
The Landscape of Parallel Computing Research: A
View from Berkeley

Krste Asanovic
Ras Bodik
Bryan Christopher Catanzaro
Joseph James Gebis
Parry Husbands
Kurt Keutzer
David A. Patterson
William Lester Plishker
John Shalf
Samuel Webb Williams
Katherine A. Yelick

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-183

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

December 18, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Wed like to thank the following who participated in at least some of these
meetings: Jim Demmel, Jike Chong, Armando Fox, Joe Hellerstein, Mike
Jordan, Dan Klein, Bill Kramer, Rose Liu, Lenny Oliker, Heidi Pan, and
John Wawrzynek.

1

 The Landscape of Parallel Computing Research:

A View from Berkeley

Krste Asanovíc, Rastislav Bodik, Bryan Catanzaro, Joseph Gebis,
Parry Husbands, Kurt Keutzer, David Patterson,

William Plishker, John Shalf, Samuel Williams, and Katherine Yelick

December 18, 2006

Abstract
The recent switch to parallel microprocessors is a milestone in the history of computing.
Industry has laid out a roadmap for multicore designs that preserves the programming
paradigm of the past via binary compatibility and cache coherence. Conventional wisdom
is now to double the number of cores on a chip with each silicon generation.

A multidisciplinary group of Berkeley researchers met nearly two years to discuss this
change. Our view is that this evolutionary approach to parallel hardware and software
may work from 2 or 8 processor systems, but is likely to face diminishing returns as 16
and 32 processor systems are realized, just as returns fell with greater instruction-level
parallelism.

We believe that much can be learned by examining the success of parallelism at the
extremes of the computing spectrum, namely embedded computing and high performance
computing. This led us to frame the parallel landscape with seven questions, and to
recommend the following:

• The overarching goal should be to make it easy to write programs that execute
efficiently on highly parallel computing systems

• The target should be 1000s of cores per chip, as these chips are built from
processing elements that are the most efficient in MIPS (Million Instructions per
Second) per watt, MIPS per area of silicon, and MIPS per development dollar.

• Instead of traditional benchmarks, use 13 “Dwarfs” to design and evaluate parallel
programming models and architectures. (A dwarf is an algorithmic method that
captures a pattern of computation and communication.)

• “Autotuners” should play a larger role than conventional compilers in translating
parallel programs.

• To maximize programmer productivity, future programming models must be
more human-centric than the conventional focus on hardware or applications.

• To be successful, programming models should be independent of the number of
processors.

• To maximize application efficiency, programming models should support a wide
range of data types and successful models of parallelism: task-level parallelism,
word-level parallelism, and bit-level parallelism.

The Landscape of Parallel Computing Research: A View From Berkeley

2

• Architects should not include features that significantly affect performance or
energy if programmers cannot accurately measure their impact via performance
counters and energy counters.

• Traditional operating systems will be deconstructed and operating system
functionality will be orchestrated using libraries and virtual machines.

• To explore the design space rapidly, use system emulators based on Field
Programmable Gate Arrays (FPGAs) that are highly scalable and low cost.

Since real world applications are naturally parallel and hardware is naturally parallel,
what we need is a programming model, system software, and a supporting architecture
that are naturally parallel. Researchers have the rare opportunity to re-invent these
cornerstones of computing, provided they simplify the efficient programming of highly
parallel systems.

The Landscape of Parallel Computing Research: A View From Berkeley

3

1.0 Introduction
The computing industry changed course in 2005 when Intel followed the lead of IBM’s
Power 4 and Sun Microsystems’ Niagara processor in announcing that its high
performance microprocessors would henceforth rely on multiple processors or cores. The
new industry buzzword “multicore” captures the plan of doubling the number of standard
cores per die with every semiconductor process generation starting with a single
processor. Multicore will obviously help multiprogrammed workloads, which contain a
mix of independent sequential tasks, but how will individual tasks become faster?
Switching from sequential to modestly parallel computing will make programming much
more difficult without rewarding this greater effort with a dramatic improvement in
power-performance. Hence, multicore is unlikely to be the ideal answer.

A diverse group of University of California at Berkeley researchers from many
backgrounds—circuit design, computer architecture, massively parallel computing,
computer-aided design, embedded hardware and software, programming languages,
compilers, scientific programming, and numerical analysis—met between February 2005
and December 2006 to discuss parallelism from these many angles. We borrowed the
good ideas regarding parallelism from different disciplines, and this report is the result.
We concluded that sneaking up on the problem of parallelism via multicore solutions was
likely to fail and we desperately need a new solution for parallel hardware and software.

Although compatibility with old binaries and C programs is valuable to industry, and
some researchers are trying to help multicore product plans succeed, we have been
thinking bolder thoughts. Our aim is to realize thousands of processors on a chip for new
applications, and we welcome new programming models and new architectures if they

Tension between
Embedded & Server

Computing

Evaluation:
7. How to measure success?

Hardware

3. What are the
hardware
building blocks?

4. How to
connect them?

Programming Models
5. How to describe applications and
kernels?
6. How to program the hardware?

Applications

1. What are the
applications?

2. What are
common
kernels of the
applications?

Figure 1. A view from Berkeley: seven critical questions for 21st Century parallel computing.
(This figure is inspired by a view of the Golden Gate Bridge from Berkeley.)

The Landscape of Parallel Computing Research: A View From Berkeley

4

simplify the efficient programming of such highly parallel systems. Rather than
multicore, we are focused on “manycore”. Successful manycore architectures and
supporting software technologies could reset microprocessor hardware and software
roadmaps for the next 30 years.

Figure 1 shows the seven critical questions we used to frame the landscape of parallel
computing research. We do not claim to have the answers in this report, but we do offer
non-conventional and provocative perspectives on some questions and state seemingly
obvious but sometimes-neglected perspectives on others.

Note that there is a tension between embedded and high performance computing, which
surfaced in many of our discussions. We argue that these two ends of the computing
spectrum have more in common looking forward than they did in the past. First, both are
concerned with power, whether it is battery life for cell phones or the cost of electricity
and cooling in a data center. Second, both are concerned with hardware utilization.
Embedded systems are always sensitive to cost, but efficient use of hardware is also
required when you spend $10M to $100M for high-end servers. Third, as the size of
embedded software increases over time, the fraction of hand tuning must be limited and
so the importance of software reuse must increase. Fourth, since both embedded and
high-end servers now connect to networks, both need to prevent unwanted accesses and
viruses. Thus, the need is increasing for some form of operating system for protection in
embedded systems, as well as for resource sharing and scheduling.

Perhaps the biggest difference between the two targets is the traditional emphasis on real-
time computing in embedded, where the computer and the program need to be just fast
enough to meet the deadlines, and there is no benefit to running faster. Running faster is
usually valuable in server computing. As server applications become more media-
oriented, real time may become more important for server computing as well. This report
borrows many ideas from both embedded and high performance computing.

The organization of the report follows the seven questions of Figure 1. Section 2
documents the reasons for the switch to parallel computing by providing a number of
guiding principles. Section 3 reviews the left tower in Figure 1, which represents the new
applications for parallelism. It describes the original “Seven Dwarfs”, which we believe
will be the computational kernels of many future applications. Section 4 reviews the right
tower, which is hardware for parallelism, and we separate the discussion into the classical
categories of processor, memory, and switch. Section 5 covers programming models and
Section 6 covers systems software; they form the bridge that connects the two towers in
Figure 1. Section 7 discusses measures of success and describes a new hardware vehicle
for exploring parallel computing. We conclude with a summary of our perspectives.
Given the breadth of topics we address in the report, we provide 134 references for
readers interested in learning more.

In addition to this report, we also started a web site and blog to continue the conversation
about the views expressed in this report. See view.eecs.berkeley.edu.

The Landscape of Parallel Computing Research: A View From Berkeley

5

2.0 Motivation
The promise of parallelism has fascinated researchers for at least three decades. In the
past, parallel computing efforts have shown promise and gathered investment, but in the
end, uniprocessor computing always prevailed. Nevertheless, we argue general-purpose
computing is taking an irreversible step toward parallel architectures. What’s different
this time? This shift toward increasing parallelism is not a triumphant stride forward
based on breakthroughs in novel software and architectures for parallelism; instead, this
plunge into parallelism is actually a retreat from even greater challenges that thwart
efficient silicon implementation of traditional uniprocessor architectures.

In the following, we capture a number of guiding principles that illustrate precisely how
everything is changing in computing. Following the style of Newsweek, they are listed as
pairs of outdated conventional wisdoms and their new replacements. We later refer to
these pairs as CW #n.

1. Old CW: Power is free, but transistors are expensive.
• New CW is the “Power wall”: Power is expensive, but transistors are “free”. That

is, we can put more transistors on a chip than we have the power to turn on.
2. Old CW: If you worry about power, the only concern is dynamic power.
• New CW: For desktops and servers, static power due to leakage can be 40% of

total power. (See Section 4.1.)
3. Old CW: Monolithic uniprocessors in silicon are reliable internally, with errors

occurring only at the pins.
• New CW: As chips drop below 65 nm feature sizes, they will have high soft and

hard error rates. [Borkar 2005] [Mukherjee et al 2005]
4. Old CW: By building upon prior successes, we can continue to raise the level of

abstraction and hence the size of hardware designs.
• New CW: Wire delay, noise, cross coupling (capacitive and inductive),

manufacturing variability, reliability (see above), clock jitter, design validation,
and so on conspire to stretch the development time and cost of large designs at 65
nm or smaller feature sizes. (See Section 4.1.)

5. Old CW: Researchers demonstrate new architecture ideas by building chips.
• New CW: The cost of masks at 65 nm feature size, the cost of Electronic

Computer Aided Design software to design such chips, and the cost of design for
GHz clock rates means researchers can no longer build believable prototypes.
Thus, an alternative approach to evaluating architectures must be developed. (See
Section 7.3.)

6. Old CW: Performance improvements yield both lower latency and higher
bandwidth.

• New CW: Across many technologies, bandwidth improves by at least the square
of the improvement in latency. [Patterson 2004]

7. Old CW: Multiply is slow, but load and store is fast.
• New CW is the “Memory wall” [Wulf and McKee 1995]: Load and store is slow,

but multiply is fast. Modern microprocessors can take 200 clocks to access
Dynamic Random Access Memory (DRAM), but even floating-point multiplies
may take only four clock cycles.

The Landscape of Parallel Computing Research: A View From Berkeley

6

8. Old CW: We can reveal more instruction-level parallelism (ILP) via compilers
and architecture innovation. Examples from the past include branch prediction,
out-of-order execution, speculation, and Very Long Instruction Word systems.

• New CW is the “ILP wall”: There are diminishing returns on finding more ILP.
[Hennessy and Patterson 2007]

9. Old CW: Uniprocessor performance doubles every 18 months.
• New CW is Power Wall + Memory Wall + ILP Wall = Brick Wall. Figure 2 plots

processor performance for almost 30 years. In 2006, performance is a factor of
three below the traditional doubling every 18 months that we enjoyed between
1986 and 2002. The doubling of uniprocessor performance may now take 5 years.

10. Old CW: Don’t bother parallelizing your application, as you can just wait a little
while and run it on a much faster sequential computer.

• New CW: It will be a very long wait for a faster sequential computer (see above).
11. Old CW: Increasing clock frequency is the primary method of improving

processor performance.
• New CW: Increasing parallelism is the primary method of improving processor

performance. (See Section 4.1.)
12. Old CW: Less than linear scaling for a multiprocessor application is failure.
• New CW: Given the switch to parallel computing, any speedup via parallelism is a

success.

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (
vs

. V
A

X
-1

1/
78

0)

25%/year

52%/year

??%/year

Figure 2. Processor performance improvement between 1978 and 2006 using integer SPEC [SPEC 2006]
programs. RISCs helped inspire performance to improve by 52% per year between 1986 and 2002, which
was much faster than the VAX minicomputer improved between 1978 and 1986. Since 2002, performance
has improved less than 20% per year. By 2006, processors will be a factor of three slower than if progress
had continued at 52% per year. This figure is Figure 1.1 in [Hennessy and Patterson 2007].

Although the CW pairs above paint a negative picture about the state of hardware, there
are compensating positives as well. First, Moore’s Law continues, so we will soon be
able to put thousands of simple processors on a single, economical chip (see Section

The Landscape of Parallel Computing Research: A View From Berkeley

7

4.1.2). For example, Cisco is shipping a product with 188 Reduced Instruction Set
Computer (RISC) cores on a single chip in a 130nm process [Eatherton 2005]. Second,
communication between these processors within a chip can have very low latency and
very high bandwidth. These monolithic manycore microprocessors represent a very
different design point from traditional multichip multiprocessors, and so provide promise
for the development of new architectures and programming models. Third, the open
source software movement means that the software stack can evolve much more quickly
than in the past. As an example, note the widespread use of Ruby on Rails. Version 1.0
appeared in just December 2005.

3.0 Applications and Dwarfs
The left tower of Figure 1 is applications. In addition to traditional desktop, server,
scientific, and embedded applications, the importance of consumer products is increasing.

We decided to mine the parallelism experience of the high-performance computing
community to see if there are lessons we can learn for a broader view of parallel
computing. The hypothesis is not that traditional scientific computing is the future of
parallel computing; it is that the body of knowledge created in building programs that run
well on massively parallel computers may prove useful in parallelizing future
applications. Furthermore, many of the authors from other areas, such as embedded
computing, were surprised at how well future applications in their domain mapped
closely to problems in scientific computing.

The conventional way to guide and evaluate architecture innovation is to study a
benchmark suite based on existing programs, such as EEMBC (Embedded
Microprocessor Benchmark Consortium) or SPEC (Standard Performance Evaluation
Corporation) or SPLASH (Stanford Parallel Applications for Shared Memory) [EEMBC
2006] [SPEC 2006] [Singh et al 1992] [Woo et al 1992]. One of the biggest obstacles to
innovation in parallel computing is that it is currently unclear how to express a parallel
computation best. Hence, it seems unwise to let a set of existing source code drive an
investigation into parallel computing. There is a need to find a higher level of abstraction
for reasoning about parallel application requirements.

Our goal is to delineate application requirements in a manner that is not overly specific to
individual applications or the optimizations used for certain hardware platforms, so that
we can draw broader conclusions about hardware requirements. Our approach, described
below, is to define a number of “dwarfs”, which each capture a pattern of computation
and communication common to a class of important applications.

3.1 Seven Dwarfs
We were inspired by the work of Phil Colella, who identified seven numerical methods
that he believed will be important for science and engineering for at least the next decade
[Colella 2004]. Figure 3 introduces the Seven Dwarfs, which constitute classes where
membership in a class is defined by similarity in computation and data movement. The
dwarfs are specified at a high level of abstraction to allow reasoning about their behavior
across a broad range of applications. Programs that are members of a particular class can

The Landscape of Parallel Computing Research: A View From Berkeley

8

be implemented differently and the underlying numerical methods may change over time,
but the claim is that the underlying patterns have persisted through generations of
changes and will remain important into the future.

Some evidence for the existence of this particular set of “equivalence classes” can be
found in the numerical libraries that have been built around these equivalence classes: for
example, FFTW for spectral methods [Frigo and Johnson 1998], LAPACK/ScaLAPACK
for dense linear algebra [Blackford et al 1996], and OSKI for sparse linear algebra
[Vuduc et al 2006]. We list these in Figure 3, together with the computer architectures
that have been purpose-built for particular dwarfs: for example, GRAPE for N-body
methods [Tokyo 2006], vector architectures for linear algebra [Russell 1976], and FFT
accelerators [Zarlink 2006]. Figure 3 also shows the inter-processor communication
patterns exhibited by members of a dwarf when running on a parallel machine [Vetter
and McCracken 2001] [Vetter and Yoo 2002] [Vetter and Meuller 2002] [Kamil et al
2005]. The communication pattern is closely related to the memory access pattern that
takes place locally on each processor.

3.2 Finding More Dwarfs
The dwarfs present a method for capturing the common requirements of classes of
applications while being reasonably divorced from individual implementations. Although
the nomenclature of the dwarfs comes from Phil Colella’s discussion of scientific
computing applications, we were interested in applying dwarfs to a broader array of
computational methods. This led us naturally to the following questions:

• How well do the Seven Dwarfs of high performance computing capture
computation and communication patterns for a broader range of applications?

• What dwarfs need to be added to cover the missing important areas beyond high
performance computing?

If we find that an expanded set of dwarfs is broadly applicable, we can use them to guide
innovation and evaluation of new prototypes. As long as the final list contains no more
than two- or three-dozen dwarfs, architects and programming model designers can use
them to measure success. For comparison, SPEC2006 has 29 benchmarks and EEMBC
has 41. Ideally, we would like good performance across the set of dwarfs to indicate that
new manycore architectures and programming models will perform well on applications
of the future.

