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The landscape of chromosomal aberrations in
breast cancer mouse models reveals driver-specific
routes to tumorigenesis
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Aneuploidy and copy-number alterations (CNAs) are a hallmark of human cancer. Although

genetically engineered mouse models (GEMMs) are commonly used to model human cancer,

their chromosomal landscapes remain underexplored. Here we use gene expression profiles

to infer CNAs in 3,108 samples from 45 mouse models, providing the first comprehensive

catalogue of chromosomal aberrations in cancer GEMMs. Mining this resource, we find that

most chromosomal aberrations accumulate late during breast tumorigenesis, and observe

marked differences in CNA prevalence between mouse mammary tumours initiated with

distinct drivers. Some aberrations are recurrent and unique to specific GEMMs, suggesting

distinct driver-dependent routes to tumorigenesis. Synteny-based comparison of mouse and

human tumours narrows critical regions in CNAs, thereby identifying candidate driver genes.

We experimentally validate that loss of Stratifin (SFN) promotes HER2-induced tumorigenesis

in human cells. These results demonstrate the power of GEMM CNA analysis to inform the

pathogenesis of human cancer.
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T
he understanding of cancer biology has benefitted
tremendously from large-scale analyses of genomic data.
Resources of comprehensive molecular characterizations of

human tumours, best illustrated by The Cancer Genome Atlas
(TCGA), have become indispensable for contemporary cancer
research1. However, the utility of such data is limited by the
extensive genetic diversity of the human population and by the
complexity of late-stage tumours that harbour true driver events
buried in a majority of passenger alterations. The study of
aneuploidy and large copy-number alterations (CNAs), affecting
on average B25% of the tumour genome2,3, is particularly
challenging. As these CNAs often encompass hundreds of genes,
it is difficult to distinguish driver from passenger genes within
such aberrations. It is equally challenging to associate tumour-
initiating events (for example, point mutations) with unique
CNAs that cooperate with them on tumorigenesis.

In principle, genetically engineered mouse models (GEMMs)
provide a strategy to overcome the limitations of human genomic
data. GEMMs have been successfully used to dissect cellular and
molecular aspects of tumorigenesis, to identify and validate
candidate cancer genes, and to test new therapeutic approaches4,5.
Mouse copy-number data at large scale could therefore facilitate
the study of multiple aspects of tumour biology. However, the
landscape of chromosomal aberrations in GEMMs has been
underexplored, even in breast cancer, for which GEMMs have
been generated and studied extensively4–9. We therefore set out to
generate a comprehensive catalogue of chromosomal aberrations
in breast cancer GEMMs, and to mine this resource to address
multiple aspects of tumour development. We find that CNA
prevalence, as well as the recurrence of specific events, are largely
determined by the initiating perturbations. Building on this
finding, we compare context-specific recurrent events between
mouse models and human patients, and identify candidate co-
driver genes. We experimentally validate the relevance of one
such gene, Stratifin (SFN), to human HER2-induced
tumorigenesis.

Results
Gene expression profiles reveal CNAs in breast cancer GEMMs.
As copy-number data from breast cancer GEMMs are scarce,
whereas genome-wide gene expression profiles from these
GEMMs are abundant10–12, we first asked whether we could infer
CNAs from their coordinated gene expression biases13–17. To
examine this possibility, we modified the e-karyotyping method15

to analyse the mammary tumour gene expression data. For
affymetrix microarray platforms, we also applied the functional
genomic messenger RNA (mRNA) profiling (FGMP) method17.
CNAs were estimated by analysing the differences in gene
expression between normal mammary tissues and tumour
samples (Methods). Analysis of 567 normal tissue samples
led to 100% being accurately identified as diploid, suggesting
a very low false detection rate of chromosomal aberrations
(FDRo0.008, 95% CI). Furthermore, a comparison of expression-
inferred CNAs to those estimated by comparative genomic
hybridization (CGH) arrays from matched tumours, showed high
concordance between these platforms: 26 out of 27 (96.3%) large
(45Mb) CNAs identified by the RNA expression data were
confirmed by DNA data (Supplementary Fig. 1). Therefore, gene
expression-based analyses can capture the landscape of
aneuploidy and large CNAs in tumours from breast cancer
GEMMs, at approximately cytoband resolution (Fig. 1a).

Having validated the methodology, we were able to map the
landscape of aneuploidy and large chromosomal aberrations in
breast cancer GEMMs. For this aim, we collected and analysed
gene expression profiles of 2,697 samples from 36 unique breast

cancer mouse models: 567 normal tissue samples, 100 premalig-
nant mammary tissues/lesions, 1,910 primary mammary
tumours, 17 breast cancer metastases, and 103 breast cancer cell
lines and cell line-derived tumours (Fig. 1b). These data
were collected from 87 studies, across multiple experimental
platforms, genetic backgrounds and transgene delivery methods,
representing all major breast cancer GEMMs generated to date
(Supplementary Data 1–6). The availability of this large-scale
CNA resource allowed us to address a number of fundamental
questions in cancer biology, as described below.

CNAs arise late in breast cancer tumorigenesis. We first
explored the time course of CNA acquisition during breast cancer
tumorigenesis in GEMMs. To address the fundamental, yet
unanswered question of when CNAs arise, we analysed multiple
studies for which data were available from distinct stages of
mammary tumour development, including normal mammary
tissues, premalignant lesions, ductal carcinomas in situ and
invasive carcinomas. In SV40Tag-induced tumours, chromoso-
mal aberrations were rarely detected in hyperplasias or ductal
carcinomas in situ, but commonly found at the invasive carci-
noma stage (Fig. 2a,b; Supplementary Fig. 2a). These findings
suggested that chromosomal aberrations accumulated late during
tumorigenesis. This observation was confirmed in five other
GEMMs from which premalignant samples were available
(Supplementary Fig. 2b; Supplementary Data 4). Therefore,
aneuploidy and large CNAs are preferentially acquired, or
become clonally dominant, during the progression of non-inva-
sive lesions to invasive carcinomas, in line with recent findings
from lung18 and skin19,20 cancer mouse models. In accordance,
we observed a few instances, in which a genomic region did not
meet our strict cutoff for CNA detection at early stages of
tumorigenesis, but careful examination suggested that an
aberration already existed at these time points in a
subpopulation of cells, but was clonally selected only at the
final stages of the tumour development (for example, loss of
chromosome 2 in Supplementary Fig. 2).

