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ABSTRACT   

3′  untranslated  regions  (3′  UTRs)  post-transcriptionally  regulate  mRNA  stability,  localization,            

and  translation  rate.  While  3′-UTR  isoforms  have  been  globally  quantified  in  limited  cell  types                

using  bulk  measurements,  their  differential  usage  among  cell  types  during  mammalian             

development  remains  poorly  characterized.  In  this  study,  we  examined  a  dataset  comprising  ~2               

million  cells  spanning  E9.5 – E13.5  of  mouse  embryonic  development  to  quantify            

transcriptome-wide  changes  in  alternative  polyadenylation  (APA).  We  observe  a  global            

lengthening  of  3′  UTRs  across  embryonic  stages  in  all  cell  types,  although  we  detect  shorter  3′                  

UTRs  in  hematopoietic  lineages  and  longer  3′  UTRs  in  neuronal  cell  types  within  each  stage.  An                  

analysis  of  RBP  dynamics  identifies  ELAV-like  family  members,  which  are  concomitantly             

induced  in  neuronal  lineages  and  developmental  stages  experiencing  3′-UTR  lengthening,  as             

putative  regulators  of  APA.  By  measuring  3′-UTR  isoforms  in  an  expansive  single  cell  dataset,                

our  work  provides  a  transcriptome-wide  and  organism-wide  map  of  the  dynamic  landscape  of               

alternative   polyadenylation   during   mammalian   organogenesis.   
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INTRODUCTION   

During  transcriptional  elongation,  the  cleavage  and  polyadenylation  machinery  governs  the            

specification  of  the  3′  terminal  end  of  an  mRNA 1 .  This  regulated  process  can  generate  a  diversity                  

of  3′-UTR  isoforms  for  any  given  gene,  dramatically  altering  the  3′-UTR  length  and  sequence  of                 

the  resulting  mature  transcripts 2 .  This  phenomenon,  known  as  alternative  polyadenylation  (APA),             

has  been  observed  in  over  70%  of  mammalian  genes 3,4 .  Alternative  3′-UTR  isoforms  bind  to                

different  sets  of  microRNAs  and  RNA-binding  proteins,  which  collectively  modulate  a  multitude              

of  post-transcriptional  gene  regulatory  mechanisms 5 .  These  include  changes  in  mRNA            

localization 6 ,  degradation  rates 7–9 ,  and  translational  efficiency 10 .  The  differential  abundance  of  a             

variety  of  nuclear  factors  serves  to  regulate  APA  in  a  cell-type-specific  manner 1 .  Abnormal               

regulation  of  the  cleavage  and  polyadenylation  machinery  has  also  been  associated  with              

hyperproliferative   or   disease   states   such   as   cancer 11–13 .   

  

Techniques  to  directly  measure  APA  in  the  transcriptome  largely  rely  upon  the  isolation  of  RNA                 

from  bulk  tissue,  resulting  in  an  average  readout  of  the  landscape  of  3′  ends  in  a  heterogeneous                   

population  of  cells.  Existing  3′-end  sequencing  methods  include  3′-seq/3SEQ 14,15 ,  3P-seq 8,16 ,            

PAS-seq 17 ,  3′READS 18 ,  PolyA-seq 3 ,  and  2P-seq 19 .  The  successful  application  of  these            

methodologies  in  mammalian  cells  has  led  to  the  annotation  of  hundreds  of  thousands  of                

polyadenylation  sites  (PAS)  in  both  human  and  mouse  genomes 20,21 .  Bulk  3′-end  sequencing  and               

similar  transcriptomic  data  have  guided  the  observation  that  3′  UTRs  generally  lengthen  during               

mammalian  embryogenesis 22 ,  with  proliferating  cell  types  such  as  blood  exhibiting  shortened  3′              

UTRs 11,12    and   neuronal   ones   exhibiting   lengthened   3′   UTRs 17,23 .   
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In  contrast  to  bulk  methods,  single-cell  RNA  sequencing  (scRNA-seq)  protocols  capture  a  rich               

diversity  of  individual  cell  types,  with  many  protocols  enriching  for  mRNA  3′  ends  via  poly(A)                 

priming 24–29 .  Thus,  these  technologies  inherently  offer  an  unprecedented  opportunity  to  observe             

APA  events  during  the  process  of  cellular  differentiation.  They  also  enable  the  decomposition  of                

complex  tissues  into  individual  cell  types,  enabling  the  assessment  of  APA  with  greater  cell  type                 

resolution.  Although  a  proof-of-concept  study  has  demonstrated  the  utility  of  scRNA-seq  data  in               

evaluating  APA 30 ,  such  methods  have  not  yet  been  applied  to  investigate  more  comprehensive               

scRNA-seq  datasets  such  as  those  capturing  dozens  of  cell  types  during  a  mammalian               

developmental  time  course 31,32 .  In  this  study,  we  examined  APA  using  MOCA  (“mammalian              

organogenesis  cell  atlas”),  a  dataset  comprising  single  nucleus  transcriptional  profiling  of  ~2              

million  cells  encompassing  38  major  cell  types  across  five  stages  ( i.e. ,  E9.5  ,   E10.5,  E11.5,  E12.5,                  

and    E13.5)   of   mouse   embryonic   development 31 .   
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RESULTS   

An   integrated   annotation   set   of    3′   UTR s   and   poly(A)   sites   to   evaluate   APA   

Given  the  reliance  of  many  scRNA-seq  protocols  on  poly(A)  priming,  such  methods  enrich  for                

both  mRNA   3′  ends  as  well  as  internal  A-rich  stretches  of  homopolymers .  Thus,  internal  priming                 

artifacts  obscure  accurate  quantitation  of  APA,  even  more  so  in  datasets  in  which  immature                

mRNAs  ( i.e. ,  without  excised  introns)  are  isolated  from  the  nucleus,  as  is  the  case  with  the                  

sci-RNA-seq3  protocol  used  in  MOCA 31 .  We  therefore  sought  to  develop  a  simple  computational               

method  to  deconvolve  the  data  to  specifically  isolate  and  quantify  mRNA   3′  ends .  Towards  this                 

goal,  we  built  integrated  databases  of  poly(A)  site  (PAS)  and   3′-UTR  annotations  to  guide  the                 

interpretation  of  which  subset  of  mapped  reads  were  supported  by  orthogonal  evidence  to  reflect                

authentic  3′  termini,  as  opposed  to  A-rich  sites  internal  to  a  mature  or  nascent  transcript .  In  doing                   

so,  our  goal  was  to  minimize  the  shortcomings  of  any  individual  database,  each  of  which  utilize                  

different   data   sources   and   strategies   for   PAS   and    3′-UTR    annotation.   

  

To  generate  a  reliable  PAS  set,  we  considered  three  of  the  most  comprehensive  mouse  PAS                 

annotation  databases  available  with  respect  to  the  mm10  mouse  genome  build:  Gencode  M25 33 ,               

which  contains   56,592  PASs;  PolyA_DB  v3 20 ,  which  contains   128,052  PASs;  and  PolyASite              

2.0 21 ,  which  contains 108,938  PASs.  We  intersected  the  PASs  from  each  pair  of  these  resources                 

to  evaluate  the  consistency  among  databases.  While  the  majority  of  sites  were  present  in  at  least                  

two  databases,  40.0%,  29.4%,  and  30.4%  were  unique  to  PolyA_DB,  PolyASite,  and  Gencode,               

respectively  ( Fig.  1A ).  To  verify  the  reliability  of  PASs  present  in  only  a  single  database  (and                  

therefore  the  most  likely  to  contain  false  positives),  we  plotted  the  profile  of  nucleotide                
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frequencies  in  the  ±50nt  region  surrounding  the  annotated  cleavage  and  polyadenylation  sites              

( Supplementary  Fig.  1A ).  The  unique  PASs  of  each  resource  exhibited  profiles  consistent  with               

positionally-enriched  mammalian  motifs  known  to  guide  mRNA  cleavage,  including  several            