Dwarfs are specified at a high level of abstraction that can group related but quite
different computational methods. Over time, a single dwarf can expand to cover such a
disparate variety of methods that it should be viewed as multiple distinct dwarfs. As long
as we do not end up with too many dwarfs, it seems wiser to err on the side of embracing
new dwarfs. For example, unstructured grids could be interpreted as a sparse matrix
problem, but this would both limit the problem to a single level of indirection and
disregard too much additional information about the problem.

The Landscape of Parallel Computing Research: A View From Berkeley

9

Dwarf Description Communication Pattern

(Figure axes show
processors 1 to 256, with

black meaning no
communication)

NAS
Benchmark /
Example HW

1. Dense Linear
Algebra
(e.g., BLAS
[Blackford et al
2002],
ScaLAPACK
[Blackford et al
1996], or
MATLAB
[MathWorks
2006])

Data are dense matrices or vectors.
(BLAS Level 1 = vector-vector;
Level 2 = matrix-vector; and Level 3
= matrix-matrix.) Generally, such
applications use unit-stride memory
accesses to read data from rows, and
strided accesses to read data from
columns.

The communication pattern of
MadBench, which makes
heavy use of ScaLAPACK for
parallel dense linear algebra, is
typical of a much broader
class of numerical algorithms

Block
Triadiagonal
Matrix, Lower
Upper
Symmetric
Gauss-Seidel /
Vector
computers, Array
computers

2. Sparse Linear
Algebra
(e.g., SpMV,
OSKI [OSKI
2006], or
SuperLU
[Demmel et al
1999])

Data sets include many zero values.
Data is usually stored in compressed
matrices to reduce the storage and
bandwidth requirements to access all
of the nonzero values. One example
is block compressed sparse row
(BCSR). Because of the compressed
formats, data is generally accessed
with indexed loads and stores.

SuperLU (communication
pattern pictured above) uses
the BCSR method for
implementing sparse LU
factorization.

Conjugate
Gradient / Vector
computers with
gather/scatter

3. Spectral
Methods
(e.g., FFT
[Cooley and
Tukey 1965])

Data are in the frequency domain, as
opposed to time or spatial domains.
Typically, spectral methods use
multiple butterfly stages, which
combine multiply-add operations and
a specific pattern of data
permutation, with all-to-all
communication for some stages and
strictly local for others.

PARATEC: The 3D FFT
requires an all-to-all
communication to implement
a 3D transpose, which requires
communication between every
link. The diagonal stripe
describes BLAS-3 dominated
linear-algebra step required for
orthogonalization.

Fourier
Transform /
DSPs, Zalink
PDSP [Zarlink
2006]

The Landscape of Parallel Computing Research: A View From Berkeley

10

Dwarf Description Communication Pattern
(Figure axes show

processors 1 to 256, with
black meaning no
communication)

NAS
Benchmark /
Example HW

4. N-Body
Methods
(e.g., Barnes-Hut
[Barnes and Hut
1986], Fast
Multipole
Method
[Greengard and
Rokhlin 1987])

Depends on interactions between
many discrete points. Variations
include particle-particle methods,
where every point depends on all
others, leading to an O(N2)
calculation, and hierarchical particle
methods, which combine forces or
potentials from multiple points to
reduce the computational complexity
to O(N log N) or O(N).

PMEMD’s communication
pattern is that of a particle
mesh Ewald calculation.

(no benchmark) /
GRAPE
[Tokyo 2006],
MD-GRAPE
[IBM 2006]

5. Structured
Grids
(e.g., Cactus
[Goodale et al
2003] or Lattice-
Boltzmann
Magneto-
hydrodynamics
[LBMHD 2005])

Represented by a regular grid; points
on grid are conceptually updated
together. It has high spatial locality.
Updates may be in place or between
2 versions of the grid. The grid may
be subdivided into finer grids in areas
of interest (“Adaptive Mesh
Refinement”); and the transition
between granularities may happen
dynamically.

Communication pattern for
Cactus, a PDE solver using 7-
point stencil on 3D block-
structured grids.

Multi-Grid,
Scalar Penta-
diagonal /
QCDOC
[Edinburg 2006],
BlueGeneL

6. Unstructured
Grids
(e.g., ABAQUS
[ABAQUS 2006]
or FIDAP
[FLUENT
2006])

An irregular grid where data
locations are selected, usually by
underlying characteristics of the
application. Data point location and
connectivity of neighboring points
must be explicit. The points on the
grid are conceptually updated
together. Updates typically involve
multiple levels of memory reference
indirection, as an update to any point
requires first determining a list of
neighboring points, and then loading
values from those neighboring
points.

 Unstructured
Adaptive /
Vector
computers with
gather/scatter,
Tera Multi
Threaded
Architecture
[Berry et al
2006]

7. Monte Carlo
(e.g., Quantum
Monte Carlo
[Aspuru-Guzik et
al 2005])

Calculations depend on statistical
results of repeated random trials.
Considered embarrassingly parallel.

Communication is typically
not dominant in Monte Carlo
methods.

Embarrassingly
Parallel / NSF
Teragrid

Figure 3. Seven Dwarfs, their descriptions, corresponding NAS benchmarks, and example computers.

The Landscape of Parallel Computing Research: A View From Berkeley

11

To investigate the general applicability of the Seven Dwarfs, we compared the list against
other collections of benchmarks: EEMBC from embedded computing and from
SPEC2006 for desktop and server computing. These collections were independent of our
study, so they act as validation for whether our small set of computational kernels are
good targets for applications of the future. We will describe the final list in detail in
Section 3.5, but from our examination of the 41 EEMBC kernels and the 26 SPEC2006
programs, we found four more dwarfs to add to the list:

o Combinational Logic generally involves performing simple operations on
very large amounts of data often exploiting bit-level parallelism. For example,
computing Cyclic Redundancy Codes (CRC) is critical to ensure integrity and
RSA encryption for data security.

o Graph Traversal applications must traverse a number of objects and examine
characteristics of those objects such as would be used for search. It typically
involves indirect table lookups and little computation.

o Graphical Models applications involve graphs that represent random
variables as nodes and conditional dependencies as edges. Examples include
Bayesian networks and Hidden Markov Models.

o Finite State Machines represent an interconnected set of states, such as
would be used for parsing. Some state machines can decompose into multiple
simultaneously active state machines that can act in parallel.

To go beyond to EEMBC and SPEC, we examined three increasingly important
application domains to see if we should increase the number of dwarfs: machine learning,
database software, and computer graphics and games.

3.2.1 Machine Learning
One of the most promising areas for the future of computing is the use of statistical
machine learning to make sense from the vast amounts of data now available due to faster
computers, larger disks, and the use of the Internet to connect them all together.

Michael Jordan and Dan Klein, our local experts in machine learning, found two dwarfs
that should be added to support machine learning:

o Dynamic programming is an algorithmic technique that computes solutions
by solving simpler overlapping subproblems. It is particularly applicable for
optimization problems where the optimal result for a problem is built up from
the optimal result for the subproblems.

o Backtrack and Branch-and-Bound: These involve solving various search
and global optimization problems for intractably large spaces. Some implicit
method is required in order to rule out regions of the search space that contain
no interesting solutions. Branch and bound algorithms work by the divide and
conquer principle: the search space is subdivided into smaller subregions
(“branching”), and bounds are found on all the solutions contained in each
subregion under consideration.

Many other well-known machine-learning algorithms fit into the existing dwarfs:

The Landscape of Parallel Computing Research: A View From Berkeley

12

o Support Vector Machines [Cristianini and Shawe-Taylor 2000]: Dense linear
algebra.

o Principal Component Analysis [Duda and Hart 1973]: Dense or sparse linear
algebra, depending on the details of implementation.

o Decision Trees [Poole et al 1998]: Graph traversal.
o Hashing: Combinational logic.

3.2.2 Database Software
Jim Gray of Microsoft Research believes sort is at the heart of modern databases. He
sponsors an annual competition to see who can come up with the fastest sorter assuming
the data is on the disk at the beginning and end. You win MinuteSort by sorting the most
data in a minute, organized as 100-byte records. The 2006 winner sorted 400 million
records (40 GB) on a 32-way shared memory multiprocessor using 1.6 GHz Itanium 2
processors with 128 GB of main memory and 128 disks. Its uses a commercial sorting
package called Nsort, which does sorts either the records directly or pointers to records.
[Nyberg et al 2004] The sorting algorithm is sample sort. While it will be important to
have efficient interfaces between I/O and main memory to sort large files fast, sorting
does not add to our list of dwarfs.

Another important function of modern databases is hashing. Unlike a typical hash, a
database hash will compute over a lot of data, perhaps half of main memory. Once again,
these computation and communication patterns do not expand the dwarfs.

Joe Hellerstein, our local expert in databases, said the future of databases was large data
collections typically found on the Internet. A key primitive to explore such collections is
MapReduce, developed and widely used at Google. [Dean and Ghemawat 2004] The first
phase maps a user supplied function onto thousands of computers, processing key/value
pairs to generate a set of intermediate key/value pairs, The second phase reduces the
returned values from all those thousands of instances into a single result by merging all
intermediate values associated with the same intermediate key. Note that these two
phases are highly parallel yet simple to understand. Borrowing the name from a similar
function in Lisp, they call this primitive “MapReduce”.

MapReduce is a more general version of the pattern we had previously called “Monte
Carlo”: the essence is a single function that executes in parallel on independent data sets,
with outputs that are eventually combined to form a single or small number of results. In
order to reflect this broader scope, we changed the name of the dwarf to “MapReduce”.

A second thrust for the future of databases was in genetics, exemplified by the widely
popular BLAST (Basic Local Alignment Search Tool) code. [Altschul et al 1990]
BLAST is a heuristic method used to find areas of DNA/protein sequences that are
similar from a database. There are three main steps:

1. Compile a list of high-scoring words from the sequence
2. Scan database for hits from this list
3. Extend the hits to optimize the match

Although clearly important, BLAST did not extend our list of dwarfs.

The Landscape of Parallel Computing Research: A View From Berkeley

13

3.2.3 Computer Graphics and Games
While the race to improve realism has pushed graphics processing unit (GPU)
performance up into the Teraflops range, graphical realism is not isolated to drawing
polygons and textures on the screen. Rather, modeling of the physical processes that
govern the behavior of these graphical objects requires many of the same computational
models used for large-scale scientific simulations. The same is true for many tasks in
computer vision and media processing, which form the core of the “applications of the
future” driving the technology roadmaps of hardware vendors.

Employing on-chip parallelism to accelerate computer graphics is considered a solved
problem for all practical purposes via GPUs. The principle burden for the host processor
at this point centers on modeling the physical properties of the graphical elements that
comprise the game or the user interface. Realistic physics requires computational
modeling of physical processes that are essentially the same as those required for
scientific computing applications. The computational methods employed are very much
like those that motivate the seven original dwarfs.

For instance, modeling of liquids and liquid behavior used for special effects in movies
are typically done using particle methods such as Smooth Particle Hydrodynamics (SPH)
[Monaghan 1982]. The rendering of the physical model is still done in OpenGL using
GPUs or software renderers, but the underlying model of the flowing shape of the liquid
requires the particle-based fluid model. There are several other examples where the desire
to model physical properties in game and graphics map onto the other dwarfs:

o Reverse kinematics requires a combination of sparse matrix computations and
graph traversal methods.

o Spring models, used to model any rigid object that deforms in response to
pressure or impact such as bouncing balls or Jell-O, use either sparse matrix or
finite-element models.

o Collision detection is a graph traversal operation as are the Octrees and Kd
trees employed for depth sorting and hidden surface removal.

o Response to collisions is typically implemented as a finite-state machine.
Hence, the surprising conclusion is that games and graphics did not extend the drawfs
beyond the 13 identified above.

One encouraging lesson to learn from the GPUs and graphics software is that the APIs do
not directly expose the programmer to concurrency. OpenGL, for instance, allows the
programmer to describe a set of “vertex shader” operations in Cg (a specialized language
for describing such operations) that are applied to every polygon in the scene without
having to consider how many hardware fragment processors or vertex processors are
available in the hardware implementation of the GPU.

3.2.4 Summarizing the Next Six Dwarfs
Figure 4 shows six more dwarfs that were added because of the studies in the prior
section. Note that we consider the algorithms independent of the data sizes and types (see
Section 5.3).

The Landscape of Parallel Computing Research: A View From Berkeley

14

Dwarf Description

8. Combinational Logic
(e.g., encryption)

Functions that are implemented with logical functions and stored state.

9. Graph traversal (e.g.,
Quicksort)

Visits many nodes in a graph by following successive edges. These
applications typically involve many levels of indirection, and a relatively
small amount of computation.

10. Dynamic
Programming

Computes a solution by solving simpler overlapping subproblems.
Particularly useful in optimization problems with a large set of feasible
solutions.

11. Backtrack and
Branch+Bound

Finds an optimal solution by recursively dividing the feasible region into
subdomains, and then pruning subproblems that are suboptimal.

12. Construct Graphical
Models

Constructs graphs that represent random variables as nodes and
conditional dependencies as edges. Examples include Bayesian networks
and Hidden Markov Models.

13. Finite State Machine

A system whose behavior is defined by states, transitions defined by
inputs and the current state, and events associated with transitions or
states.

Figure 4. Extensions to the original Seven Dwarfs.

Although 12 of the 13 Dwarfs possess some form of parallelism, finite state machines
(FSMs) look to be a challenge, which is why we made them the last dwarf. Perhaps FSMs
will prove to be embarrassingly sequential just as MapReduce is embarrassingly parallel.
If it is still important and does not yield to innovation in parallelism, that will be
disappointing, but perhaps the right long-term solution is to change the algorithmic
approach. In the era of multicore and manycore. Popular algorithms from the sequential
computing era may fade in popularity. For example, if Huffman decoding proves to be
embarrassingly sequential, perhaps we should use a different compression algorithm that
is amenable to parallelism.

In any case, the point of the 13 Dwarfs is not to identify the low hanging fruit that are
highly parallel. The point is to identify the kernels that are the core computation and
communication for important applications in the upcoming decade, independent of the
amount of parallelism. To develop programming systems and architectures that will run
applications of the future as efficiently as possible, we must learn the limitations as well
as the opportunities. We note, however, that inefficiency on embarrassingly parallel code
could be just as plausible a reason for the failure of a future architecture as weakness on
embarrassingly sequential code.

More dwarfs may need to be added to the list. Nevertheless, we were surprised that we
only needed to add six dwarfs to cover such a broad range of important applications.

3.3 Composition of Dwarfs
Any significant application, such as an MPEG4 (Moving Picture Experts Group) decoder
or an IP (Internet Protocol) forwarder, will contain multiple dwarfs that each consume a
significant percentage of the application’s computation. Hence, the performance of a
large application will depend not only on each dwarf’s performance, but also on how
dwarfs are composed together on the platform.

The Landscape of Parallel Computing Research: A View From Berkeley

15

The collection of dwarfs comprising an application can be distributed on a multiprocessor
platform in two different ways:

1. Temporally distributed or time-shared on a common set of processors, or
2. Spatially distributed or space-shared, with each dwarf uniquely occupying one or

more processors.
The selection of temporal or spatial distribution will in part depend on the structure of
communication between dwarfs. For example, some applications are structured as a
number of serial phases, where each phase is a dwarf that must complete before we start
the next. In this case, it would be natural to use time multiplexing to allocate the whole
set of processors to each phase. Other applications can be structured as a network of
communicating dwarfs running concurrently, in which case it would be natural to
distribute the dwarfs spatially across the available processors.

The two forms of distribution can be applied hierarchically. For example, a dwarf may be
implemented as a pipeline, where the computation for an input is divided into stages with
each stage running on its own spatial division of the processors. Each stage is time
multiplexed across successive inputs, but processing for a single input flows through the
spatial distribution of pipeline stages.

Two software issues arise when considering the composition of dwarfs:

1. The choice of composition model—how the dwarfs are put together to form a
complete application. The scientific software community has recently begun the
move to component models [Bernholdt et al 2002]. In these models, however,
individual modules are not very tightly coupled and this may affect the efficiency
of the final application.

2. Data structure translation. Various algorithms may have their own preferred data
structures, such as recursive data layouts for dense matrices. This may be at odds
with the efficiency of composition, as working sets may have to be translated
before use by other dwarfs.

These issues are pieces of a larger puzzle. What are effective ways to describe
composable parallel-code libraries? Can we write a library such that it encodes
knowledge about its ideal mapping when composed with others in a complete parallel
application? What if the ideal mapping is heavily dependent on input data that cannot be
known at compile time?