We also examined aneuploidy and CNAs in metastases from
Polyoma Middle T (PymT) and allografted tumours to determine
whether additional chromosomal aberrations were required for
the development of metastases (Supplementary Data 5). We did
not detect an increased burden of chromosomal aberrations in
these samples (Fig. 2c; Supplementary Fig. 2c), suggesting that
further acquisition of such aberrations is not required for the
metastatic phenotype.

Cancer cell lines harbour more CNAs than primary tumours.
As cancer cell lines are commonly used in the breast cancer
research, it is important to assess the degree to which their
genomic landscape faithfully represents that of primary tumours.
Analysis of 103 samples from cell lines and cell line-derived
tumours revealed that mouse breast cancer cell lines, as well as
tumours generated following their transplantation, harbour many
more CNAs compared with primary tumours (98% of the cell
lines are aneuploid, compared with 29% of the tumours; Fig. 2d).
Freshly derived cell lines are more than nine times more likely
than their parental tumours to harbour chromosomal aberrations
(Supplementary Fig. 2d), suggesting that cell line derivation is
associated with the acquisition or selection of CNAs. Of note,
distinct chromosomal aberrations are often detected in samples
of the same established cell line (Supplementary Data 6),
suggesting that additional chromosomal aberrations commonly
arise during culture propagation. Similar to our findings in
GEMMs, we found significantly more CNAs in human breast
cancer cell lines, compared with human primary breast tumours
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of the respective subtype (Fig. 2e; Supplementary Fig. 3), in line
with a previous finding with a much smaller data set21. Taken
together, our analysis of breast cancer GEMMs reveals that the
major wave of chromosomal aberrations occurs during the
progression of a premalignant tissue to an invasive carcinoma;
and that the prevalence of chromosomal aberrations in cell lines
is much higher than in tumours (Supplementary Fig. 4). We
therefore focused further analyses on the primary tumour
samples.

CNA prevalence is determined by the initial perturbation. A
key question in cancer biology is whether particular initiating
oncogenic events determine the eventual CNA landscape of the
tumour. This question is particularly well suited to mouse models,
where genetic background can be controlled, tumours can be
generated by manipulating a single gene and the initiating event is
known a priori. We therefore measured CNA prevalence in the 11
most common breast cancer GEMMs, and used it as an index of
their degree of genomic instability, commonly referred to as
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Figure 1 | Analysing aneuploidy and large CNAs in breast cancer GEMMs using gene expression profiles. (a) A representative example of gene

expression-based CNA analysis. Left: moving average plots of global gene expression levels along the genome of five normal mammary samples (blue

lines) and five tumour samples (brown lines) from the p53� /� model. Right panel: piecewise constant fit (PCF) detection of CNAs in the same samples

based on coordinated deviations of gene expression levels throughout large genomic regions. Amplifications are shown in red, deletions in blue. (b) A pie

chart describing the 2,697 gene expression profiles analysed: 567 normal tissue samples, 100 premalignant mammary tissues/lesions, 1,910 primary

mammary tumours, 17 breast cancer metastases, and 103 breast cancer cell lines and cell line-derived tumours. These data were collected from 36 unique

breast cancer mouse models. Letters represent normal tissues: a, non-mammary tissues from transgenic mice; b, mammary tissues from female control

mice; c, non-mammary tissues from control mice; and d, mammary tissues from female transgenic mice. Roman letters represent cell lines and tumours

derived from them: I, established breast cancer cell lines; II, cell line-derived tumours; and III, freshly derived cell lines. Tumours from GEMMs with 420

samples are presented by name, and numbers represent tumours from the remaining GEMMs: 1, Igf1r; 2, Apcþ /� ; 3, Pten� /� p53� /� ; 4, Hras;

5, Brgþ /� ; 6, Brca2� /� ; 7, Stat5� /� ; 8, Wnt Fgfi; 9, DMBA; 10, p53þ /� IR; 11, Rb� /� ; 12, Int3/Notch4; 13, Brca1þ /� p53þ /� IR; 14, p18� /� ;

15, LPA1; 16, Pten� /� Her2/Neu; 17, Stat1� /� ; 18, Atx; 19, Lpa2; 20, Lpa3; 21, Twist1 Kras; and 22, Pik3ca-mut p53� /� . See also Supplementary Fig. 1.
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Figure 2 | Chromosomal aberrations are a late event in breast cancer tumorigenesis and further aberrations are acquired during the derivation of cell

lines. (a) Following chromosomal aberrations in the SV40Tag mouse model (GSE21444) reveals that large CNAs characterize the progression of non-

malignant lesions to invasive carcinomas. Presented are moving average plots of gene expression profiles from various stages of tumour development.

(b) Quantification of the prevalence of chromosomal aberrations in normal tissues (0/52), premalignant tissues (1/51) and invasive carcinomas (68/96)

derived from the SV40Tag mouse model. *P¼ 1.7� 10� 15 and *Po1� 10� 16 (w2-test) for the comparison of tumours to normal and to premalignant

tissues, respectively. (c) Following chromosomal aberrations in the PyMTmouse model (GSE43566) reveals that metastasis is not associated with an

increased burden of aneuploidy and large CNAs. Presented are moving average plots of gene expression profiles from primary tumours (left; one aberration

detected in 11 samples), and from disseminated cells and metastases (right; two aberrations detected in 22 samples). (d) Quantification of the prevalence

of chromosomal aberrations in primary tumours (n¼ 1,699), freshly derived cell lines (n¼ 17), established cell lines (n¼ 56) and cell line-derived tumours

(n¼ 30), revealing that cell lines exhibit an increased degree of chromosomal instability. *P¼ 2� 10� 10, *Po1� 10� 16 and *P¼ 2� 10� 11 (w2-test) for

the differences between primary tumours and freshly derived cell lines, established cell lines and cell line-derived tumours, respectively. Single, 1 CNA

detected; multiple,41 CNA detected. (e) Box plots presenting the number of arm-level CNAs in human primary breast tumours (from The Cancer Genome

Atlas) and in human breast cancer cell lines (from the Cancer Cell Line Encyclopedia), divided by molecular subtype. *P¼ 1.2� 10�4 and *P¼9.7� 10� 7

