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Abstract

Purpose: Cell-free DNA (cfDNA) sequencing provides a

noninvasive method for obtaining actionable genomic infor-

mation to guide personalized cancer treatment, but the pres-

ence of multiple alterations in circulation related to treatment

and tumor heterogeneity complicate the interpretation of the

observed variants.

Experimental Design: We describe the somatic mutation

landscape of 70 cancer genes from cfDNA deep-sequencing

analysis of 21,807 patients with treated, late-stage cancers

across >50 cancer types. To facilitate interpretation of the

genomic complexity of circulating tumor DNA in advanced,

treated cancer patients, we developed methods to identify

cfDNA copy-number driver alterations and cfDNA clonality.

Results: Patterns and prevalence of cfDNA alterations

in major driver genes for non–small cell lung, breast, and

colorectal cancer largely recapitulated those from tumor

tissue sequencing compendia (The Cancer Genome Atlas

and COSMIC; r ¼ 0.90–0.99), with the principal differences

in alteration prevalence being due to patient treatment.

This highly sensitive cfDNA sequencing assay revealed

numerous subclonal tumor-derived alterations, expected as

a result of clonal evolution, but leading to an apparent

departure from mutual exclusivity in treatment-na€�ve

tumors. Upon applying novel cfDNA clonality and copy-

number driver identification methods, robust mutual exclu-

sivity was observed among predicted truncal driver cfDNA

alterations (FDR ¼ 5 � 10�7 for EGFR and ERBB2), in effect

distinguishing tumor-initiating alterations from secondary

alterations. Treatment-associated resistance, including both

novel alterations and parallel evolution, was common in the

cfDNA cohort and was enriched in patients with targetable

driver alterations (>18.6% patients).

Conclusions: Together, these retrospective analyses of a

large cfDNA sequencing data set reveal subclonal structures

and emerging resistance in advanced solid tumors. Clin

Cancer Res; 24(15); 3528–38. �2018 AACR.

Introduction

Genomic analysis of cell-free DNA (cfDNA) from advanced

cancer patients allows the identification of actionable alterations

shed into the circulation and may provide a global summary of

tumor heterogeneity without an invasive biopsy (1). Plasma

cfDNA analysis can provide insights from genomic information

shed frommultiple lesions within a patient, but this broader level

of insight can introduce added complexity. Indeed, most clinical

cfDNA sequencing is performed on patients with advanced or

metastatic disease, often at the second line of therapy or later.

Retrospective analyses of large-scale cfDNA sequencing data

obtained in the clinical setting may open avenues for learning

how to navigate these complexities.

As a recently developed testing method, clinical cfDNA

sequencing has repeatedly been benchmarked against tissue

sequencing, but these performance comparisons are confounded

by temporal and spatial heterogeneity in tumors (2–6). In addi-

tion, circulating tumor DNA (ctDNA) may be undetectable when

shedding of tumor DNA is nominal, such as when therapy

stabilizes tumor growth (7, 8). Recent efforts to globally charac-

terize tumor heterogeneity using both plasma cfDNA analysis and

multiregion tumor sequencing highlight the complementary

nature of the two approaches (9–11). However, there is a paucity

of cfDNA data sets large enough to evaluate the similarity of

tumor-initiating alterations ("truncal drivers") in solid tumor

cancers to those found in the cfDNA of advanced cancer patients.

Among the various methods available for cfDNA analysis, tar-

geted panel deep-sequencing assays that utilize extensive error-

correction methods provide the depth (sensitivity) and genomic

breadth necessary to optimally survey tumor-derived genomic

alterations in plasma cfDNA, even at low allelic fractions (12–15).

In order to elucidate the landscape of truncal driver mutations

in cfDNA, we first evaluated the extent of detectable tumor

heterogeneity in a large cohort of patients subject todeep sequenc-

ing of cfDNA to assess how ctDNA levels across patients might

impact cfDNA variant detection. To distinguish truncal driver
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mutations from secondary resistance mutations, we developed

methods to infer clonality and driver status of tumor mutations

from cfDNA. We then examined the similarity of cfDNA patterns

of common driver alterations in a large cohort of advanced,

previously treated solid tumor patients to those found in treat-

ment-na€�ve tumor tissue compendia. Finally, we explored the

landscape of resistance variants to targeted therapies in the large

cfDNA cohort.

Materials and Methods

Characteristics of the cfDNA cohort

A summary of the cfDNA cohort used in this study is provided

in Table 1. The cohort was assembled from 21,807 consecutive

cancer patients (25,578 total samples) tested on the Guardant

Health cfDNA sequencing platform as part of clinical care (in a

Clinical Laboratory Improvement Amendments (CLIA)-certified,

College of American Pathologists (CAP)-accredited, New York

State Department of Health-approved clinical laboratory at Guar-

dant Health, Inc.). As such, this was an observational, noninter-

ventional study andwas conducted in accordancewith recognized

ethical guidelines. All patient data were deidentified as per an

institutional review board-approved protocol (Quorum Review

IRB Protocol 30-001: Research Use of De-Identified Specimens

and Data), which waived the requirement for individual patient

consent. Tests were ordered by 3,283 oncologists across the

United States, Europe, Asia, and the Middle East from June

2014 to September 2016 (data freeze at September 22, 2016).