3.4 Intel Study
Intel believes that the increase in demand for computing will come from processing the
massive amounts of information available in the “Era of Tera”. [Dubey 2005] Intel
classifies the computation into three categories: Recognition, Mining, and Synthesis,
abbreviated as RMS. Recognition is a form of machine learning, where computers
examine data and construct mathematical models of that data. Once the computers
construct the models, Mining searches the web to find instances of that model. Synthesis
refers to the creation of new models, such as in graphics. Hence, RMS is related to our
examination of machine learning, databases, and graphics in Sections 3.2.1 to 3.3.3.

The Landscape of Parallel Computing Research: A View From Berkeley

16

The common computing theme of RMS is “multimodal recognition and synthesis over
large and complex data sets” [Dubey 2005]. Intel believes RMS will find important
applications in medicine, investment, business, gaming, and in the home. Intel’s efforts in
Figure 5 show that Berkeley is not alone in trying to organize the new frontier of
computation to underlying computation kernels in order to guide architectural research.

FIMIPDE NLP

Level Set

Computer
Vision

Physical
Simulation

(Financial)
Analytics Data Mining

Particle
Filtering

SVM
Classification

SVM
Training

IPM
(LP, QP)

Fast Marching
Method

K-Means

Text
IndexerMonte Carlo

Body
Tracking

Face
Detection CFD

Face,
Cloth

Rigid
Body

Portfolio
Mgmt

Option
Pricing

Cluster/
Classify

Text
Index

Basic matrix primitives
(dense/sparse, structured/unstructured)

Basic Iterative Solver
(Jacobi, GS, SOR)

Direct Solver
(Cholesky)

Krylov Iterative Solvers
(PCG)

Rendering

Global
Illumination

Collision
detection

LCP

Media
Synth

Machine
learning

Filter/
transform

Basic geometry primitives
(partitioning structures, primitive tests)

Non-Convex
Method

Figure 5. Intel’s RMS and how it maps down to functions that are more primitive. Of the five categories at
the top of the figure, Computer Vision is classified as Recognition, Data Mining is Mining, and Rendering,
Physical Simulation, and Financial Analytics are Synthesis. [Chen 2006]

3.5 Dwarfs Summary
Figure 6 summarizes our investigation and shows the presence of the 13 Dwarfs in a
diverse set of application benchmarks including EEMBC, SPEC2006, machine learning,
graphics/games, database software, and Intel’s RMS. As mentioned above, several of the
programs use multiple dwarfs, and so they are listed in multiple categories. We do not
believe that our list of dwarfs is yet complete, and we anticipate the addition of more
dwarfs in the future. At the same time we are surprised at what a diverse set of important
applications is supported by a modest number of dwarfs.

17

Dwarf Embedded Computing General Purpose

Computing
Machine Learning Graphics /

Games
Databases Intel RMS

1. Dense Linear
Algebra (e.g.,
BLAS or
MATLAB)

EEMBC Automotive: iDCT, FIR,
IIR, Matrix Arith; EEMBC
Consumer: JPEG, RGB to CMYK,
RGB to YIQ; EEMBC Digital
Entertainment: RSA MP3 Decode,
MPEG-2 Decode, MPEG-2
Encode, MPEG-4 Decode;
MPEG-4 Encode; EEMBC
Networking: IP Packet; EEMBC
Office Automation: Image
Rotation; EEMBC Telecom:
Convolution Encode; EEMBC
Java: PNG

SPEC Integer: Quantum
computer simulation
(libquantum), video
compression (h264avc)
SPEC Fl. Pl.: Hidden Markov
models (sphinx3)

Support vector
machines, princpal
component analysis,
independent component
analysis

 Database hash
accesses large
contiguous
sections of
memory

Body Tracking,
media synthesis
linear
programming, K-
means, support
vector machines,
quadratic
programming,
PDE: Face, PDE:
Cloth*

2. Sparse Linear
Algebra (e.g.,
SpMV, OSKI, or
SuperLU)

EEMBC Automotive: Basic Int +
FP, Bit Manip, CAN Remote
Data, Table Lookup, Tooth to
Spark; EEMBC Telecom: Bit
Allocation; EEMBC Java: PNG

SPEC Fl. Pt.: Fluid dynamics
(bwaves), quantum chemistry
(gamess; tonto), linear program
solver (soplex)

Support vector
machines, principal
component analysis,
independent component
analysis

Reverse
kinematics; Spring
models

 Support vector
machines,
quadratic
programming,
PDE: Face, PDE:
Cloth*
PDE:
Computational
fluid dynamics

3. Spectral
Methods (e.g.,
FFT)

EEMBC Automotive: FFT, iFFT,
iDCT; EEMBC Consumer: JPEG;
EEMBC Entertainment: MP3
Decode

 Spectral clustering Texture maps PDE:
Computational
fluid dynamics
PDE: Cloth

4. N-Body
Methods (e.g.,
Barnes-Hut, Fast
Multipole
Method)

 SPEC Fl. Pt.: Molecular
dynamics (gromacs, 32-bit;
namd, 64-bit)

5. Structured
Grids (e.g.,
Cactus or
Lattice-
Boltzmann
Magneto-

EEMBC Automotive: FIR, IIR;
EEMBC Consumer: HP Gray-
Scale; EEMBC Consumer: JPEG;
EEMBC Digital Entertainment:
MP3 Decode, MPEG-2 Decode,
MPEG-2 Encode, MPEG-4
Decode; MPEG-4 Encode;
EEMBC Office Automation:

SPEC Fl. Pt.: Quantum
chromodynamics
(milc),magneto hydrodynamics
(zeusmp), general relativity
(cactusADM), fluid dynamics
(leslie3d-AMR; lbm), finite
element methods (dealII-AMR;
calculix), Maxwell’s E&M

 Smoothing;
interpolation

The Landscape of Parallel Computing Research: A View From Berkeley

18

Dwarf Embedded Computing General Purpose
Computing

Machine Learning Graphics /
Games

Databases Intel RMS

hydrodynamics) Dithering; EEMBC Telecom:
Autocorrelation

eqns solver (GemsFDTD),
quantum crystallography
(tonto), weather modeling
(wrf2-AMR)

6. Unstructured
Grids (e.g.,
ABAQUS or
FIDAP)

 Belief propagation Global
illumination

7. MapReduce
(e.g., Monte
Carlo)

 SPEC Fl. Pt.: Ray tracer
(povray)

Expectation
maximization

 MapReduce

8. Combinational
Logic

EEMBC Digital Entertainment:
AES, DES ; EEMBC Networking:
IP Packet, IP NAT, Route Lookup;
EEMBC Office Automation: Image
Rotation; EEMBC Telecom:
Convolution Encode

 Hashing Hashing

9. Graph
Traversal

EEMBC Automotive: Pointer
Chasing, Tooth to Spark; EEMBC
Networking: IP NAT, OSPF,
Route Lookup; EEMBC Office
Automation: Text Processing;
EEMBC Java: Chess, XML
Parsing

 Bayesian networks,
decision trees

Reverse
kinematics,
collision detection,
depth sorting,
hidden surface
removal

Transitive
closure

Natural language
processing

10. Dynamic
Programming

EEMBC Telecom: Viterbi Decode SPEC Integer: Go (gobmk) Forward-backward,
inside-outside, variable
elimination, value
iteration

 Query
optimization

11. Back-track
and Branch
+Bound

 SPEC Integer: Chess (sjeng),
network simplex algorithm
(mcf), 2D path finding library
(astar)

Kernel regression,
constraint satisfaction,
satisficability

12. Graphical
Models

EEMBC Telecom: Viterbi Decode SPEC Integer: Hidden Markov
models (hmmer)

Hidden Markov models

The Landscape of Parallel Computing Research: A View From Berkeley

19

Dwarf Embedded Computing General Purpose
Computing

Machine Learning Graphics /
Games

Databases Intel RMS

13. Finite State
Machine

EEMBC Automotive: Angle To
Time, Cache “Buster”, CAN
Remote Data, PWM, Road Speed,
Tooth to Spark; EEMBC
Consumer: JPEG; EEMBC Digital
Entertainment: Huffman Decode,
MP3 Decode, MPEG-2 Decode,
MPEG-2 Encode, MPEG-4
Decode; MPEG-4 Encode;
EEMBC Networking: QoS, TCP;
EEMBC Office Automation: Text
Processing; EEMBC Telecom: Bit
Allocation; EEMBC Java: PNG

SPEC Integer: Text processing
(perlbench), compression
(bzip2), compiler (gcc), video
compression (h264avc),
network discrete event
simulation (omnetpp), XML
transformation (xalancbmk)

 Response to
collisions

Figure 6. Mapping of EEMBC, SPEC2006, Machine Learning, Graphcs/Games, Data Base, and Intel’s RMS to the 13 Dwarfs. *Note that SVM, QP, PDE:Face,
and PDE:Cloth may use either dense or sparse matrices, depending on the application.

20

4.0 Hardware
Now that we have given our views of applications and dwarfs for parallel computing in
the left tower of Figure 1, we are ready for examination of the right tower: hardware.
Section 2 above describes the constraints of present and future semiconductor processes,
but they also present many opportunities.

We organize our observations on hardware around the three components first used to
describe computers more than 30 years ago: processor, memory, and switch [Bell and
Newell 1970].

4.1 Processors: Small is Beautiful
In the development of many modern technologies, such as steel manufacturing, we can
observe that there were prolonged periods during which bigger equated to better. These
periods of development are easy to identify: The demonstration of one tour de force of
engineering is only superseded by an even greater one. Due to diminishing economies of
scale or other economic factors, the development of these technologies inevitably hit an
inflection point that forever changed the course of development. We believe that the
development of general-purpose microprocessors is hitting just such an inflection point.

New Conventional Wisdom #4 in Section 2 states that the size of module that we can
successfully design and fabricate is shrinking. New Conventional Wisdoms #1 and #2 in
Section 2 state that power is proving to be the dominant constraint for present and future
generations of processing elements. To support these assertions we note that several of
the next generation processors, such as the Tejas Pentium 4 processor from Intel, were
canceled or redefined due to power consumption issues [Wolfe 2004]. Even
representatives from Intel, a company generally associated with the “higher clock-speed
is better” position, warned that traditional approaches to maximizing performance
through maximizing clock speed have been pushed to their limit [Borkar 1999]
[Gelsinger 2001]. In this section, we look past the inflection point to ask: What processor
is the best building block with which to build future multiprocessor systems?

There are numerous advantages to building future microprocessors systems out of smaller
processor building blocks:

• Parallelism is an energy-efficient way to achieve performance [Chandrakasan et al
1992].

• Many small cores give the highest performance per unit area for parallel codes.
• A larger number of smaller processing elements allows a finer-grained ability to

perform dynamic voltage scaling and power down.
• A small processing element is an economical element that is easy to shut down in

the face of catastrophic defects and easier to reconfigure in the face of large
parametric variation. The Cisco Metro chip [Eatherton 2005] adds four redundant
processors to each die, and Sun sells 4-processor, 6-processor, or 8-processor
versions of Niagara based on the yield of a single 8-processor design. Graphics
processors are also reported to be using redundant processors in this way, as is the

The Landscape of Parallel Computing Research: A View From Berkeley

21

IBM Cell microprocessor for which only 7 out of 8 synergistic processors are
used in the Sony Playstation 3 game machine.

• A small processing element with a simple architecture is easier to design and
functionally verify. In particular, it is more amenable to formal verification
techniques than complex architectures with out-of-order execution.

• Smaller hardware modules are individually more power efficient and their
performance and power characteristics are easier to predict within existing
electronic design-automation design flows [Sylvester and Keutzer 1998]
[Sylvester and Keutzer 2001] [Sylvester et al 1999].

While the above arguments indicate that we should look to smaller processor
architectures for our basic building block, they do not indicate precisely what circuit size
or processor architecture will serve us the best. We argued that we must move away from
a simplistic “bigger is better” approach; however, that does not immediately imply that
“smallest is best”.

4.1.1 What processing element is optimum?
Determining the optimum processing element will entail the solution, or at least
approximating the solution, of a multivariable optimization problem that is dependent on
the application, environment for deployment, workload, constraints of the target market,
and fabrication technology. It is clear, however, that the tradeoff between performance
and power will be of central importance across the entire spectrum of system applications
for current and future multiprocessor systems.

It is important to distinguish between energy (Joules) and power (Joules/second or
Watts), which is the rate of consuming energy. Energy per task is usually a metric to be
minimized in a design, whereas peak power consumption is usually treated as a design
constraint. The energy used by a computation affects the battery life of a mobile device,
and the cost of powering a server farm. Peak power determines the cost of packaging and
cooling the processor, and these costs rise as a steep step-function of the amount of power
to be dissipated. Chip temperature must be limited to avoid excessive leakage power.
High chip temperature may also lead to a reduced lifetime due to electromigration and
other high temperature reliability issues. Reasonable upper limits for peak power
consumption may be 150W for air-cooled server and desktop chips, 40W for a laptop,
and 2W for low cost/low power embedded applications.

Different applications will present different tradeoffs between performance and energy
consumption. For example, many real-time tasks (e.g., viewing a DVD movie on a
laptop) have a fixed performance requirement for which we seek the lowest energy
implementation. Desktop processors usually seek the highest performance under a
maximum power constraint. Note that the design with the lowest energy per operation
might not give the highest performance under a power constraint, if the design cannot
complete tasks fast enough to exhaust the available power budget.

If all tasks were highly parallelizable and silicon area was free, we would favor cores
with the lowest energy per instruction (SPEC/Watt). However, we also require good

The Landscape of Parallel Computing Research: A View From Berkeley

22

performance on less parallel codes, and high throughput per-unit-area to reduce die costs.
The challenge is to increase performance without adversely increasing energy per
operation or silicon area.

The effect of microarchitecture on energy and delay was studied in [Gonzalez and
Horowitz 1996]. Using energy-delay product (SPEC2/W) as a metric, the authors
determined that simple pipelining is significantly beneficial to delay while increasing
energy only moderately. In contrast, superscalar features adversely affected the energy-
delay product. The power overhead needed for additional hardware did not outweigh the
performance benefits. Instruction-level parallelism is limited, so microarchitectures
attempting to gain performance from techniques such as wide issue and speculative
execution achieved modest increases in performance at the cost of significant area and
energy overhead.

The optimal number of pipeline stages in a microarchitecture has been investigated by a
number of researchers [Hrishikesh et al 2002] [Srinivasan et al 2002] [Harstein and
Puzak 2003] [Heo and Asanovic 2004]. These results are summarized and reviewed in
[Chinnery 2006]. Note that to date uniprocessor benchmarks, such as SPEC, have been
the most common benchmarks for measuring computational and energy efficiency. We
believe that future benchmark sets must evolve to reflect a more representative mix of
applications, including parallel codes based on the 13 dwarfs, to avoid over-optimization
for single-thread performance. As the results mentioned above have dependencies on
process technology, logic family, benchmark set, and workload it is hard to generalize the
results for our purposes. However, a review of this literature together with an analysis of
empirical data on existing architectures gathered by Horowitz [Horowitz 2006], Paulin
[Paulin 2006], and our own investigations [Chong and Catanzaro 2006] indicates that
shallower pipelines with in-order execution have proven to be the most area and energy
efficient. Given these physical and microarchitectural considerations, we believe the
efficient building blocks of future architectures are likely to be simple, modestly
pipelined (5-9 stages) processors, floating point units, vector, and SIMD processing
elements. Note that these constraints fly in the face of the conventional wisdom of
simplifying parallel programming by using the largest processors available.

4.1.2 Will we really fit 1000s of cores on one economical chip
This significant reduction in the size and complexity of the basic processor building
block of the future means that many more cores can be economically implemented on a
single die; furthermore, this number can double with each generation of silicon. For
example, the “manycore” progression might well be 128, 256, 512, ... cores instead of the
current “multicore” plan of 2, 4, 8, ... cores over the same semiconductor process
generations.

There is strong empirical evidence that we can achieve 1000 cores on a die when 30nm
technology is available. (As Intel has taped out a 45-nm technology chip, 30 nm is not so
distant in the future.) Cisco today embeds in its routers a network processor with 188
cores implemented in 130 nm technology. [Eatherton 2005] This chip is 18mm by 18mm,

The Landscape of Parallel Computing Research: A View From Berkeley

23

dissipates 35W at a 250MHz clock rate, and produces an aggregate 50 billion instructions
per second. The individual processor cores are 5-stage Tensilica processors with very
small caches, and the size of each core is 0.5 mm2. About a third of the die is DRAM and
special purpose functions. Simply following scaling from Moore's Law would arrive at
752 processors in 45nm and 1504 in 30nm. Unfortunately, power may not scale down
with size, but we have ample room before we push the 150W limit of desktop or server
applications.