(Student’s t-test) for the luminal subtype and for all subtypes combined, respectively. Boxes show the median, 25th and 75th percentiles, lower whiskers

show data within 25th percentile � 1.5 times the IQR, upper whiskers show data within 75th percentile þ 1.5 times the IQR and circles show outliers. See

also Supplementary Figs 2–4.
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DGI17. We found that DGI markedly differed between breast
cancer GEMMs (Po10� 16, w2-test of independence), with the
prevalence of large CNAs ranging from B4% to B80% of the
tumours (417-fold difference, for the PyMT and p53� /�

models, respectively; Fig. 3a). The three most unstable models
(p53� /� , SV40Tag and Brca1� /� ) often harboured multiple
chromosomal aberrations per tumour. In contrast, the most stable

models (PyMT, Wnt/bcat, Pik3ca_mut and Her2/Neu) primarily
gave rise to diploid tumours, and almost never developed
tumours with more than one CNA (Supplementary Fig. 5). The
other four models (c-Myc, Pten� /� , Etv6–Ntrk3 and Met)
showed intermediate prevalence of chromosomal aberrations. As
expected, not only was p53� /� the least stable model, but p53
status (þ /þ or þ /� ) was also a predictor of genomic instability
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Figure 3 | Driver-specific degree of genomic instability in breast cancer GEMMs. (a) The degree of genomic instability (DGI) differs considerably

between breast cancer GEMMs. Presented is a quantification of CNA prevalence in the 11 most common GEMMs for which data were available from 420

samples from at least two independent studies. The Brca� /� , Pten� /� and Met models represent both p53þ /þ and p53þ /� backgrounds. Single,
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Affymetrix mouse genome 430A 2.0 array. Note that the different DGI measures in a and in b result in the same GEMM ranking. Boxes show the median,
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times the IQR and circles show outliers. (c) A correlation between DGI and average tumour formation latency across GEMMs. Average tumour latencies

depend on the activating promoters, and represent either MMTV (for Myc, PyMT, Her2/Neu, Wnt/bcat and Met), WAP (for SV40Tag and Etv6–Ntrk3) or

Lgr5 (for Pik3ca_mut). (d) DGI is inherent to the driver gene, regardless of the promoter used for its activation/perturbation, and regardless of tumour

latency within the GEMM. NS, not significant (Student’s t-test). Bar plots represent the mean±s.d. (e) A significant difference in the DGI of histologically

distinct tumours (GSE15904) induced by Myc in mice that share the same genetic background, when using the same promoter for Myc activation. (f) A

significant difference in the DGI of histologically distinct tumours (GSE69290) induced by mutated Pik3ca in mice that share the same genetic background,

when using the same promoter for mutated Pik3ca activation. See also Supplementary Figs 5 and 6.
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across various models (Supplementary Fig. 6a). We assessed DGI
in two additional ways: by computing ‘autocorrelation values’ to
determine the instability from correlated expression of
neighbouring genes17, and by counting the number of CNA-
encompassed genes (Methods). These analyses corroborated the
significant DGI differences between the various mouse models
(Fig. 3b; Supplementary Fig. 6b,c; Supplementary Table 1).

The availability of large-scale CNA data allowed us to revisit
questions that had been previously addressed at smaller scale. For
example, a recent study of 82 mice from three models of lung
cancer reported a significantly higher level of aneuploidy and
CNAs in GEMM tumours compared with chemically induced
tumours, leading to the conclusion that genetically engineered
and carcinogen-induced models develop tumours through
different routes18. We re-addressed this question in 1,910
mouse mammary tumours from which the CNA data were
inferred. In contrast to the reported result, we found that
mammary tumours induced by the strong carcinogen 7,12-
dimethylbenzanthracene fell well within the DGI spectrum of the
genetic models. In fact, some genetic models exhibited even fewer
chromosomal aberrations than the carcinogen-induced model
(Supplementary Fig. 6d), arguing against a dichotomous
distinction between chemical and genetic tumorigenesis routes.

Our large-scale data set also allowed us to dissect several
variables that could affect driver-specific DGI. For example, as
each GEMM has its typical tumour latency22, the DGI of each
model might merely reflect the time it takes from transgene
activation to tumour development. However, while DGI and
average tumour latency correlated well (R2¼ 0.6) across models
(Fig. 3c), tumour latency had no effect on DGI within models
(Fig. 3d). Similarly, DGI was not associated with mouse genetic
background (Supplementary Fig. 6e,f), or with the method used
for genetic perturbation (that is, the promoter used for transgene
activation or excision; Fig. 3d). Therefore, DGI is intrinsic to
the introduced perturbation, and is consistent within each model
across genetic backgrounds, tumour latencies and activating
promoters—an observation nearly impossible to make in human
tumours given the diversity of genetic backgrounds and the
diversity of inciting oncogenes. In contrast, we found DGI to be
associated with tumour histological subtypes, in cases where the
same transgene could give rise to histologically distinct tumours:
a statistically significant DGI difference exists between subtypes of
tumours induced by Myc10,23 (P¼ 0.017, w2-test of independence;
Fig. 3e), and between subtypes of tumours induced by mutated
Pik3ca24 (P¼ 0.02, Fisher’s exact test; Fig. 3f). We conclude that
distinct tumour subtypes, generated by activating the same
transgene, differ in their tendency to acquire CNAs.

Specific drivers are associated with unique recurrent CNAs. We
next asked whether the large-scale CNA data would enable us to
identify statistically significant recurrent CNAs. Associating
specific CNAs with specific tumour-initiating events could have
far-reaching implications for understanding oncogenesis, with
potential impact on targeted therapies. We therefore asked
whether breast cancer GEMMs differ in their patterns of recur-
rent events. Indeed, we found distinct landscapes of chromosomal
aberrations across models (Fig. 4a; Supplementary Fig. 7). To
determine the recurrent CNAs in each model, we combined
absolute and relative criteria: aberrations were determined as
recurrent if present in at least 10% of the tumours, or if statisti-
cally significant in a binomial test (Bonferroni corrected Po0.05;
Methods). Thirty five recurrent events were identified in the
11 common GEMMs, and 34 of them were confirmed to
be significant by GISTIC2.0 analysis (Supplementary Fig. 8;
Supplementary Table 2). To distinguish between cross-model and

model-specific recurrent aberrations, we applied a w2-test of
independence, thus identifying 15 unique, GEMM-specific CNAs
(Fig. 4a; Supplementary Table 2). These analyses revealed that
each GEMM is associated with a characteristic chromosomal
landscape, suggesting that these CNAs are not simply passenger
events, but rather play a functional role in promoting
tumorigenesis.