U-rich  motifs,  the  upstream  AAUAAA  motif,  and  the  downstream  GU-rich  motif 34 .  Moreover,              

we  detected  a  strong  enrichment  of  reads  mapping  immediately  upstream  of  this  set  of  PASs,                 

with  the  strongest  enrichment  spanning  the  -300nt  to  +20nt  region  around  the  PAS               

( Supplementary  Fig.  1B ).  Given  that  each  PAS  database  was  enriched  in  known  PAS  motifs,                

associated  with  mapped  reads,  and  held  information  complementary  to  the  other  databases,  we               

carried  forward  an  integrated  PAS  set  derived  from  the  union  of  the  three  databases.  This                 

integrated  PAS  set  recapitulated  these  same  characteristics,  exhibiting  both  consistency  with             

known  PAS  motifs  and  strong  read  enrichment  upstream  of  the  sites  ( Fig.  1B,C ).   Finally,  to  link                  

PASs  to  specific  genes,  we  utilized  our  previous  3 ′ -UTR  annotation  pipeline  ( Methods ) 9,35  to               

establish  an  integrated  set  by  carrying  forward  the  longest  3 ′  UTRs  from  four  resources:  i)                 

Gencode  M25 33 ,  ii)  RefSeq 36 ,  iii)  3 ′  UTRs  with  extreme  lengthening 23 ,  and  iv)  bulk  3P-seq-based                

annotations  derived  from  ten  mouse  tissues  and  cell  lines 8 .  This  integrated  3 ′ -UTR  annotation  set                

helped  minimize  the  possibility  that  a  PAS  may  be  annotated  outside  of  a  known  3 ′  UTR  and                   

thus   remain   unlinked   to   a   specific   gene.   

  

Using  our  integrated  PAS  and  3 ′ -UTR  databases   ( Fig.  1D ),  we  sequentially  filtered  our               

scRNA-seq  reads  from  MOCA  to  focus  on  the  subset  mapping  to   3 ′  UTRs  within  the  -300  to  +20                    

vicinity  of  a  known  PAS  ( Fig.  1C ) .  Due  to  the  abundant  mapping  of  reads  to  introns  in  the                    

nucleus-derived  MOCA  dataset  ( Supplementary  Fig.  1C ),  generally  representing  internal           
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priming  within  unspliced  transcripts,  there  was  nearly  a  10-fold  loss  in  read  counts  after  iterative                 

steps  of  filtering;  however,  over  200  million  reads  were  carried  forward  ( Supplementary  Fig.               

1D ).  We  then  counted  reads  passing  the  filtering  steps  towards  the  single  annotated  PAS  in  its                  

vicinity,  enabling  the  tabulation  of  read  counts  associated  with  each  PAS  ( Fig.  1D ).  In                

ambiguous  cases  in  which  a  read  was  located  in  the  vicinity  of  multiple  PASs,  we  greedily                  

assigned  the  read  to  count  towards  the  PAS  harboring  the  most  uniquely  assignable  reads.                

Finally,  based  upon  the  relative  counts  assigned  to  each  PAS  for  a  given  gene,  we  visualized  the                   

“isoform  inclusion  rate”  (IIR),  reflecting  the  proportion  of   3 ′ -UTR  isoforms  which  include  a               

given   nucleotide   position 8,9,35    ( Fig.   1D ).   

  

To  validate  that  these  filtering  and  read-to-PAS  assignment  procedures  led  to  reliable  results,  we                

performed  two  quality  control  (QC)  comparisons.  As  a  first  QC,  reasoning  that  the  removal  of                 

internal  priming  artifacts  should  improve  the  quantitation  of  relative  gene  expression  levels,  we               

compared  the  relationship  between  PAS  counts  and  median  gene  expression  levels  computed              

across  a  panel  of  254  mouse  RNA-seq  samples 37 .  While  the  traditional  method  of  counting  reads                 

in  the  gene  body  displayed  a  strong  correlation  to  median  expression  levels  (Pearson  r  =  0.81,                  

Spearman  rho  =  0.77),  it  displayed  a  clear  bias  in  inflating  estimates  for  a  large  cohort  of  genes                    

( Fig.  1E ).  Considering  only  our  filtered  PAS-assigned  reads  ameliorated  this  bias,  which  led  to  a                 

stronger  correlation  to  relative  mRNA  expression  levels  (Pearson  r  =  0.88,  Spearman  rho  =  0.85)                 

( Fig.  1E ).  We  speculated  that  the  bias  in  the  gene  body  method  relative  to  the  PAS-assigned  read                   

counting  method  could  be  explained  by  the  over-abundance  of  intron-mapping  reads             

( Supplementary  Fig.  1C )  and  enrichment  of  A-rich  stretches  that  nucleate  the  production  of               
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internal  priming  artifacts.  Indeed,  a  lasso  regression  model  trained  to  predict  the  difference               

between  the  two  strategies  confirmed  that  intron  length  was  strongly  associated  with  inflated               

counts;  moreover,  “AAA”  was  the  top-ranked  of  all  3-mers  associated  with  inflated  counts  in  the                 

gene   body   (Pearson   r   =   0.56,   Spearman   rho   =   0.58,    Supplementary   Fig.   2 ).   

  

As  a  second  QC,  we  evaluated  the  similarity  between  our  IIR  profiles  to  those  derived  from  bulk                   

3P-seq  data 8 .  We  considered  the  latter  as  a  gold  standard  in  accurately  quantifying  PAS                

abundances  due  to  the  involvement  of  a  splint-ligation  step  in  the  3P-seq  protocol,  which                

specifically  removes  internal  priming  artifacts 16 .  We  found  that  the  IIR  profiles  for  our               

PAS-assigned  reads  more  strongly  mirrored  those  of  bulk  data  for  two  representative  genes  ( Fig.                

1F ).  Quantifying  the  deviation  from  bulk  as  the  Mean  Absolute  Deviation  (MAD)              

( Supplementary  Fig.  3A )  allowed  us  to  measure  the  deviations  between  our  pre-  and               

post-processed  data  to  bulk  3P-seq  measurements.  Applying  this  metric  globally  to  all  genes               

uncovered  that  78%  of  genes  exhibited  improved  similarity  to  bulk  after  the  reads  were  assigned                 

to  PASs;  moreover,  47%  of  genes  achieved  MAD  <=  0.1  after  read-to-PAS  assignment,  relative                

to  only  7%  of  genes  beforehand  ( Supplementary  Fig.  3B ).  Inspection  of  IIR  profiles  for  nine                 

representative  genes  further  confirmed  the  general  improvement  in  consistency  with  bulk  3P-seq              

