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Short tandem repeats are among the most polymorphic loci in the human genome. These loci play a role in the etiology of

a range of genetic diseases and have been frequently utilized in forensics, population genetics, and genetic genealogy.

Despite this plethora of applications, little is known about the variation of most STRs in the human population. Here, we

report the largest-scale analysis of human STR variation to date. We collected information for nearly 700,000 STR loci

across more than 1000 individuals in Phase 1 of the 1000 Genomes Project. Extensive quality controls show that reliable

allelic spectra can be obtained for close to 90% of the STR loci in the genome. We utilize this call set to analyze de-

terminants of STR variation, assess the human reference genome’s representation of STR alleles, find STR loci with

common loss-of-function alleles, and obtain initial estimates of the linkage disequilibrium between STRs and common

SNPs. Overall, these analyses further elucidate the scale of genetic variation beyond classical point mutations.

[Supplemental material is available for this article.]

Short tandem repeats (STRs) are abundant repetitive elements

comprised of recurring DNA motifs of 2–6 bases. These loci are

highly prone to mutations due to their susceptibility to slippage

events during DNA replication (Ellegren 2004). To date, STR muta-

tions have been linked to at least 40 monogenic disorders (Pearson

et al. 2005; Mirkin 2007), including a range of neurological condi-

tions such asHuntington’s disease, amyotrophic lateral sclerosis, and

certain types of ataxia. Somedisorders, such as Huntington’s disease,

are triggered by the expansion of a large number of repeat units. In

other cases, such as oculopharyngeal muscular dystrophy, a patho-

genic allele is only two repeat units from the wild-type allele (Brais

et al. 1998; Amiel et al. 2004). In addition to Mendelian conditions,

multiple studies have suggested that STR variations contribute to an

array of complex traits (Gemayel et al. 2010), ranging from the

period of the circadian clock in Drosophila (Sawyer et al. 1997) to

gene expression in yeast (Vinces et al. 2009) and splicing in humans

(Hefferon et al. 2004; Sathasivam et al. 2013).

Beyond their importance to medical genetics, STR variations

convey high information content due to their rapid mutations and

multiallelic spectra. Population genetics studies have utilized STRs in

a wide range of methods to find signatures of selection and to elu-

cidate mutation patterns in nearby SNPs (Tishkoff et al. 2001; Sun

et al. 2012). In DNA forensics, STRs play a significant role as both the

United States and the European forensicDNAdatabases rely solely on

these loci to create genetic fingerprints (Kayser and de Knijff 2011).

Finally, the vibrant genetic genealogy community extensively uses

these loci to develop impressive databases containing lineages for

hundreds of thousands of individuals (Khan and Mittelman 2013).

Despite the utility of STRs, systematic data about their varia-

tion in thehumanpopulation is far fromcomprehensive.Currently,

most of the genetic information concerns a few thousand loci that

were part of STR linkage and association panels in the pre-SNP-array

era (Broman et al. 1998; Tamiya et al. 2005) and several hundred loci

involved in forensic analysis, genetic genealogy, or genetic diseases

(Ruitberg et al. 2001; Pearson et al. 2005). In total, there are only

5500 loci under the microsatellite category in dbSNP139. For the

vast majority of STR loci, little is known about their normal allelic

ranges, frequency spectra, and population differences. This knowl-

edge gap largely stems from the absence of high-throughput geno-

typing techniques for these loci (Jorgenson and Witte 2007). Cap-

illary electrophoresis offers themost reliable method to probe these

loci, but this technology scales poorly.More recently, several studies

have begun to genotype STR loci with whole-genome sequencing

data sets obtained from long read platforms such as Sanger se-

quencing (Payseur et al. 2011) and 454 Life Sciences (Roche) (Molla

et al. 2009; Duitama et al. 2014). However, due to the relatively low

throughput of these platforms, these studies analyzed STR varia-

tions in only a few genomes.

Illumina sequencing has the potential to profile STR varia-

tions on a population-scale. However, STR variations present sig-

nificant challenges for standard sequence analysis frameworks

(Treangen and Salzberg 2012). In order to reduce computation time,

most alignment algorithms use heuristics that reduce their tolerance

to large indels, hampering alignment of STRswith large contractions

or expansions. In addition, due to the repetitive nature of STRs, the

PCR steps involved in sample preparation induce in vitro slippage

events (Hauge and Litt 1993). These events, called stutter noise,

generate erroneous reads that mask the true genotypes. Because of

these issues, previous large-scale efforts to catalog genetic variation

have omitted STRs from their analyses (The 1000 Genomes Project

Consortium 2012; Tennessen et al. 2012; Montgomery et al. 2013),
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and early attempts to analyze STRs using the 1000 Genomes

Project data mainly focused on exonic regions (McIver et al. 2013)

or extremely short STR regions in a relatively small number of

individuals based on the native indel call set (Ananda et al.

2013).

In our previous studies, we created publicly available programs

that specialize in STR profiling using Illumina whole-genome se-

quencing data (Gymrek et al. 2012; Highnam et al. 2013). Recently,

we employed one of these tools (lobSTR) to accurately genotype

STRs on the Y chromosome of anonymous individuals in the 1000

Genomes Project to infer their surnames (Gymrek et al. 2013),

demonstrating the potential utility of STR analysis from Illumina

sequencing. Here, we used these tools to conduct a genome-wide

analysis of STR variation in the human population using se-

quencing data from Phase 1 of the 1000 Genomes Project.

Results

Identifying STR loci in the human genome

The first task in creating a catalog of STR variation is to determine

the loci in the human reference that should be considered as STRs.

This problem primarily stems from the lack of consensus in the

literature as to how many copies of a repeat distinguish an STR

from genomic background (Leclercq et al. 2007; Fondon et al.

2012; Schaper et al. 2012). For example, is (AC)2 an STR? What

about (AC)3 or (AC)10? Furthermore, as sporadic bases can in-

terrupt repetitive DNA sequences, purity must also be taken into

account when deciding whether a locus is a true STR.

