λ̂jMûj .

The Ritz vectors form a basis of the Krylov space. Following (2.11), the solution of
(1.1) can thus be expressed in terms of Ritz vectors as follows :

x =

k∑

j=1

ûj

ûT
j Mb

1 − (ω2 − σ)θ̂j

=

k∑

j=1

ûj

ŵT
j f

λ̂j − ω2
,(4.2)

with

ŵj = ûj + vk+1
βkeT

k yj

θ̂j

the purified Ritz vector [25].
In this section, we analyze how close these Ritz values are to the eigenvalues of

B when the Lanczos method is applied to solve (1.1).
Usually, the stopping criterion for solving (1.1) takes the form

‖r‖/(‖b‖ + ‖B‖‖x‖) ≤ τ ,
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where τ is a prescribed tolerance. The following theorem shows that the residual
norms of the Ritz pairs corresponding to λ̂j in [min(Ω2), max(Ω2)] is proportional to
the residual tolerance for the linear system.

Theorem 4.1. Let (θ̂j , ûj), j = 1, . . . , k be the Ritz pairs from the Lanczos
method. If

‖r‖M ≤ τ(‖b‖M + ‖B‖‖x‖M)(4.3)

for all ω2 ∈ Ω2, then

‖K−1
σ Mûj − θ̂j ûj‖M ≤ 6τ |θ̂j |‖B‖M

when λ̂j = σ + θ̂−1
j ∈ Ω2.

Proof. The proof is similar to the proof of Lemma 4.1 in [22]. Let α = ω2 − σ.
From

r = b − K−1
σ Ax̃

K−1
σ A = I − αK−1

σ M ,

b = v1‖b‖M , and (2.11), we have

r = ‖b‖Mv1 − Vk(I − αTk)z + αβkvk+1e
T
k z

= αβkvk+1e
T
k z .

Next, from (4.1) and (4.2), we have that

z =
k∑

j=1

yj

yT
j e1‖b‖M

1 − αθ̂j

=
k∑

j=1

yj

ûT
j Mb

1 − αθ̂j

=
k∑

j=1

yj
λ̂j − σ

λ̂j − ω2
(ûT

j Mb) .

With ρj = βkeT
k yj , we have

r =

k∑

j=1

αβkvk+1e
T
k yj

λ̂j − σ

λ̂j − ω2
(ûT

j Mb)

= αvk+1

k∑

j=1

ρj
λ̂j − σ

λ̂j − ω2
(ûT

j Mb) .

For each i = 1, . . . , k, for which λ̂j ∈ Ip, we can determine ω2 ∈ Ip so that

∣∣∣∣∣ρi
λ̂i − σ

λ̂i − ω2
(ûT

i Mb)

∣∣∣∣∣ ≥

∣∣∣∣∣∣

∑

j 6=i

ρj
λ̂j − σ

λ̂j − ω2
(ûT

j Mb)

∣∣∣∣∣∣
∣∣∣∣∣

λ̂i − σ

λ̂i − ω2
(ûT

i Mb)

∣∣∣∣∣ ≥




∑

j 6=i

∣∣∣∣∣
λ̂j − σ

λ̂j − ω2
(ûT

j Mb)

∣∣∣∣∣

2



1/2

∣∣∣∣∣
λ̂i − ω2

(λ̂i − σ)(ûT
i Mb)

∣∣∣∣∣ ‖b‖M ≤ ‖B‖

|ω2 − σ| ≥ |λ̂i − σ|
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since |λ̂i − ω2| can be made arbitrarily small, by picking ω2 close to λ̂i. Note that in
the Lanczos process all Ritz values are simple, so the terms in the summation for x
and r with j 6= i remain small.

We then have

‖r‖M/|α| ≥
∣∣∣∣∣ρi

λ̂i − σ

λ̂i − ω2
(ûT

i Mb)

∣∣∣∣∣−

∣∣∣∣∣∣

∑

j 6=i

ρj
λ̂j − σ

λ̂j − ω2
(ûT

j Mb)

∣∣∣∣∣∣
∣∣∣∣∣ρi

λ̂i − σ

λ̂i − ω2
(ûT

i Mb)

∣∣∣∣∣ ≤ 2‖r‖M/|α|(4.4)

and

‖x‖M ≤ 2

∣∣∣∣∣
λ̂i − σ

λ̂i − ω2
(ûT

i Mb)

∣∣∣∣∣ .