data   ( Supplementary   Fig.   3C ).   
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Figure  1.  A  computational  pipeline  to  accurately  quantify  3′-UTR  isoform  abundances  from              
scRNA-seq  data.  (A)   Venn  diagram  of  a  set  of  three  PAS  annotation  resources  and  their  degree  of                   
intersection.   A  PAS  intersecting  within  ±20nt  from  another  was  considered  an  intersecting  hit  to  account                 
for  the  heterogeneity  of  the  cleavage  and  polyadenylation  machinery   16 .   (B)   Profile  of  nucleotide                
frequencies  in  the   ±50nt  vicinity  of   the  annotated  cleavage  site  position,  derived  from  the  union  of  the                   
three  databases.  Shown  above  the  plot  are  the  known   positionally-enriched  mammalian  motifs  known  to                
guide  mRNA  cleavage 34 .   (C)   Distribution  of  scRNA-seq  reads  mapping  within  the   ±400nt  vicinity   of  the                 
annotated  cleavage  site  position,  derived  from  the  union  of  the  three  databases.  To  avoid  an  ambiguous                  
signal,  the  analysis  was  restricted  to  PASs  not  within  the  same   ±400nt   window  as  another  PAS.  Data  is                    
binned  at  5nt  resolution.  Shown  within  the  dotted  red  lines  are  the  acceptable  distance  thresholds  to                  
associate  a  read  to  an  annotated  PAS.  See  also   Supplementary  Fig.  1   for  comparisons  of  (B-C)  for  each                    
individual  PAS  database .   (D)   Schematic  depicting  the  association  of  each  scRNA-seq  read  to  a  PAS  in                  
order  to  quantify  relative  PAS  abundances  for  a  gene.  Shown  from  top  to  bottom  are:  (i)  The  read                    
coverage  of  scRNA-seq  reads  mapped  to  the  gene.  (ii)  The  three  PAS  annotation  resources  considered,                 
showing  the  location  of  each  PAS  along  the  3′  UTR.  (iii)  The  subset  of  chosen  PASs  to  which  reads  were                      
greedily  assigned,  colored  from  blue  to  green  to  indicate  which  reads  from  the  coverage  plot  were                  
assigned  to  them.  (iv)  The  three  gene  annotation  databases  integrated  with  bulk  3P-seq  data  from  ten                  
tissues  and  cell  lines 8  to  identify  the  longest  known  3′  UTR.  This  integrated  3′  UTR  was  used  to  associate                     
PASs  to  the  gene.  (v)  A  visualization  of  relative  3′-UTR  isoform  abundances  after  read-to-PAS                
assignment,  with  vertical  lines  at  each  chosen  PAS  proportional  to  the  assigned  number  of  read  counts.                  
Reads  not  overlapping  within  the  -300  to  +20  vicinity  of  a  known  PAS  were  treated  as  likely  internal                    
priming  artifacts  and  discarded.   (vi)   The  resulting  isoform  inclusion  rate  (IIR)  plot  to  quantify  the                 
cumulative  proportion  of  3′-UTR  isoforms  remaining  along  the  length  of  a  3′  UTR.  See  also                 
Supplementary  Table  1   for  the  integrated   3′-UTR  database  and  gene  annotations.   (E)  Scatter  plots                
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comparing  gene  expression  levels  estimated  using  scRNA-seq  read  abundances  mapping  to  the  full  gene                
body  (left  panel)  or  the  sum  of  reads  mapping  to  PASs  (right  panel),  relative  to  median  gene  expression                    
levels  from  bulk  RNA-seq  data 37  (n  =  19,517  protein-coding  genes).  Regions  are  colored  according  to  the                  
density  of  data  from  light  blue  (low  density)  to  yellow  (high  density).  Shown  are  the  corresponding                  
Pearson  (r)  and  Spearman  (rho)  correlations  for  each  comparison.  See  also   Supplementary  Fig.  2   for                 
sequence  features  explaining  biased  estimates  in  the  gene  body  approach .   (F)   Shown  are  IIR  plots  for  two                   
genes,  comparing  the  profiles  for  the  raw  scRNA-seq  data  and  post-processed  data  after  read-to-PAS                
assignment  with  respect  to  the  profile  for  bulk  3P-seq  data   8  as  a  gold  standard.  Slight  vertical  jitter  was                     
added  for  enhanced  line  visibility.  See  also   Supplementary  Fig.  3   for  a  global  comparison  among  all                  
genes .   

  

Global   differences   in   3′-UTR   length   across   mouse   cell   types   and   developmental   time   

Having  assigned  reads  to  PASs  and  linked  them  to  genes,  we  next  sought  to  evaluate  global                 

properties  of  3′-UTR  shortening  and  lengthening  ( i.e. ,  as  quantified  by  differential  PAS  usage)               

across  cell  types  and  developmental  time.  Towards  this  goal,  we  computed  a  “gene  by  cell”                 

sparse  matrix  of  the  mean  length  among  all  3′-UTR  isoforms,  weighted  by  their  respective                

counts.  For  each  gene,  we  then  computed  each  cell’s  deviation  from  the  mean  of  3′-UTR  lengths                  

across  cells,  considering  only  non-missing  values.  Finally,  for  each  cell,  we  computed  the  mean                

of  these  deviations  across  genes  as  a  measure  of  the  global  behavior  of  the  transcriptome  through                  

the  perspective  of  APA.  We  projected  these  measurements  onto  a  global  map  of  38  t-SNE                 

clusters  representing  all  major  mouse  cell  types 31 .  Highlighting  the  top  ten  ranked  t-SNE  clusters                

with  the  largest  differences,  we  discovered  the  greatest  average  3′-UTR  lengths  among   stromal               

cells  and  three  neuronal  cell  types;  in  contrast,  the  shortest  lengths  occurred  in  three  blood  cell                  

types,  hepatocytes,  chondrocytes,  and  osteoblasts   ( Fig.  2A ).  Sub-clustering  each  of  the  38  t-SNE               

clusters  reinforced  these  findings,  but  revealed  additional  heterogeneity  within  each  cell  type              

( Supplementary  Fig.  4 ).  Segregating  our  dataset  by  the  five  sampled  timepoints,  we  observed               

an  apparent  global  3′-UTR  lengthening  across  developmental  time  ( Fig.  2B ).  Finally,  to  quantify               

the  joint  impact  of  cell  type  and  developmental  stage,  we  computed  the  average  behavior  among                 
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genes  and  cells  associated  with  each  of  38  t-SNE  clusters  and  5  developmental  stages.                

Partitioning  the  data  in  this  manner  reinforced  our  observation  that  average  3′-UTR  length               

increased  in  nearly  every  cell  type  as  developmental  time  progressed  ( Fig.  2C ).  Neuronal  cell                

types  clustered  together  and  exhibited  the  greatest  3′-UTR  lengthening  relative  to  other  clusters               

at  E13.5;  in  contrast,  blood  cell  types  exhibited  highly  shortened  3′  UTRs  at  E9.5  and  grew  until                   

E13.5   to   mean   lengths   similar   to   those   of   other   cell   types   at   E9.5   ( Fig.   2C ).   

  

  
Figure  2.  Differential  3′-UTR  lengthening  among  diverse  cell  types  and  developmental  stages.  (A)               
t-SNE  embedding  of  all  cells  from  all  developmental  stages  sampled 31 ,  with  each  cell  colored  according                 
to  the  mean  difference  in  3′-UTR  lengths  across  all  genes.  The  top  ten  ranked  clusters  with  the  greatest                    
differences  are  annotated  according  to  their  corresponding  cell  type.   (B)   Shown  are  the  same  embeddings                 
and  color  scales  as  those  in  panel  (A),  except  after  partitioning  the  dataset  into  its  five  composite                   
developmental  stages  (spanning  E9.5-E13.5).   (C)   Heatmap  of  the  mean  difference  in  3′-UTR  length               
after  aggregating  cells  from  each   developmental  stage  and  cell  type,  derived  from  each  of  38  t-SNE                  
clusters.  Color  scales  are  the  same  as  those  shown  in  panel  (A).  Missing  values  (shown  in  white)                   
correspond  to  instances  with  too  few  (<20)  cells  to  accurately  estimate.  Heatmap  is  clustered  by                 
Euclidean  distance  as  a  distance  metric.  See  also   Supplementary  Fig.  4   for  comparisons  among  t-SNE                 
subclusters .   
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Next,  we  evaluated   differences  in  global  3′-UTR  length  with  respect  to  developmental  trajectories               

computed  using  UMAP,  an  embedding  that  more  faithfully  recapitulates  cell – cell  relationships             

and  intermediate  states  of  differentiation  relative  to  t-SNE.  Evaluating  ten  developmental  UMAP              

trajectories 31 ,  we  again  observed  a  global  lengthening  in  3′  UTRs  in  nearly  every  trajectory  ( Fig.                 