We used a quantitative approach to identify STR loci in the

reference genome. Multiple lines of study have proposed that the

birth of an STR is a relatively rare event with complex biology

(Ellegren 2004; Buschiazzo andGemmell 2006;Oliveira et al. 2006;

Gemayel et al. 2010; Kelkar et al. 2011; Ananda et al. 2013). The

transition from a proto-STR to a mature STR requires nontrivial

mutations, such as the arrival of a transposable element, slippage-

induced expansion of the proto-STR, or precise point mutations

that destroy nonrepetitive gaps between two short repeat stretches.

Based on these observations, it was suggested that randomly shuf-

fled DNA sequences should rarely produce mature STR sequences

and can therefore be used as negative controls for STR discovery

algorithms (Gemayel et al. 2010; Schaper et al. 2012). We utilized

this approach to identify STR loci in the human genome while

controlling the false positive rate (Supplemental Fig. 1; Supple-

mental Methods). We first integrated the purity, composition, and

length of putative STRs in the genome into a score using Tandem

Repeats Finder (TRF) (Benson 1999). Then, we generated random

DNA sequences using a second-order Markov chain with similar

properties to the human genome (i.e., nucleotide composition and

transition frequencies). We tuned the TRF score threshold such that

only 1%of the identified STR loci in our collection were expected to

be false positives. The resulting score thresholds were in good

qualitative agreement with those previously produced using a vari-

ety of alternative experimental and analytical methods (Supple-

mental Methods; Lai and Sun 2003; Kelkar et al. 2010; Fondon et al.

2012).We then evaluated the false negative rate of our catalog using

two methods (Supplemental Methods). First, we collected a pre-

liminary call set of repeat number variability across the human

population with a highly permissive definition of STR loci. We

found that our catalogmisses only;1%of loci that exhibited repeat

variability in this call set (Supplemental Table 1). Second, we

collated a set of about 850 annotated bona fide STR loci, mainly

from the CODIS forensic panel and Marshfield linkage panel. Only

12 (1.4%)of thesemarkerswerenot included in the catalog basedon

the TRF score threshold. The results of the two validation methods

suggest that our catalog includes ;99% of the true STRs in the

genome and has a false negative rate of ;1%.

Overall, our STR reference includes ;700,000 loci in the hu-

man genome. About 75% of these loci are di- and tetra-nucleotide

STRs, whereas the remaining loci are tri-, penta-, and hexa-nucle-

otide STRs (Supplemental Table 2). Approximately 4500 loci overlap

coding regions, 80% of which have either trimeric or hexameric

repeat units. In addition, our reference contains a roughly equal

proportion of interrupted and uninterrupted microsatellites.

Profiling STRs in the 1000 Genomes Project samples

We collected variations for these 700,000 STR loci using 1009 in-

dividuals from Phase 1 of the 1000 Genomes Project (Methods;

Supplemental Table 3). These samples span populations from five

continents andwere subject to low coverage (;53) whole-genome

sequencing using 76-bp and 100-bp Illumina paired-end reads. In

addition, high coverage exome sequencing data were available for

975 of these samples and were integrated with the whole-genome

raw sequencing files.

We tested two distinct STR genotyping pipelines designed

to analyze high-throughput sequencing data, namely lobSTR

(Gymrek et al. 2012) and RepeatSeq (Highnam et al. 2013). Briefly,

lobSTR utilizes the nonrepetitive regions surrounding STRs to

align reads and assess their allele lengths, whereas RepeatSeq uti-

lizes Bayesianmodel selection to genotype previously aligned STR-

containing reads. Despite significant methodological differences,

the STR genotypes from the two tools were quite concordant and

matched for 133,375,900 (93%) of the 143,428,544 calls that were

reported by both tools. We tested multiple methods to unify the

two call sets in order to further improve the quality (Supplemental

Fig. 2; Supplemental Methods). However, none of these inte-

gration methods improved the accuracy. Since the lobSTR calls

showed better quality for highly polymorphic STRs, we proceeded

to analyze STR variations using only this call set.

On average, we collected STR genotypes for;530 individuals

per locus (Fig. 1A) and 350,000 STR loci per individual (Fig. 1B),

accumulating a total of about 350 million STR genotypes in the

catalog. We examined the marginal increase in the number of

covered STR loci as a function of sample size (Methods; Fig. 1C).

Our analysis shows that after analyzing 100 samples, there is

a negligible increase in the number of genotyped STRs. However,

even with all of the data, 3% of STR loci are persistently absent

from the catalog. The average reference allele length of themissing

STR loci was 182 bp compared to 31 bp for the rest of the reference,

suggesting that themissing STR loci have allele lengths beyond the

read length of Illumina sequencing. We also examined the mar-

ginal increase of polymorphic STR loci with minor allele frequen-

cies (MAF) > 1%. Again, we observed an asymptote after ;100

samples. These saturation analyses suggest that with the current

sample size, the STR variation catalog virtually exhausted all loci

with MAF > 1% that can be observed with 100-bp Illumina reads

and our analysis pipeline.

The full catalog of STR variations is publicly available at

http://strcat.teamerlich.org in VCF format. In addition, the web-

site provides a series of graphical interfaces to search for STR loci

with specific biological properties, obtain summary statistics such

as allelic spectra and heterozygosity rates, and view the supporting

raw sequencing reads.

Genome Research 1895
www.genome.org

The landscape of human STR variation

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by genome.cshlp.orgDownloaded from 

http://strcat.teamerlich.org
http://genome.cshlp.org/
http://www.cshlpress.com


Quality assessment

To initially assess the accuracy of our STR calls, we first examined

patterns ofMendelian inheritance (MI) of STR alleles for three low-

coverage trios present in the sample set. In total, we accumulated

half a million calls. Without any read depth threshold, 94% of the

STR loci followed MI (Fig. 2A). The MI rates increased mono-

tonically with read depth, and restricting the analysis to loci with at

least 10 reads increased the Mendelian inheritance to >97%.

Next, we compared the concordance between our calls and

those obtained using capillary electrophoresis, the gold standard

for STR calling (Methods). We focused on data sets containing

Marshfield and PowerPlex Y chromosome panel genotypes that are

available for a subset of the 1000 Ge-

nomes Project individuals. These panels

ascertain some of the most polymorphic

STR loci, testing our pipeline in a chal-

lenging scenario. The Marshfield capillary

panel (Rosenberg et al. 2005) reported

5164 genotypes that overlapped with the

lobSTR calls and pertained to 157 autoso-

mal STRs and 140 individuals, whereas the

PowerPlex capillary panel reported 784

genotypes that overlapped with the

lobSTR calls and pertained to 17 Y-STRs

and 228 individuals.