4.1.3 Does one size fit all?
We would like to consider briefly the question as to whether multiprocessors of the future
will be built as collections of identical processors or assembled from diverse
heterogeneous processing elements. Existing embedded multiprocessors, such as the Intel
IXP network processing family, keep at least one general-purpose processor on the die to
support various housekeeping functions and to provide the hardware base for more
general (e.g. Linux) operating system support. Similarly, the IBM Cell has one general-
purpose processor and eight tailored processing elements. Keeping a larger processor on
chip may help accelerate “inherently sequential” code segments or workloads with fewer
threads [Kumar et al 2003].

As Amdahl observed 40 years ago, the less parallel portion of a program can limit
performance on a parallel computer [Amdahl 1967]. Hence, one reason to have different
“sized” processors in a manycore architecture is to improve parallel speedup by reducing
the time it takes to run the less parallel code. For example, assume 10% of the time a
program gets no speed up on a 100-processor computer. Suppose to run the sequential
code twice as fast, a single processor would need 10 times as many resources as a simple
core runs due to bigger power budget, larger caches, a bigger multiplier, and so on. Could
it be worthwhile? Using Amdahl’s Law [Hennessy and Patterson 2007], the comparative
speedups of a homogeneous 100 simple processor design and a heterogeneous 91-
processor design relative to a single simple processor are:

SpeedupHomogeneous = 1 / (0.1 – 0.9/100) = 9.2 times faster
SpeedupHeterogeneous = 1 / (0.1/2 – 0.9/90) = 16.7 times faster

In this example, even if a single larger processor needed 10 times as many resources to
run twice as fast, it would be much more valuable than 10 smaller processors it replaces.

In addition to helping with Amdahl’s Law, heterogeneous processor solutions can show
significant advantages in power, delay, and area. Processor instruction-set configurability
[Killian et al 2001] is one approach to realizing the benefits of processor heterogeneity
while minimizing the costs of software development and silicon implementation, but this
requires custom fabrication of each new design to realize the performance benefit, and
this is only economically justifiable for large markets.

Implementing customized soft-processors in pre-defined reconfigurable logic is another
way to realize heterogeneity in a homogenous implementation fabric; however, current
area (40X), power (10X), and delay (3X) overheads [Kuon and Rose 2006] appear to
make this approach prohibitively expensive for general-purpose processing. A promising

The Landscape of Parallel Computing Research: A View From Berkeley

24

approach that supports processor heterogeneity is to add a reconfigurable coprocessor as
a separate chip [Hauser and Wawrzynek 1997] [Arnold 2005]. This obviates the need for
new custom silicon. Current data is insufficient to determine whether such approaches
can provide energy-efficient solutions.

On the other hand, a single replicated processing element has many advantages; in
particular, it offers ease of silicon implementation and a regular software environment.
Managing heterogeneity in an environment with thousands of threads may make a
difficult problem impossible.

Will the possible power and area advantages of heterogeneous multicores win out versus
the flexibility and software advantages of homogeneous multicores? Alternatively, will
the processor of the future be like a transistor: a single building block that can be woven
into arbitrarily complex circuits? Alternatively, will a processor be more like a NAND
gate in a standard-cell library: one instance of a family of hundreds of closely related but
unique devices? In this section, we do not claim to have resolved these questions. Rather
our point is that resolution of these questions is certain to require significant research and
experimentation, and the need for this research is more imminent than industry’s
multicore multiprocessor roadmap would otherwise indicate.

4.2 Memory Unbound
The DRAM industry has dramatically lowered the price per gigabyte over the decades, to
$100 per gigabyte today from $10,000,000 per gigabyte in 1980 [Hennessy and Patterson
2007]. Alas, as mentioned in CW #8 in Section 2, the number of processor cycles to
access main memory has grown dramatically as well, from a few processor cycles in
1980 to hundreds today. Moreover, the memory wall is the major obstacle to good
performance for almost half dwarfs (see Figure 9 in Section 8). Thomas Sterling
expressed this concern in his provocative question to panelists at the SC06 conference:
“will multicore ultimately be asphyxiated by the memory wall?” [Sterling 2006]

The good news is that if we look inside a DRAM chip, we see many independent, wide
memory blocks. [Patterson et al 1997] For example, a 512 Mbit DRAM is composed of
hundreds of banks, each thousands of bits wide. Clearly, there is potentially tremendous
bandwidth inside a DRAM chip waiting to be tapped, and the memory latency inside a
DRAM chip is obviously much better than from separate chips across an interconnect.

In creating a new hardware foundation for parallel computing hardware, we should not
limit innovation by assuming main memory must be in separate DRAM chips connected
by standard interfaces. New packaging techniques, such as 3D stacking, might allow
vastly increased bandwidth and reduced latency and power between processors and
DRAM. Although we cannot avoid global communication in the general case with
thousands of processors and hundreds of DRAM banks, some important classes of
computation have almost entirely local memory accesses and hence can benefit from
innovative memory designs.

The Landscape of Parallel Computing Research: A View From Berkeley

25

Another reason to innovate in memory is that increasingly, the cost of hardware is
shifting from processing to memory. The old Amdahl rule of thumb was that a balanced
computer system needs about 1 MB of main memory capacity per MIPS of processor
performance [Hennessy and Patterson 2007].

Whereas DRAM capacity kept pace with Moore’s Law by quadrupling capacity every
three years between 1980 and 1992, it slowed to doubling every two years between 1996
and 2002. Today we still use the 512 Mbit DRAM that was introduced in 2002.

Manycore designs will unleash a much higher number of MIPS in a single chip. Given
the current slow increase in memory capacity, this MIPS explosion suggests a much
larger fraction of total system silicon in the future will be dedicated to memory.

4.3 Interconnection networks
At the level of the physical hardware interconnect, multicores have initially employed
buses or crossbar switches between the cores and cache banks, but such solutions are not
scalable to 1000s of cores. We need on-chip topologies that scale close to linearly with
system size to prevent the complexity of the interconnect from dominating cost of
manycore systems. Scalable on-chip communication networks will borrow ideas from
larger-scale packet-switched networks [Dally and Towles 2001]. Already chip
implementations such as the IBM Cell employ multiple ring networks to interconnect the
nine processors on the chip and use software-managed memory to communicate between
the cores rather than conventional cache-coherency protocols.

Although there has been research into statistical traffic models to help refine the design of
Networks-on-Chip [Soteriou et al 2006], we believe the 13 Dwarfs can provide even
more insight into communication topology and resource requirements for a broad-array
of applications. Based on studies of the communication requirements of existing
massively concurrent scientific applications that cover the full range of dwarfs [Vetter
and McCracken 2001] [Vetter and Yoo 2002] [Vetter and Meuller 2002] [Kamil et al
2005], we make the following observations about the communication requirements in
order to develop a more efficient and custom-tailored solution:
• The collective communication requirements are strongly differentiated from point-to-

point requirements. Collective communication, requiring global communication,
tended to involve very small messages that are primarily latency bound. As the
number of cores increases, the importance of these fine-grained, smaller-than-cache-
line-sized, collective synchronization constructs will likely increase. Since latency is
likely to improve much more slowly than bandwidth (see CW #6 in Section 2), the
separation of concerns suggests adding a separate latency-oriented network dedicated
to the collectives. They already appeared in prior MPPs. [Hillis and Tucker 1993]
[Scott 1996] As a recent example at large scale, the IBM BlueGene/L has a “Tree”
network for collectives in addition to a higher-bandwidth “Torus” interconnect for
point-to-point messages. Such an approach may be beneficial for chip interconnect
implementations that employ 1000s of cores.

• The sizes of most point-to-point messages are typically large enough that they remain
strongly bandwidth-bound, even for on-chip interconnects. Therefore, each point-to-

The Landscape of Parallel Computing Research: A View From Berkeley

26

point message would prefer a dedicated point-to-point pathway through the
interconnect to minimize the chance of contention within the network fabric. So while
the communication topology does not require a non-blocking crossbar, the on-chip
network should have high total bandwidth and support careful mapping of message
flows onto the on-chip interconnect topology.

• These studies observed that most point-to-point communications were stable and
sparse, and primarily bandwidth bound. With the exception of the 3D FFT (see Figure
2), the point-to-point messaging requirements tend utilize only a fraction of the
available communication paths through a fully connected network switch fabric such
as a crossbar or fat-tree. For on-chip interconnects, a non-blocking crossbar will
likely be grossly over-designed for most application requirements and would
otherwise be a waste of silicon given the resource requirements scale as the square of
the number of interconnected processor cores. Applications that do not exhibit the
communication patterns of the “spectral” dwarf, a lower-degree interconnect topology
for on-chip interconnects may prove more space and power efficient.

• Although the communication patterns are observed to be sparse, they are not
necessarily isomorphic to a low-degree, fixed-topology interconnect such as a torus,
mesh, or hypercube. Therefore, assigning a dedicated path to each point-to-point
message transfer is not solved trivially by any given fixed-degree interconnect
topology. To this end, one would either want to carefully place jobs so that they
match the static topology of the interconnect fabric or employ an interconnect fabric
that can be reconfigured to conform to the application’s communication topology.

The communication patterns observed thus far are closely related to the underlying
communication/computation patterns. Given just 13 dwarfs, the interconnect may need to
target a relatively limited set of communication patterns. It also suggests that the
programming model provide higher-level abstractions for describing those patterns.

For the bandwidth bound communication pathways, we desire an approach to minimizing
the surface area occupied by the switch while conforming to the requirements of the
application's communication topology. The direct approach to optimizing the
interconnect topology to the application requirements is to augment the packet switches
using circuit switches to reconfigure the wiring topology between the switches to meet
the application communication requirements while maintaining the
multiplexing/demultiplexing capability afforded by the packet switches. The inverse
approach to this problem relies on software to manage task mapping and task migration
to adapt to lower degree static interconnect topologies. The circuit switched approach
offers a faster way to reconfigure the interconnect topology, which may prove important
for applications that have rapidly changing/adaptive communication requirements. In
both cases, runtime performance monitoring systems (see Section 4.6), compile-time
instrumentation of codes to infer communication topology requirements, or auto-tuners
(see Section 6.1) will play an important role inferring an optimal interconnect topology
and communication schedule.

One can use less complex circuit switches to provision dedicated wires that enable the
interconnect to adapt to communication pattern of the application at runtime. A hybrid

The Landscape of Parallel Computing Research: A View From Berkeley

27

design that combined packed switches with an optical circuit switch was proposed as a
possible solution to the problem at a macro scale. [Kamil et al 2005] [Shalf et al 2005].
However, at a micro-scale, hybrid switch designs that incorporate electrical circuit
switches to adapt the communication topology may be able to meet all of the needs of
future parallel applications. A hybrid circuit-switched approach can result in much
simpler and area-efficient on-chip interconnects for manycore processors by eliminating
unused circuit paths and switching capacity through custom runtime reconfiguration of
the interconnect topology.

4.4 Communication Primitives
Initially, applications are likely to treat multicore and manycore chips simply as
conventional symmetric multiprocessors (SMPs). However, chip-scale multiprocessors
(CMPs) offer unique capabilities that are fundamentally different from SMPs, and which
present significant new opportunities:

• The inter-core bandwidth on a CMP can be many times greater than is typical for
an SMP, to the point where it should cease to be a performance bottleneck.

• Inter-core latencies are far less than are typical for an SMP system (by at least an
order of magnitude).

• CMPs could offer new lightweight coherency and synchronization primitives that
only operate between cores on the same chip. The semantics of these fences are
very different from what we are used to on SMPs, and will operate with much
lower latency.

If we simply treat multicore chips as traditional SMPs—or worse yet, by porting MPI
applications (see Figure 7 in Section 5)—then we may miss some very interesting
opportunities for new architectures and algorithm designs that can exploit these new
features.

4.4.1 Coherency
Conventional SMPs use cache-coherence protocols to provide communication between
cores, and mutual exclusion locks built on top of the coherency scheme to provide
synchronization. It is well known that standard coherence protocols are inefficient for
certain data communication patterns (e.g., producer-consumer traffic), but these
inefficiencies will be magnified by the increased core count and the vast increase in
potential core bandwidth and reduced latency of CMPs. More flexible or even
reconfigurable data coherency schemes will be needed to leverage the improved
bandwidth and reduced latency. An example might be large, on-chip, caches that can
flexibly adapt between private or shared configurations. In addition, real-time embedded
applications prefer more direct control over the memory hierarchy, and so could benefit
from on-chip storage configured as software-managed scratchpad memory.

4.4.2 Synchronization Using Locks
Inter-processor synchronization is perhaps the area where there is the most potential for
dramatic improvement in both performance and programmability. There are two
categories of processor synchronization: mutual exclusion and producer-consumer. For
mutual exclusion, only one of a number of contending concurrent activities at a time

The Landscape of Parallel Computing Research: A View From Berkeley

28

should be allowed to update some shared mutable state, but typically, the order does not
matter. For producer-consumer synchronization, a consumer must wait until the producer
has generated a required value. Conventional systems implement both types of
synchronization using locks. (Barriers, which synchronize many consumers with many
producers, are also typically built using locks on conventional SMPs).

These locking schemes are notoriously difficult to program, as the programmer has to
remember to associate a lock with every critical data structure and to access only these
locks using a deadlock-proof locking scheme. Locking schemes are inherently non-
composable and thus cannot form the basis of a general parallel programming model.
Worse, these locking schemes are implemented using spin waits, which cause excessive
coherence traffic and waste processor power. Although spin waits can be avoided by
using interrupts, the hardware inter-processor interrupt and context switch overhead of
current operating systems makes this impractical in most cases.

4.4.3 Synchronization Using Transactional Memory
A possible solution for mutual exclusion synchronization is to use transactional memory
[Herlihy and Moss 1993]. Multiple processors speculatively update shared memory
inside a transaction, and will only commit all updates if the transaction completes
successfully without conflicts from other processors. Otherwise, updates are undone and
execution is rolled back to the start of the transaction. The transactional model enables
non-blocking mutual exclusion synchronization (no stalls on mutex locks or barriers)
[Rajwar and Goodman 2002]. Transactional memory simplifies mutual exclusion because
programmers do not need to allocate and use explicit lock variables or worry about
deadlock.

The Transactional Coherence & Consistency (TCC) scheme [Kozyrakis and Olukotun
2005] proposes to apply transactions globally to replace conventional cache-coherence
protocols, and to support producer-consumer synchronization through speculative
rollback when consumers arrive before producers.

Transactional memory is a promising but still active research area. Current software-only
schemes have high execution time overheads, while hardware-only schemes either lack
facilities required for general language support or require very complex hardware. Some
form of hybrid hardware-software scheme is likely to emerge, though more practical
experience with the use of transactional memory is required before even the functional
requirements for such a scheme are well understood.

4.4.4 Synchronization Using Full-Empty Bits in Memory
Reducing the overhead of producer-consumer synchronization would allow finer-grained
parallelization, thereby increasing the exploitable parallelism in an application. Earlier
proposals have included full-empty bits on memory words, and these techniques could be
worth revisiting in the manycore era [Alverson et al 1990] [Alverson et al 1999]. Full-
empty bits have proven instrumental for enabling efficient massively parallel graph
algorithms (corresponding to the “graph following” dwarf) that are essential for emerging
bioinformatics, database, and information processing applications [Bader and Madduri

The Landscape of Parallel Computing Research: A View From Berkeley

29

2006]. In particular, recent work by Jon Berry et al. [Berry et al 2006] has demonstrated
that graph processing algorithms executing on a modest 4 processor MTA, which offers
hardware support for full-empty bits, can outperform the fastest system on the 2006
Top500 list – the 64k processor BG/L system.

4.4.5 Synchronization Using Message Passing
Shared memory is a very powerful mechanism, supporting flexible and anonymous
communication, and single-chip CMP implementations reduce many of the overheads
associated with shared memory in multi-chip SMPs. Nevertheless, message passing
might have a place between cores in a manycore CMP, as messages combine both data
transfer and synchronization in a form that is particularly suited to producer-consumer
communications.

4.5 Dependability
CW #3 in Section 2 states that the next generation of microprocessors will face higher
soft and hard error rates. Redundancy in space or in time is the way to make dependable
systems from undependable components. Since redundancy in space implies higher
hardware costs and higher power, we must use redundancy judiciously in manycore
designs. The obvious suggestion is to use single error correcting, double error detecting
(SEC/DED) encoding for any memory that has the only copy of data, and use parity
protection on any memory that just has a copy of data that can be retrieved from
elsewhere. Servers that have violated those guidelines have suffered dependability
problems [Hennessy and Patterson 2007].

For example, if the L1 data cache uses write through to an L2 cache with write back, then
the L1 data cache needs only parity while the L2 cache needs SEC/DED. The cost for
SEC/DED is a function of the logarithm of the word width, with 8 bits of SEC/DED for
64 bits of data being a popular size. Parity needs just one bit per word. Hence, the cost in
energy and hardware is modest.