3A ).  Mirroring  our  previous  findings,  the  neural  tube/notochord  and  the  neural  crest  trajectories               

(capturing  neurons  of  the  peripheral  nervous  system)  showed  the  greatest  lengths  relative  to               

other  cell  types  at  E13.5,  while  the  hematopoiesis  trajectory  displayed  the  shortest  lengths               

relative  to  other  cell  types  at  E9.5  ( Fig.  3A ).  A  visual  comparison  of  these  three  trajectories  with                   

respect  to  changes  in  both  developmental  time  and  3′-UTR  length  showed  that  the  process  of                 

3′-UTR  lengthening  occurred  contemporaneously  with  cellular  differentiation,  with  gradients  of            

lengthening  emerging  in  intermediate  cellular  states  ( Fig.  3B-D ).  Notably,  in  the  hematopoiesis             

trajectory,  a  major  difference  in  3′-UTR  length  could  be  explained  by  the  switch  from  primitive                 

to   definitive   erythropoiesis,   rather   than   gradual   lengthening   within   either   lineage   ( Fig.   3D ).   
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Figure  3.  Differential  3′-UTR  lengthening  among  diverse  developmental  trajectories.  (A)   Heatmap             
of  the  mean  difference  in  3′-UTR  length  after  aggregating  cells  from  each   developmental  stage  and  one  of                   
ten  developmental  trajectories  computed  using  UMAP 31 .  Heatmap  is  clustered  by  Euclidean  distance  as  a                
distance  metric.   (B-D)   UMAP  embeddings  of  the  neural  tube  and  notochord  (B),  neural  crest  of  the                  
peripheral  nervous  system  (C),  and  hematopoiesis  trajectory  (D).  Cells  from  each  plot  are  colored  by                 
developmental  stage  (left  panel)  and  mean  difference  in  3′-UTR  length  across  genes  (right  panel).  Mean                 
differences   are   calculated   with   respect   to   the   cells   shown   in   the   UMAP   rather   than   all   cells.   

  

Dynamic   gene-specific   patterns   of   alternative   polyadenylation   across   early   development   

While  our  previous  analyses  revealed  transcriptome-wide  trends,  it  remained  unclear  how             

specifically  changes  in  APA  manifested  at  the  resolution  of  individual  genes.  To  investigate  this,                

we  tabulated  read  counts  assigned  to  each  gene  ( i.e. ,  for  each  PAS  and  developmental  stage,                 

aggregating  information  across  cell  types),  and  used  a   χ 2  test 30  to  evaluate  statistically  significant                

differences  in  APA  for   8,653  genes  with  at  least   100  reads  in  each  of  the  five  developmental                   

stages  ( Supplementary  Table  2 ).  This  procedure   identified  5,169  genes  surpassing  a  False              

Discovery  Rate  (FDR)  corrected  p-value  threshold  of  0.05 .  Evaluating  the  dynamics  of  the  mean                

3 ′ -UTR  length  for  this  cohort  of  significant  genes  at  each  stage,  we  discovered  that  62%  of  genes                   

fell  into  a  large  cluster  that  exhibited  consistent  lengthening  over  time  ( Fig.   4A ).  While  the                 

majority  of  these  genes  showed  the  greatest  increase  in  lengthening  from  E11.5  to  E12.5,  a                 

minority  lengthened  the  most  strongly  from  E10.5  to  E11.5  ( Fig.   4A ).  About  38%  of  the                 

significant  genes  did  not  simply  lengthen  across   developmental  stages,  with  about  half  of  these                

progressively  shortening  over  time  ( Fig.   4A ).  As  an  alternative  method  to  evaluate              

transcriptome-wide  changes,  we  computed  the  entropy  across  PASs  for  each  gene  and              

developmental  stage.  This  alternative  visualization  scheme  uncovered  that  nearly  75%  of  genes              

obey  a  progressive  decrease  in  entropy,  indicating  that  as  developmental  time  progresses,  a  few                

PASs  become  increasingly  dominant  for  the  vast  majority  of  genes;  in  contrast,  about  15%  of                 
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genes  exhibited  the  opposite  pattern  of  increased  entropy  across  time,  with  the  remaining               

displaying   heterogeneous   patterns   ( Supplementary   Fig.   5A-B ).   

  

We  extended  our  previous  gene-centric  IIR  plotting  scheme  ( Fig.  1D )  to  visualize  the  landscape                

of  APA  across  the  five   developmental  stages  assayed,  this  time  using  a   χ 2  test  to  highlight                  

individual  PASs  which  were  significantly  different  in  at  least  one  stage  ( Fig.  4B ).  Using  this                 

scheme,  we  visualized  an  assortment  of  genes  from  different  clusters  to  dissect  the  nature  of  the                  

isoform  switching  events  contributing  to  changes  in  3 ′ -UTR  lengths  ( Fig.  4C ).  Many  of  these                

genes  contained  dozens  of  PASs  whose  relative  proportions  significantly  changed  across  time.              

For  genes  belonging  to  the  dominant  cluster  ( Tmem33 ,   Lrtm1 ,   Dcp1b ,  and Add2  in   Fig.  4A ),                 

later   developmental  stages  led  to  the  progressive  selection  of  distal  isoforms,  leading  to               

progressive  3 ′ -UTR  lengthening  ( Fig.  4C ).  The  opposite  pattern  was  observed  for  a  gene               

belonging  to  a  smaller  cluster  ( Srl  in   Fig.  4A ),  whereby  the  proximal  isoform  was  selected  more                  

frequently  over  the  distal  as  time  progressed,  leading  to  progressive  3 ′ -UTR  shortening  ( Fig.               

4C ).  For  yet  other  genes,  the  choice  of  distal  isoforms  was  highly  time-dependent.  For  example,                 

Mtap  displayed  a  near-complete  proximal-to-distal  isoform  switching  event  in  E11.5,            

subsequently  lengthening  beyond  baseline  levels  in  later   developmental  stages;  in  contrast,             

Mrpl22  exhibited  progressive  shortening,  with  a  dominant  distal-to-proximal  isoform  switching            

event   occurring   in   E10.5   ( Fig.   4C ).   
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Figure  4.  Identification  of  distinct  gene  lengthening  patterns  and  genes  responsible  for  overall  data                
trends  across  embryonic  ages.  (A)   Heatmap  of  mean  differences  in  3′-UTR  lengths  for  5,169  genes  with                  
significant  differences  in  PAS  usage  across  embryonic  stages.  Heatmap  is  column-centered  and  clustered               
by  Pearson  correlation  as  a  distance  metric.   (B)   Schematic  of  IIR  plot  visualization  using  PAS  counts  for                   
each  of  five  embryonic  stages.  Vertical  red  lines  along  the  3′  UTR  indicate  PASs  that  are  significantly                   
different  between  stages  by  the   χ 2  test  (p<0.05).   (C)   IIR  plots  for  six  genes  among  representative  clusters                   
shown  in  panel  (A),  and  colored  by  embryonic  stage.  See  also   Supplementary  Fig.  5   for  clustering                  
according  to   differences  in  entropy .  See  also   Supplementary  Table  3   for  a  table  of  read  counts  associated                   
with   each   PAS   for   each   gene   and    embryonic   stage .   

Finally,  we  performed  a  similar  gene-centric  analysis,  this  time  evaluating   differences  among              

individual  cell  types  ( i.e. ,  aggregating  information  across  the  five  developmental  stages).  Among              

1,491 genes  with  at  least   20   reads  in  each  of  the  38  t-SNE  clusters,   we  identified  1,078  genes                    

surpassing  an  FDR-corrected  p-value  threshold  of  0.05,  as  evaluated  by  the   χ 2  test               

( Supplementary  Table  4 ) .  This  subset  of  significant  genes  largely  clustered  into  four  cell  type                

groups  (C1-C4,   Fig.   5A )   when  evaluating   differences  in  mean   3 ′ -UTR  length,  with  cell  types                

within  each  group  displaying  strongly  correlated  patterns  across  all  of  the  genes.  C1,  which                
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consisted  primarily  of  neuronal  cell  types,  was  unique  in  that  the  vast  majority  of  genes                 

displayed  global  lengthening;  conversely,  the  primitive  erythroid  lineage  was  dominated  by             

genes  experiencing  3 ′ -UTR  shortening  ( Fig.   5A ).  In  special  cases,  we  detected  a  highly               

gene-specific  and  cell-type-specific  pattern,  as  in  the  case  of   Bclaf1  showing  3 ′ -UTR  lengthening               

within  a  t-SNE  cluster  annotated  as  lens  cells  ( Fig.   5B ).  However,  for  most  genes,  all  of  the  cell                    

types  within  each  cluster  displayed  a  concerted  shift  towards  either  3 ′ -UTR  lengthening  ( e.g. ,               

cluster  C1  in   Gnb1 ,  C1  and  C4  in   Samm50 )  or  3 ′ -UTR  shortening  ( e.g. ,  cluster  C2  in   Polr3k ,  C1                    

in    Hoxd4 )   ( Fig.     5B ).   