From (4.3) and (4.4), we have that

∣∣∣∣∣ρi
λ̂i − σ

λ̂i − ω2
(ûT

i Mb)

∣∣∣∣∣ ≤ 2
τ

|α|

(
‖b‖M + 2‖B‖

∣∣∣∣∣
λ̂i − σ

λ̂i − ω2
(ûT

i Mb)

∣∣∣∣∣

)

|ρi| ≤ 2|α| τ

|α|

(
λ̂i − ω2

(λ̂i − σ)(ûT
i Mb)

‖b‖M + 2‖B‖
)

Note that

‖K−1
σ Mûj − θ̂j ûj‖M = |ρj | .

This proves the theorem.
So, the backward error on the linear solves determines the backward error on the Ritz
pairs. A reasonable precision of x for all ω ∈ Ip should does provide accurate enough
Ritz values near ω2 ∈ Ω2.

5. Multiple right-hand sides. The goal is to solve

(K − ω2M)[x1, . . . , xs] = [f1, . . . , fs] .(5.1)

We could use a block Krylov method for solving all right-hand sides at once. The
alternative is to solve each system independently, which can be useful for saving
memory (less vectors to store), or is the only option when the right-hand sides are not
available at once. The idea is to solve (5.1) column by column by separate Lanczos
processes.

We use the following algorithms:
Algorithm 5.1 (Multiple RHS solution using DRHSL).

1. Solve K−1
σ (K − αM)x1 = K−1

σ f1 using the parameterized Lanczos method.

2. Compute Ritz pairs (Θ̂p, Ûp) of K−1
σ M and let Λ̂p = σI + Θ̂−1

p .
3. For j = 2, 3, . . . , s :

3.1. Solve Kσbj = fj.

3.2. Solve the diagonal system (Λ̂p − σI)−1(Λ̂p − ω2I)zj = ÛT
p Mbj.

3.3. Solve K−1
σ (K − αM)x̃j = P̂⊥bj using the parameterized Lanczos method.

3.4. Let the solution be xj = Upzj + x̃j .
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Algorithm 5.2 (Multiple RHS solution using DML).
1. Solve K−1

σ (K − αM)x1 = K−1
σ f1 using the parameterized Lanczos method.

2. Compute Ritz pairs (Θ̂p, Ûp) of K−1
σ M and let Λ̂p = σI + Θ̂−1

p .
3. For j = 2, 3, . . . , s :

3.1. Solve Kσbj = fj.

3.2. Compute the Krylov space for P̂⊥K−1
σ MP̂⊥ with starting vector P̂⊥K−1

σ fj .

3.3. Solve [Ûp Vk]T MK−1
σ A[Ûp Vk]zj = [Ûp Vk]T Mbj for zj .

3.4. Let the solution be xj = [Ûp Vk]zj .
There are only few implementation differences between the two algorithms. Al-

gorithm 5.1 does not require the storage of the Lanczos vectors since the solution can
be updated at each iteration step. However, reorthogonalization cannot be performed
which may lead to loss of precision, see [22]. Algorithm 5.2 requires the storage of Vk,
which may be hard when k is large.

We have mentioned in the previous sections that the deflated Ritz pairs do not
have to have small residual norms since the condition number does not change much.
However, a small residual term Rpz

(1) can generally only be achieved when ‖Rp‖ is
not large.

If the p deflated Ritz pairs are computed by another method than the Lanczos
linear solver itself, we may assume that ‖Rp‖ in (2.16) is small. In this case, we have
exact deflation.

If the Ritz pairs are computed by the Lanczos method for the first right-hand
side as in Algorithms 5.1 and 5.2, the residual terms related to Ritz values in Ω2 are
small following the analysis in §4. All the eigenvalues in Ω are computed, otherwise
the residual norm cannot be small for all ω’s. This suggests that all linear systems in
Step 2.3 are positive definite and condition numbers are most likely good. Only when
uT

j Mb = 0, the corresponding eigenvalue is not computed.
We have shown that k usually is not large, since the condition number κ(B) is

small. There is one situation where κ(B) can be large, i.e. when Λ̂p does not contain
approximations to all eigenvalues in Ω2. Although this is impossible to happen in
theory when uT

j Mb 6= 0, it may happen in practice when eigenvalues are clustered or
multiple, since the Ritz approximations may not be present for all eigenvalues.