Mainframes are the gold standard of dependable hardware design, and among the
techniques they use is repeated retransmission to try to overcome soft errors. For
example, they would retry a transmission 10 times before giving up and declaring to the
operating system that it uncovered an error. While it might be expensive to include such a
mechanism on every bus, there are a few places where it might be economical and
effective. For example, we expect a common design framework for manycore will be
globally asynchronous but locally synchronous per module, with unidirectional links and
queues connecting together these larger function blocks. It would be relatively easy to
include a parity checking and limited retransmission scheme into such framework.

It may also be possible to fold in dependability enhancements into mechanisms included
to enhance performance or to simplify programming. For example, Transactional
Memory above (Section 4.4.3) simplifies parallel programming by rolling back all
memory events to the beginning of a transaction in the event of mis-speculation about
parallelism. Such a rollback scheme could be co-opted into helping with soft errors.

The Landscape of Parallel Computing Research: A View From Berkeley

30

Virtual Machines can also help systems resilient to failures by running different programs
in different virtual machines (see Section 6.2). Virtual machines can move applications
from a failing processor to a working processor in a manycore chip before the hardware
stops. Virtual machines can help cope with software failures as well due to the strong
isolation they provide, making an application crash much less likely to affect others.

In addition to these seemingly obvious points, there are open questions for dependability
in the manycore era:

• What is the right granularity to check for errors? Whole processors, or even down
to registers?

• What is the proper response to an error? Retry, or decline to use the faulty
component in the future?

• How serious are errors? Do we need redundant threads to have confidence in the
results, or is a modest amount of hardware redundancy sufficient?

4.6 Performance and Energy Counters
Performance counters were originally created to help computer architects evaluate their
designs. Since their value was primarily introspective, they had the lowest priority during
development. Given this perspective and priority, it is not surprising that measurement of
important performance events were often inaccurate or missing: why delay the product
for bugs in performance counters that are only useful to the product’s architects?

The combination of Moore’s Law and the Memory Wall led architects to design
increasingly complicated mechanisms to try to deliver performance via instruction level
parallelism and caching. Since the goal was to run standard programs faster without
change, architects were not aware of the increasing importance of performance counters
to compiler writers and programmers in understanding how to make their programs run
faster. Hence, the historically cavalier attitude towards performance counters became a
liability for delivering performance even on sequential processors.

The switch to parallel programming, where the compiler and the programmer are
explicitly responsible for performance, means that performance counters must become
first-class citizens. In addition to monitoring traditional sequential processor performance
features, new counters must help with the challenge of efficient parallel programming.

Section 7.2 below lists efficiency metrics to evaluate parallel programs, which suggests
performance counters to help manycore architectures succeed:

- To minimize remote accesses, identify and count the number of remote accesses
and amount of data moved in addition to local accesses and local bytes
transferred.

- To balance load, identify and measure idle time vs. active time per processor.
- To reduce synchronization overhead, identify and measure time spent in

synchronization per processor.
As power and energy are increasingly important, they need to be measured as well.
Circuit designers can create Joule counters for the significant modules from an energy
and power perspective. On a desktop computer, the leading energy consumers are

The Landscape of Parallel Computing Research: A View From Berkeley

31

processors, main memory, caches, the memory controller, the network controller, and the
network interface card.

Given Joules and time, we can calculate Watts. Unfortunately, measuring time is getting
more complicated. Processors traditionally counted processor clock cycles, since the
clock rate was fixed. To save energy and power, some processors have adjustable
threshold voltages and clock frequencies. Thus, to measure time accurately, we now need
a “picosecond counter” in addition to a clock cycle counter.

While performance and energy counters are vital to the success of parallel processing, the
good news is that they are relatively easy to include. Our main point is to raise their
priority: do not include features that significantly affect performance or energy if
programmers cannot accurately measure their impact.

5.0 Programming Models
Figure 1 shows that a programming model is a bridge between a system developer’s
natural model of an application and an implementation of that application on available
hardware. A programming model must allow the programmer to balance the competing
goals of productivity and implementation efficiency. Implementation efficiency is always
an important goal when parallelizing an application, as programs with limited
performance needs can always be run sequentially. We believe that the keys to achieving
this balance are two conflicting goals:

• Opacity abstracts the underlying architecture. Abstraction obviates the need for
the programmer to learn the architecture’s intricate details and increases
programmer productivity.

• Visibility makes the key elements of the underlying hardware visible to the
programmer. It allows the programmer to realize the performance constraints of
an application by exploring design parameters such as thread boundaries, data
locality, and the implementation of elements of the application.

While maximizing the raw performance/power of future multicores is important, the real
key to their success is the programmer’s ability to harvest that performance.

Figure 7 shows the current lack of agreement on the opacity/visibility tradeoff. It lists 10
examples of programming models for five critical parallel tasks that go from requiring
the programmer to make explicit decisions for all tasks for efficiency to models that make
all the decisions for the programmer for productivity. In between these extremes, the
programmer does some tasks and leaves the rest to the system.

The struggle is delivering performance while raising the level of abstraction. Going too
low may achieve performance, but at the cost of exacerbating the software productivity
problem, which is already a major hurdle for the information technology industry. Going
too high can reduce productivity as well, for the programmer is then forced to waste time
trying to overcome the abstraction to achieve performance.

In the following sections, we present some recommendations for designers of
programming systems for parallel machines. Instead of the conventional focus just on

The Landscape of Parallel Computing Research: A View From Berkeley

32

hardware, applications, or mathematical formalisms, create and evaluate programming
models inspired more by results from psychology (Section 5.1). A few seemingly obvious
but often neglected characteristics for a successful parallel model that raise the level of
abstraction without hurting efficiency are making programs independent of the number of
processors (Section 5.2), supporting a rich set of data types (Section 5.3), and supporting
styles of parallelism that have been proven successful in the past (Sections 5.4).

Model Domain Task

Identification
Task
Mapping

Data
Distribution

Commun-
ication
Mapping

Synchro-
nization

Real-Time
Workshop
[MathWorks
2004]

DSP Explicit Explicit Explicit Explicit Explicit

TejaNP [Teja
2003]

Network Explicit Explicit Explicit Explicit Explicit

YAPI
[Brunel et al
2000]

DSP Explicit Explicit Explicit Explicit Implicit

MPI [Snir et
al 1998]

HPC Explicit Explicit Explicit Implicit Implicit

Pthreads
[Pthreads
2004]

General Explicit Explicit Implicit Implicit Explicit

StreamIt
[Gordon et al
2002]

DSP Explicit Implicit Explicit Implicit Implicit

MapReduce
[Dean and
Ghemawat
2004]

Large
Data
sets

Explicit Implicit Implicit Implicit Explicit

Click to
network
processors
[Plishker et
al 2004]

Network Implicit Implicit Implicit Implicit Explicit

OpenMP
[OpenMP
2006]

HPC Implicit
(directives,
some explicit)

Implicit Implicit Implicit Implicit
(directives,
some explicit)

HPF
[Koelbel et al
1993]

HPC Implicit Implicit Implicit
(directives)

Implicit Implicit

Figure 7. Comparison of 10 current parallel programming models for 5 critical tasks, sorted from most explicit to
most implicit. High-performance computing applications [Pancake and Bergmark 1990] and embedded applications
[Shah et al 2004a] suggest these tasks must be addressed one way or the other by a programming model: 1) Dividing
the application into parallel tasks; 2) Mapping computational tasks to processing elements; 3) Distribution of data to
memory elements; 4) mapping of communication to the inter-connection network; and 5) Inter-task synchronization.

The Landscape of Parallel Computing Research: A View From Berkeley

33

5.1 Programming model efforts inspired by psychological
research
Developing programming models that productively enable development of highly
efficient implementations of parallel applications is the biggest challenge facing the
deployment of future manycore systems. Hence, research in programming models is a
high priority. In our view, programming model development in the past has been
hardware-centric, application-centric, or formalism-centric.Hardware-centric
programming models are typically developed by the hardware-manufacturers themselves
in an attempt to maximize the efficiency of the hardware they produce. For example, the
C-variant known as IXP-C [Intel 2004], together with library elements known as
microblocks, was developed for the Intel IXP family of network processors [Adiletta et al
2002]. Such environments typically do not offer the desired productivity improvements
or support for the broader parallel programming process–architecting, debugging, and so
on – involved in the development of a parallel application.

Application-centric programming models, such as Matlab [MathWorks 2006], are
typically focused on easing the development of related application domains. These
models also don’t support the broader parallel programming process nor do they offer
support for fine-tuning implementations to realize efficiency constraints.

Formalism-centric programming models, such as Actors [Hewitt et al 1973], try to reduce
the chance of programmer making mistakes by having clean semantics and offer the
chance to remove bugs by verifying correctness of portions of the code.

All three goals are obviously important: efficiency, productivity, and correctness. It is
striking, however, that research from psychology has had almost no impact, despite the
obvious fact that the success of these models will be strongly affected by the human
beings who use them. Testing methods derived from the psychology research community
have been used to great effect for HCI, but are sorely lacking in language design and
software engineering. For example, there is a rich theory investigating the causes of
human errors, which is well known in the human-computer interface community, but
apparently it has not penetrated the programming model and language design community.
[Kantowitz and Sorkin 1983] [Reason 1990] There have been some initial attempts to
identify the systematic barriers to collaboration between the Software Engineering (SE)
and HCI community and propose necessary changes to the CS curriculum to bring these
fields in line, but there has been no substantial progress to date on these proposals.
[Seffah 2003] [Pyla et al 2004] We believe that integrating research on human
psychology and problem solving into the broad problem of designing, programming,
debugging, and maintaining complex parallel systems will be critical to developing
broadly successful parallel programming models and environments.

Transactional memory is an example of a programming model that helps prevent human
errors. Programmers have a difficult time determining when to synchronize in parallel
code, and often get it wrong. An advantage of transactional memory is that the system
will ensure correctness, even when programmers make incorrect assumptions about the
safety of parallelizing a piece of code. The payoff of transactional memory is not

The Landscape of Parallel Computing Research: A View From Berkeley

34

primarily efficiency, formalism, or even productivity; it is that programs can work
properly even when programmers err or overly aggressive auto-parallelizing compilers
make mistakes.

Not only do we ignore insights about human cognition in the design of our programming
models, we do not follow their experimental method to resolve controversies about how
people use them. That method is human-subject experiments, which is so widespread that
most campuses have committees that must be consulted before you can perform such
experiments. Subjecting our assumptions about the process or programming to formal
testing often yields unexpected results that challenge our intuition. [Mattson 1999]

A small example is a study comparing programming using shared memory vs. message
passing. These alternatives have been the subject of hot debates for decades, and there is
no consensus on which is better and when. A recent paper compared efficiency and
productivity of small programs written both ways for small parallel processors by novice
programmers. [Hochstein et al 2005] While this is not the final word on the debate, it
does indicate a path to try to resolve important programming issues. Fortunately, there
are a growing number of examples of groups that have embraced user studies to evaluate
the productivity of computer languages. [Kuo et al 2005] [Solar-Lezama et al 2005]
[Ebcioglu et al 2006]

We believe that future successful programming models must be more human-centric.
They will be tailored to the human process of productively architecting and efficiently
implementing, debugging, and maintaining complex parallel applications on equally
complex manycore hardware. Furthermore, we believe we must use human subject
experiments to resolve open issues for us to make progress in discovering how to make it
genuinely easy to program manycore systems efficiently.

5.2 Models must be independent of the number of processors
MPI, the current dominant programming model for parallel scientific programming,
forces coders to be aware of the exact mapping of computational tasks to processors. This
style has been recognized for years to increase the cognitive load on programmers, and
has persisted primarily because it is expressive and delivers the best performance. [Snir et
al 1998] [Gursoy and Kale 2004]

Because we anticipate a massive increase in exploitable concurrency, we believe that this
model will break down in the near future, as programmers have to explicitly deal with
decomposing data, mapping tasks, and performing synchronization over thousands of
processing elements.

Recent efforts in programming languages have focused on this problem and their
offerings have provided models where the number of processors is not exposed [Deitz
2005] [Allen et al 2006] [Callahan et al 2004] [Charles et al 2005]. While attractive, these
models have the opposite problem—delivering performance. In many cases, hints can be
provided to co-locate data and computation in particular memory domains. In addition,

The Landscape of Parallel Computing Research: A View From Berkeley

35

because the program is not over-specified, the system has quite a bit of freedom in
mapping and scheduling that in theory can be used to optimize performance. Delivering
on this promise is, however, still an open research question.

5.3 Models must support a rich set of data sizes and types
Although the algorithms were often the same in embedded and server benchmarks in
Section 3, the data types were not. SPEC relies on single- and double-precision floating
point and large integer data, while EEMBC uses integer and fixed-point data that varies
from 1 to 32 bits. [EEMBC 2006] [SPEC 2006] Note that most programming languages
only support the subset of data types found originally in the IBM 360 announced 40 years
ago: 8-bit characters, 16- and 32-bit integers, and 32- and 64-bit floating-point numbers.

This leads to the relatively obvious observation. If the parallel research agenda inspires
new languages and compilers, they should allow programmers to specify at least the
following sizes (and types):

• 1 bit (Boolean)
• 8 bits (Integer, ASCII)
• 16 bits (Integer, DSP fixed point, Unicode)
• 32 bits (Integer, Single-precision floating point, Unicode)
• 64 bits (Integer, Double-precision floating point
• 128 bits (Integer, Quad-Precision floating point
• Large integer (>128 bits) (Crypto)

Mixed precision floating-point arithmetic—separate precisions for input, internal
computations, and output—has already begun to appear for BLAS routines [Demmel et al
2002]. A similar and perhaps more flexible structure will be required so that all methods
can exploit it. While support for all of these types can mainly be provided entirely in
software, we do not rule out additional hardware to assist efficient implementations of
very wide data types.

In addition to the more “primitive” data types described above, programming
environments should also provide for distributed data types. These are naturally tightly
coupled to the styles of parallelism that are expressed, and so influence the entire design.
The languages proposed in the DARPA High Productivity Language Systems program
are currently attempting to address this issue, with a major concern being support for
user-specified distributions.

5.4 Models must support of proven styles of parallelism
Programming languages, compilers, and architectures have often placed their bets on one
style of parallel programming, usually forcing programmers to express all parallelism in
that style. Now that we have a few decades of such experiments, we think that the
conclusion is clear: some styles of parallelism have proven successful for some
applications, and no style has proven best for all.

The Landscape of Parallel Computing Research: A View From Berkeley

36

Rather than placing all the eggs in one basket, we think programming models and
architectures should support a variety of styles so that programmers can use the superior
choice when the opportunity occurs. We believe that list includes at least the following:

1. Independent task parallelism is an easy-to-use, orthogonal style of parallelism
that should be supported in any new architecture. As a counterexample, older
vector computers could not take advantage of task-level parallelism despite
having many parallel functional units. Indeed, this was one of the key arguments
used against vector computers in the switch to massively parallel processors.

2. Word-level parallelism is a clean, natural match to some dwarfs, such as sparse
and dense linear algebra and unstructured grids. Examples of successful support
include array operations in programming languages, vectorizing compilers, and
vector architectures. Vector compilers would give hints at compile time about
why a loop did not vectorize, and non-computer scientists could then vectorize the
code because they understood the model of parallelism. It has been many years
since that could be said about a new parallel language, compiler, and architecture.

3. Bit-level parallelism may be exploited within a processor more efficiently in
power, area, and time than between processors. For example, the Secure Hash
Algorithm (SHA) for cryptography has significant parallelism, but in a form that
requires very low latency communication between operations on small fields.

In addition to the styles of parallelism, we also have the issue of the memory model.
Because parallel systems usually contain memory distributed throughout the machine, the
question arises of the programmer’s view of this memory. Systems providing the illusion
of a uniform shared address space have been very popular with programmers. However,
scaling these to large systems remains a challenge. Memory consistency issues (relating
to the visibility and ordering of local and remote memory operations) also arise when
multiple processors can update the same locations, each likely having a cache. Explicitly
partitioned systems (such as MPI) sidestep many of these issues, but programmers must
deal with the low-level details of performing remote updates themselves.

6.0 Systems Software
In addition to programming models, compilers and operating systems help span the gap
between applications and hardware towers of Figure 1. In our view, both of these vital
programs have grown so large over the decades that it is hard to do the innovation that
may need as we switch to parallelism. Hence, instead of completely re-engineering
compilers for parallelism, we recommend relying more on autotuners that search to yield
efficient parallel code (Section 6.1). Instead of relying on the conventional large,
monolithic operating systems, we recommend relying more on virtual machines and
system libraries to include only those functions needed by the application (Section 6.2)

6.1 Autotuners vs. Traditional Compilers
Regardless of the programming model, performance of future parallel applications will
crucially depend on the quality of the generated code, traditionally the responsibility of
the compiler. For example, it may need to select a suitable implementation of
synchronization constructs or optimize communication statements. Additionally, the
compiler must generate good sequential code; a task complicated by complex

The Landscape of Parallel Computing Research: A View From Berkeley

37

microarchitectures and memory hierarchies. The compiler selects which optimizations to
perform, chooses parameters for these optimizations, and selects from among alternative
implementations of a library kernel. The resulting space of optimization alternatives is
large. Such compilers will start from parallelism indicated in the program implicitly or
explicitly, and attempt to increase its amount or modify its granularity—a problem that
can be simplified, but not sidestepped, by a good programming model.