One key question is finding an ade-

quate cost function to assess the concor-

dance between the STR calls. In SNPs, the

proportion of mismatches is a natural

measure of concordance due to their bi-

nary nature. However, for STRs, this ap-

proach assigns the same penalty for

missing one repeat unit and 10 repeat

units. As an alternative, we focused on

measuring the goodness-of-fit (R2) be-

tween the STR dosages. The dosage of an

STRwas defined as the sumof the number

of base pairs after subtracting the refer-

ence allele. For example, if the genotype

was 16 bp/18 bp and the reference allele

was 14 bp, the dosage of the locus was set

to 2 + 4 = 6; for hemizygous loci, the

dosage was the difference from the refer-

ence allele. We focused on assessing dos-

age concordance because of the growing

body of studies suggesting that the phe-

notypic impact of STRs is strongly corre-

lated with length (Gebhardt et al. 1999;

Shimajiri et al. 1999; Contente et al. 2002;

Hefferon et al. 2004). R2 confers the

property that the cost is proportional to

the (squared) magnitude of the error in

terms of length. In addition, the R2 of the

dosages measures the amount of genetic

variance that was recovered by lobSTR un-

der strict additivity, which might be im-

portant for downstreamassociation studies.

After regressing the lobSTR dosages

with the capillary dosages, the resulting

goodness-of-fit estimators (R2) were 0.71

for the autosomal genotypes and 0.94 for

the Y chromosome genotypes (Fig. 2B; Supplemental Fig. 3). By

further stratifying the autosomal calls by the capillary genotype,

we found that lobSTR correctly reported 89.5% of all homozygous

loci and recovered one ormore alleles for 91.5%of all heterozygous

loci, but only correctly reported both alleles for 12.8% of all het-

erozygous loci (Supplemental Table 4). For the Y chromosome,

95% of the lobSTR genotypes exactly matched the capillary ge-

notypes for the PowerPlex Y panel (Supplemental Table 5).

Collectively, these results suggest that the individual allele

lengths are relatively accurate, and that the primary source of noise

is the recovery of only one STR allele for heterozygous loci, an issue

known as allelic dropout. This statement is supported by the rel-

atively good accuracy achieved for the homozygous autosomal loci

Figure 1. Call set statistics. (A) Distribution of the number of called samples per locus. The average is
528 samples per STR with a standard deviation of 231. (B) Distribution of the number of called loci per
sample. The average is 349,892 STRs per sample with a standard deviation of 145,135. (C ) Saturation
curves for the catalog. The number of called loci (green) rapidly approaches the total number of STRs in
the genome (red line). The number of called loci with aMAF > 1% (blue) saturates after 100 samples and
far exceeds the number of STR variants in dbSNP (gray line close to the x-axis).
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and hemizygous Y chromosome loci, and the monotonically in-

creasing relationship between heterozygote accuracy and read

depth, with a heterozygote accuracy of nearly 80% achieved for

loci covered by six or more reads (Supplemental Fig. 4). In general,

allelic dropouts are quite expected given the relatively low se-

quencing coverage but are also known to be an issue in genotyping

STRs with capillary electrophoresis (Pompanon et al. 2005).

We performed various analyses that demonstrate that allelic

dropouts do not hamper the ability to deduce population-

scale patterns of human STR variation. First, we examined the

concordance of heterozygosity rates obtained from the lobSTR and

the capillary calls for Marshfield STRs in three European sub-

populations (CEU, GBR, and FIN). The heterozygosity rate is based

on the frequency spectrum of a locus (Methods) and should be

unaffected by random allelic dropout. As expected, we found that

the heterozygosity rates were highly similar between the capillary

and the lobSTR results (Fig. 2C). The regression slope was 0.996

and the root mean squared error (RMSE) was 0.044 based on more

than 200 STRs. This analysis shows that the heterozygosity

estimates obtained from our call set are relatively unbiased.

Figure 2. Quality assessments of the STR catalog. (A) Consistency of lobSTR calls with Mendelian inheritance. The blue line denotes the fraction of STR
loci that followedMendelian inheritance as a function of the read coverage threshold. The green line denotes the total number of calls in the three trios that
passed the coverage threshold. (B) Concordance between lobSTR and capillary electrophoresis genotypes. The STR calls were taken from the highly
polymorphicMarshfield panel. The dosage is reported as the sum of base pair differences from the hg19 reference. The area of each bubble is proportional
to the number of calls of the dosage combination, and the broken line indicates the diagonal. (C ) Comparison of heterozygosity rates for Marshfield panel
STRs. The color denotes the length of the median allele of the STR (dark-short; light-long). (D) A comparison of allelic spectra obtained by lobSTR and
capillary electrophoresis for a CODIS marker in European individuals. (Red) lobSTR; (black) capillary electrophoresis. nlobSTR and nCapillary indicate the
number of alleles called in the respective call sets. (E) The reliable range of lobSTR allelic spectra. The figure presents the median deviation of the lobSTR
calls from hg19 as function of the reference allele length (blue curve). Negative deviations indicate a potential preference toward ascertaining shorter
alleles. STRs with reference alleles of up to;45 bp show very minimal deviations (yellow region) and are expected to display unbiased frequency spectra
with the current read lengths. These STR loci comprise close to 90% of the total genotyped STRs in our catalog (red curve).
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We also benchmarked the quality of population-scale pat-

terns by comparing the allelic spectra for the Marshfield loci

(Supplemental Fig. 5).We found that inmost cases, the lobSTR and

capillary spectra matched in the median and interdecile range of

the reported allelic lengths. We also inspected the frequency

spectra of STRs that are part of the forensic CODIS test panel using

a similar procedure (Fig. 2D; Supplemental Fig. 6). A previous study

reported the spectra of these loci by genotyping ;200 Caucasians

in the United States using capillary electrophoresis (Budowle et al.