Disease stage was confirmed for each patient by the provider to be

advanced disease (stage III/IV). Treatment histories and survival

information were generally not available. Over 50 solid tumor

types were represented [the most common were non–small cell

lung cancer (NSCLC, 37%), breast cancer (16%), colorectal cancer

(9%)], although some cancer types were represented by only a

small number of samples. See Supplementary Tables S3 and S4 for

comparisons of the cfDNA cohort characteristics with those of the

pan-cancer TCGA (The Cancer Genome Atlas) cohort. The clinical

cfDNA sequencing platform (Guardant360) used in this study has

been previously described (13), and additional information on

the assay and variant calling is provided in the Supplementary

Methods and in the accompanying paper by Odegaard and

colleagues (16). For analysis purposes, variants were categorized

as clinically actionable based on whether their presence would be

reasonably expected to inform standard-of-care treatment deci-

sions as judged by the clinical oncologists and/or molecular

pathologist participating in the study. Descriptions of the meth-

ods for cfDNA clonality estimation, cfDNA copy number driver

analysis, comparisons of cfDNA to TCGA alterations, resistance

alterations and longitudinal analysis, and statistical analysis can

be found in the Supplemental Methods. The reported cfDNA

alterations data and associated analysis code have been deposited

in an open-access GitHub repository and are available at https://

github.com/guardant/Zill_2018.

Results

Somatic genomic alterations in cfDNA across 21,807 patients

Somatic cfDNA alterations were detected in 85% (18,503/

21,807) of patients across all cancer types, ranging from 51% for

glioblastoma to 93% for small cell lung cancer (Fig. 1A). Half of

the reported somatic cfDNA alterations had VAF <0.41% (range,

0.03%–97.6%; Fig. 1B). Alteration-positive samples had on aver-

age three or four alterations detected (median ¼ 3; mean ¼ 4.3;

range, 1–166), including copy-number amplifications (CNA;

Supplementary Fig. S1B). For subsequent analyses, we assumed

that the fraction of tumor-derived cfDNA molecules within the

total population of circulating cfDNAmolecules ("ctDNA level")

in a sample was proportional to the copy-number–adjusted

maximum somatic VAF. We then examined the distribution of

estimated ctDNA levels per indication. Although most of the

major cancers (bladder, liver, prostate, gastric, NSCLC, melano-

ma, breast) had similar average estimated ctDNA levels, brain

cancers had significantly lower levels (Wilcoxon P ¼ 0.006 in

comparison with renal) putatively owing to the blood–brain

barrier, whereas colorectal cancer and SCLC had significantly

higher levels than all other indications examined (Wilcoxon

P < 0.008 in comparison with bladder). (Similar patterns have

been previously reported by Bettegowda and colleagues (17), but

without sufficient sample sizes to determine statistical signifi-

cance.) This variation in ctDNA levels suggested the possibility of

interindication variability in variant detection and, therefore, in

ability to estimate tumor mutational burden from cfDNA.

Relationship between estimated ctDNA level and tumor

mutational burden

We tested whether ctDNA levels affected tumor mutation

burden estimates by examining the number of SNVs per sample

across cancer indications in the cfDNA cohort. Notably, when

Table 1. Summary of the cfDNA cohort used in this study

Clinical characteristic Statistics

Number of patients 21,807

Number of samples 25,578

Number of patients with alterations 18,503

Number of patients with multiple tests 2,222

Number of cancer types >50

Alterations per sample 3 (median); 0–166 (range)

Days from diagnosis to blood draw 738 (mean); 335 (median)

Gender proportion 56% female; 44% male

Age range 23–92 (median, 64)

NOTE: No treatment, follow-up, or outcome data were available.

Translational Relevance

This study describes genomic alterations from the largest

cell-free circulating tumorDNA cohort to date, as derived from

regular clinical practice. The high prevalence of resistance

alterations found in advanced, treated cancer patients neces-

sitated accurate methods for determining mutation clonality

and driver/resistance status from plasma. We provide such

methods, thereby extending the utility of cell-free DNA

sequencing analysis. Our finding of an association between

estimated circulating tumor DNA (ctDNA) levels and tumor

mutational burden ascertained from plasma suggests that

ctDNA level is likely an important variable to consider for

immunotherapy applications of ctDNA analysis. Although

cell-free DNA can provide a summary of tumor heterogeneity

across multiple metastatic sites in a patient, our findings of

high variability in ctDNA levels across patients, and its impact

on variant detection, highlight the need for an improved

understanding of factors influencing ctDNA levels and safe

methods for maximizing them at the time of ctDNA testing.

Somatic Genomic Landscape of Circulating Tumor DNA
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tumor mutation burden in this cfDNA cohort was examined, the

indication ordering established with TCGA/International Cancer

Genome Consortium (ICGC) data of average tumor mutation

burden was not recapitulated (Supplementary Fig. S1B; refs. 18,

19). Additionally, across all cancer indications, the mutation

burden distributions were shifted upward, and the dynamic

ranges were compressed, relative to mutation burdens derived

from TCGA/ICGC whole-exome sequencing. These differences

were likely due to several combined factors: the relatively narrow

cfDNA panel being heavily biased toward exons with known

cancer mutations, differences in cohort demographics such as

disease stage and treatment, and differences in variant detection

between tumor tissue sequencing and cfDNA sequencing. When

the mutations from TCGA NSCLC cases were filtered to those
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Figure 1.