6.1.1 The Difficulty of Enhancing Modern Compilers
Unfortunately, it is difficult to add new optimizations to compilers, presumably needed in
the transition from instruction-level parallelism to task- and data-level parallelism. As a
modern compiler contains millions of lines of code and new optimizations often require
fundamental changes to its internal data structures, the large engineering investment is
difficult to justify, as compatibility with language standards and functional correctness of
generated code are usually much higher priorities than output code quality. Moreover,
exotic automatic optimization passes are difficult to verify against all possible inputs
versus the few test cases required to publish a paper in a research conference.
Consequently, users have become accustomed to turning off sophisticated optimizations,
as they are known to trigger more than their fair share of compiler bugs.

Due to the limitations of existing compilers, peak performance may still require
handcrafting the program in languages like C, FORTRAN, or even assembly code.
Indeed, most scalable parallel codes have all data layout, data movement, and processor
synchronization manually orchestrated by the programmer. Such low-level coding is
labor intensive, and usually not portable to different hardware platforms or even to later
implementations of the same instruction set architecture.

6.1.2 The Promise of Search-Based Autotuners
Our vision is that relying on search embedded in various forms of software synthesis can
solve these problems. Synthesizing efficient programs through search has been used in
several areas of code generation, and has had several notable successes. [Massalin 1987]
[Granlund et al 2006] [Warren 2006].

In recent years, “Autotuners” [Bilmes et al 1997] [Frigo and Johnson 1998] [Frigo and
Johnson 2005] [Granlund et al 2006] [Im et al 2005] [Whaley and Dongarra 1998] gained
popularity as an effective approach to producing high-quality portable scientific code.
Autotuners optimize a set of library kernels by generating many variants of a given kernel
and benchmarking each variant by running on the target platform. The search process
effectively tries many or all optimization switches and hence may take hours to complete
on the target platform. Search needs to be performed only once, however, when the
library is installed. The resulting code is often several times faster than naive
implementations, and a single autotuner can be used to generate high-quality code for a
wide variety of machines. In many cases, the autotuned code is faster than vendor
libraries that were specifically hand-tuned for the target machine! This surprising result is
partly explained by the way the autotuner tirelessly tries many unusual variants of a
particular routine, often finding non-intuitive loop unrolling or register blocking factors
that lead to better performance.

The Landscape of Parallel Computing Research: A View From Berkeley

38

For example, Figure 8 shows how performance varies by a factor of four with blocking
options on Itanium 2. The lesson from autotuning is that by searching many possible
combinations of optimization parameters, we can sidestep the problem of creating an
effective heuristic for optimization policy.

Figure 8. Sparse matrix performance on Itanium 2 for a finite element problem using block compressed
sparse row (BCSR) format [Im et al 2005]. Performance (color-coded, relative to the 1x1 baseline) is
shown for all block sizes that divide 8x8—16 implementations in all. These implementations fully unroll
the innermost loop and use scalar replacement for the source and destination vectors. You might reasonably
expect performance to increase relatively smoothly as r and c increase, but this is clearly not the case.
Platform: 900 MHz Itanium-2, 3.6 Gflop/s peak speed. Intel v8.0 compiler.

The popularity of autotuners could lead to changes in benchmarks. Conventional
benchmarks such as SPEC are distributed as source code that must be compiled and run
unaltered. This code often contains manual optimizations favoring a particular target
computer, such as a particular cache blocking. Autotuned code, however, would allow a
benchmark to find the best approach for each target automatically.

6.1.3 Extending Autotuners to Parallelism
We believe that autotuning can help with the compilation of parallel code as well.
Parallel architectures, however, introduce many new optimization parameters, and so far,
no successful autotuners for parallel codes exist. For any given problem, there may be
several parallel algorithms, each with alternative parallel data layouts. The optimal choice
may depend not only on the processor architecture but also on the parallelism of the
computer, as well as the network bandwidth and latency. Consequently, in a parallel
setting, the search space can be much larger than that for a sequential kernel.

The Landscape of Parallel Computing Research: A View From Berkeley

39

To reduce the search space, it may be possible to decouple the search for good data
layout and communication patterns from the search for a good compute kernel, especially
with the judicial use of performance models. The network and memory performance may
be characterized relatively quickly using test patterns, and then plugged into performance
models for the network to derive suitable code loops for the search over compute kernels
[Vadhiyar et al 2000].

6.2 Deconstructing operating system support
Although programming models live above the operating system layer, the efficiency of
that layer can strongly affect the efficiency of the programs that rely upon it. Just as
processors have crossed an inflection point of the benefits of growing larger, we believe
operating systems have as well. Going forward, we believe that operating systems must
be deconstructed, with virtual machines enabling end applications to select only the
portion of the OS capabilities that are needed rather be forced to accept a gargantuan soft
stack. Just as hardware is moving away from a single monolithic processor, operating
systems may be moving away from a single monolithic program. We lay out those
arguments in this section.

6.2.1 Increasing Need of Protection in Embedded Computing
One place where there is the greatest tension between the embedded and server
communities in the past is operating systems. Embedded systems have historically had
very minimal application-specific run-time systems, with tight control over real-time
scheduling, but with little support for protection and virtualization. This reflects the
desire to reduce processor cost, memory footprint, and power consumption, and the
assumption that software will be custom written for a particular embedded system by the
manufacturer. Traditional server operating systems have millions of lines of code, and
provide a very rich set of features. Protection and virtualization are essential to support
large software systems built using a range of third-party code written to industry-standard
APIs, and communicating over the unsecured global Internet.

We believe these two worlds are colliding and merging, as embedded systems increase in
functionality. For example, cell phones and game machines now support multi-gigabyte
file systems and complex Web browsers. In particular, cell phone manufacturers who
have previously resisted the installation of third-party software due to reliability
concerns, now realize that a standard API must be provided to allow user extensibility,
and this will require much more sophisticated and stable operating systems and the
hardware support these require.

Since embedded computers are increasingly connected to networks, we think they will be
increasingly vulnerable to viruses and other attacks. Indeed, the first personal computer
operating systems dropped protection since developers thought a PC had only a single
user, which worked OK until we connected PCs to the Internet. Imagine how much better
our lives would be if security had been a PC OS priority before they joined the Internet.

The Landscape of Parallel Computing Research: A View From Berkeley

40

6.2.2 Virtual Machines to the Rescue
Traditional OSes are too large and brittle to support radical innovation but contain
millions of lines of valuable legacy code essential to application functionality. The
resurgence of interest in virtual machines (VMs) is evidence that operating systems have
reached their own technology inflexion point. VM technology allows a complete
operating system with running applications to be treated as a software component,
manipulated by a virtual machine monitor (VMM) or hypervisor. The VMM inserts a
thin software layer between a guest OS and the hardware to give the guest OS the illusion
that it is running on its own copy of the real hardware. This approach allows a very small,
very low overhead VMM to provide innovative protection and resource sharing without
having to run or modify multimillion-line OSes.

Virtual machines appear to be the future of server operating systems. For example, AMD,
Intel, and Sun have all modified their instruction set architectures to support virtual
machines. VMs have become popular in server computing for a few reasons: [Hennessy
and Patterson 2007]

• To provide a greater degree of protection against viruses and attacks;
• To cope with software failures by isolating a program inside a single VM so as

not to damage other programs; and
• To cope with hardware failures by migrating a virtual machine from one computer

to another without stopping the programs
VMMs provide an elegant solution to the failure of conventional OSes to provide such
features. VMMs are also a great match to manycore systems, in that space sharing will be
increasingly important when running multiple applications on 1000s of processors.

What is the cost of a VMM? The overhead of running an OS on a VMM is generally a
function of the instruction set architecture. We believe manycore architectures for
embedded and server should support virtualization, as the hardware costs are trivial. By
designing an instruction set architecture to be virtualizable, the software overhead can be
very low. Indeed, an important architectural goal would be to provide the support that
helps prevent the VMM from growing over time.

6.2.3 Deconstructing Operating Systems
Rosenblum argues that the future of server operating system could essentially be libraries
where only the functions needed are linked into the application, on top of a thin VMM
layer providing protection and sharing of hardware resources. [Rosenblum 2006] This
vision is similar to embedded OSes today. For example, VxWorks lets the user choose
which features of the OS will be included in this embedded application. [Wind River
2006] Hence, we see operating systems having more in common for embedded and server
computing.

While this vision is compelling, it is not binding. An application can run either a very thin
or a very thick OS on top of the VMM, or even multiple OSes simultaneously to
accommodate different task needs. For example, a real-time code and a best effort code
running on different cores, or a minimal data-plane OS on multiple high-density cores
and a complex control-plane OS on a large general-purpose core.

The Landscape of Parallel Computing Research: A View From Berkeley

41

7.0 Metrics for Success
Having covered the six questions from the full bridge in Figure 1, we need to decide how
to best invent and evaluate answers to those questions. In the following, we focus on
maximizing two metrics–programmer productivity and final implementation efficiency–
and to provide a vehicle to help researchers innovate more quickly.

7.1 Maximizing programmer productivity
Having thousands of processing elements on a single chip presents a major programming
challenge to application designers. The adoption of the current generation of on-chip
multiprocessors has been slow due to the difficulty of getting applications correctly and
productively implemented on these devices. For example, the trade press speaking of
current on-chip multiprocessors targeted for network applications says [Weinberg 2004]:

“ ... network processors with powerful and complex packet-engine sets have
proven to be notoriously difficult to program.”

Earlier on-chip multiprocessors such as the TI TMS320C80 failed altogether because
application designers could not tap their performance productively. Thus, the ability to
productively program these high-performance multiprocessors of the future is as at least
as important as providing high-performance silicon implementations of these
architectures.

Another area that deserves consideration is the addition of hardware structures that assist
language productivity features. For example, supporting transactional memory entirely in
software may be too slow to be useful, but can be made efficient with hardware support.
Other examples of this include support for garbage collection, fine-grained
synchronization (the Cray MTA), one-sided messaging, trace collection for debugging
[Xu et al 2003], and performance and energy counters to aid program optimization (see
Section 4.5).

Productivity is a multifaceted term that is difficult to quantify. However, case studies
such as [Shah et al 2004b] and the work in the ongoing DARPA HPCS program [HPCS
2006] build our confidence that productivity is amenable to quantitative comparison. In
addition, work in the psychology of programming can also inform our evaluation efforts.

7.2. Maximizing application performance
One implication of Figure 2 is that for 15 years application performance steadily
increased simply by running applications on new generations of processors with minimal
additional programmer effort. As processor performance growth has slowed, new ideas
will be required to realize further application performance gains. Radical ideas are
required to make manycore architectures a secure and robust base for productive software
development since the existing literature only shows successes in narrow application
domains such as Cisco’s 188-processor Metro chip for networking applications
[Eatherton 2005].

Moreover, since the power wall has forced us to concede the battle for maximum
performance of individual processing elements, we must aim at winning the war for
application efficiency through optimizing total system performance. This will require

The Landscape of Parallel Computing Research: A View From Berkeley

42

extensive design space exploration. The general literature on design-space exploration is
extensively reviewed in [Gries 2004] and the state-of-the art in commercial software
support for embedded processor design-space exploration using CoWare or Tensilica
toolsets is presented in [Gries and Keutzer 2005]. However, evaluating full applications
requires more than astute processing element definition; the full system-architecture
design space including memory and interconnect must be explored. Although these
design space explorations focus on embedded processors, we believe that the processors
of manycore systems will look more like embedded processors than current desktop
processors (see Section 4.1.2.).

New efficiency metrics will make up the evaluation of the new parallel architecture. As
in the sequential world, there are many “observables” from program execution that
provide hints (such as cache misses) to the overall efficiency of a running program. In
addition to serial performance issues, the evaluation of parallel systems architectures will
focus on:

- Minimizing remote accesses. In the case where data is accessed by computational
tasks that are spread over different processing elements, we need to optimize its
placement so that communication is minimized.

- Load balance. The mapping of computational tasks to processing elements must
be performed in such a way that the elements are idle (waiting for data or
synchronization) as little as possible.

- Granularity of data movement and synchronization. Most modern networks
perform best for large data transfers. In addition, the latency of synchronization is
high and so it is advantageous to synchronize as little as possible.

Software design environments for embedded systems such as those described in [Rowen
and Leibson 2005] lend greater support to making these types of system-level decisions.
To make help programmers progress towards these goals, we recommend hardware
counters that can measure these performance issues (see Section 4.6).

The conventional path for exploring new architectures for the last decade has been
simulation. We are skeptical that software simulation alone will provide sufficient
throughput for thorough evaluation of manycore systems architectures. Nor will per-
project hardware prototypes that require long development cycles be sufficient. The
development of these ad hoc prototypes will be far too slow to influence the decisions
that industry will need to make regarding future manycore system architectures. We need
a platform where feedback from software experiments on novel manycore architectures
running real applications with representative workloads will lead to new system
architectures within days, not years.

7.3 RAMP: Research Accelerator for Multiple Processors
The Research Accelerator for Multiple Processor (RAMP) project is an open-source
effort of ten faculty at six institutions to create a computing platform that will enable
rapid innovation in parallel software and architecture [Arvind et al 2005] [Wawrzynek et
al 2006]. RAMP is inspired by:

1. The difficulty for researchers to build modern chips, as described in CW #5 in
Section 2.

The Landscape of Parallel Computing Research: A View From Berkeley

43

2. The rapid advance in field-programmable gate arrays (FPGAs), which are
doubling in capacity every 18 months. FPGAs now have the capacity for millions
of gates and millions of bits of memory, and they can be reconfigured as easily as
modifying software.

3. Flexibility, large scale, and low cost trumps absolute performance for researchers,
as long as performance is fast enough to do their experiments in a timely fashion.
This perspective suggests the use of FPGAs for system emulation.

4. Smaller is better (see Section 4.1) means many of these hardware modules can fit
inside an FPGA today, avoiding the much tougher mapping problems of the past
when a single module had to span many FPGAs.

5. The availability of open-source modules, from Opencores.org, Open SPARC, and
Power.org, which can be inserted into FPGAs with little effort [Opencores 2006]
[OpenSPARC 2006] [Power.org 2006].

While the idea for RAMP is just 18 months old, the group has made rapid progress. It has
financial support from NSF and several companies and it has working hardware based on
an older generation of FPGA chips. Although RAMP will run, say, 20 times more slowly
than real hardware, it will emulate many different speeds of components accurately to
report correct performance as measured in the emulated clock rate.

The group plans to develop three versions of RAMP to demonstrate what can be done:

• Cluster RAMP (“RAMP Blue”): Led by the Berkeley contingent, this version will
a large-scale example using MPI for high performance applications like the NAS
parallel benchmarks [Van der Wijngaart 2002] or TCP/IP for Internet applications
like search. An 8-board version will run the NAS benchmarks on 256 processors.

• Transactional Memory RAMP (“RAMP Red”): Led by the Stanford contingent,
this version will implement cache coherency using the TCC version of
transactional memory [Hammond et al 2004]. A single board system runs 100
times faster than the Transactional Memory simulator.

• Cache-Coherent RAMP (“RAMP White”): Led by the CMU and Texas
contingents, this version will implement a ring-based coherency or snoop based
coherency.

All will share the same “gateware”—processors, memory controllers, switches, and so
on—as well as CAD tools, including co-simulation. [Chung et al 2006]

The goal is to make the “gateware” and software freely available on a web site, to
redesign the boards to use the recently announced Virtex 5 FPGAs, and finally to find a
manufacturer to sell them at low margin. The cost is estimated to be about $100 per
processor and the power about 1 watt per processor, yielding a 1000 processor system
that costs about $100,000, that consumes about one kilowatt, and that takes about one
quarter of a standard rack of space.

The interactions between massively parallel programming models, real-time constraints,
protection, and virtualization provide a rich ground for architecture and software systems
research. The hope is that the advantages of large-scale multiprocessing, standard
instruction sets and OSes, low cost, low power, and ease-of-change will make RAMP a

The Landscape of Parallel Computing Research: A View From Berkeley

44

standard platform for parallel research for many types of researchers. If it creates a
“watering hole effect” in bringing many disciplines together, it could lead to innovation
that will more rapidly develop successful answers to the seven questions of Figure 1.