  

When  visualizing  PAS  usage  with  respect  to  entropy,  several  cell  types  emerged  as  displaying                

interesting  patterns:  the  primitive  erythroid  lineage  showed  heightened  entropy  across  most             

genes,  whereas  neutrophils — and  to  a  smaller  degree,  the  lens —showed  decreased  entropy             

( Supplementary  Fig.  6A-B ).  This  observation  suggests  a  potential  for  cell-type-specific            

regulatory  mechanisms  that  guide  a  more  stochastic  or  more  defined  choice  of  PASs,               

respectively.  A  smaller  subset  of  genes,  such  as  Sec11a,  notably  displayed  higher  entropy  among                

neuronal  cell  types,  consistent  with  an  active  mechanism  governing  a  switch  towards  longer               

3 ′ -UTR   isoforms   ( Supplementary   Fig.   6A-B ).   
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Figure  5.  Identification  of  distinct  gene  lengthening  patterns  and  genes  responsible  for  overall  data                
trends  across  embryonic  ages.  (A)   Heatmap  of  mean  differences  in  3′-UTR  lengths  for  1,078  genes  with                  
significant  differences  in  PAS  usage  across  cell  types  derived  from  38  t-SNE  clusters.  Heatmap  is                 
column-centered  and  clustered  in  both  rows  and  columns  by  Pearson  correlation  as  a  distance  metric.                 
Row  colors  indicate  the  four  dominant  cell-type  clusters.  Column  colors  indicate  five  representative               
clusters  chosen  from  the  dendrogram  above.   (B)   IIR  plots  for  five  genes  among  the  representative  clusters                  
shown  in  panel  (A),  and  colored  by  either  individual  cell  types  or  cell-type  clusters  shown  in  panel  (A).                    
Grey  lines  allude  to  all  other  cell  types.  Vertical  red  lines  along  the  3′  UTR  indicate  PASs  that  are                     
significantly  different  between  cell  types  by  the   χ 2  test  (p<0.05).  See  also   Supplementary  Fig.  6   for                  
clustering  according  to   differences  in  entropy .  See  also   Supplementary  Table  5   for  a  table  of  read  counts                   
associated   with   each   PAS   for   each   gene   and   cell   type.     
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Putative   RNA-binding   protein   regulators   of   alternative   polyadenylation   

Reasoning  that  changes  in  the  regulation  of  APA  may  be  coupled  to  the  dynamically  changing                 

expression  of  RNA-binding  proteins  (RBPs),  we  searched  for  RBPs  with  expression  level              

differences  across  our  five  developmental  stages  and  38  cell  types.  Having  demonstrated  that               

PAS-mapping  reads  serve  as  an  improved  proxy  for  relative  gene  expression  levels  ( Fig.  1E ),  we                 

quantified  gene  expression  levels  for  all  protein-coding  genes  as  counts  per  million  (cpm)               

( Supplementary  Table  6 ,   Supplementary  Table  7 )  and  cross-referenced  these  genes  to  a              

database   of   putative   RBPs   in   the   mouse   genome 38 .   

  

Evaluating  relative  differences  in  RBP  expression  across  our  five  developmental  stages,  we              

observed  that  about   41%  of  RBPs  exhibited  reduced  expression  across  time,  while  the  remaining                

ones  increased  or  were  stable  ( Supplementary  Fig.  7A ).  Performing  a  similar  analysis  across               

our  38  cell  types,  we  observed  that  about   26%  of  RBPs  were  enriched  in  neuronal  lineages  ( Fig.                   

6A ).  Interestingly,  only  a  minority  of  RBPs  remained  at  similar  levels  in  neuronal  lineages                

relative  to  other  cell  types,  with  most  being  relatively  depleted  in  neurons  ( Fig.  6A ).  Given  our                  

observation  that   3 ′ -UTRs  lengthen  both  across  the  developmental  stages  and  most  dramatically              

in  neurons  ( Fig.  2C ),  we  sought  to  identify  putative  RBP  regulators  induced  both  across  time  and                  

specifically  in  neurons  relative  to  other  cell  types.  We  therefore  quantified  the   log 2  fold-change                

of  RBPs  in  E13.5  relative  to  E9.5  as  well  as  in  neuronal  lineages  relative  to  other  cell  types                    

( Supplementary  Table  8 ).  We  found  a  strong  correlation  in  RBP  expression  differences              

(Pearson   r  =  0.59),  with  a  small  group  of  outliers  induced  by  at  least  two-fold  along  both  axes                    

( Fig.   6B ).   
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The  most  salient  factors  that  were  induced  comprise  a  large  family  of  ELAV-like  RBPs,                

including   Elavl2-4   (also  known  as   HuB ,   HuC ,  and   HuD ,  respectively)  and   Celf2-6   (CUGBP               

Elav-like  family  members,  also  known  as   BRUNOL - 3 ,   1 ,   4 ,   5 ,  and   6 ,  respectively)  as  well  as                  

splicing  regulators   Nova1-2  and   Rbfox1-3  ( Fig.  6B ).  Additional  top-ranked  RBPs  also  serve  as               

candidate  regulators  of  APA  ( Supplementary  Table  8 ).  The  expression  of   Elavl2-4 ,  Rbfox1-3 ,              

Celf2-6   monotonically  increased  in  expression  across  the  developmental  stages  ( Fig.  6C ,             

Supplementary  Fig.  7B-C ),  and  were  significantly  higher  in  neuronal  cell  types,  while   Elavl1               

(also  known  as   HuR )  and   Celf1   (also  known  as   BRUNOL - 2 )  remained  at  similar  levels  in  each                  

context  ( Fig.  6D ).  These  expression  patterns  are  broadly  consistent  with  the  known              

brain-specific  and  ubiquitous  expression  associated  with  ELAV-like 39–41 and  Nova 42  family           

members,  and  support  the  growing  functional  evidence  for   Elavl2-4 43,44 ,   Rbfox2 45   and   Nova1-2 42              

in  the  regulation  of  APA.  Additionally,  we  found  that   ELAVL2-4 ,   CELF2-6 ,   and  RBFOX1-3  form                

an   experimentally   supported   network   of   protein-protein   interactions 46    ( Supplementary   Fig.   7D ).   
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Figure  6 .   Evaluation  of  putative  RNA-binding  protein  regulators  of  alternative  polyadenylation.   (A)              
Heatmap  of  relative  gene  expression  levels,  quantified  as  log 2 (counts  per  million),  for  a  set  of  1,576  RBPs                   
across  cell  types  derived  from  38  t-SNE  clusters.  Heatmap  is  column-centered  and  clustered  in  both  rows                  
and  columns  by  Pearson  correlation  as  a  distance  metric.   (C)  Expression  levels  of   Celf1-6  across  the  five                   
developmental  stages.  Expression  is  quantified  in  counts  per  million  (cpm)  and  shown  on  a  log 2  scale.   (D)                   
Expression  levels  of  genes  highlighted  in  panel  (B)  in  neuronal  cell  types  relative  to  other  cell  types.                   
Significant  differences  between  the  two  groups  were  assessed  by  a  two-sided  Wilcoxon  rank-sum  test,                
with   p-values   adjusted   for   multiple   hypothesis   testing   with   a   Bonferroni   correction   (*p<0.01,   **p<10 -4 ).     
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DISCUSSION   

Despite  the  rapid  growth  of  single  cell  RNA  sequencing  data  in  recent  years,  the  vast  majority  of                   

analyses  routinely  overlook  the  phenomenon  of  alternative  polyadenylation.  Although           

scRNA-seq  was  initially  developed  to  measure  gene  expression  levels,  multiple  orthogonal  forms              

of  information  are  also  effectively  captured.  For  example,  RNA  velocity  analysis,  which              

estimates  future  transcriptome  state  by  modeling  intron/exon  ratios,  illustrates  the  ability  to              

extract  dynamical  information  about  cellular  differentiation 47 .  In  this  work,  we  further  develop  a               

computational  pipeline  to  quantify  3 ′  ends  in  scRNA-seq   data  by  cross-referencing  a  novel               

integrated  annotation  set  of  3 ′  UTRs  and  polyadenylation  sites,  thereby  enabling  a  more               

spatiotemporally  resolved  understanding  of  APA.  This  pipeline  closely  recapitulates  prior  bulk             

measurements,  yet  further  enables  a  closer  spatiotemporal  dissection  of  APA.  Although  the              

utility  of  scRNA-seq  to  give  insight  into  APA  has  been  recognized  recently 30 ,  we  extend  this  line                  

of  work  to  an  expansive  atlas  of  cell  types  in  a  developmental  time  course  spanning  multiple                  

stages   of   embryonic   development 31 .   