To examine whether recurrent driver-specific CNAs are also
tissue dependent, we took advantage of common oncogenes that
can induce cancer in multiple tissues. Specifically, we analysed
319 Myc-induced lymphoma and prostate tumours
(Supplementary Data 7), as well as 92 SV40Tag-induced prostate
tumours (Supplementary Data 8). With both transgenes, some
recurrent CNAs were observed only in a particular cancer type,
whereas others recurred across multiple cancers (Fig. 4a–c),
suggesting that a subset of driver-specific CNAs cooperate with
the initial driver independently of the targeted tissue. Interest-
ingly, the lymphoma and prostate data also recapitulated our
findings in breast cancer that aneuploidy occurs late during
cancer progression, and that DGI is inherent to the driver gene
(Supplementary Fig. 9).

Cross-species analysis identifies candidate co-driver genes. As
genes important for tumorigenesis are likely to reside within
recurrent CNAs, we next asked whether integrated analysis of
CNAs and gene expression could uncover such driver genes. To
identify oncogenes or tumour suppressor genes that promote
tumorigenesis across models, we compared recurrent events
shared by multiple GEMMs. Amplification of 11qE1–E2 is
a recurrent event in three of the GEMMs: PyMT, Met and
Brca1� /� (Fig. 4a). We therefore searched for genes that reside
within this region and that are significantly overexpressed in each
of these models10. The anti-apoptotic gene Survivin (Birc5) was
the only overlapping gene between the three GEMMs
(Supplementary Fig. 10a), suggesting its potential involvement
in breast cancer tumorigenesis. Interestingly, we found that three
additional GEMMs (SV40Tag, Myc and Her2/Neu) in which
11qE1–E2 amplification was not recurrent, also significantly
overexpressed Birc5 (ref. 10), suggesting that its expression may
be dysregulated through multiple mechanisms.

In line with a driving role for BIRC5 in human mammary
tumorigenesis, this gene is commonly amplified in human
invasive ductal breast carcinomas25, in human invasive lobular
breast carcinomas26 and in human breast cancer xenografts27

(Supplementary Fig. 10b). Moreover, we found high expression of
BIRC5 to be associated with worse clinical outcome in human
breast cancer patients (Supplementary Fig. 10c), consistent
with previous analyses of much smaller cohorts28,29. Lastly,
knockdown of BIRC5-induced apoptosis and/or reduced colony
formation capacity of breast cancer cell lines of the basal30,
HER231 and luminal32 subtypes, further supporting its subtype-
independent oncogenic role in breast cancer.

To identify genes that promote tumorigenesis in a particular
genomic context, we performed an integrated cross-species
analysis. Model-specific CNAs may be driven by genes that
cooperate, or interfere, with the initial driver event, and may be
important for human tumorigenesis in the same genetic context.
We therefore sought to take advantage of the incomplete synteny
between the mouse and human genomes to narrow critical
regions of interest. We compared the recurrent aberrations
identified in GEMMs to those that characterize human breast
cancers with activation of the same pathway33 (Methods). This
comparison identified several syntenic recurrent events, enabling
a focus on substantially smaller regions within large CNAs in
both species (Fig. 4d; Supplementary Table 3). For example, we
identified monosomy 4 as a recurrent event in the Her2/Neu
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GEMM. Mouse chromosome 4 is syntenic to four human
chromosomes; of these, only chromosome 1p is commonly
deleted in human tumours with a HER2 amplification gene
expression signature33. This approach led to a considerable
narrowing of the critical region of deletion (60 and 45% reduction

for mouse and human chromosomes, respectively; Fig. 4d).
Focusing on this syntenic region, we next compiled a list of
orthologous genes that reside within it and are downregulated in
Her2/HER2-induced tumours (Supplementary Data 9; Methods).
These candidate genes, together with HER2 itself, were then
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subjected to unbiased gene network analyses using the GeNets
platform (Methods), which identified SFN as a strong candidate
gene to cooperate with HER2 during tumorigenesis
(Supplementary Fig. 11a).

Loss of SFN promotes human HER2-induced tumorigenesis.
SFN (Stratifin, also known as 14-3-3s) has been described as a
putative tumour suppressor involved in cell cycle progression and
epithelial polarity34. However, in human breast cancer of the
basal subtype, its expression has also been reported to promote
invasiveness35, suggesting that its role in tumorigenesis (either
oncogene or tumour suppressor) may be contingent on cellular
context. To address this, we set out to determine whether deletion
of SFN promotes or inhibits tumorigenesis in the human HER2-
enriched breast cancer subtype. We found an inverse association
between SFN mRNA expression levels and the protein levels of
HER2, as well as that of multiple other proteins in the HER2
pathway, both in human breast tumours and in human breast
cancer cell lines (Fig. 5a; Supplementary Fig. 11b). Furthermore, low
SFN expression levels were associated with the decreased overall
survival of breast cancer patients, specifically within the HER2-
enriched human subtype (Fig. 5b; Supplementary Fig. 11c), most
consistent with a loss-of-function, tumour suppressive role of SFN.

To functionally validate SFN’s role in human HER2-induced
tumorigenesis, we turned to a model of HER2-overexpressing
human mammary epithelial cells. Overexpression of HER2 was
not sufficient to transform MCF10A cells, unless combined
with overexpression of 14-3-3z, another member of the 14-3-3
protein family36. Whereas control and HER2-overexpressing
MCF10A cells expressed 14-3-3s, its expression was lost upon
overexpression of 14-3-3z, so that the transformed cells did not
express it at all (Fig. 5c). Importantly, restoring SFN expression in
the transformed cells significantly reduced their anchorage-
independent colony formation capacity and their in vitro
migration and invasion capabilities (Fig. 5d–g). Furthermore,
we found that knockdown or knockout of SFN decreased the
in vitro tumorigenicity of the basal subtype cell line MDA-MB-
231, but had an opposite effect on two cell lines of the
HER2-enriched subtype (MDA-MB-453 and EFM-192A)
(Supplementary Fig. 12). Taken together, these results suggest
that SFN acts as a tumour suppressor gene in the context of
HER2-mediated transformation, in line with previous data from
the mouse37 and in contrast to its role in non-HER2-driven
human mammary tumours35. More broadly, these results
delineate a comparative oncogenomics strategy to identify genes
that co-drive tumorigenesis in specific genomic contexts
(Supplementary Fig. 13). Applying the same strategy to the
recurrent CNAs in additional mouse models yielded a list of

candidate genes that may underlie each of these aberrations
(Supplementary Data 9).