CfDNA alteration detection and estimated ctDNA levels in 21,807 advanced-stage cancer patients. A, Somatic cfDNA alteration detection rates per cancer

type in the 21,807-patient cfDNA cohort. Percentages of alteration-positive samples are indicated. Note that the last 16,939 consecutive samples (November

2015–September 2016) were analyzed with version 2.9 of the cfDNA test, whereas the previous 8,639 samples were analyzed with earlier versions of the

cfDNA test (see Supplementary Table S3). SCLC, small cell lung cancer; CUP, cancer of unknownprimary; GBM, glioblastoma.B,VAFdistribution for all somatic SNVs,

indels, and fusions detected by the cfDNA test. C, Distributions of estimated ctDNA level per indication. CtDNA levels were significantly higher in colorectal

cancer andSCLCand significantly lower in glioma/GBM("Glioma�") than in theother cancers shown (Wilcoxon rank sum test). Numbers of SNV/indel/fusion-positive

samples per indication are colorectal, 1,991; SCLC, 267; bladder, 210; liver, 210; prostate, 909; gastric, 260; NSCLC, 8,078; melanoma, 410; breast, 3,301;

ovarian, 594; pancreas, 867; renal, 220; glioma/GBM, 107. D, Number of somatic cfDNA SNVs per sample versus estimated ctDNA level, which is binned on

the x-axis, in alteration-positive NSCLC samples (n ¼ 8,078). Asterisks indicate significance levels from pairwise comparisons using the Wilcoxon rank sum

test ("ns," not significant).
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lying within the cfDNA panel regions (107 kb of sequence for

reported variants), this cohort's average mutation burden was 18

mutations/Mb rather than the value of 9 mutations/Mb derived

from whole-exome analysis, consistent with the notion that

higher frequencies of mutations were expected per base pair of

the cfDNA panel relative to the whole exome.

Nonetheless, the median tumor mutation burden estimated

from cfDNA steadily increased from 18.7 mutations/Mb (2 SNVs

per sample) in low-ctDNANSCLC samples to 37.4mutations/Mb

(4 SNVs per sample) in high-ctDNA samples (Fig. 1D; Supple-

mentary Fig. S1D). (The overall median was 28mutations/Mb, or

3 SNVs per sample.) The positive and statistically significant

relationship between the number of cfDNAalterations per sample

and ctDNA level held in breast cancer and colorectal cancer

(Supplementary Fig. S1E and S1F), likely reflecting improved

detection of genomic alterations when tumors shed more

DNA into circulation. As described below, at least part of the

observed increase in mutation burdens in high-ctDNA samples

was due to increased detection of subclonal variants (Supplemen-

tary Fig. S2).

Comparisons of alteration patterns across alteration types in

cfDNA versus TCGA

To determine whether alteration patterns found in cfDNA

recapitulated those found in published tissue sequencing studies,

the frequencies of SNVs and indels in commonly mutated driver

geneswere comparedwith the frequencies found in TCGA.Highly

similar mutation patterns were observed for TP53 and EGFR

(Pearson r ¼ 0.94 and r ¼ 0.78, respectively; Fig. 2A and B), as

well as for KRAS, BRAF, and PIK3CA (r ¼ 0.99, 0.99, and 0.94,

respectively).EGFRT790M andEGFRC797S, treatment-induced resis-

tance mutations, were more frequent in the heavily pretreated

cfDNANSCLC cases (10%) relative to the untreated TCGANSCLC

cases (0.3%). Excluding T790M and C797S resistance alterations,

the Pearson correlation for mutation frequencies in the tyrosine

kinase domain of EGFR (exons 18–24) rose from 0.78 to 0.90.

Breast cancer often harbors therapeutically targetable CNAs in

ERBB2 (HER2). We compared the ranks of amplification frequen-

cies in breast cancer patients for the 18 CNA genes assayed by the

cfDNA assay to the same genes in TCGA (amplification status

determined by GISTIC), and found high rank correlation (r ¼

0.86; Fig. 2C). Similarly, 5% to 10% of lung adenocarcinoma

(LUAD) is driven by targetable kinase gene fusions. To compare

the patterns of gene fusions found in cfDNA with those found in

tissue, we determined the frequencies per intron of breakpoints in

the three most commonly observed fusions among lung cancer

patients in the cfDNA cohort: EML4–ALK, CCDC6–RET, and

KIF5B–RET. Breakpoint locations for all three fusionswere strong-

ly correlated with the frequencies of breakpoints found in pub-

lished tissue data (r ¼ 0.98; Fig. 2D; Supplementary Table S5).

Amore detailed analysis of cfDNACNAsof 18 genes across four

major cancer indications (lung, breast, colorectal, prostate)

revealed amplification patterns consistent with known driver

alterations in each indication (Supplementary Fig. S3). For exam-

ple,EGFRwas themost commonly amplified gene in lung cancers,

MYC and FGFR1 were the most commonly amplified gene in

breast cancer, and AR was the most commonly amplified gene in

prostate cancer. Notably, some established driver genes tended to

have higher amplification levels per sample than other genes that

reflected indication-specific biology. For instance, ERBB2 (HER2)

had the highest average amplification levels in breast cancer and

colorectal cancer but had middling amplification levels in lung

and prostate cancers.