1999). Again, these comparisons resulted in similar patterns for

eight of the 10 analyzedmarkers.We foundmarked biases only for

FGA and D18S51, with lobSTR reporting systematically shorter

alleles. As the maximal allele sizes of these two loci are >80 bp, the

long alleles are seldom spanned by the mixture of 76-bp and 100-

bp Illumina reads in Phase 1, creating a bias toward shorter alleles.

We sought to further characterize potential biases toward

ascertaining shorter alleles with lobSTR and the 76-bp/100-bp

Illumina reads. To that end, we inspected the concordance be-

tween the lobSTR calls and the hg19 reference (Fig. 2E). The ref-

erence genome was generated by long Sanger reads and should

therefore be an unbiased estimator of the most common allele in

the population. In the absence of any systematic bias toward

shorter alleles, the expected deviation of

a lobSTR allele from the NCBI reference

should be zero. On the other hand, in the

presence of such a bias, the lobSTR calls

should be systematically smaller than the

NCBI reference and generate a negative

deviation. We found that the median

deviation of lobSTR was around zero for

STRs with reference alleles up to 45 bp.

Above this threshold, we started to ob-

serve systematic deviations toward shorter

alleles. The deviation did not mono-

tonically decrease but exhibited a local

maximum around 65 bp, which pre-

sumably stems from the heterogeneity of

the sequencing read lengths and the ex-

haustion of alleles that can be spanned by

76-bp reads. Importantly, only 10% of all

loci in our catalog have a reference allele

>45 bp. This implies that for the vast ma-

jority of the loci, the allelic spectra are

expected to be unbiased.

Validation using population genetics

trends

To further assess the utility of our catalog,

we tested its ability to replicate known

population genetics trends. We specifi-

cally wondered about the quality of the

most variable STR loci in the catalog.

One hypothesis is that these loci are just

extreme cases of genotyping errors; an

alternative hypothesis is that these loci

are truly polymorphic and can provide

useful observations about the underlying

populations. We first compared the het-

erozygosities of the 10% most variable

autosomal loci across 10 different sub-

populations from Africa, East Asia, and

Europe. Consistent with the out-of-Africa bottleneck (Stoneking

and Krause 2011), we found that the genetic diversity of the

African subpopulations significantly exceeded those of Europe

and East Asia (sign test; P < 10�50 for any African–non-African

pair) (Fig. 3A; Supplemental Table 6). Second, we focused on the

100 most heterozygous autosomal loci in our catalog and in-

spected the ability of STRUCTURE (Pritchard et al. 2000) to cluster

a subset of the samples into three main ancestries in an un-

supervised manner. Our results show that all these samples clus-

tered distinctly by geographical region (Fig. 3B). These analyses

demonstrate that even the most variable loci in the catalog still

convey valid genetic information that can be useful for population

genetic analyses. Finally, we also analyzed the genetic variability

of all STRs with MAF > 1% on the autosome, X chromosome, and

Y chromosome (Fig. 3C). Autosomal STRs showed the highest

variability, followed by STRs on the X and the Y chromosomes.

This result is consistent with the differences in the effective pop-

ulation sizes of these three types of chromosomes, providing an

additional sanity check.

In summary, the multiple lines of quality assessment suggest

that our catalog can be used to infer patterns of human STR vari-

ations such as heterozygosity, allelic spectra, and population

Figure 3. Evaluation of the STR catalog for population genetics. (A) Genetic diversity of the 10%most
heterozygous autosomal loci in different populations. (Yellow) European; (red) African; (blue) East
Asian. The mean heterozygosities (dot) of the African subpopulations consistently exceed those of the
non-African subpopulations. The whiskers extend to 61 standard deviation. See Supplemental Table 3
for population abbreviations. (B) STRUCTURE clustering based on the 100most polymorphic autosomal
STR loci. Each subpopulation clusters tightly by geographic origin. Color labels as in A. (C ) Average STR
heterozygosity as a function of chromosome type. Bars denote the standard error.
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structure. The most notable shortcoming of the catalog is allelic

dropouts stemming from the low sequencing coverage of the 1000

Genomes Project. However, the experiments above suggest that

valuable summary statistics can be extracted from the call set de-

spite this caveat.

Patterns of STR variation

Despite a plethora of STR studies, there is no consensus in the lit-

erature regarding the effect of motif characteristics on STR vari-

ability. The classical study by Weber and Wong (1993) originally

suggested that tetranucleotide STRs mutate more rapidly than

those with dinucleotide motifs based on the analysis of de novo

mutation in trios for 50 STRs. This finding was recently supported

by a much larger trio-based study of nearly 2500 STRs (Sun et al.

2012). However, various other studies have suggested that di-

nucleotides have higher mutation rates (Chakraborty et al. 1997;

Pemberton et al. 2009). These disagreements may largely stem

from the fact that many of these studies considered very small

panels of STRs that are subject to ascertainment biases.

To address this open question, we analyzed the sequence

determinants of STR variation in our catalog. We found that for

noncoding STRs, variability monotonically decreased with motif

length (Fig. 4). In contrast, loci with trimeric and hexamericmotifs

were the most polymorphic among coding STRs. These STR loci

can vary without introducing frameshift mutations and therefore

may be exposed to weaker purifying selection. In addition, coding

STRs demonstrated significantly reduced heterozygosity compared

to noncoding STRs for 2–5 bp motifs (Mann-Whitney U-test; P <

0.01) (Supplemental Table 7), whereas hexameric STRs showed no

statistically significant difference in variability between these two

classes. To ensure that the dependence between motif length and

heterozygosity was not confounded by length or purity biases, we

stratified STR heterozygosity for pure STRs based on major allele

length and motif length. This analysis still showed an inverse

correlation between motif length and STR variability after strati-

fication based on the length of the most common allele (Sup-

plemental Fig. 7). In addition, this analysis showed a monotonic

increase in STR variability as a function of the major allele length.

Similar trends also applied for STRs with various levels of impuri-

ties, albeit with a reducedmagnitude of effect and slight deviations

from monotonicity (Supplemental Fig. 8). This observation is

concordant with previous studies (Ellegren 2000; Xu et al. 2000;

Lai and Sun 2003; Whittaker et al. 2003).