A problem may arise when also Ritz values outside Ω2 are deflated, since their
residual norms are not bounded by Theorem 4.1. However, from [4], the error on x
usually increases more or less monotonically when ω2 goes away from σ. From §4, we
may conclude that the Ritz residual norms also increase more or less monotonically.
We now have a closer look at (2.16) and §3.5. If λ̂j lies outside Ω2,

|eT
j z(1)| ≃

∣∣∣∣∣
uT

j f

λ̂j − ω2

∣∣∣∣∣

is small. The corresponding term in term Rpz
(1) is likely to be small as well. Therefore,

we do not expect large residual terms for Ritz values selected outside Ω2.

6. Numerical Example. In this section, we show the numerical performance
of Algorithms 5.1 and 5.2 for a test problem arising from a a structural model of
car windscreen. This is a 3D problem discretized with 7564 nodes and 5400 linear
hexahedral elements (3 layers of 60× 30 elements). The mesh is shown in Figure 6.1.
The material is glass with the following properties: the Young modulus is 7 1010N/m2,
the density is 2490kg/m3, and the Poisson ratio is 0.23. The structural boundaries are
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Fig. 6.1. Mesh of the car windscreen

free (free-free boundary conditions). The plate is subjected to a point force applied
on a corner node [22] [1].

The discretized problem has dimension n = 22, 692. The goal is to compute x(ω)
with ω ∈ [0, 100]. In order to generate the plots the frequency range was discretized
as {ω1, . . . , ωm} = {0.5j, j = 1, . . . , m} with m = 400. We used shift σ = 1. The
MUMPS direct solver [24] was employed for the solution of the linear system of the
coefficient Kσ in the Lanczos procedure and Algorithms 5.1 and 5.2.

We performed a first run with right-hand side f with fj = 0 for j 6= 5673 and
f5673 = 1, which corresponds to a point load on a corner of the windscreen. We used
k = 20 Lanczos iterations. Then we kept the Ritz values below 2 × 1002. There are
p = 14 Ritz values in this interval. The residual norms of the kept Ritz pairs are
smaller than 3 × 10−7. The largest residual norm is for the Ritz value corresponding
to ω = 104, which is just outside the interval Ω.

Next, we performed a second run with the right-hand side f with fj = 0 for j > 1
and f1 = 1. We used 6 (additional) Lanczos iterations to make a total of p + k = 20
vectors. For given ω,

κ = max
j>p

λj − ω2

λj − σ
/ min

j>p

λj − ω2

λj − σ
< κ̃ := 1 · max

j>p

λj − σ

λj − ω2
=

λp+1 − σ

λp+1 − ω2

The largest κ̃ is for ω = max(Ω). In this example, the maximum κ̃ is (142.0892 −
1)/(142.0892 − 1002) = 1.9813, so the convergence ratio in (3.2) is 0.1693. After six
iterations, the error norm is reduced by approximately 2 × 10−5. Figure 6.2 shows
the results. Both Algorithms 5.1 and 5.2 produce the same results: solution and error
curves cannot be distinguished in the figures. The additional iterations (only six)
is low so that loss of orthogonality in the Lanczos vectors is most likely not having
an impact, and the Ritz vectors have small residual norms so that the deflation is
practically perfect as in Lemma 2.1.

We performed a third run with f being 1 everywhere. The conclusions are similar
as for the previous situation. Figure 6.3 shows the results.
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Fig. 6.2. Solution norm ‖x‖2 in function of ω in solid line, error on ‖x‖2 for superposition
on 14 modes as a dashed line and error on on ‖x‖2 for superposition on 14 modes and 6 additional
Lanczos iteration as a dotted line.
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Fig. 6.3. Solution norm ‖x‖2 in function of ω in solid line, error on ‖x‖2 for superposition
on 14 modes as a dashed line and error on on ‖x‖2 for superposition on 14 modes and 6 additional
Lanczos iteration as a dotted line.

7. Conclusions. We have applied the notion of recycling Ritz vectors to linear
systems with a parameter in frequency sweeping. We have presented an algorithm
and theory for the symmetric case. We have given various arguments and a numerical
example that show that recycling may significantly reduce the number of iterations
in the Lanczos method.

Further extensions of this work lie in the application to proportional damping as
in [23], and using the Lanczos method as iterative method in the AMLS frequency
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sweeping method [18].
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