Estimated cfDNA clonality and driver alteration prevalence in

cfDNA versus TCGA

The abundance of advanced, treated cancer cases in the cfDNA

cohort was expected to contribute additional subclonal variants

when variant detection in cfDNA was not limited by low ctDNA

levels. The trend toward increased numbers of cfDNA variants in

high-ctDNA samples (Fig. 1D) and the observation of frequent

resistance alterations (Fig. 2B) suggested that comparisons of this

cfDNA cohort with large tumor tissue cohorts such as TCGA

should account for a higher level of mutational heterogeneity in

the cfDNA cases. In order to compare the prevalences of common

alterations between the large tissue cohorts of earlier-stage tumors

(TCGA) with those of the advanced-stage tumors in the cfDNA

cohort, accounting for the potentially increased mutational het-

erogeneity in cfDNA, we derived an estimated cfDNA clonality

metric using the VAF/maximum VAF ratio that would allow us to

infer the likely cancer-cell fraction of mutations present in the

tumor (see Materials and Methods). We noted that mutated

oncogenes such as EGFR could be subsequently amplified, which

could inflate the cfDNA VAF, leading to an inaccurate clonality

estimate. Closer examinationof theVAF/CN relationship revealed

two separate nonlinear behaviors: log linearity of amplified driver

mutations at high VAF and high copy number, and clearly sub-

clonal alterations with low VAF that occurred subsequent to, or in

a separate subclone from, the amplification (Fig. 3A; Supplemen-

tary Figs. S6–S9). Our model therefore takes into account these

nonlinearities by normalizing the VAF by log-transformed copy

number for driver variants and by holding out variants that

initially appear subclonal from the normalization procedure. We

then examined the cfDNA clonality distributions for the most

frequently mutated genes in LUAD, breast cancer, and colorectal

cancer to understand how this metric related to well-known

biological properties among cancer mutations (Supplementary

Fig. S4).

EGFR mutations were among the most prevalent alteration

across the cfDNA cohort, but had different expected cohort-level

behaviors in LUAD versus colorectal cancer. In LUAD, EGFR-

activating mutations should occur frequently as drivers and these

mutations should tend to be clonal. In colorectal cancer, recurrent

EGFR extracellular domain mutations would generally be

expected to be acquired resistance alterations in patients treated

with anti-EGFR antibodies such as cetuximab and, therefore,

should tend to be subclonal. As predicted, cfDNA EGFR altera-

tions in LUAD were predominantly clonal, whereas in colorectal

cancer they were predominantly subclonal (Fig. 3B). Direct com-

parison of the clonality distributions of EGFRL858R in LUAD

versus EGFR ectodomain mutations in colorectal cancer showed

an even more striking dichotomy (Fig. 3B). In colorectal cancer,

alterations in the common driver genes APC, TP53, and KRAS

were predominantly clonal (Supplementary Fig. S4). Strikingly,

nonsense mutations in APC had a strong tendency to be clonal

(median clonality ¼ 0.72) and had significantly higher average

clonality than APCmissense or synonymous alterations (median

clonality¼ 0.07; Wilcoxon P < 10�6), further confirming that the

cfDNA clonality metric reflected the expected behaviors of tumor-

derived alterations (Fig. 3C). In breast cancer, alterations in

the common driver genes PIK3CA, AKT1, and TP53 showed

strong tendencies toward clonality (Supplementary Fig. S4).

Somatic Genomic Landscape of Circulating Tumor DNA
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Additionally, we compared the clonality distributions in LUADof

known EGFR driver (e19 del, L858R, etc.) and EGFR resistance

(T790M, C797S) alterations. Again, as expected, the driver altera-

tions showed a strong tendency toward clonality and the resis-

tance alterations showed a strong tendency toward subclonality

(Fig. 3D; Supplementary Fig. S4).

Comparisons of mutation prevalence per gene between the

cfDNA and TCGA cohorts, accounting for cfDNA clonality,

revealed that the prevalences of most major driver alterations in

NSCLC, breast cancer, and colorectal cancer were overall similar

(Pearson correlation, r ¼ 0.85; Supplementary Fig. S5 and Sup-

plementary Table S6). Some genes had significant differences in

mutation prevalence between cohorts (c2 test), which largely

reflected differences in patient demographics (i.e., prior treat-

ment). Notable differences included EGFR and KRAS alterations

in NSCLC (cfDNA: 43% EGFR-mutant, 16% KRAS-mutant;

TCGA/tissue: 14% EGFR-mutant, 33% KRAS-mutant), a much

higher frequency of ESR1 mutations in cfDNA breast cancer

samples (14%) than in TCGA samples (0.5%), and a substantially

higher frequency of TP53 mutations in cfDNA colorectal cancer

samples.

Mutual exclusivity analysis of driver alterations in cfDNA

To determine whether truncal driver alterations followed pat-

terns of mutual exclusivity established in early-stage disease (i.e.,

TCGA studies), we performed mutual exclusivity analysis on

common cfDNA alterations in LUAD, breast cancer, and colorec-

tal cancer samples. Because driver status for CNAs is often unclear

or ambiguously reported across studies, we developed and

applied a cohort-level CNA driver identification method that

retains statistical outliers relative to background aneuploidies to

enrich the initial set of CNA calls for likely driver alterations

(Supplementary Fig. S10, see Materials and Methods). Similarly,

cfDNASNVs, indels, and fusionswere filtered to clonal alterations

(clonality > 0.9) to enrich for likely truncal drivers (see Materials

and Methods).