Next, we explored the effect of nucleotide composition on

STR variability, another issue for which the literature has not yet

reached a consensus. Previous studies have suggested that AT re-

peats are the least variable motif for dinucleotide STRs (Bachtrog

et al. 2000; Pemberton et al. 2009), whereas other studies claimed

that AT repeats are the most variable motif (Kelkar et al. 2008; Sun

et al. 2012). We repeated our analysis by stratifying the STRs based

on motif sequence and major allele length (Supplemental Fig. 9).

The resulting per-motif variability results were remarkably similar

to those generated using a comparison of orthologous STRs in

humans and chimpanzees (Kelkar et al. 2008). Our analysis shows

that AT repeats are in general more variable that AC repeats after

controlling for length of the most major allele. Similarly, for most

motif lengths, STRs with an [A]nT motif tend to be more variable

with long major allele lengths. However, we could not find a clear

pattern across motif lengths, which is similar to the result of

a previous analysis of a few dozen Y-STRs (Ballantyne et al. 2010).

The prototypical STR

We alsowondered about the prototypical pattern of variation of an

STR locus in terms of the number of alleles and their distribution.

We found that 30%of STRs have a commonpolymorphismwith at

least two alleles with frequencies >5%. Dinucleotide STRs have the

highest rate, with 48% of these loci displaying a common poly-

morphism. Moreover, 30% of all dinucleotide STRs havemore than

three alleles with a frequency >5%. On the other hand, hexa-

nucleotide STRs have the lowest common polymorphism rate,

with only 13% of these loci displaying a common polymorphism

(Supplemental Fig. 10A; Supplemental Table 8).

Next, we turned to finding the prototypal allelic spectra of

STRs. For each STR, we normalized the reported alleles such that

they reflected the distance in number of repeats from the locus’

most common allele. Then, we generated histograms that show

the allelic spectra by aggregating all the alleles of STRs with the

same motif length. This coarse-grained picture was similar across

repeat lengths (Supplemental Fig. 10B). The allelic spectrum of an

STR is unimodal and relatively symmetric. There is one, highly

prevalent major allele, two less common alleles one repeat above

and one repeat below the most common allele, and a range of rare

alleles with monotonically decreasing frequency that reach more

than 65 repeats from the most common allele.

We also wondered about the population differentiation

of autosomal STRs. We analyzed the Rst (Slatkin 1995) between

African, Asian, and European populations for STRs with hetero-

zygosity >5% (Supplemental Table 9). The average Rst was between

4.5% and 6% across the motif lengths and the median was ;2%–

3%. In coding regions, when compared to noncoding STRs, the

average Rst was less than half for trimeric STRs but the same for

hexameric STRs. Our results regarding population differentiation

using STRs are reminiscent of a classical study that found similar

levels of differentiation by analyzing close to 800 STR markers

(Rosenberg et al. 2002).

STRs in the reference genome and LoF analysis

Wewere interested in assessing howwell themost common alleles

are represented in the hg19 reference (Fig. 5A). We found that for

more than 69,000 loci (10% of our reference set), the most com-

mon allele across the 1000 Genomes Project populations was at

Figure 4. Motif length and coding capabilities as determinants of STR
variability. STR heterozygosity monotonically decreases with motif length
for noncoding loci and is generally reduced in noncoding (left) versus
coding regions (right). The box extends from the lower to upper quartiles
of the heterozygosity distribution, and the interior line indicates the me-
dian. The whiskers extend to the most extreme points within 1.5*IQR of
the quartiles.
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least one repeat away from the hg19 reference allele. Furthermore,

the length of the most common allele only matched the length of

the orthologous chimpanzee STR 50% of the time, reflecting the

high mutability of these loci. In addition, 15,581 loci (2.25%) in

the reference genome were 10 bp or more away from the most

common allele in our data set.

For STRs in coding regions, themost common allele for 48 loci

(1.1% of coding STRs) did not match the allele present in the hg19

reference (Supplemental Table 10). In 46 of 48 of these cases, these

differences occurred for loci with trinucleotide or hexanucleotide

repeats and conserved the reading frame. Moreover, for the two

loci whose most common alleles were frame-shifted, these varia-

tions are unlikely to trigger the nonsense-mediated decay pathway.

The deletion of one 4-bp unit in DCHS2 occurs a few nucleotides

before the annotated RefSeq stop codon. This variation slightly

alters the location of the stop codon and affects only five amino

acids in the C terminus of the protein. The 14-bp deletion in

ANKLE1 occurs in the last exon of the gene and introduces about

20 new amino acids into the tail of the protein.

We also sought to identify a confident set of STR loci with

relatively common loss of function (LoF) alleles. To accomplish

this goal, we considered only alleles supported by at least two reads

and 30%of the total reads per called genotype.We further required

that alleles be carried by 10 or more samples. Seven common LoF

alleles across five genes passed this criterion: DCHS2, FAM166B,

GP6, SLC9A8, and TMEM254 (Supplemental Table 11). Of these

five genes, only GP6 has known implications for a Mendelian

condition: a mild platelet-type bleeding disorder (Dumont et al.

2009; Hermans et al. 2009). However, the LoF mutation in this

gene resides in the last exon and is unlikely to induce the non-

sense-mediated decay pathway. In conclusion, the LoF analysis

indicates that common STR polymorphisms rarely disrupt the

reading frame.

Linkage disequilibrium between STRs and SNPs

The linkage disequilibrium (LD) structure of STRs and SNPs is

largely unknown. On top of recombination events, the SNP-STR

LD structure also absorbs STR back mutations that could further

shift these pairs of loci toward equilibrium. However, there is

minimal empirical data in the literature about the pattern of this

LD structure, most of which pertains to a few hundred autosomal

Marshfield markers (Payseur et al. 2008). To get a chromosome-

wide estimate, we inspected STR loci on the hemizygous X chro-

mosomes in male samples. Similar to the Y chromosome data,

these calls do not suffer from allelic dropouts and are already

phased with SNP alleles, conferring a technically reliable data set

for a chromosome-wide analysis.