Discussion
GEMMs make a powerful tool for in vivo modelling of human
breast cancer. However, as GEMMs do not always recapitulate the
progression of the human disease, comprehensive genomic
characterizations of these models should inform their proper
use in cancer research, and guide the selection of the most
suitable GEMMs for addressing a particular biological question.
Unlocking the copy-number information hidden in thousands of
gene expression profiles allowed us to perform the first
comprehensive study of aneuploidy and large CNAs in
GEMMs. By systematically mining this novel resource (available
as band-level aberration matrices in Supplementary Data 10), we
uncovered a complex landscape of chromosomal aberrations in
breast cancer GEMMs, indicative of driver-specific genomic
routes to tumour development. We used this data set to address
several long-standing questions in cancer research, and demon-
strated its relevance to the human disease.

Several of our findings are of particular interest: First, we show
that CNA prevalence varies extensively across mouse models,
depending on the inciting oncogene. Westcott et al.18 recently
concluded, based on the analysis of 82 tumours from three mouse
lung cancer models, that there were systematic differences in
CNA prevalence between genetically induced and chemically
induced models of cancer. Our analysis of 1,910 mammary
tumours, the largest ever reported, clearly shows that the
variation across GEMMs is similar to that seen between some
GEMMs and chemical models. It therefore emphasizes the
importance of performing such analyses at the appropriate scale.
Second, we demonstrate the feasibility of associating specific
inciting oncogenic events with specific aneuploidies, even in
mouse models that are otherwise genomically stable. These
relationships can thus serve as a basis for discovering the multi-
step pathogenesis of cancer. Third, we illustrate how cross-species
CNA analyses can tease out driver genes within a large region of
amplification or deletion in human tumours. Therefore, our
findings demonstrate a novel approach to harness GEMM data to
the understanding of human cancer pathogenesis.

Our findings reveal the context-dependent role of SFN
(14-3-3s) in human breast cancer. As 14-3-3 proteins interact
with hundreds of binding partners and regulate multiple
cellular processes, the molecular underpinnings of this unique
behaviour remain to be elucidated. Previous studies showed that
upregulation of transforming growth factor beta (TGFb) is
required for HER2-induced transformation of MCF10A cells38.
Indeed, overexpression of 14-3-3z promotes HER2-induced

Figure 4 | The landscapes of aneuploidy and large CNAs in breast cancer GEMMs reveal driver-specific recurrent events. (a) Frequency plots of

chromosomal aberrations in each of the 11 GEMMs analysed, showing that each GEMM has a characteristic landscape of aneuploidy and large CNAs. Gains

are shown in red, losses in blue. The 15 statistically significant driver-specific CNAs (adjusted Po0.05; w2-test) are highlighted with black asterisks.

(b) Frequency plots of chromosomal aberrations in lymphomas and in prostate tumours induced by Myc activation, showing that trisomy 15 recurs in

Myc-induced tumours in various tissues, whereas other events (for example, monosomy 13 in lymphomas) are tissue dependent. Significant CNAs

(adjusted Po0.05; w2-test) are highlighted with brown asterisks. (c) Frequency plots of chromosomal aberrations in prostate tumours induced by

SV40Tag, showing that trisomy X, and potentially monosomies 7 and 19, recur in SV40Tag-induced tumours independent of the tissue type, whereas other

events (for example, trisomies 3 and 18 in breast tumours) are tissue dependent. Significant CNAs (adjusted Po0.05; w2-test) are highlighted with brown

asterisks. (d) Comparative oncogenomics can narrow regions of interest within recurrent CNAs in both species. Presented is a synteny analysis of three

driver-specific CNAs: mouse chromosomes are shown in the centre, and syntenic human chromosomes surround them. Synteny blocks (4300 kb; small

gaps filled) are color coded. Significantly, enriched CNAs in human tumours that activate the same pathway (as judged by gene expression signatures33)

are marked with a red line to the side of the human chromosome. The synteny blocks that correspond to recurrent events in both species are marked with

red asterisks. For example, trisomy 15 recurs in Myc-induced mouse breast cancer; as 8q amplification recurs in human tumours with high MYC expression

signature, but only a telomere-bound part of 8q is syntenic to mouse chromosome 15, the region of interest within human chromosome 8q can be thus

considerably narrowed (B50% reduction in size). Of note, MYC itself is located within this syntenic region. See also Supplementary Figs 7–9.
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Figure 5 | Downregulation of SFN promotes HER2-induced human breast cancer tumorigenesis. (a) SFN expression level is anti-correlated with the protein

expression level of multiple members of the HER2 pathway in human breast cancer cell lines. Presented are the 50 most negatively associated proteins, the HER2

pathway members are labelled in red. IC, information coefficient. (b) Low expression of SFN and high expression of HER2 are associated with worse prognosis in

HER2-enriched subtype tumours. Presented are Kaplan–Meier plots of the patients’ overall survival based on a limited cohort of 89 HER2-enriched subtype

patients46. (c) Immunoblot analysis of SFN protein levels in stable MCF10A cell lines overexpressing an empty vector (MCF10A-Vec; non-tumorigenic), HER2 alone

(MCF10A-ERBB2; non-tumorigenic), 14-3-3z alone (MCF10A-14-3-3z; non-tumorigenic) or both (MCF10A-ERBB2/14-3-3z; tumorigenic). Expression of 14-3-3z

results in significant reduction of SFN expression. (d) Immunoblot analysis of SFN protein levels in transformed MCF10A cell lines. Overexpression of the SFN open

reading frame restores SFN protein expression. (e) Decreased migration of transformed MCF10A cells following the restoration of SFN expression, as evaluated by

a transwell migration assay. * P¼ 1.5� 10� 5(Student’s t-test). (f) Decreased invasion of transformed MCF10A cells following the restoration of SFN expression, as

evaluated by a transwell invasion assay. *P¼0.04 (Student’s t-test). (g) Decreased colony formation of transformed MCF10A cells following the restoration of SFN

expression, as evaluated by a soft-agar assay. Upper panel: images of colonies. Lower panel: quantification of the number of colonies in each condition. *P¼0.04

(Student’s t-test). Bar plots represent the mean±s.d. Experiments were performed in triplicates. See also Supplementary Figs 10–13.
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tumorigenesis by activating the TGFb pathway36. Here we report
that overexpression of 14-3-3z also abolishes 14-3-3s expression.
Interestingly, 14-3-3z and 14-3-3s play an opposite role in TGFb-
induced growth inhibition39, and 14-3-3s was recently found to
be a direct target of TGFb40. This raises the intriguing possibility
that loss of SFN promotes HER2-induced tumorigenesis through
its modulation of the TGFb pathway.