0
0

.1
0
.2

0
.3

0
.2

0
.1

0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.0
8

0
.0

6
0

.0
4

0
.0

2
0

BA

DC

Missense

Mutation type

In-frame del

L858R

T790M

E746_A750del

G719X S768I
L861Q

TP53

Nonsense Missense

Mutation type

T
C

G
A

 m
u

t 
fr

e
q

R273

R248

R175

R213

EGFR

R273X MAF

Min:  0.09%

Median: 0.74%

Mean:  6.4%

Max:  83.4%

Cell-free DNA %

0 10 20c
tD

N
A

 m
u

t 
fr

e
q

TAD DBD Tet

T
C

G
A

 m
u

t 
fr

e
q

c
tD

N
A

 m
u
t 
fr

e
q

Tyrosine kinase domain

0 5 10 15 20

0
5

1
0

1
5

2
0

CNA Frequency rank (TCGA)

C
N

A
 F

re
q
u
e
n
c
y
 r

a
n
k
 (

c
fD

N
A

) ρ = 0.87

MYC

FGFR1

PIK3CA

ERBB2

EGFR

BRAF

CCNE1

KRAS

MET

CCND1

CDK6

RAF1

CCND2
PDGFRA

KIT

CDK4
FGFR2

AR EML4 intron

ctDNA Breakpoints

(n = 69)

COSMIC Breakpoints

(n = 375)

13

6

20

other

47%

35%

14%

4%

12

10

2

8

6

4

0

41%

35%

10%

14%

Figure 2.

Comparison of cfDNA alteration patterns to tumor tissue alteration patterns in TCGA and COSMIC. A, Per-codon mutation frequencies for SNVs in the TP53

coding sequence [cfDNA n ¼ 14,696 SNVs (10,574 samples); tissue/TCGA n ¼ 1,951 SNVs (1,845 samples)]. B, Per-codon mutation frequencies for the

EGFR tyrosine kinase domain (exons 18–24) [cfDNA n ¼ 3,098 SNVs/indels (2,095 samples); tissue/TCGA n ¼ 112 SNVs/indels (96 samples)]. C, Rank-by-rank

comparison of amplification frequencies in breast cancer from the cfDNA cohort (1,010 patients with amplifications out of 2,808 patients) versus the tissue/TCGA

cohort (413 samples with amplifications out of 816 profiled samples). D, Comparison of EML4–ALK fusion breakpoints for cfDNA versus tissue (COSMIC).

Top, Schematic showing breakpoints versus VAF, expressed as cfDNA percentage, for EML4–ALK fusions detected in cfDNA. Bottom, Breakpoint frequency

per EML4 intron; tissue data were compiled by the COSMIC database (http://cancer.sanger.ac.uk/cosmic) from various literature sources.
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In LUAD, strong evidence for mutual exclusivity was observed

in cfDNA across several pairs of genes (Fig. 4). Importantly, the

tendency for mutual exclusivity increased when comparing the

post-clonality-filtering alterations to the pre-filtering alterations

(Supplementary Figs. S11 and S12; Supplementary Tables S7–

S12). Of note, KRAS and EGFR were highly mutually exclusive in

both cases, but with a 30� drop in the proportion of double-

mutant [KRAS-alt; EGFR-alt] genotypes after filtering to clonal

alterations. For MET and EGFR, a tendency toward alteration

co-occurrence pre-filtering (FDR ¼ 6 � 10�6, log OR ¼ 0.6)

was flipped to one of exclusivity after filtering (FDR ¼ 0.03, log

OR ¼ �1.0), suggesting that mutation co-occurrence before
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Estimated cfDNA clonality reveals trends consistent with indication-specific biology. A, Copy number versus VAF for mutant EGFR alleles with

amplifications in NSCLC. Note the distinct population of low-VAF/high CNAs, and the log-linear behavior among high-VAF alterations. B, Estimated cfDNA

clonality is plotted for all EGFRmutations in LUAD (blue) or colorectal cancer (pink). Thresholds for clonality filtering are indicated by vertical gray lines. Themedian

clonality and percentage ofmutations that were clonal (clonality >0.9) or subclonal (clonality < 0.1) for all EGFRmutations, for L858R alone in LUAD, or for recurrent

ectodomain mutations ("ecto") in colorectal cancer are shown below the histogram. C, CfDNA clonality for all APC SNVs in colorectal cancer cases.

Nonsense variants are colored red, missense variants are green, and synonymous are gray. D, CfDNA clonality of a canonical EGFR driver alteration (L858R)

and two resistance alterations (T790M, C797S) in cfDNA from 1,119 NSCLC samples. Note the relationship between variant clonality and presumed order of

treatment with a given therapy is consistent with the sequential emergence of each resistance alteration (erlotinib is given to patients with EGFRL858R; EGFRT790M

confers resistance to erlotinib, and patients with EGFRL858R,T790M can then be given osimertinib; EGFRC797S confers resistance to osimertinib).
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filtering was caused by subclonal resistance alterations, as

opposed to co-occurring truncal mutations (the pre-filtered data

had a high prevalence of MET amplifications and EGFRT790M,

both of which are associated with resistance to erlotinib). A

similar pattern of flipping from co-occurrence (nonsignificant)

to exclusivity was seen for ERBB2 and EGFR alterations (FDR

¼ 2 � 10�5, log OR ¼ �1.9).