We determined the LD in terms of the R2 between SNPs and

STRs as a function of the distance between these markers. Only

STRs and SNPs with common polymorphisms were used for the

analysis. Hexameric STRs were not included due to the small

sample size of 24 sites; for the other repeat motifs, we obtained

hundreds to thousands of polymorphic markers. We stratified the

STR-SNP LD based on the four major continental populations

(Africa, Asia, Europe, and America) and contrasted them to the

patterns for classical SNP-SNP LD (Fig. 5B). In all cases, the SNP-

SNP LD consistently exceeded mean STR-SNP LD. In addition, the

African population demonstrated markedly reduced levels of SNP-

STR LD and SNP-SNP LD, consistent with its larger effective pop-

ulation size. In general, dinucleotide STRs showed the weakest LD

with nearby SNPs, which likely stems from their higher mutation

rates (Supplemental Fig. 11). To ensure that the reduction in STR-

SNP LD did not stem from comparing R2 values formultiallelic and

biallelic makers, we converted the STR alleles to binary markers,

where the two states corresponded to the most common allele and

all alternative alleles grouped together. The resulting levels of mean

SNP-STR LD using these binary genotypes were nearly identical to

those obtained using themultiallelic STR genotypes, indicating that

this potential issue had little effect (Supplemental Fig. 12).

Overall, this analysis shows that the average SNP-STR LD is

approximately half the SNP-SNP LD for variations with the same

distance on the X chromosome. Since the effective population size

of the X chromosome is smaller than that of the autosome, the

STR-SNP LD should be even smaller on the autosome. These results

suggest that association studies with tagging SNPs might be con-

siderably underpowered to detect loci with causal STRs, specifically

dinucleotide loci.

Discussion

In the last few years, population-scale sequencing projects have

made tremendous progress in documenting genetic variation

across human populations. The 1000 Genomes Project has already

Figure 5. Population-scale analyses of STR variation. (A) Distribution of
base-pair differences between each locus’ most common allele and the
hg19 reference allele. (B) Patterns of linkage disequilibrium for SNPs and
STRs on the X chromosome. SNP-SNP LD (dashed lines) generally exceeds
SNP-STR LD (solid lines) across a range of distances for Africans (red),
Admixed Americans (green), Europeans (yellow), and East Asians (blue).
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reported ;40 million SNPs, 1.4 million insertion and deletions,

and more than 10,000 structural variants (The 1000 Genomes

Project Consortium 2012). Similar catalogs, albeit to lesser degrees

of completeness, have been produced for other types of variations,

such as LINE-1 insertions (Ewing and Kazazian 2011) and Alu re-

peat variations (Hormozdiari et al. 2011). Here, we presented

a population-scale analysis of STR variation, adding another layer

of genetic variation to existing catalogs.

Our analysis significantly augments the level of knowledge of

STR variation. Currently, dbSNP reports data for only 5500 STR

loci. Our catalog provides data on close to 700,000 STR loci, which

encompasses 97%of the STRswithmotifs of 2–6 bp in the genome,

and contains more than 300,000 STR loci with a MAF of >1%. One

caveat of our catalog is the low reliability of individual genotypes

due to allelic dropout. Nonetheless, we showed using multiple

lines of analysis that reliable summary statistics such as frequency

spectra and variation trends can be extracted from the catalog for

most of the STRs. Another caveat of our catalog is that with the

mixture of 76-bp and 100-bp sequencing reads, we could only

unbiasedly ascertain the allelic spectra of;90% of the STRs, those

with hg19 alleles of up to 45 bp. To indicate this caveat, our website

alerts users about a potential bias in the allelic spectrum when

inspecting STRs with reference allele length beyond this range.

However, we expect the caveat will be alleviated in the near future

with the public release of the Phase 3 data composed of a large

number of Phase 1 samples resequenced with 100-bp Illumina

reads. We expect that this data set will enable the generation of

unbiased allelic spectra for longer STRs.

Despite these limitations, our data provide several biological

insights about STR variation. Shorter repeat motif, longer major

allele, higher purity of the repeat motif, and residing outside of

a coding region are all associated with an increase in STR vari-

ability. Most of the STR loci display a unimodal distribution with

one very common allele and a series of minor alleles with rapidly

declining frequencies. This picture suggests that the stepwise

mutation model largely describes the creation of new alleles in

most of these loci. An open question is the exact mutation rate per

generation for each locus in the genome. This question is theo-

retically addressable with a sufficiently large number of samples by

analyzing the distribution of squared differences in the repeat size

between two alleles of the same locus (Slatkin 1995). However, this

question cannot be addressed by our call set due to the large

number of allelic dropouts that might confound such an analysis

and should be addressed with data sets obtained from deeply

covered genomes.

The landscape of STR variation in the apparently healthy

1000 Genomes Project individuals suggests several rules of thumb

for analyzing STR variations formedical sequencing. Previouswork

found that membrane proteins of several pathogens contain STR

loci with nontriplet motifs whose variations can be beneficial to

the organism (Gemayel et al. 2010). These STRs confer high evolv-

ability and adaptability of these proteins by dynamically changing

the reading frame. In contrast, our data suggest that for the vast

majority of human proteins, frame-shift mutations in their STR re-

gions are not favorable. Only a handful of STRs harbor common

frame-shift polymorphisms, and half the LoF alleles create a very

small change in the C-terminus of the protein. Based on these ob-

servations, we hypothesize thatmost of the non-triplet coding STRs

are not well tolerated and are exposed to negative selection similar

to regular indels in the same region. Therefore, it is advisable for

medical sequencing projects to also analyze these loci and treat

them as regular LoF alleles rather than filtering them. This rule of

thumb is well-echoed in a recent study of medullary cystic kidney

disease type 1 that implicated the genetic pathology in a frame-shift

mutation caused by a length change of a homopolymer run (Kirby

et al. 2013). For in-frame STR variations, our call set contains

deep allelic spectra of most of these loci, providing reference dis-

tributions of apparently healthy alleles. These spectra can be used to

identify atypical STR alleles and might serve as an indicator for

pathogenicity.

Although STR alleles within our call set rarely induced frame-

shifts, they may introduce premature stop codons by modulating

the splicingmachinery. Several prior studies have observed a direct

dependence of splicing efficiency on STR repeat number for CFTR

(Hefferon et al. 2004),HTT (Sathasivam et al. 2013), andNOS3 (Hui

et al. 2003). To facilitate the analysis of such cases, we created

a dedicated table on the catalog website that specifies all 2237 STRs

that reside within 20 base pairs of an exon–intron boundary.