8.0 Conclusion
CWs # 1, 7, 8, and 9 in Section 2 say the triple whammy of the Power, Memory, and
Instruction Level Parallelism Walls has forced microprocessor manufacturers to bet their
futures on parallel microprocessors. This is no sure thing, as parallel software has an
uneven track record.

From a research perspective, however, this is an exciting opportunity. Virtually any
change can be justified—new programming languages, new instruction set architectures,
new interconnection protocols, and so on—if it can deliver on the goal of making it easy
to write programs that execute efficiently on manycore computing systems.

This opportunity inspired a group of us at Berkeley from many backgrounds to spend
nearly two years discussing the issues, leading to the seven questions of Figure 1 and the
following unconventional perspectives:

• Regarding multicore versus manycore: We believe that manycore is the future of
computing. Furthermore, it is unwise to presume that multicore architectures and
programming models suitable for 2 to 32 processors can incrementally evolve to
serve manycore systems of 1000s of processors.

• Regarding the application tower: We believe a promising approach is to use 13
Dwarfs as stand-ins for future parallel applications since applications are rapidly
changing and because we need to investigate parallel programming models as
well as architectures.

• Regarding the hardware tower: We advise using simple processors, to innovate in
memory as well as in processor design, to consider separate latency-oriented and
bandwidth-oriented networks. Since the point-to-point communication patterns
are very sparse, a hybrid interconnect design that uses circuit switches to tailor the
interconnect topology to application requirements could be more area and power
efficient than a full-crossbar and more computationally efficient than a static
mesh topology. Traditional cache coherence is unlikely to be sufficient to
coordinate the activities of 1000s of cores, so we recommend a richer hardware
support for fine-grained synchronization and communication constructs. Finally,
do not include features that significantly affect performance or energy if you do
not provide counters that let programmers accurately measure their impact.

• Regarding the programming models that bridge the two towers: To improve
productivity, programming models must be more human-centric and engage the
full range of issues associated with developing a parallel application on manycore
hardware. To maximize application efficiency as well as programmer
productivity, programming models should be independent of the number of
processors, they should allow programmers to use a richer set of data types and
sizes, and they should support successful and well-known parallel models of
parallelism: independent task, word-level, and bit-level parallelism.

The Landscape of Parallel Computing Research: A View From Berkeley

45

• We also think that autotuners should take on a larger, or at least complementary,
role to compilers in translating parallel programs. Further, we argue that
traditional operating systems will be deconstructed and operating system
functionality will be orchestrated using virtual machines.

• To provide an effective parallel computing roadmap quickly so that industry can
safely place its bets, we encourage researchers to use autotuners and RAMP to
explore this space rapidly and to measure success by how easy it is to program the
13 Dwarfs to run efficiently on manycore systems.

• While embedded and server computing have historically evolved along separate
paths, in our view the manycore challenge brings them much closer together. By
leveraging the good ideas from each path, we believe we will find better answers
to the seven questions in Figure 1.

As a test case to see the usefulness of these observations, one of the authors was invited
to a workshop that posed the question of what could you do if you had infinite memory
bandwidth? We approached the problem using the dwarfs, asking which were
computationally limited and which were limited by memory. Figure 9 below gives the
results of our quick study, which was that memory latency was a bigger problem than
memory bandwidth, and some dwarfs were not limited by memory bandwidth or latency.
Whether our answer was correct or not, it was exciting to have a principled framework to
rely upon to try to answer such open and difficult questions.

This report is intended to be the start of a conversation about these perspectives. There is
an open, exciting, and urgent research agenda to flush out the concepts represented by the
two towers and span of Figure 1. We invite you to participate in this important discussion
by visiting view.eecs.berkeley.edu.

Dwarf Performance Limit: Memory Bandwidth,
Memory Latency, or Computation?

1. Dense Matrix Computationally limited
2. Sparse Matrix Currently 50% computation, 50% memory BW
3. Spectral (FFT) Memory latency limited
4. N-Body Computationally limited
5. Structured Grid Currently more memory bandwidth limited
6. Unstructured Grid Memory latency limited
7. MapReduce Problem dependent
8. Combinational Logic CRC problems BW; crypto problems

computationally limited
9. Graph traversal Memory latency limited
10. Dynamic Programming Memory latency limited
11. Backtrack and Branch+Bound ?
12. Construct Graphical Models ?
13. Finite State Machine Nothing helps!
Figure 9. Limits to performance of dwarfs, inspired by an suggestion by IBM that a packaging technology
could offer virtually infinite memory bandwidth. While the memory wall limited performance for almost
half the dwarfs, memory latency is a bigger problem than memory bandwidth

The Landscape of Parallel Computing Research: A View From Berkeley

46

Acknowledgments
During the writing of this paper, Krste Asanovic was visiting U.C. Berkeley, on
sabbatical from MIT. We’d like to thank the following who participated in at least some
of these meetings: Jim Demmel, Jike Chong, Armando Fox, Joe Hellerstein, Mike
Jordan, Dan Klein, Bill Kramer, Rose Liu, Lenny Oliker, Heidi Pan, and John
Wawrzynek. We’d also like to thank those who gave feedback on the first draft that we
used to improve this report: Shekhar Borkar, Yen-Kuang Chen, David Chinnery, Carole
Dulong, James Demmel, Srinivas Devadas, Armando Fox, Ricardo Gonzalez, Jim Gray,
Mark Horowitz, Wen-Mei Hwu, Anthony Joseph, Christos Kozyrakis, Jim Larus, Sharad
Malik, Grant Martin, Tim Mattson, Heinrich Meyr, Greg Morrisett, Shubhu Mukherjee,
Chris Rowen, and David Wood. Revising the report in response to their extensive
comments meant the final draft took 4 more months!

References

[ABAQUS 2006] ABAQUS finite element analysis home page. http://www.hks.com

[Adiletta et al 2002] M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich, and H. Wilkinson, “The Next
Generation of the Intel IXP Network Processors,” Intel Technology Journal, vol. 6, no. 3, pp. 6–18, Aug.
15, 2002.

[Allen et al 2006] E. Allen, V. Luchango, J.-W. Maessen, S. Ryu, G. Steele, and S. Tobin-Hochstadt, The
Fortress Language Specification, 2006. Available at http://research.sun.com/projects/plrg/

[Altschul et al 1990] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, “Basic local
alignment search tool,” Journal Of Molecular Biology, vol. 215, no. 3, 1990, pp. 403–410.

[Alverson et al 1990] R. Alverson, D. Cllahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith,
“The Tera Computer System,” in Proceedings of the 1990 ACM International Conference on
Supercomputing (SC’90), pp. 1–6, Jun. 1990.

[Alverson et al 1999] G.A. Alverson, C.D. Callahan, II, S.H. Kahan, B.D. Koblenz, A. Porterfield, B.J.
Smith, “Synchronization Techniques in a Multithreaded Environment,” US patent 6862635.

[Arnold 2005] J. Arnold, “S5: the architecture and development flow of a software configurable processor,”
in Proceedings of the IEEE International Conference on Field-Programmable Technology, Dec. 2005, pp.
121–128.

[Arvind et al 2005] Arvind, K. Asanovic, D. Chiou, J.C. Hoe, C. Kozyrakis, S. Lu, M. Oskin, D. Patterson,
J. Rabaey, and J. Wawrzynek, “RAMP: Research Accelerator for Multiple Processors - A Community
Vision for a Shared Experimental Parallel HW/SW Platform,” U.C. Berkeley technical report, UCB/CSD-
05-1412, 2005.

[Aspuru-Guzik et al 2005] A. Aspuru-Guzik, R. Salomon-Ferrer, B. Austin, R. Perusquia-Flores, M.A.
Griffin, R.A. Oliva, D. Skinner, D. Domin, and W.A. Lester, Jr., “Zori 1.0: A Parallel Quantum Monte
Carlo Electronic Package,” Journal of Computational Chemistry, vol. 26, no. 8, Jun. 2005, pp. 856–862.

[Bader and Madduri 2006] D.A. Bader and K. Madduri, “Designing Multithreaded Algorithms for Breadth-
First Search and st-connectivity on the Cray MTA-2,” in Proceedings of the 35th International Conference
on Parallel Processing (ICPP), Aug. 2006, pp. 523–530.

[Barnes and Hut 1986] J. Barnes and P. Hut, “A Hierarchical O(n log n) force calculation algorithm,”
Nature, vol. 324, 1986.

The Landscape of Parallel Computing Research: A View From Berkeley

47

[Bell and Newell 1970] G. Bell and A. Newell, “The PMS and ISP descriptive systems for computer
structures,” in Proceedings of the Spring Joint Computer Conference, AFIPS Press, 1970, pp. 351–374.

[Bernholdt et al 2002] D.E. Bernholdt, W.R. Elsasif, J.A. Kohl, and T.G.W. Epperly, “A Component
Architecture for High-Performance Computing,” in Proceedings of the Workshop on Performance
Optimization via High-Level Languages and Libraries (POHLL-02), Jun. 2002.

[Berry et al 2006] J.W. Berry, B.A. Hendrickson, S. Kahan, P. Konecny, “Graph Software Development
and Performance on the MTA-2 and Eldorado,” presented at the 48th Cray Users Group Meeting,
Switzerland, May 2006.

[Bilmes et al 1997] J. Bilmes, K. Asanovic, C.W. Chin, J. Demmel, “Optimizing matrix multiply using
PHiPAC: a Portable, High-Performance, ANSI C coding methodology,” in Proceedings of the 11th
International Conference on Supercomputing, Vienna, Austria, Jul. 1997, pp. 340–347.

[Blackford et al 1996] L.S. Blackford, J. Choi, A. Cleary, A. Petitet, R.C. Whaley, J. Demmel, I. Dhillon,
K. Stanley, J. Dongarra, S. Hammarling, G. Henry, and D. Walker, “ScaLAPACK: a portable linear algebra
library for distributed memory computers - design issues and performance,” in Proceedings of the 1996
ACM/IEEE conference on Supercomputing, Nov. 1996.

[Blackford et al 2002] L.S. Blackford, J. Demmel, J. Dongarra, I. Du, S. Hammarling, G. Henry, M.
Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, R.C. Whaley, “An updated set of
basic linear algebra subprograms (BLAS),” ACM Transactions on Mathematical Software (TOMS), vol. 28,
no. 2 , Jun. 2002, pp. 135–151.

[Borkar 1999] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no. 4, Jul.–Aug.
1999, pp. 23–29.

[Borkar 2005] S. Borkar, “Designing Reliable Systems from Unrealiable Components: The Challenges of
Transistor Variability and Degradation,” IEEE Micro, Nov.–Dec. 2005, pp. 10–16.

[Brunel et al 2000] J.-Y. Brunel, K.A. Vissers, P. Lieverse, P. van der Wolf, W.M. Kruijtzer, W.J.M.
Smiths, G. Essink, E.A. de Kock, “YAPI: Application Modeling for Signal Processing Systems,” in
Proceedings of the 37th Conference on Design Automation (DAC ’00), 2000, pp. 402–405.

[Callahan et al 2004] D. Callahan, B.L. Chamberlain, and H.P. Zima. “The Cascade High Productivity
Language,” in Proceedings of the 9th International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS 2004), IEEE Computer Society, Apr. 2004, pp. 52–60.

[Chandrakasan et al 1992] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-power CMOS digital
design,” IEEE Journal of Solid-State Circuits, vol. 27, no. 4, 1992, pp. 473–484.

[Charles et al 2005] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun, V.
Saraswat, and V. Sarkar, “X10: An Object-Oriented Approach to Non-Uniform Cluster Computing,” in
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’05), Oct. 2005.

[Chen 2006] Y.K. Chen, Private Communication, Jun. 2006.

[Chinnery 2006] D. Chinnery, Low Power Design Automation, Ph.D. dissertation, Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 2006.

[Chong and Catanzaro 2006] J. Chong and B. Catanzaro, Excel spreadsheet.

The Landscape of Parallel Computing Research: A View From Berkeley

48

[Chung et al 2006] E.S. Chung, J.C. Hoe, and B. Falsafi, “ProtoFlex: Co-Simulation for Component-wise
FPGA Emulator Development,” in the 2nd Workshop on Architecture Research using FPGA Platforms
(WARFP 2006), Feb. 2006.

[Colella 2004] P. Colella, “Defining Software Requirements for Scientific Computing,” presentation, 2004.

[Cooley and Tukey 1965] J. Cooley and J. Tukey, “An algorithm for the machine computation of the
complex Fourier series,” Mathematics of Computation, vol. 19, 1965, pp. 297–301.

[Cristianini and Shawe-Taylor 2000] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines, Cambridge University Press, Cambridge, 2000.

[Dally and Towles 2001] W.J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection
Networks,” in Proceedings of the 38th Conference on Design Automation (DAC ’01), 2001, pp. 684–689.

[Dean and Ghemawat 2004] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” in Proceedings of OSDI ’04: 6th Symposium on Operating System Design and Implemention,
San Francisco, CA, Dec. 2004.

[Deitz 2005] S.J. Deitz, High-Level Programming Language Abstractions for Advanced and Dynamic
Parallel Computations, PhD thesis, University of Washington, Feb. 2005.

[Demmel et al 1999] J. Demmel, S. Eisenstat, J. Gilbert, X. Li, and J. Liu, “A supernodal approach to
sparse partial pivoting,” SIAM Journal on Matrix Analysis and Applications, vol. 20, no. 3, pp. 720–755.

[Demmel et al 2002] J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar, X. Li, W. Kahan, S. Kang, A.
Kapur, M. Martin, B. Thompson, T. Tung, and D. Yoo, “Design, Implementation and Testing of Extended
and Mixed Precision BLAS,” ACM Transactions on Mathematical Software, vol. 28, no. 2, Jun. 2002, pp.
152–205.

[Dubey 2005] P. Dubey, “Recognition, Mining and Synthesis Moves Computers to the Era of Tera,”
Technology@Intel Magazine, Feb. 2005.

[Duda and Hart 1973] R. Duda and P. Hart, Pattern Classification and Scene Analysis, New York: Wiley,
1973.

[Eatherton 2005] W. Eatherton, “The Push of Network Processing to the Top of the Pyramid,” keynote
address at Symposium on Architectures for Networking and Communications Systems, Oct. 26–28, 2005.
Slides available at: http://www.cesr.ncsu.edu/ancs/slides/eathertonKeynote.pdf

[Ebcioglu et al 2006] K. Ebcioglu, V. Sarkar, T. El-Ghazawi, J. Urbanic, “An Experiment in Measuring the
Productivity of Three Parallel Programming Languages,” in Proceedings of the Second Workshop on
Productivity and Performance in High-End Computing (P-PHEC 2005), Feb. 2005.

[Edinburg 2006] University of Edinburg, “QCD-on-a-chip, (QCDOC),”
http://www.pparc.ac.uk/roadmap/rmProject.aspx?q=82

[EEMBC 2006] Embedded Microprocessor Benchmark Consortium. http://www.eembc.org

[FLUENT 2006] FIDAP finite element for computational fluid dynamics analysis home page.
http://www.fluent.com/software/fidap/index.htm

[Frigo and Johnson 1998] M. Frigo and S.G. Johnson, “FFTW: An adaptive software architecture for the
FFT,” in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’98), Seattle, WA, May 1998, vol. 3, pp. 1381–1384.

The Landscape of Parallel Computing Research: A View From Berkeley

49

[Frigo and Johnson 2005] M. Frigo and S.G. Johnson, "The Design and Implementation of FFTW3,"
Proceedings of the IEEE, vol. 93, no. 2, 2005, pp. 216–231.

[Gelsinger 2001] P.P. Gelsinger, “Microprocessors for the new millennium: Challenges, opportunities, and
new frontiers,” in Proceedings of the International Solid State Circuits Conference (ISSCC), 2001, pp. 22–
25.

[Gonzalez and Horowitz 1996] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose
microprocessors,” IEEE Journal of Solid-State Circuits, vol. 31, no. 9, 1996, pp. 1277–1284.

[Goodale et al 2003] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and J. Shalf,
“The cactus framework and toolkit: Design and applications,” in Vector and Parallel Processing
(VECPAR’2002), 5th International Conference, Springer, 2003.

[Gordon et al 2002] M.I. Gordon, W. Thies, M. Karczmarek, J. Lin, A.S. Meli, A.A. Lamb, C. Leger, J.
Wong, H. Hoffmann, D. Maze, and S. Amarasinghe, “A Stream Compiler for Communication-Exposed
Architectures,” MIT Technology Memo TM-627, Cambridge, MA, Mar. 2002.

[Granlund et al 2006] T. Granlund et al. GNU Superoptimizer FTP site.
ftp://prep.ai.mit.edu/pub/gnu/superopt

[Gries 2004] M. Gries, “Methods for Evaluating and Covering the Design Space during Early Design
Development,” Integration, the VLSI Journal, Elsevier, vol. 38, no. 2, Dec. 2004, pp. 131–183.