In breast cancer, five driver genes (ERBB2, FGFR1, BRCA1,

BRCA2, and AKT1) showed tendencies toward mutual exclusivity

with PIK3CA after clonality filtering. Exclusivity was not neces-

sarily expected for PIK3CA alterations except with respect to AKT1

mutations (20), reflecting the more complementary nature of

driver alterations in this disease (Supplementary Figs. S11 and

S12; Supplementary Tables S7–S12). In colorectal cancer, mutual

exclusivity was observed between KRAS and BRAF, ERBB2, and

NRAS, similar to reports in tumor tissue. In the pre-filtered data,

KRAS and PIK3CA tended to co-occur, but in the post-filtering

data they showed a weak trend toward exclusivity, suggesting the

presence of subclonal KRAS resistance alterations in the cfDNA

colorectal cancer samples. We also noted that filtered FGFR1

amplifications and ERBB2 (HER2) amplifications showed a weak

trend toward exclusivity in breast cancer and colorectal cancer,

although in the latter case, significance could not be readily

assessed owing to the small number of certain genotype classes.

The landscape of actionable resistance alterations in cfDNA

The large cfDNA cohort provided a unique opportunity to

explore qualitatively and quantitatively the evolution of resis-

tance alterations in patients who have progressed on targeted

therapies in regular clinical practice. To estimate the frequency of

actionable resistance alterations (defined as alterations thatmight

influence a physician's choice of therapy at disease progression) in

advanced, previously treated cancer patients, we identified known

resistance alterations in the cfDNA cohort across six cancer types:

NSCLC, breast cancer, colorectal cancer, prostate cancer, mela-

noma, and GIST. A total of 3,397 samples of the 14,998 samples

analyzed (22.6%) had at least one of the 134 known resistance

alterations that were identified by the cfDNA test. The proportion
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Mutual exclusivity analysis of cfDNA alterations for LUAD before and after filtering for clonality and CNA driver status. Numbers of patients are indicated

at bottom right of each plot. The top oncoprint shows all alterations in alteration-positive patients, whereas the bottom oncoprint shows truncal SNVs, indels,

and fusions (clonality > 0.9), and likely driver CNAs across patients that have at least one clonal driver alteration. Gray boxes indicate the absence of

alterations, and the color/shape combinations corresponding to the various alteration types are indicated below each oncoprint. Frequencies of gene

alterations within each plot are indicated at left (samples lacking clonal alterations in the selected genes were omitted).

Zill et al.

Clin Cancer Res; 24(15) August 1, 2018 Clinical Cancer Research3534

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

4
/1

5
/3

5
2
8
/2

0
4
7
3
6
9
/3

5
2
8
.p

d
f b

y
 g

u
e

s
t o

n
 2

6
 A

u
g

u
s
t 2

0
2
2



of samples harboring likely resistance alterations increased when

each indication was limited to samples harboring driver altera-

tions with associated FDA-approved targeted drugs (hereafter,

"on-label targetable driver alterations"), consistent with the resis-

tance alterations having arisen due to therapy (Fig. 5A and B;

Supplementary Table S13). The most common resistance altera-

tions were EGFRT790M and MET CNA in NSCLC, AR ligand-

binding-domain SNVs in prostate cancer, KRASG12/G13/Q61 in

colorectal cancer, and ESR1L536/Y537/D538 in breast cancer

(Fig. 5B; Supplementary Table S13).

Although some resistance mutations can either occur as pri-

mary, truncal drivers or emerge secondarily upon treatment (e.g.,

KRASG12X/G13X in colorectal cancer can be a truncal driver or

emerge upon treatment with cetuximab), estimated cfDNA clon-

ality helped distinguish resistance alterations whose emergence

was likely caused by therapy pressure (Supplementary Fig. S13). A

conservative estimate, focusing on clearly subclonal SNVs (clon-

ality <0.1), was that at least 18.6% (ranging 10%–34% across

cancer types) of samples with on-label targetable alterations

(381/2,053) had emerging secondary resistance alterations to
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CfDNA landscape of resistance to on-label therapies across cancer types. A, Landscape of resistance alterations in cfDNA. Numbers of patients with various

resistance alterations (y-axis, left) to targeted therapies (x-axis, bottom) in 6 common cancer types (top) are plotted. Note that some patients harbored

multiple distinct resistance alterations. Cancer type/genotype categories are AR-mutant prostate cancer, ALK-fusion–positive NSCLC, EGFR-mutant NSCLC,

breast cancer with ESR1 or ERBB2 (HER2) mutations, colorectal cancer, BRAF-mutant melanoma, and KIT-mutant gastrointestinal stromal tumor (GIST).

The "EGFRmut" category for NSCLC includes variants A722V, L747P, L747S, V769M, T854A, T854S (18 mutations in total). For each indication, the "Actionable

samples" group showed a highly significant enrichment for resistance alterations (P < 10�6, c2 test). B, The numbers of samples harboring putative resistance

mutations found in cfDNA and corresponding on-label targeted therapies to which these mutations would confer resistance across six cancer types. "Diagnosis"

indicates the patient diagnosis provided by ordering clinician on the test requisition form. See Supplementary Table S13 for the complete details of the

candidate resistance alterations. C, Longitudinal monitoring analysis of an NSCLC patient with emerging resistance (T790M) in the third draw after presumptive

EGFR inhibitor therapy indicated by the L858R mutation. Colored lines track the VAF (cfDNA %) of each mutation across three consecutive blood draws.