Another issue raised by our findings is the potential contribu-

tion of STRs to complex traits. Using the prototypical allelic spectra,

we estimate that the average variance of STR repeat dosage is 3, 0.7,

0.4, 0.25, and 0.1 for 2- to 6-mer STRs, respectively. Interestingly, the

theoretical maximum variance for a biallelic SNP dosage is 0.5, six

times smaller than the observed variance of dinucleotide STRs. From

a theoretical statistical genetics perspective, this suggests that causal

dinucleotide STR loci could explain a considerable fraction of phe-

notypic variance evenwith a relativelymodest effect size. Therefore,

if each STR allele in a locus slightly changes a quantitative trait in

a gradual manner, the net effect on the phenotypic variance could

be quite large due to the wide range of these alleles and their rela-

tively high frequencies. Interestingly, we found that loci with di-

nucleotide motifs show relatively weak LD with SNPs, suggesting

that GWAS studies with SNP arrays are prone tomiss causal STR loci.

Given the theoretical potential of STRs to contribute to phenotypic

variance on one hand and their weaker LD to tagging SNPs on the

other hand, one intriguing possibility is that STRs contribute to the

missing heritability phenomenon of complex traits (Manolio et al.

2009; Press et al. 2014). Our hope is that this catalog can be a refer-

ence point to test this hypothesis in future studies.

Methods

Call set generation

The raw sequencing files for Phase 1 of the 1000 Genomes Project

were analyzed.

The lobSTR calls were generated using computing resources

hosted by Amazon Web Services, GitHub version 8a6aeb9 of

the lobSTR genotyper, and Github version a85bb7f of the lobSTR

allelotyper (https://github.com/mgymrek/lobstr-code). In par-

ticular, the lobSTR genotyper was run using the options fft-window-

size=16, fft-window-step=4, and bwaq=15 and a default minimum

flanking region of 8 bp on both sizes of the STR region. Reads

that were aligned to multiple locations were excluded from the

analysis. PCR duplicates were removed from the resulting BAM

files for each experiment using SAMtools (Li et al. 2009). The

individual BAMs were merged by population, and the lobSTR

allelotyper was run using all population BAMs concurrently, the

include-flank option, and version 2.0.3 of lobSTR’s Illumina PCR

stutter model.

RepeatSeq (available at http://github.com/adaptivegenome/

repeatseq) was run using default parameters on the read align-

ments produced by the 1000 Genomes Project. For both programs,

we used the set of 700,000 STRs that was constructed using the

second-order Markov framework (Supplemental Methods).
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Estimating the number of samples per locus and the number

of loci per sample

The distributions of the call set parameters were smoothed using

the gaussian_kde function in the scipy.stats python package. Co-

variance factors of 0.01 and 0.025were used to smooth the samples

per locus and loci per sample distributions, respectively.

Saturation analysis

We determined the number of loci with calls for sample subsets

containing 1, 5, 10, 25, 50, 100, 250, 500, 750, and 1000 in-

dividuals. In particular, we began by randomly selecting one in-

dividual. To create a subset of five individuals, we then added four

more random individuals and so on. For each of these sample

subsets, we determined the number of loci with one or more STR

calls across all samples in the subset. We repeated this whole pro-

cess 10 times and used the median number of called loci across

each of the 10 repetitions to create the saturation profile for all loci.

We also determined whether loci had a MAF > 1% using all

1009 samples. We then used a procedure analogous to the one de-

scribed above to select subsets of samples and determine whether or

not each of these loci had a corresponding call in each subset. This

procedure resulted in the saturation profile for loci with MAF > 1%.

Mendelian inheritance

The three low-coverage trios contained within the data set con-

sisted of the following sample sets: HG00656, HG00657, HG00702

(trio 1), NA19661, NA19660, NA19685 (trio 2), and NA19679,

NA19678, NA19675 (trio 3). To assess the consistency with Men-

delian inheritance for a given trio, only loci for which all three sam-

pleshad callswere analyzed. The coverage assigned to each trio of calls

corresponded to the minimum coverage across the three samples.

Capillary electrophoresis comparison

Marshfield genotypes (Rosenberg et al. 2005) were downloaded from

http://www.stanford.edu/group/rosenberglab/data/rosenbergEtAl2005/

combined-1048.stru. Prior to comparing genotypes, offsets were

calculated tomatch the lobSTR calls to the length of theMarshfield

PCR products. For each locus, all observed offsets were considered

and scored, and the optimally scoring offset across all samples was

selected. In particular, for each sample, an offset was scored as a 1,

0.5, 0.25, or 0 if the lobSTR calls matched exactly, were homozy-

gous and recovered one Marshfield allele, were heterozygous and

recovered one Marshfield allele, or did not match at all, re-

spectively. Only loci with at least 20 calls were considered in the

comparison. Finally, the Pearson correlation coefficient was cal-

culated using the sumof the allele length differences fromhg19 for

each locus in each sample.

Y-chromosome PowerPlex genotypes were downloaded from

the 1000 Genomes Y chromosome working group FTP site. Offsets

were once again calculated to match the length of the PCR

products to the lobSTR calls. For each locus, the offset was calcu-

lated as the most common difference between the lobSTR and

PowerPlex genotypes across samples. Only loci with at least five

calls were considered in the comparison, and the R2 was calculated

between the allele length differences from hg19 for each locus in

each sample. In addition, the 15 heterozygous lobSTR calls were

ignored.

Slopes and R2 values for STR dosage comparisons were cal-

culated using the linregress function in the scipy.stats package. To

mitigate the effects of outliers, we explored using regular linear

regression, regression with a zero intercept, and L1 penalized re-

gression. The resulting slopes were essentially invariant to the

calculation method and so statistics were reported based on tra-

ditional linear regression.

Heterozygosity calculations

For each analysis, heterozygosity was calculated using the aggre-

gated frequency spectra according to the formula HE =1�+
i

f 2i ,

where fi denotes the frequency of the ith allele at the locus.

Summary statistic comparisons

The allelic spectra of the Marshfield panel were downloaded from

http://research.marshfieldclinic.org/genetics/genotypingData_

Statistics/markers/ and parsed using a custom Perl script (data

and script available in SupplementalMaterial and at https://github.

com/erlichya/str_catalog_supplemental_scripts). Samples from the

CEU, GBR, TSI, and FIN subpopulations were analyzed, and only

markers with more than 50 calls were included.