  

Our  findings  reinforce  the  principle  that  the  most  proliferative  cell  types  such  as  blood  maintain                 

shorter  3 ′  UTRs 11,12 ,  on  average,  while  lowly  proliferative  ones  such  as  neurons  maintain               

lengthened  3 ′  UTRs 17,23 .  As  differentiation  progresses,  cells  of  all  types  naturally  become  less               

proliferative,  leading  to  an  observed  global  lengthening  of  3′  UTRs  in  all  cell  types 22,48 .  A  major                  

functional  consequence  of  this  is  that  the  global  shortening  of  3′  UTRs  could  lead  to  the  evasion                   

of  microRNA-mediated  repression,  resulting  in  greater  mRNA  stabilities  across  the            

transcriptome  and  enhanced  protein  synthesis  rates  in  proliferative  cells 11 .  In  contrast  to  previous               
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work,  which  often  binarized  the  landscape  of  3′  termini  into  proximal  and  distal  isoforms  due  to                  

a  limited  PAS  annotation  set 22,23 ,  we  develop  more  general  metrics  ( e.g. ,  changes  in  mean  length                 

and  entropy)  that  consider  the  relative  proportions  of  the  many  PASs  within  each  gene.  While                 

most  genes  obey  a  canonical  pattern  of  3 ′ -UTR  lengthening  over  time,  a  small  subset  of  genes                  

deviate  from  this  trend.  Most  cell  types  can  be  grouped  into  one  of  four  clusters  that  obey  similar                    

trends  across  genes.  These  observations  are  consistent  with  the  evolution  of  regulatory              

mechanisms   that   act   in   a   gene-specific   and   tissue-dependent   manner 1,5 .   

  

An  investigation  into  putative  RNA-binding  protein  regulators  that  are  co-activated  in  cellular             

contexts  experiencing  3 ′ -UTR  lengthening  revealed  the  induction  of  RBPs  of  the  ELAV-like              

family,  including   Elavl2-4   and   Celf2-6 ,  as  well  as  splicing  regulators   Nova1-2   and  Rbfox1-3 .               

Prior  work  provides  functional  evidence  that  fly  orthologs  of  the   ELAV-like   induce              

neural-specific   3 ′ -UTR  lengthening  through  competition  with  CstF 43,44,49–51 ,  and  that  mammalian            

Elavl2-4  can  also  regulate  APA 41,52 .  Moreover,   Nova1-2 42  and   Rbfox2 45  have  been  directly              

implicated  as  regulators  of  APA  in  mouse  and  rat  cells,  respectively.  Although  only   Celf2  has                 

been  shown  to  regulate  APA 53 ,  evidence  for  the  roles  of   CELF  family  proteins  in  this  process                  

include:  i)  enriched  expression  in  neurons  and  later  developmental  stages,  ii)  direct  interaction               

with   RBFOX   and   ELAVL   family  members,  iii)  nuclear  localization 39 ,  iv)  enriched  binding  to  the                

3 ′ -UTR  terminus 54 ,  v)  interaction  with  U2  snRNP 39 ,  which  is  known  to  promote  distal  isoform                

usage 55 ,   and   vi)   roles   in   splicing 39,40 .   
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Given  the  exaggerated  3 ′ -UTR  lengthening  we  observed  in  neuronal  subtypes,  it  is  interesting  to                

consider  how  these  observations  might  give  insight  into  regulatory  function  in  neurons.  It  has                

been  previously  observed  that  APA  guides  differential  mRNA  localization 56,57 ,  and  that  APA              

itself  is  directly  regulated  by  neural  activity 58  such  as  long-term  potentiation 59 .  These  findings               

open  the  possibility  that  APA  might  serve  as  an  important  process  in  guiding  mRNAs  to  axons                  

and  dendrites,  thereby  modulating  synaptic  potential.  One  promising  direction  for  this  work  is  to                

use  our  APA  atlas,  and  those  derived  from  other  single  cell  datasets 60 ,  to  further  dissect  how                  

differential  mRNA  localization  across  neuronal  subtypes  might  contribute  to  their  functional             

specialization.  More  generally,  we  anticipate  that  our  characterization  of  APA  across  genes,  cell               

types,  and   developmental  stages  of  a  mammalian  organism  will  serve  as  a  resource  to  further                 

guide  the  discovery  of  new  regulatory  mechanisms  that  control  APA.  It  will  also  help  to  dissect                  

how  these  changes  impact  the  function  of  mRNA  with  respect  to  its  cellular  localization,                

half-life,   and   translation   in   cell   types   throughout   the   body.   

  

METHODS   

An   integrated   set   of   mouse   3 ′   UTRs   

We  established  an  integrated  set  of  mouse   3′- UTR  annotations  for  protein-coding  genes  in  which                

each  unique  stop  codon  was  associated  with  a  representative  transcript  with  the  longest  annotated                

3′   UTR 9 ,  using  the  Gencode  M25  “comprehensive”  set 33  as  our  initial  annotations              

( Supplementary  Table  1 ).  For  each  unique  stop  codon,  we  selected  the  longest  3 ′  UTR  from                 

three  additional  resources:  i)  RefSeq   (March  2020  release) 36 ,  ii)  3 ′  UTRs  with  extreme               

lengthening 23 ,  using  liftOver 61  to  remap  the  coordinates  from  mm9  to  mm10,  and  iii)  bulk                
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3P-seq-based  annotations  derived  from  mouse  muscle,  heart,  liver,  lung,  kidney,  brain,  testes,              

and  white  adipose  tissues  as  well  as  NIH  3T3  and  mESC  cell  lines 8 .  The                

choose_all_genes_for_TargetScan.pl  Perl  script  in  the  TargetScanTools  Github 35  was  used  to            

integrate  these  databases,  allowing  a  3P-seq  read  to  exist  up  to  5,400nt  ( i.e. ,  the  99th  percentile                  

of   annotated    3′- UTR   lengths)   downstream   of   a   stop   codon.   

  

In  certain  scenarios,  such  as  in  the  case  of  alternative  splicing  of  the  terminal  exon,  a  gene  is                    

potentially  associated  with  many  unique  stop  codons,  each  of  which  is  associated  with  its  own                 

3′- UTR  annotation.  We  therefore  sought  to  avoid  a  bias  in  which  genes  with  many  such                 

transcript  isoforms  would  be  overrepresented  in  the  downstream  results,  and  to  avoid  the               

possibility  that  PASs  would  be  counted  redundantly  in  cases  in  which  multiple  different   3′   UTRs                 

overlapped  the  same  genomic  coordinates.  We  therefore  carried  forward  a  single  transcript              

isoform  with  the  greatest  number  of   3′- UTR  mapping  reads  (or  a  random  top-ranked  one  in  the                  

case  of  a  tie)  to  represent  each  gene.  To  perform  this  counting,  scRNA-seq  reads  were  intersected                 

with   our    3′- UTR   annotation   set   using   bedtools   intersect   (-wa   -wb   -s) 62 .   

  

An   integrated   set   of   mouse   poly(A)   sites   

To  generate  our  union  PAS  set,  we  integrated  three  PAS  annotation  databases:  Gencode  M25 33 ,                

PolyA_DB  v3 20 ,  and  PolyASite  2.0 21 .  First,  PASs  within   ± 10nt  of  another  PAS  within  the  same                 

database  were  collapsed  by  selecting  the  most  downstream  PAS.  Next,  the  following  procedure               

was  implemented  to  reduce  redundancy  between  databases:  i)  we  collected  PASs  from  PolyASite               

2.0,  ii)  we  added  PASs  from  PolyA_DB  v3  not  within   ± 10nt  of  the  current  PAS  set,  and  iii)  we                     
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added  PASs  from  Gencode  M25  not  within   ± 10nt  of  the  current  PAS  set.  This  method  of                  

sequential  addition  led  to  a  total  of  164,772  PASs  in  our  union  set;  we  provide  the  genomic                   

coordinates  and  corresponding  read  counts  associated  with  this  set  ( Supplementary  Table  3 ,              

Supplementary   Table   5 ).   