Note that the y-axis is log scale. D, Monitoring analysis showing polyclonal ESR1 mutations in a breast cancer patient, which confer resistance to aromatase

inhibitors, and possible patient response to therapy over time. Asterisk indicates four additional amplifications (not in PIK3CA) were detected in the

first sample. E, Monitoring analysis showing stability of the cfDNA clonal structure (relative VAF) over consecutive draws in an NSCLC patient lacking

on-label-therapy-indicating mutations.
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those on-label therapies. Further, 24% of those resistance-

harboring samples (91/381) had >1 alteration associated with

resistance to the same therapy, suggesting independent evolution

in distinct tumor lesions (21) or sequential treatment with dis-

tinct therapies targeted to the same gene. For example, oneNSCLC

patient had an EML4–ALK fusion (VAF of 7.1%) and ALK SNVs

reported to confer resistance to crizotinib (L1196M, 2.5%),

crizotinib/alectinib (I1171T, 0.1%), and crizotinib/ceritinib/alec-

tinib (G1202R, 5%). In another example, the treatment history of

certain patients harboring EGFRL858R or EGFRe19del driver altera-

tions was immediately apparent by the combined presence of

secondary EGFRT790M and tertiary EGFRC797S resistance altera-

tions (24 patients had both EGFRT790M and EGFRC797S
—21

patients had these two variants in cis, the other 3 were in trans).

The cfDNA clonality of EGFRC797S was generally lower in those

cases than that of EGFRT790M (Fig. 3C), consistent with tumor

evolution following sequential lines of treatment with erlotinib/

afatinib/gefitinib, followed by osimertinib at progression.

Novel resistance alterations were also identified in this clinical

cohort, including ERBB2T798I (analogous to EGFRT790M), which

causes resistance to an ERBB2 tyrosine kinase inhibitor;

METD1228N, METY1230H, andMETG1163R (analogous to ALKG1202R

and ROS1G2302R) causing resistance of MET exon 14-mutated

NSCLC to a next-generation MET inhibitor; and five FGFR2

mutations (V564F, N549H, K641R, E565A, and L617V) shown

to drive resistance to a selective pan-FGFR inhibitor (22–26); and

the recurrent EGFR ectodomain mutations V441D/G, which arise

in the setting of cetuximab resistance in colorectal cancer but are

not yet characterized as functional (25). These putative resistance

alterations were consistently subclonal relative to the original

driver alteration and many were missed by single-metastatic-site

tissue biopsy but confirmed by repeat biopsy or biopsy of mul-

tiple metastases at autopsy (22, 23, 26).

To illustrate the temporal dimension of the cfDNA landscape,

we identified patients with multiple tests and significant clonal

structure apparent in their ctDNA. These longitudinal cases illus-

trated emerging or polyclonal resistance after presumptive tar-

geted therapy (Fig. 5C andD), as well as stability of VAF estimates

and clonality estimates over time (Fig. 5E).

Discussion

Much of our understanding of cancer genomes is derived from

early-stage, treatment-na€�ve cancers via consortia efforts such as

TCGA. However, the desire to increase treatment efficacy in

advanced cancers that likely have evolved considerably from

baseline has led to a recent shift to "real world" cancer genomics

studies focused on the realities of the clinic, yet grounded in

lessons from earlier-stage cancers (27, 28). It is becoming increas-

ingly clear that obtaining comprehensive genomic assessments,

across heterogeneous tumor subclones, will be necessary for

tailoring effective therapies for advanced cancer patients (9, 10).

We have provided the largest cohort-level snapshot of genomic

alterations in advanced cancer patients by cfDNA analysis in real-

life clinical practice. Our results demonstrate that patterns and

frequencies of truncal driver alterations in advanced cancers reflect

patterns found in early-stage disease, but also reflect the increased

complexity of advanced, treated cancers. We found that cfDNA

alterations (SNVs and small, activating indels) in TP53, EGFR,

KRAS, PIK3CA, and BRAF strongly correlated with TCGA tissue

alterations (r¼0.90–0.99, Fig. 2A andB), and that correlations for

amplification frequency ranks in breast cancer and locations of

intronic fusion breakpoints inNSCLCwere similarly high (Fig. 2C

andD). Thehigh sensitivity of the cfDNAassay combinedwith the

more evolved advanced cancers tested at progression, which have

greater numbers of mutations than earlier-stage, treatment-na€�ve

cancers, may contribute to differences in estimated tumor muta-

tion burden versus TCGA (10, 28). Importantly, we show that

accurate estimation of tumor mutation burden from plasma

cfDNA will require taking ctDNA level into account, as the two

factors are correlated (Fig. 1D). Our estimates of ctDNA levels are

based on the copy-number-adjusted VAF of cfDNA somatic

alterations, and future studies should also consider allele-specific

molecule counts (germline allele imbalance) in estimates of

tumor DNA in circulation.

Our inference of tumor mutation clonality based on copy-

number-adjusted relative cfDNA VAF (Fig. 3) enabled a recapit-

ulation ofmutual exclusivity among truncal driver mutations and

facilitated identification of subclonal emerging resistance altera-

tions (Figs. 4 and 5C; Supplementary Figs. S6–S8). These results

suggest that mutation clonality, as it exists in tumor tissue, can be

estimated from properly normalized relative cfDNA VAFs, as has

been previously hypothesized (29). High accuracy in VAF esti-

mation is likely key to the success of this approach, and notably,

VAFs measured by the cfDNA NGS assay used in this study show

good agreement with digital droplet PCR (30, 31). This approach

points to the possibility of analyzing the clonal structures of

tumors from cfDNA sequencing data, unencumbered by the

complications of tumor heterogeneity and tumor impurity intro-

duced by single-region tissue sampling. However, the estimation

of tumor mutation clonality from cfDNA is subject to several

sources of inaccuracy, including absence of sequence coverage

from the cfDNA panel, nonuniform shedding of cfDNA across

tumor subclones, and low ctDNA levels. Future studies of under-

explored biological factors, such as the variability of cfDNA

shedding via tumor-cell death across patients and the uniformity

of cfDNA shedding across distinct tumor sites harboring genet-

ically distinct clones, could enable statistical modeling of tumor

clonal structures using cfDNA VAFs and cfDNA molecule counts

per locus or per allele.