We utilized all of the lobSTR calls for the CEU, GBR, and FIN

subpopulations to generate the lobSTR frequency spectra for each

CODIS marker. Spectra were not available for three of the CODIS

markers (D21S11, VWa, TPOX). D21S11 is too long to be spanned

by Illumina reads; we had annotation difficulties for VWa and

TPOX (assigning the correct STR in hg19 to theNIST STR).We then

compared the available frequency spectra to those published for

a Caucasian population in the United States (Budowle et al. 1999).

Because of some annotation differences between the capillary data

and our reference locations, we shifted the lobSTR spectra for the

D8S1179 marker by +2 repeat units. Finally, repeat lengths for

which the maximum frequency was <2% were not displayed.

Comparison of population heterozygosity

To obtain accurate measures of heterozygosity, autosomal STR loci

with less than 30 calls in any of the 10 subpopulations considered

were ignored. Of the remaining loci, the 10% most heterozygous

(24,637 loci) were selected, and their means and standard de-

viations were calculated. To determine whether a pair of pop-

ulations had systematically different heterozygosity at these loci,

we paired the heterozygosities for each locus and counted the

number of pairs in which population A had a larger heterozygosity

than population B. Ignoring the relatively small number of loci in

which heterozygosities were identical, the P-value for this over/

underrepresentation was then calculated using the cdf function in

the scipy.stats.binom python package.

Deviation of lobSTR calls from the hg19 reference

For each locus with one or more genotyped samples, we calculated

the mean deviation of all samples’ genotypes from the hg19 ref-

erence allele. We then pooled these per-locus deviations by refer-

ence allele length using 5-bp intervals. The median within each

length bin resulted in the corresponding plot of deviation versus

reference allele length.

Sample clustering

STRUCTURE version 2.3.4 was utilized to perform the MCMC-based

clustering (Falush et al. 2003). The program was run using

MAXPOPS=3, BURNIN=500000, NUMREPS=1000000, no prior

population information, unphased genotypes, the admixture

model, and no linkage disequilibrium. All 321 samples from the

JPT, CHB, YRI, and CEU subpopulations present in the data were

clustered based on the 100 most heterozygous autosomal STRs

with at least 750 called samples. Samples for which at least 75% of
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the selected makers were missing calls were not included in the

resulting visualization. The final triangle plot therefore contained

data for 71, 80, 81, and 82 samples from the CEU, CHB, JPT, and

YRI populations, respectively.

STR variability trends

Analysis was restricted to STRs with at least 100 called samples.

STRs that overlapped an annotated RefSeq translated region were

regarded as coding, and these annotations were downloaded from

the UCSC table browser on February 11, 2014. Themannwhitneyu

function in the scipy.stats python package was used to test for

significant differences between coding and noncoding STR het-

erozygosity. For analyses related to allele length or purity, STRs

were further restricted to those whose most common allele

matched the hg19 reference to enable calculation of the locus’

purity. In particular, the purity of each of these STRs was calculated

as the fraction of possible positions within the STR region where

the subsequent bases corresponded to a cyclic permutation of the

STR’smotif. The pearsonr function in the scipy.stats python package

was used to calculate the Pearson correlation coefficients and their

associated P-values, where each STR’s length and heterozygosity

represented an individual point. Finally, to generate the plots of

heterozygosity versus length, the heterozygosity for each length

was calculated as the mean variability of loci within 2 bp.

Extraction of orthologous chimpanzee STR lengths

Tandem Repeats Finder was run on the panTro4 assembly of the

chimp genome using the default parameters and aminimum score

threshold of 5. To resolve overlapping repeats, we discarded repeats

with period greater than six and scanned from low to high co-

ordinates and selected the highest scoring repeat for each overlap

conflict. The chimp coordinates weremapped to hg19 coordinates

using liftOver and a minimummapping fraction of 50%. We then

intersected these coordinateswith those of our reference panel and

retained those loci within our panel that had a single intersecting

chimp repeat whose motif matched. This resulted in orthologous

chimp repeats for ;83% of our reference set of STRs.

Rst levels

The Rst was calculated according to Slatkin (1995) using a custom

Python script (code available in SupplementalMaterial and athttps://

github.com/erlichya/str_catalog_supplemental_scripts). The African,

European, and Asian populations were comprised of the same sub-

populations used throughout this study, except that the ASW pop-

ulation was omitted due to potential admixture. Only loci with het-

erozygosity>5%andat least 100genotyped sampleswere considered.

Assessing linkage disequilibrium

In order to avoid phasing SNPs and STRs, we only analyzed X

chromosome genotypes in male samples. SNP calls for the corre-

sponding samples were obtained from the 1000 Genomes Project

Phase 1 November 23, 2010, release and any pseudoautosomal loci

were ignored. Analysis of STR-SNP LD was restricted to STR loci

with both a heterozygosity of at least 9.5% and at least 20 geno-

types for each super population (African, East Asian, European,

and Admixed American). For each STR that met this requirement,

we identified all SNPs within 200 kb of the STR start coordinate.

After filtering out SNPs with a MAF < 5% in any of the four super

populations, we calculated the level of LD for the remaining STR-

SNP pairs. In particular, the R2 was calculated between the SNP

genotype indicator variable and the base pair difference of the STR

from the reference. We also recalculated the STR-SNP LD after

converting the STR alleles to binary variables, where the most

common allele and all alternative alleles were mapped to 0 and 1,

respectively. This binary mapping was applied to each super pop-

ulation individually.

For SNP-SNP LD calculations, a seed SNP was identified for

each STRmeeting the aforementioned requirements. In particular,

the SNP closest to the STR’s start coordinate with MAF > 5% for

each super population was selected. If no such SNP existed within

1 kb, no SNP was selected and the STR was omitted from the STR-

SNP LD analysis. Otherwise, we identified all SNPswithin 200 kb of

the seed SNP and once again removed SNPs with a MAF < 5% in

any of the super populations. The LD between the seed SNP and

each of these remaining SNPs was then assessed as the R2 between

the two SNP genotype indicator variables.
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