  

Calculation   of    3′- UTR   lengths,   relative   length   differences,   and   corresponding   visualizations   

Reads  were  mapped  to  the  mm10  genome  and  collected  from  previous  work 31  (GEO  ID:                

GSE119945).  3′- UTR  length  corresponding  to  a  given  read  was  computed  as  the  distance  from                

the  stop  codon  to  the  read’s  assigned  PAS,  minus  the  length  of  any  intervening  intron(s).  These                  

3′- UTR  lengths  were  used  to   compute  a  “gene  by  cell”  sparse  matrix  of  the  mean  length  among                   

all  3′-UTR  isoforms,  weighted  by  their  respective  counts.  For  each  gene,  we  then  computed  each                 

cell’s  deviation  from  the  mean  of  3′-UTR  lengths  across  cells,  considering  only  non-missing               

values.  For  heatmaps,  these  deviation  values  were  then  averaged  according  to  the  labels  assigned                

to  each  cell  ( i.e. ,  with  respect  to  t-SNE  cluster,  UMAP  trajectory,  and/or  developmental  stage).                

Cell  labels  were  based  upon  those  previously  assigned 31 .  When  indicated  in  the  legend,  in  some                 

instances  the  heatmaps  were  further  centered  by  subtracting  the  mean  of  the  row  or  column.                 

t-SNE  plots  were  visualized  using  the  hexbin  (gridsize  =  500,  vmin  =  -50,  vmax  =  50)  function                   

from  pyplot,  which  averages  values  from  cells  captured  in  local  bins.  UMAP  plots  were  binned                 

by   splitting   each   of   the   x,   y,   and   z   coordinates   into   150   equally   sized   bins.   

  

Gene-level   isoform   inclusion   rate   plots   and   corresponding   statistics   
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For  each  gene,  we  counted  reads  assigned  to  each  PAS  to  build  contingency  tables  of  counts  for                   

either  (PAS  by   developmental  stage)  ( Supplementary  Table  3 )  or  (PAS  by  cell  type)               

( Supplementary  Table  5 ).  We  then  computed  statistical  significance  using  the   χ 2  test  as               

computed  by  the  chisquare  function  in  scipy,  either  with  respect  to  the  entire  gene                

( Supplementary  Table  2,  Supplementary  Table  4 )  or  with  respect  to  each  PAS  (axis  =  None  or                  

axis  =  1,  respectively).  In  both  cases,  we  provided  a  matrix  of  expected  counts,  based  on  the  joint                    

probability  of  each  cell  multiplied  with  the  total  counts  in  the  matrix.  For  the  gene-level   χ 2  test,                   

we  further  derived  a  Benjamini-Hochberg  (BH)  based  q-value  to  account  for  the  FDR.               

Considering  the  read  counts  associated  with  each  PAS  position,  isoform  inclusion  rates  were               

visualized  in  the  same  manner  as  previous  work,  which  allude  to  this  plotting  style  as  the                  

Affected  Isoform  Ratio  (AIR)  plot 8,9,35 .  Much  like  a  survival  curve,  the  IIR  quantifies  the                

proportion   of   3′-UTR   isoforms   that   include   a   given   nucleotide   position.   

  

Search   for   putative   RBP   regulators   

To  evaluate  changes  in  gene  expression  associated  with  RBPs,  we  first  computed  gene               

expression  levels  for  all  protein-coding  genes.  Towards  this  goal,  we  summed  the  counts               

associated  with  PAS-mapping  reads  for  all  unique  PASs  ( i.e. ,  as  assessed  by  chromosomal               

coordinate)  across  all  transcripts  ( i.e. ,   including  those  with  alternative  last  exons)  corresponding              

to  each  gene,  using  our  count  tables  partitioned  either  by  developmental  stage  ( Supplementary               

Table  3 )  or  by  cell  type  ( Supplementary  Table  5 ).  Counts  were  then  normalized  by  the  stage  or                   

cell  type  into  counts  per  million  (cpm)  ( Supplementary  Table  6,  Supplementary  Table  7 )  and                

then  log 2 -transformed.  Genes  were  annotated  as  an  RBP  if  their  gene  name  matched  one  of  1,882                  
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mouse  genes  annotated  as  a  putative  RBP 38 .  For  the  subset  of   1,576   RBPs  meeting  an  expression                  

threshold  of  2  cpm  in  at  least  one  of  the  samples  tested,  we  computed  the  fold-change  of  each                    

gene  across  time  as  [log 2 (cpm  at  E13.5)   –  log 2 (cpm  at  E9.5)]  and  in  neurons  relative  to  other  cell                    

types  as  [mean  log 2 (cpm  in  neurons)   –  mean  log 2 (cpm  in  other  cell  types)]  ( Supplementary                

Table   8 ),   where   neurons   are   defined   as   the   cell   types   in   the   cluster   shown   in    Fig.   6A .   
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SUPPLEMENTAL   TABLES   

  

Supplementary  Table  1.  GTF  file  of  the  gene  models  associated  with  the  “Integrated  3′  UTR”                 

set,  as  described  in   Fig.  1D ,  along  with  the  source  database  of  the  3′-UTR  annotation.  Genomic                  

coordinates   are   provided   with   respect   to   the   mm10   genome.   

  

Supplementary  Table  2.   Table  of  FDR-corrected  q-values  for  each  transcript/gene  tested  for              

differential  PAS  usage  across  the  five  developmental  stages.  Genes  that  did  not  pass  the                

threshold   of   having   100   reads   at   each   age   are   listed   as   “Not   Tested”.   

  

Supplementary  Table  3.   Table  of  read  counts  associated  with  each  PAS  for  each  gene  and                 

developmental  stage.   Genomic  coordinates  are  provided  for  every  PAS  with  respect  to  the  mm10                

genome,   along   with   the   annotation   source   of   the   PAS.   

  

Supplementary  Table  4.   Table  of  FDR-corrected  q-values  for  each  transcript/gene  tested  for              

differential  PAS  usage  across  the  38  cell  types.  Genes  that  did  not  pass  the  threshold  of  having  20                    

reads   in   each   cell   type   are   listed   as   “Not   Tested”.   

  

Supplementary  Table  5.   Table  of  read  counts  associated  with  each  PAS  for  each  gene  and  cell                  

type.   Genomic  coordinates  are  provided  for  every  PAS  with  respect  to  the  mm10  genome,  along                 

with   the   annotation   source   of   the   PAS.   

  

Supplementary  Table  6.   Table  of  expression  levels  of  protein-coding  genes,  computed  as  counts               

per  million,  across  the  five   developmental  stages .  Genes  are   annotated  according  to  which               

correspond   to   known   RNA   binding   proteins.   