The same approach that identified SFN as a tumour suppressor
in HER2-induced tumorigenesis was also applied to the
systematic exploration of recurrent CNAs in other models,
yielding a list of candidate genes that may underlie these driver-
specific events. Interesting examples are the translation initiation
factors and the ribosomal proteins that are co-amplified with
Myc in both mouse and human Myc-induced tumours
(Supplementary Data 9), which may collectively underlie the
recurrence of 8q amplifications in human MYC-induced
tumorigenesis; and PDZ binding kinase (Pbk), a gene previously
shown to interact with p53 and modulate the expression of its
transcriptional targets41, which is intriguingly deleted in both
mouse and human p53-mutant tumours (Supplementary Data 9).
The potential context-specific roles of these candidate genes await
experimental validation. Importantly, as our approach for
prioritizing candidate genes focuses on genes that interact with
the driver event or belong to the same pathway (Supplementary
Fig. 13), additional candidate genes may be identified by applying
complementary approaches that focus on genes from alternative
pathways.

In summary, our findings demonstrate the power of large-scale
analyses of mouse models to inform the pathogenesis of mouse
and human cancer. Further exploration of this resource, as well as
its expansion to additional cancer types, should yield further
insights into tumour biology.

Methods
Data assembly and processing. Gene expression profiles were obtained from
the GEO (Gene Expression Omnibus) (http://www.ncbi.nlm.nih.gov/geo) and
EMBL-EBI (European Molecular Biology Laboratory - European Bioinformatics
Institute) (http://www.ebi.ac.uk) databases. Accession numbers are provided in
Supplementary Data 1. Normalized matrix files were downloaded, and samples
were curated manually according to the information available for each of them to
identify the tissue type (normal, premalignant, primary tumour, metastasis, cell line
or cell line-derived tumour), the tumour-initiating event, the promoter used for
transgene activation or perturbation, and the mouse background strain. Arrays
were analysed for quality control and the outliers were removed. The final database
consisted of 567 normal tissue samples, 100 premalignant lesions, 1,910 invasive
carcinomas, 103 cell lines and cell line-derived tumours, and 17 metastases from
breast cancer GEMMs, as well as 319 samples and 92 samples from lymphoma and
prostate GEMMs, respectively. GEMMs were defined according to the introduced/
perturbed gene. The analysis was performed in batches, and normal tissue samples
included in each study served as internal controls, whenever available. Data was
processed using the R statistical software (http://www.r-project.org/)42: probe sets
were organized by their chromosomal location, and the expression values were log2
transformed, if needed. Probe sets without annotated chromosomal location were
removed. For genes with multiple probe sets, all the probe sets of the gene were
averaged (as well as the chromosomal location) to obtain one intensity value per
gene. Next, a threshold expression value was set, and genes with lower expression
values were collectively raised to that level: flooring values were 6.5–7 for the
Affymetrix and Illumina platforms, and � 0.5 for the Agilent platforms. Probe sets
not expressed in 420% of the samples within a batch were removed. The 10%
of the probe sets with the most variable expression levels were also excluded,
to reduce expression noise. Normalized CGH array data were also downloaded
from the GEO website, and probe sets were organized by their chromosomal
location.

Inference of copy-number alterations. To infer CNAs from coordinated gene
expression biases, the protocol developed by Ben-David et al.15 was applied. In
each batch of analysis, the median expression of each gene across all normal tissue
samples, or across the entire batch (if normal tissue samples were not available),
was subtracted from the expression value of that gene in each sample to obtain a
comparative value. The data were processed using a CGH analysis software
program, CGH-Explorer (http://heim.ifi.uio.no/bioinf/Projects/CGHExplorer/)43.
Gene expression regional biases were detected using the program’s piecewise
constant fit (PCF) algorithm, with the following set of parameters: least allowed

deviation¼ 0.15–0.4; least allowed aberration size¼ 50–80; winsorize at
quantile¼ 0.001; penalty¼ 12–18; and threshold¼ 0.01. Moving average plots
were generated with the moving average fit tool, with a window size of 200 genes.
The DGI was subsequently determined for each sample based on the PCF results:
either by counting the number of discrete aberrations within each sample (CNA
prevalence-based DGI), or by counting the number of altered genes within each
sample and dividing it by the total number of genes (gene-based DGI).

Functional genomic mRNA profiling. For Affymetrix microarray platforms,
mouse genome 430A, 430A 2.0 and 430 2.0 (which correspond to 53 of the 83
studies analysed), the FGMP method, proposed by Fehrmann et al.17 was also used.
This procedure first estimates a set of transcriptional components that explain the
majority of gene expression variation using a set of non-cancer samples. Upon
correcting the gene expression data of cancer samples for these transcriptional
components, the residual gene expression data strongly correlates with the copy
number. We applied this approach to the mouse data, and corrected the mouse
gene expression data for the first 25 principal components (PCs) that had been
identified in a heterogeneous set of 17,081 mouse samples. The corrected data was
then subjected to the same processing steps and CGH-PCF analysis described
above to detect CNAs. The DGI was subsequently determined for each sample, by
first sorting the 19,115 probe sets present in each of the three analysed Affymetrix
platforms according to their genomic position, and then calculating (using a lag of
10 probe sets) the autocorrelation per sample, as described in Fehrmann et al.17

Frequency plots and heat maps. CNAs were visualized using the Integrative
Genomics Viewer (https://www.broadinstitute.org/igv/). The lists of segmented
CNAs of all studies within each GEMM (received as outputs from the CGH-
Explorer analyses) were united, and chromosomal locations were modified to
match the mouse mm8 assembly. These lists were then uploaded to Integrative
Genomics Viewer to generate frequency plots and heat maps.

Recurrence analysis. To detect recurrent CNAs, the lists of segmented CNAs
(CGH-Explorer output) for all studies within each GEMM were united and mat-
ched to the mouse chromosomal cytobands obtained from Ensembl 67 Archive for
Mus musculus mm9 (May 2012). Each cytoband was assigned with the copy
number of the segment(s) that correspond(s) to it (� 1, deletion; 0, neutral; and 1,
gain). The frequency of gains and losses of each chromosomal cytoband was
computed within each GEMM. Aberrations were determined as recurrent if their
prevalence was 410% in the N tumour samples, or if statistically significant
(Bonferroni adjusted Po0.05) in binomial test for observing an alteration fre-
quency Kc that is higher than expected. For the binomial test, the expected
probability pc of an event was computed as the background event frequency across
all other cytobands within the GEMM, excluding the cytoband in the test:

p X � Kcð Þ ¼
PN

j¼Kc

N
j

� �

pc
j 1� pcð ÞN � j . The test was performed separately for

gains and for losses. To further improve our confidence in detecting recurrent
CNAs, we applied GISTIC2.0 (version 2.0.22) using the Mus musculus (mm9)
refSeq gene annotations (ftp://ftp.broadinstitute.org/pub/GISTIC2.0/refgenes/
mm9_v0.2_refgene.tgz). As input segments already contained CNA calls
(� 1, deletion; 0, neutral; and 1, gain), the deletion and amplification thresholds
were set at ±0.5, respectively. Other GISTIC parameters were the following:
genegistic¼ 1, maxseg¼ 2,000, js¼ 2, cap¼ 1.5, broad¼ 1, brlen¼ 0.7, conf¼ 0.99,
armpeel¼ 1, rx¼ 0 and gcm¼ extreme. The q value of each cytoband was
determined by the significant focal analysis (qo0.05), and if there were no sig-
nificant focal overlaps, by the significant broad analysis (qo0.05). To determine
model-specific recurrent CNAs, the Pearson’s w2-test of independence was applied,
and aberrations were determined as model-specific if statistically significant
(Bonferroni adjusted Po0.05) in this test.

Detection of arm-level CNAs in human tumours and cell lines. The prevalence
of aneuploidy and large CNAs was compared between 1,097 human breast cancer
tumours from the TCGA project25 and 57 human breast cancer cell lines from the
Cancer Cell Line Encyclopaedia (CCLE) cohort44, using GISTIC2.0 analysis of
arm-level events45. Normalized, segmented Affymetrix single-nucleotide
polymorphism 6.0 copy-number data for the cell lines were obtained from the
CCLE (http://www.broadinstitute.org/ccle/data/browseData, 2012-04-05 hg18
dataset). Normalized, segmented single-nucleotide polymorphism 6.0 copy-
number data for the TCGA breast adenocarcinoma samples were obtained from
the TCGA/GDAC Firehose stddata__2014_10_17 data set (http://gdac.broadinstitute.
org/runs/stddata__2014_10_17/data, doi:10.7908/C1K64H78). The data were median-
centered and converted from log2 ratio to relative copy number by GISTIC2.0
(with cap¼ 1.5). The median relative copy number across each chromosome arm was
computed for every sample and compared with a threshold of± 0.1 copies. Using the
standard GISTIC2.0 noise threshold, arm median values exceeding 0.1 were assigned 1
in the output table, arm median values below � 0.1 were assigned � 1 and arm
median values within the range were assigned 0.
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Synteny–orthology and gene networks analyses. Recurrent driver-specific
aberrations identified in each GEMM were compared with recurrent aberrations
identified in human breast tumours with high expression score of the same
pathway33. Synteny between the mouse and human genome was determined and
drawn using the synteny location-based display of the Ensemble Genome Browser
(release 80) (http://www.ensembl.org). Genes that were significantly differentially
regulated in the GEMM, compared with the normal tissue samples or compared
with all other GEMMs10, were then filtered to include only the ones that have
human orthologues that reside within the respective human syntenic region.
Orthology between the mouse and human genes was examined using the HUGO
(the Human Genome Organisation) Gene Nomenclature Committee comparison
of orthology predictions search (http://www.genenames.org/cgi-bin/hcop).
This list was then subjected to a gene network analysis, using GeNets: The Broad
Institute Web Platform for Genome Networks (https://www.broadinstitute.org/
genets). For each analysis, the original initiating gene of the model (for example,
HER2, MYC, TP53 and so on) was added to the list of orthologous genes
dysregulated within the recurrent CNAs of that particular model, and these
gene lists were then subjected to a protein–protein interaction analysis using
the InWeb3 network, and to a pathway analysis using the ConsensusPathDB
network.

Survival analysis. Survival data were obtained from the Kaplan–Meier Plotter
breast cancer survival analysis database46, 2014 version (http://kmplot.com/
analysis/index.php?p=service&cancer=breast). The mean expression values of the
two ERBB2 probe sets (210930_s_at, 216836_s_at), the three SFN probe sets
(33322_i_at, 33322_r_at, 209260_at) and the three BIRC5 probe sets (202094_at,
202095_s_at, 210334_x_at) were used. The P value was calculated using a log-rank
test.

Tumour latency analysis. Average tumour formation latencies were derived from
The Jackson Laboratory website (http://jaxmice.jax.org/cancer/featured.html), and
were confirmed by a recent review paper comparing latencies between different
GEMMs22. The latencies characteristic of the Pten� /� , the Brca1� /� and the
Etv6–Ntrk3 GEMMs were derived from Liu et al.47, Li et al.48 and Diaz-Cruz
et al.49, respectively.

Association analysis of gene expression and protein levels. To assess the
degree of association between mRNA expression levels of relevant genes, for
example, SFN, and RPPA protein levels in cell lines and tumours we used an
information-theoretic measure of association: the information coefficient. This
quantity is a rescaling of the differential mutual information to make it lie in the
interval [� 1, 1] in a way similar to a correlation coefficient. The differential
mutual information is a sensitive metric to detect linear and non-linear
relationships between variables. The information coefficient, the matching score
shown on the side of Fig. 5a; Supplementary Fig. 9c, is computed using standard
kernel estimation procedures and its statistical significance (that is, nominal
P values and false discovery rates) is assessed using an empirical permutation test.
Similar association analysis has been applied in other problems, such as
correlating drug sensitivities, mRNA levels, pathway profiles and genomic
alterations50,51.

Cell culture and genetic manipulations. MCF10A stable cell lines overexpressing
an empty vector (control), ERBB2 alone, 14-3-3z alone or both (transformed
MCF10A cells) were a kind gift from Dihua Yu and colleagues36. Cell lines were
tested for mycoplasma contamination, and their morphology and performance in a
functional (colony formation) assay were confirmed. MCF10A cells were cultured
in MEGM Mammary Epithelial Cell Growth Medium (Lonza CC-3151),
supplemented with the MEGM Bulletkit (Lonza CC-3151) and with 5 mgml� 1