Themost notable differences in prevalence of driver alterations

between cfDNA and tissue cohorts were EGFR and KRAS altera-

tions in LUAD (whose prevalences were flipped), and the higher

frequency of ESR1mutations in cfDNA breast cancer samples and

of TP53 mutations in the cfDNA colorectal cancer samples. The

higher EGFR alteration prevalence in LUAD cfDNAwas likely due

to a population bias resulting from clinicians ordering the cfDNA

test at progression on an EGFR TKI (median time between

diagnosis and plasma collection of 335 days). This is supported

by EGFRT790M being the one of the most common EGFR variants

in the cfDNA cohort, second only to EGFR exon 19 deletion driver

mutations. Screening known EGFR-mutant NSCLC patients at

progression for resistance mutations is routine practice whereas

re-profilingKRAS-mutant NSCLC patients would generally not be

done, leading to an overrepresentation of EGFR driver mutations,

and the concomitant underrepresentation of KRASmutations, in

this cohort. Similarly, the higher frequency of ESR1 mutations

(a documented resistance mechanism to aromatase inhibitors)

likely reflects the clinical application of ctDNA assays at progres-

sion. There are several possible explanations for the higher TP53

prevalence in cfDNA colorectal cancer samples relative to TCGA:

stage III/IV tumors, which predominate the cfDNA cohort, may

Zill et al.
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have higher frequencies of TP53 alterations than stage I/II tumors;

more subclonal TP53 mutations may have been detected due to

the high sensitivity of the cfDNA assay; or some TP53 mutations

may stem from somatic myeloid malignancies known as clonal

hematopoiesis of indeterminate potential (32, 33). The most

likely explanation is that the TCGA cohort (< 300 samples)

underestimates TP53 mutation prevalence in colorectal cancer

relative to the larger 1,374 sample GENIE cohort, the latter

reporting a 68.5% mutation prevalence for this gene (34).

The prevalence of resistance alterations that are informative for

FDA-approved therapies or clinical trials of novel targeted agents

is a key, and clinically important finding of this cfDNA study.

Nearly 1 in 4 cfDNA alteration–positive patients (22.6%) across 6

cancer indications had one or more alterations previously sug-

gested to confer resistance to an FDA-approved on-label therapy

(Fig. 5A and B), which would inform clinical decision-making.

The significant enrichments for these candidate resistance altera-

tions when cohorts were subset to patients with therapeutically

informative driver alterations suggested that they were indeed

linked to prior patient treatment. Our estimates of the frequencies

of secondary, rather than primary, resistance alterations

(10%–34% of patients across the 6 cancer types) were likely

conservative, as we examined only low-level subclonal SNVs

(clonality < 0.1), in part because accurate assessment of clonality

for CNAs remains difficult. As expected, the prevalence of resis-

tance alterations was higher in cfDNA than TCGA/tissue, as these

alterations would not be present in early-stage tissue biopsies. For

instance, the high frequency of cfDNA ESR1 mutations in breast

cancer patients likely reflected prior treatment with aromatase

inhibitors. Additionally,EGFRT790Mwasoneof themost common

EGFR mutations found in the cfDNA NSCLC cohort (8% of

patients), but was seen in only two patients from the TCGA tissue

NSCLC cohort (0.3%).

Although our cohort of clinically ordered cfDNA tests is uncon-

trolled, its large size provides a realistic cross-section of patients

with advanced disease at the forefront of cancer care. Interpreta-

tion of our findings should take into consideration the selection

biases related to cfDNA test ordering patterns in clinical practice

and other potential limitations. Genomic alteration prevalence

may be biased by preferential ordering of the cfDNA test for

patients with certain demographic characteristics, such as non-

smoking females with NSCLC (thereby enriching for EGFRmuta-

tion over KRAS mutation). Plasma-based genotyping is often

ordered at progression in advanced cancer and thus is biased

toward higher prevalence of resistance alterations, as discussed

above. Although the cfDNA panel (70 genes) was focused pri-

marily on the therapeutically informative portion of the cancer

genome, a tradeoff of its relatively small size may be somewhat

reduced accuracy for estimating mutation clonality relative to an

assay with a larger genomic footprint. However, it is currently

impractical to perform whole-exome sequencing of cfDNA at

>15,000� coverage.

This clinical cohort represents the largest sequencing landscape

of resistance in advanced cancer patients and builds upon the

body of primary driver alterations characterized by the TCGA,

GENIE, and other projects. As such, a portion of this database has

been included in the Blood Profiling Atlas in Cancer, a National

Cancer Moonshot Initiative (35). Improved detection of resis-

tance mutations may facilitate enrollment in clinical trials and

enable the development of more accurate biomarkers of response

to therapy (22, 36, 37). Therefore, cfDNA and other minimally

invasive techniques address a real and unmet need, as it is

essential to provide real-time tumor genotyping at the time of

progression to guide subsequent therapeutic strategies.
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