  

Supplementary  Table  7.   Table  of  expression  levels  of  protein-coding  genes,  computed  as  counts               

per  million,  across  the   38  cell  types .  Genes  are   annotated  according  to  which  correspond  to                 

known   RNA   binding   proteins.   
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Supplementary  Table  8.   Table  of   log 2 ( fold  changes)  of  expression  levels  for   RBPs  tested  in                

E13.5   vs  E9.5  and  in  neuronal  lineages  vs  other  cell  types,  ranked  by  their  degree  of  upregulation                   

in   neurons.     
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SUPPLEMENTAL   FIGURES   

  
Supplementary  Figure  1 .  Characterization  of  PAS  annotation  databases  and  properties  of             
scRNA-seq  data  read  filtering.  (A)   This  panel  is  the  same  as  that  shown  in   Fig.  1B ,  except  displays                    
information  for  cleavage  sites  anchored  on  PASs  unique  to  each  of  the  three  databases  ( i.e. ,                 
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non-intersecting  with  a  PAS  from  any  other  database).   (B)   This  panel  is  the  same  as  that  shown  in   Fig.                     
1C ,  except  displays  information  for  cleavage  sites  anchored  on  PASs  unique  to  each  of  the  three  databases                   
( i.e. ,  non-intersecting  with  a  PAS  from  any  other  database).   (C)   Pie  chart  showing  the  relative  proportions                  
of  scRNA-seq  reads  that  map  to  each  functional  region  within  the  genome.   (D)   Plot  of  the  decay  in  the                     
numbers  of  reads  remaining  after  each  sequential  filtering  step  that  was  required  to  isolate  the  subset  of                   
PAS-mapping   reads.     
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Supplementary  Figure  2.  Sequence-based  features  partially  explain  biases  in  the  gene-body-based             
method  of  estimating  relative  gene  expression  levels .   We  developed  a  regression  model  to  predict  the                 
difference  between  the  gene  body  and  PAS  counting  methods  to  estimate  gene  expression  levels,  as                 
shown  on  the  x-axes  of  the  left  and  right  panels,  respectively,  of   Fig.  1E .  The  features  considered  in  the                     
model  include  the  length  of  the  5′  UTR,  ORF,  introns,  and  3′  UTR;  the  GC  content  of  the  5′  UTR,  ORF,                       
and  3′  UTR;  and  the  proportions  of  each  of  64  possible  3-mers  within  the  entire  gene  body.  All  features                     
were  z-score  transformed  to  enable  comparisons  between  regression  coefficients.  Following  our  previous              
work 63 ,  we  trained  a  lasso  regression  model  using  these  features.  The  strength  of  the  regularization  was                  
controlled  by  a  single  λ  parameter,  which  was  optimized  using  10-fold  cross-validation  for  each  training                 
set  using  the   cv.glmnet   function  of  the   glmnet  library  in  R.   A)   Scatter  plot  displaying  the  relationship                   
between  the  10-fold  cross-validated  predictions  derived  from  the  lasso  regression  model  and  the  observed                
difference  between  gene  body  and  PAS-based  counting  methods  of  estimating  gene  expression  level.  Also                
indicated  are  the  Pearson  ( r )  and  Spearman  (rho)  correlation  values.   B)   The  ranked  coefficients  derived                 
from  a  lasso  regression  model  trained  on  the  full  dataset.  Positive  coefficients  (blue)  are  associated  with                  
inflated  gene  body  read  counts,  while  negative  coefficients  (red)  are  associated  with  underrepresented               
gene   body   read   counts.   
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Supplementary  Figure  3.  Improvement  in  the  quantification  of   3′-UTR  isoform  abundances  after              
read-to-PAS  assignment.  (A)   Calculation  of  the  Mean  Absolute  Deviation  (MAD)  metric  on  an  example                
gene  to  quantify  the  divergence  between  IIR  profiles  derived  from  either  raw  scRNA-seq  data  or                 
post-processed  data  after  read-to-PAS  assignment,  relative  to  the  profile  for  bulk  3P-seq  data 8  as  a  gold                  
standard.  Larger  numbers  indicate  poorer  agreement.   (B)   Scatter  plot  of  MAD  values  for  either  raw                 
scRNA-seq  data  (x-axis)  or  post-processed  data  after  read-to-PAS  assignment  (y-axis)  (n  =  16,334               
protein-coding  genes).  Regions  are  colored  according  to  the  density  of  data  from  light  blue  (low  density)                  
to  yellow  (high  density).  78%  of  genes  exist  below  the  diagonal  dotted  line,  indicating  an  improved                  
similarity  to  bulk  measurements  after  post-processing.  Nine  genes  from  different  representative  regions  of               
the  plot  are  indicated.   (C)   IIR  plots  for  the  nine  representative  genes  numbered  in  panel  (B).  The  majority                    
of   genes   show   strongly   improved   agreement   to   bulk   3P-seq   data   (genes   5-9).   
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Supplementary  Figure  4 .  Analysis  of  differential  3′-UTR  lengthening  among  cellular  subtypes.             
t-SNE  embeddings  were  generated  to  identify  cellular  subtypes  for  cell  types  derived  from  each  of  38                  
t-SNE  clusters 31 .  Each  cell  was  colored  according  to  the  mean  difference  in  3′-UTR  lengths  across  all                  
genes.  Local  subcluster  heterogeneity  can  be  observed  ( e.g. ,  cellular  subtypes  in  hepatocytes  and               
osteoblasts),  along  with  global  differences  between  clusters  ( e.g. ,  the  primitive  erythroid  lineage  relative               
to   neuronal   cells   and   stromal   cells).     
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Supplementary  Figure  5.   Evaluation  of  differential  PAS  usage  and  diversity  across  developmental              
time.  (A)   Heatmap  of  differences  in  entropy  for  the  statistically  significant  genes  from  panel  (A).  Entropy                  

for  a  given  gene  and  developmental  stage  was  calculated  as   using            (x)  H =  (x) log  P (x)( ∑
 

x∈PAS
P 2 )   

relative  read  proportions  assigned  to  each  PAS  for  the  set  of  all  PASs  associated  with  the  gene.  Heatmap                    
is  row-centered  and  clustered  by  Pearson  correlation  as  a  distance  metric.  Higher  values  of  entropy                 
represent  a  greater  degree  of  randomness  and  uniformity  in  selection  among  multiple  PASs;  conversely,                
lower  values  represent  greater  fidelity  in  selection  amongst  fewer  PASs.   (B)   IIR  plots  for  six  genes  among                   
representative  clusters  shown  in  panel  (B),  and  colored  by  developmental  stage.  Vertical  red  lines  along                 
the   3′   UTR   indicate   PASs   that   are   significantly   different   between   stages   by   the    χ 2    test   (p<0.05).     
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Supplementary  Figure  6.   Evaluation  of  differential  PAS  usage  and  diversity  across  cell  types.  (A)                
Heatmap  of  differences  in  entropy  for  the  statistically  significant  genes  from  panel  (A).  Entropy  for  a                  
given  gene  and  cell  type  (derived  from  each  of  38  t-SNE  clusters)  was  calculated  as                 

 using  relative  read  proportions  assigned  to  each  PAS  for  the  set  of  all  (x)  H =  (x) log  P (x)( ∑
 

x∈PAS
P 2 )               

PASs  associated  with  the  gene.  Heatmap  is  column-centered  and  clustered  in  both  rows  and  columns  by                  
Pearson  correlation  as  a  distance  metric.  Higher  values  of  entropy  represent  a  greater  degree  of                 
randomness  and  uniformity  in  selection  among  multiple  PASs;  conversely,  lower  values  represent  greater               
fidelity  in  selection  amongst  fewer  PASs.   (B)   IIR  plots  for  five  genes  among  representative  clusters                 
shown  in  panel  (B),  and  colored  either  by  the  indicated  cell  types  or  the  cluster  of  neuronal  cell  types                     
shown  in  panel  (B).  Grey  lines  allude  to  all  other  cell  types.  Vertical  red  lines  along  the  3′  UTR  indicate                      
PASs   that   are   significantly   different   between   cell   types   by   the    χ 2    test   (p<0.05).   
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Supplementary  Figure  7.   Evaluation  of  differential  RNA-binding  protein  expression  across           
developmental  time.  (A)   Heatmap  of  relative  gene  expression  levels ,  quantified  as  log 2 (counts  per               
million),  for  a  set  of  1,516  RBPs  across  the  five  embryonic  stages.  Heatmap  is  column-centered  and                  
clustered  by  Euclidean  distance  as  a  distance  metric.  ( B - C )  Expression  levels  of   Elavl1-4  (B)  and                 
Rbfox1-3   (C)  across  the  five  developmental  stages.  Expression  is  quantified  in  counts  per  million  (cpm)                 
and  shown  on  a  log 2  scale.   (D)   Network  of  protein-protein  interactions  supporting  RBP  interactions  as                 
observed   in   the   APID   database 46 .   Blue   lines   indicate   additional   experimental   support   for   the   interaction.     
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