human transferrin (Lonza CC-4205). MDA-MB-231, MDA-MB-453 and EFM-
192A breast cancer cell lines were obtained from the Broad Institute CCLE
repository44, and cultured in RPMI medium 1640 GlutaMAX (Thermo Fisher
Scientific 61870-036). Lentiviral vector and its packaging vectors were transfected
into 293T cells using FuGENE HD transfection reagent (Promega E2311). 293T
cells were split into 6-cm2 plates, and were transfected the following day with 1 mg
of vector, together with 100 ng of pCMV-VSV-G and 900 ng of psPAX2 packaging
plasmids. For overexpression of SFN, the introduced vector was the CCSB-Broad
Lentiviral Expression clone of Human SFN ORF (ccsbBroad304_06302;
ccsbBroad304_99991 luciferase clone was used as control). For short hairpin RNA
(shRNA)-mediated knockdown of SFN, the introduced vector was the
GeneCopoeia HSH007802-LVRH1H shRNA-1; CSHCTR001-LVRH1H was used
as a scrambled control shRNA. For CRISPR/Cas9-mediated knockout of SFN, the
introduced vectors were the lentiCas9_blast and the lentiGuide_Puro into which a
guide RNA (gRNA) against SFN was cloned; a gRNA against green fluorescent
protein was used as control. The morning following transfection, the medium was
replaced with fresh culture medium. Forty-eight and 72 h later, the lentivirus
containing media was collected from transfection, filtered through a 0.45-mm filtre
and the target cells were infected with the fresh lentivirus containing media
(supplemented with 8 mgml� 1 polybrene). The next day, the medium was replaced
with fresh culture medium containing selection antibiotics. MCF10A stable clones

were selected with 5–10 mgml� 1 blasticidin (Life Technologies A11139-03); MDA-
MB-231, MDA-MB-453 and EFM-192A stable clones were selected with 100–
200 mgml� 1 hygromycin (for shRNAs; Life Technologies 10687-010), 1 mgml� 1

puromycin (for Cas9; Life Technologies A1113803) or 5–10 mgml� 1 blastocidin
(for gRNAs; Life Technologies A11139-03). The sequences of the shRNAs are the
following: shRNA-scrambled: GCTTCGCGCCGTAGTCTTA and shRNA-SFN:
GCGAAACCTGCTCTCAGTA. The sequences of the gRNAs are the following:
gRNA-green fluorescent protein: GGGCGAGGAGCTGTTCACCG and gRNA-
SFN: CGAGATCGCCAACAGCCCCG.

Immunoblotting. Total cell lysates were collected with a mix of 4� protein
loading buffer (Li-Cor 928-40004) and 10� NuPAGE sample reducing agent (Life
Technologies NP0009). The lysate was boiled for 5 min at 96 �C and frozen at
� 20 �C. Protein concentration was normalized between samples by cell counting.
Cell lysates were subjected to electrophoresis using SDS–polyacrylamide gel elec-
trophoresis and transferred to a nitrocellulose membrane with the iBlot2 dry
blotting system (Life Technologies IB23001). Membrane was then blocked with
Odyssey blocking buffer (Li-Cor 927-40100) for 1 h at room temperature, followed
by an overnight primary antibody incubation at 4 �C in Odyssey blocking buffer
with 0.1% Tween-20. For detection of SFN/14-3-3s, we used the anti-human 14-3-
3s (E-11) mouse monoclonal antibody (Santa Cruz Biotechnologies, sc-166473,
1:200). For detection of b-actin, we used the anti-human b-actin rabbit polyclonal
antibody (Santa Cruz Biotechnologies, sc-130656, 1:200). Following primary
antibody staining, membranes were washed three times with Tris-Buffered Saline
with Tween 20 (TBST) and incubated with the appropriate IRDye secondary
antibody (Li-Cor) for 1 h at room temperature in Odyssey blocking buffer with 0.1%
Tween-20 and 0.02% SDS. Membrane was then washed three times with TBST and
twice with phosphate-buffered saline, and the signal was detected with a Li-Cor
Odyssey CLx imaging machine and quantitated with the Image Studio software.
Three biological replicates of the experiments were performed. Uncropped scans are
presented in Supplementary Fig. 14.

Soft-agar colony formation assay. Cells were suspended in 0.35% agar with their
culture media, plated into six-well plates pre-coated with 0.5% agar at a density of
25 k cells per well and incubated at 37 �C. Once a week, 200 ml of media was added
to each well. At 2 weeks, cells were stained for 1 h with 0.005% crystal violet
(Sigma-Aldrich V5265) in phosphate-buffered saline with 4% formaldehyde,
washed three times and images of the entire wells were taken using a Leica
automated microscope with an ACE light source (Schott A20500). Images were
analysed and colonies (410 pixel units in size) were automatically counted using
the Cell Profiler imaging software. Three biological replicates of the experiments
were performed.

Cell migration and invasion assays. CytoSelect 96-well cell migration assay
(Cell Biolabs CBA-106) and CytoSelect 96-well cell invasion assay (Cell Biolabs
CBA-112-COL) were performed according to the manufacturer’s protocol. In
short, cells were suspended in low-serum (0.5% fetal bovine serum) DMEM
medium, and added to the top chambers of the 96-well cell migration plates or the
collagen-coated 96-well cell invasion plates at a density of 50 k cells per well.
Complete media was added to the bottom chambers as attractant. Twenty-four
hours after incubation, migrating/invading cells were detached from the underside
of the membrane using cell detachment solution, lysed with lysis buffer and stained
with CyQuant GR dye solution. Fluorescence intensity was determined with
Envision plate reader at 485/535 nm. Five biological replicates of the experiments
were performed.

Statistical analyses. The significance of the differences in the prevalence of CNAs
between different stages of tumorigenesis, between primary tumours and cell lines,
between the various GEMMs, between activating promoters, between genetic
backgrounds, between histological subtypes, between tumours with different p53
status and between mouse strains was determined using the Pearson’s w2-test of
independence, or using the Fisher’s exact test (whenever the number of samples for
one of the conditions was o10). The significance of the difference in the average
number of arm-level CNAs between human primary tumours and cell lines, and
the significance of the difference in the performance in the migration, invasion and
colony formation assays were determined using the two-tailed Student’s t-test. The
significance of the difference between the autocorrelation distributions of GEMMs
was determined by a Mann–Whitney U test. The significance of the difference
between the DGI of the various GEMMs, as determined by the fraction of altered
genes or by the number of discrete CNAs was determined by a Kruskal–Wallis
rank-sum test, followed by a post hoc Dunn’s test of multiple comparisons. Bar
plots represent the mean ± s.d. Box plots were generated using the R statistical
software, so that the boxes show the median, 25th and 75th percentiles, lower
whiskers show data within 25th percentile � 1.5 times the interquartile range
(IQR), upper whiskers show data within 75th percentile þ 1.5 times the IQR and
circles show outliers.
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Data availability. Data referenced in this study and their associated accession
codes are available in Supplementary Data 1. The authors declare that any other
data supporting the findings of this study are available within the article, its
Supplementary Information files or available from the author upon request.
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