[Gries and Keutzer 2005] M. Gries and K. Keutzer (editors), Building ASIPs: The MESCAL Methodology,
Springer, 2005.

[Gursoy and Kale 2004] A. Gursoy and L.V. Kale, “Performance and Modularity Benefits of Message-
Driven Execution,” Journal of Parallel and Distributed Computing, vol. 64, no. 4, Apr. 2004, pp. 461–480.

[Hammond et al 2004] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom, M. Prabhu, H.
Wijaya, C. Kozyrakis, and K. Olukotun, “Transactional Memory Coherence and Consistency (TCC),” in
Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA ’04), Jun. 2004.

[Harstein and Puzak 2003] A. Harstein and T. Puzak, “Optimum Power/Performance Pipeline Depth,” in
Proceedings of the 36th IEEE/ACM International Symposium on Microarchitecture (MICRO-36), Dec.
2003, pp. 117–126.

[Hauser and Wawrzynek 1997] J.R. Hauser and J. Wawrzynek, “GARP: A MIPS processor with a
reconfigurable coprocessor,” in Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, Apr. 1997, pp. 12–21.

[Hennessy and Patterson 2007] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 4th edition, Morgan Kauffman, San Francisco, 2007.

[Heo and Asanovic 2004] S. Heo and K. Asanovic, “Power-Optimal Pipelining in Deep Submicron
Technology,” in Proceedings of the International Symposium on Low Power Electronics and Design, 2004,
pp. 218–223.

[Herlihy and Moss 1993] M. Herlihy and J.E.B. Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” in Proceedings of the 20th Annual International Symposium on Computer
Architecture (ISCA ’93), 1993, pp. 289–300.

[Hewitt et al 1973] C. Hewiit, P. Bishop, and R. Stieger, “A Universal Modular Actor Formalism for
Artificial Intelligence,” in Proceedings of the 1973 International Joint Conference on Artificial
Intelligence, 1973, pp. 235–246.

The Landscape of Parallel Computing Research: A View From Berkeley

50

[Hillis and Tucker 1993] W.D. Hillis and L.W. Tucker, “The CM-5 Connection Machine: A Scalable
Supercomputer,” Communications of the ACM, vol. 36, no. 11, Nov. 1993, pp. 31–40.

[Hochstein et al 2005] L. Hochstein, J. Carver, F. Shull, S. Asgari, V.R. Basili, J.K. Hollingsworth, M.
Zelkowitz. “Parallel Programmer Productivity: A Case Study of Novice Parallel Programmers,”
International Conference for High Performance Computing, Networking and Storage (SC'05). Nov. 2005.

[Horowitz 2006] M. Horowitz, personal communication and Excel spreadsheet.

[Hrishikesh et al 2002] M.S. Hrishikesh, D. Burger, N.P. Jouppi, S.W. Keckler, K.I. Farkas, and P.
Shivakumar, “The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4 Inverter Delays,” in Proceedings
of the 29th Annual International Symposium on Computer Architecture (ISCA ’02), May 2002, pp. 14–24.

[HPCS 2006] DARPA High Productivity Computer Systems home page. http://www.highproductivity.org/

[IBM 2006] IBM Research, “MD-GRAPE.” http://www.research.ibm.com/grape/

[Im et al 2005] E.J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework for sparse matrix
kernels,” International Journal of High Performance Computing Applications, vol. 18, no. 1, Spr. 2004, pp.
135–158.

[Intel 2004] Intel Corporation, “Introduction to Auto-Partiontioning Programming Model,” Literature
number 254114-001, 2004.

[Kamil et al 2005] S.A. Kamil, J. Shalf, L. Oliker, and D. Skinner, “Understanding Ultra-Scale Application
Communication Requirements,” in Proceedings of the 2005 IEEE International Symposium on Workload
Characterization (IISWC), Austin, TX, Oct. 6–8, 2005, pp. 178–187. (LBNL-58059)

[Kantowitz and Sorkin 1983] B.H. Kantowitz and R.D. Sorkin, Human Factors: Understanding People-
System Relationships, New York, NY, John Wiley & Sons, 1983.

[Killian et al 2001] E. Killian, C. Rowen, D. Maydan, and A. Wang, “Hardware/Software Instruction set
Configurability for System-on-Chip Processors,” in Proceedings of the 38th Conference on Design
Automation (DAC '01), 2001, pp. 184–188.

[Koelbel et al 1993] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., and M.E. Zosel, The
High Performance Fortran Handbook, The MIT Press, 1993. ISBN 0262610949.

[Kozyrakis and Olukotun 2005] C. Kozyrakis and K. Olukotun, “ATLAS: A Scalable Emulator for
Transactional Parallel Systems,” in Workshop on Architecture Research using FPGA Platforms, 11th
International Symposium on High-Performance Computer Architecture (HPCA-11 2005), San Francisco,
CA, Feb. 13, 2005.

[Kumar et al 2003] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, and D.M. Tullsen, “Single-ISA
Heterogeneous Multi-core Architectures: The Potential for Processor Power Reduction,” in Proceedings of
the 36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-36), Dec. 2003.

[Kuo et al 2005] K. Kuo, R.M. Rabbah, and S. Amarasinghe, “A Productive Programming Environment for
Stream Computing,” in Proceedings of the Second Workshop on Productivity and Performance in High-
End Computing (P-PHEC 2005), Feb. 2005.

[Kuon and Rose 2006] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” in
Proceedings of the Internation Symposium on Field Programmable Gate Arrays (FPGA ’06), Monterey,
California, USA, ACM Press, New York, NY, Feb. 22–24, 2006, pp. 21–30.

The Landscape of Parallel Computing Research: A View From Berkeley

51

[Massalin 1987] H. Massalin, “Superoptimizer: a look at the smallest program,” in Proceedings of the
Second International Conference on Architectual Support for Programming Languages and Operating
Systems (ASPLOS II), Palo Alto, CA, 1987, pp. 122–126.

[MathWorks 2004] The MathWorks, “Real-Time Workshop 6.1 Datasheet,” 2004.

[MathWorks 2006] The MathWorks, MATLAB Function Reference, 2006.

[Mattson 1999] T. Mattson, “A Cognitive Model for Programming,” U. Florida whitepaper, 1999.
Available at
http://www.cise.ufl.edu/research/ParallelPatterns/PatternLanguage/Background/Psychology/CognitiveMod
el.htm

[Monaghan 1982] J.J. Monaghan, “Shock Simulation by the Particle Method SPH,” Journal of
Computational Physics, vol. 52, 1982, pp. 374–389.

[Mukherjee et al 2005] S.S. Mukherjee, J. Emer, and S.K. Reinhardt, "The Soft Error Problem: An
Architectural Perspective," in Proceedings of the 11th International Symposium on High-Performance
Computer Architecture (HPCA-11 2005), Feb. 2005, pp. 243–247.

[Nyberg et al 2004] C. Nyberg, J. Gray, C. Koester, “A Minute with Nsort on a 32P NEC Windows
Itanium2 Server”, http://www.ordinal.com/NsortMinute.pdf, 2004.

[Opencores 2006] Opencores home page. http://www.opencores.org

[OpenMP 2006] OpenMP home page. http://www.openmp.org

[OpenSPARC 2006] OpenSPARC home page. http://opensparc.sunsource.net

[OSKI 2006] OSKI home page. http://bebop.cs.berkeley.edu/oski/about.html

[Pancake and Bergmark 1990] C.M. Pancake and D. Bergmark, “Do Parallel Languages Respond to the
Needs of Scientific Programmers?” IEEE Computer, vol. 23, no. 12, Dec. 1990, pp. 13–23.

[Patterson 2004] D. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, vol. 47, no. 10,
Oct. 2004, pp. 71–75.

[Patterson et al 1997] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R.
Thomas, and K. Yelick, “A Case for Intelligent RAM: IRAM,” IEEE Micro, vol. 17, no. 2, Mar.–Apr.
1993, pp. 34–44.

[Paulin 2006] P. Paulin, personal communication and Excel spreadsheet.

[Plishker et al 2004] W. Plishker, K. Ravindran, N. Shah, K. Keutzer, “Automated Task Allocation for
Network Processors,” in Network System Design Conference Proceedings, Oct. 2004, pp. 235–245.

[Poole et al 1998] D. Poole, A. Mackworth and R. Goebel, Computational Intelligence: A Logical
Approach, Oxford University Press, New York, 1998.

[Power.org 2006] Power.org home page. http://www.power.org

[Pthreads 2004] IEEE Std 1003.1-2004, The Open Group Base Specifications Issue 6, section 2.9, IEEE
and The Open Group, 2004.

The Landscape of Parallel Computing Research: A View From Berkeley

52

[Pyla et al 2004] P.S. Pyla, M.A. Perez-Quinones, J.D. Arthur, H.R. Hartson, “What we should teach, but
don’t: Proposal for cross pollinated HCI-SE Curriculum,” in Proceedings of ASEE/IEEE Frontiers in
Education Conference, Oct. 2004, pp. S1H/17–S1H/22.

[Rajwar and Goodman 2002] R. Rajwar and J. R. Goodman, “Transactional lock-free execution of lock-
based programs,” in Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS X), ACM Press, New York, NY, USA, Oct.
2002, pp. 5–17.

[Reason 1990] J. Reason, Human error, New York, Cambridge University Press, 1990.

[Rosenblum 2006] M. Rosenblum, “The Impact of Virtualization on Computer Architecture and Operating
Systems,” Keynote Address, 12th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XII), San Jose, California, Oct. 23, 2006.

[Rowen and Leibson 2005] C. Rowen and S. Leibson, Engineering the Complex SOC : Fast, Flexible
Design with Configurable Processors, Prentice Hall, 2nd edition, 2005.

[Scott 1996] S.L. Scott. “Synchronization and communication in the T3E multiprocessor.” In Proceedings
of the Seventh International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS VII), Cambridge, MA, Oct. 1996.

[Seffah 2003] A. Seffah, “Learning the Ropes: Human-Centered Design Skills and Patterns for Software
Engineers’ Education,” Interactions, vol. 10, 2003, pp. 36–45.

[Shah et al 2004a] N. Shah, W. Plishker, K. Ravindran, and K. Keutzer, “NP-Click: A Productive Software
Development Approach for Network Processors,” IEEE Micro, vol. 24, no. 5, Sep. 2004, pp. 45–54.

[Shah et al 2004b] N. Shah, W. Plishker, and K. Keutzer, “Comparing Network Processor Programming
Environments: A Case Study,” 2004 Workshop on Productivity and Performance in High-End Computing
(P-PHEC), Feb. 2004.

[Shalf et al 2005] J. Shalf, S.A. Kamil, L. Oliker, and D. Skinner, “Analyzing Ultra-Scale Application
Communication Requirements for a Reconfigurable Hybrid Interconnect,” in Proceedings of the 2005
ACM/IEEE Conference on Supercomputing (SC ’05), Seattle, WA, Nov. 12–18, 2005. (LBNL-58052)

[Singh et al 1992] J.P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford Parallel Applications for
Shared-Memory,” in Computer Architecture News, Mar. 1992, vol. 20, no. 1, pages 5–44.

[Snir et al 1998] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete
Reference (Vol. 1). The MIT Press, 1998. ISBN 0262692155.

[Solar-Lezama et al 2005] A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu, “Programming by
Sketching for Bit-Streaming Programs,” in Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation (PLDI’05), Jun. 2005, pp. 281–294.

[Soteriou et al 2006] V. Soteriou, H. Wang, L.-S. Peh, “A Statistical Traffic Model for On-Chip
Interconnection Networks,” in Proceedings of the 14th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS ’06), Sep. 2006, pp.
104–116.

[SPEC 2006] Standard Performance Evaluation Corporation (SPEC). http://www.spec.org/index.html

[Srinivasan et al 2002] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P.N. Strenski, and
P.G. Emma, “Optimizing pipelines for power and performance,” in Proceedings of the 35th International
Symposium on Microarchitecture (MICRO-35), 2002, pp. 333–344.

The Landscape of Parallel Computing Research: A View From Berkeley

53

[Sterling 2006] T. Sterling, “Multi-Core for HPC: Breakthrough or Breakdown?” Panel discussion at the
International Conference for High Performance Computing, Networking and Storage (SC'06), Nov.
2006..Slides available at http://www.cct.lsu.edu/~tron/SC06.html

[Sylvester et al 1999] D. Sylvester, W. Jiang, and K. Keutzer, “Berkeley Advanced Chip Performance
Calculator,” http://www.eecs.umich.edu/~dennis/bacpac/index.html

[Sylvester and Keutzer 1998] D. Sylvester and K. Keutzer, “Getting to the Bottom of Deep Submicron,” in
Proceedings of the International Conference on Computer-Aided Design, Nov. 1998, pp. 203–211.

[Sylvester and Keutzer 2001] D. Sylvester and K. Keutzer, “Microarchitectures for systems on a chip in
small process geometries,” Proceedings of the IEEE, Apr. 2001, pp. 467–489.

[Teja 2003] Teja Technologies, “Teja NP Datasheet,” 2003.

[Teragrid 2006] NSF Teragrid home page. http://www.teragrid.org/

[Tokyo 2006] University of Tokyo, “GRAPE,” http://grape.astron.s.u-tokyo.ac.jp

[Vadhiyar et al 2000] S. Vadhiyar, G. Fagg, and J. Dongarra, “Automatically Tuned Collective
Communications,” in Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, Nov. 2000.

[Vahala et al 2005] G. Vahala, J. Yepez, L. Vahala, M. Soe, and J. Carter, “3D entropic lattice Boltzmann
simulations of 3D Navier-Stokes turbulence,” in Proceedings of the 47th Annual Meeting of the APS
Division of Plasma Phsyics, 2005.

[Vetter and McCracken 2001] J.S. Vetter and M.O. McCracken, “Statistical Scalability Analysis of
Communication Operations in Distributed Applications,” in Proceedings of the Eigth ACM SIGPLAN
Symposium on Principles and Practices of Parallel Programming (PPOPP), 2001, pp. 123–132.

[Vetter and Mueller 2002] J.S. Vetter and F. Mueller, “Communication Characteristics of Large-Scale
Scientific Applications for Contemporary Cluster Architectures,” in Proceedings of the 16th International
Parallel and Distributed Processing Symposium (IPDPS), 2002, pp. 272–281.

[Vetter and Yoo 2002] J.S. Vetter and A. Yoo, “An Empirical Performance Evaluation of Scalable
Scientific Applications,” in Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, 2002.

[Vuduc et al 2006] R. Vuduc, J. Demmel, and K. Yelick, “OSKI: Optimized Sparse Kernel Interface,”
http://bebop.cs.berkeley.edu/oski/.

[Warren 2006] H. Warren, A Hacker’s Assistant. http://www.hackersdelight.org

[Wawrzynek et al 2006] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu, C. Kozyrakis, J.C. Joe, D. Chiou,
and K. Asanovic, “RAMP: A Research Accelerator for Multiple Processors,” U.C. Berkeley technical
report, 2006.

[Weinburg 2004] B. Weinberg, “Linux is on the NPU control plane,” EE Times, Feb. 9, 2004.

[Whaley and Dongarra 1998] R.C. Whaley and J.J. Dongarra, “Automatically tuned linear algebra
software,” in Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, 1998.

[Van der Wijngaart 2002] R.F. Van der Wijngaart, “NAS Parallel Benchmarks Version 2.4,” NAS
technical report, NAS-02-007, Oct. 2002.

The Landscape of Parallel Computing Research: A View From Berkeley

54

[Wind River 2006] Wind River home page.
http://www.windriver.com/products/platforms/general_purpose/index.html

[Wolfe 2004] A. Wolfe, “Intel Clears Up Post-Tejas Confusion,” VARBusiness, May 17, 2004.
http://www.varbusiness.com/sections/news/breakingnews.jhtml?articleId=18842588

[Woo et al 1995] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological Considerations,” in Proceedings of the 22nd International Symposium
on Computer Architecture (ISCA ’95), Santa Margherita Ligure, Italy, Jun. 1995, pp. 24–36.

[Wulf and McKee 1995] W.A. Wulf and S.A. McKee, “Hitting the Memory Wall: Implications of the
Obvious,” Computer Architecture News, vol. 23, no. 1, Mar. 1995, pp. 20–24.

[Xu et al 2003] M. Xu, R. Bodik, and M.D. Hill, “A ‘Flight Data Recorder’ for Enabling Full-System
Multiprocessor Deterministic Replay,” in Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA ’04), 2004.

[Zarlink 2006] Zarlink, “PDSP16515A Stand Alone FFT Processor,”
http://products.zarlink.com/product_profiles/PDSP16515A.htm.

