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Abstract 
The recent switch to parallel microprocessors is a milestone in the history of computing. 
Industry has laid out a roadmap for multicore designs that preserves the programming 
paradigm of the past via binary compatibility and cache coherence. Conventional wisdom 
is now to double the number of cores on a chip with each silicon generation. 
 
A multidisciplinary group of Berkeley researchers met nearly two years to discuss this 
change. Our view is that this evolutionary approach to parallel hardware and software 
may work from 2 or 8 processor systems, but is likely to face diminishing returns as 16 
and 32 processor systems are realized, just as returns fell with greater instruction-level 
parallelism. 
 
We believe that much can be learned by examining the success of parallelism at the 
extremes of the computing spectrum, namely embedded computing and high performance 
computing. This led us to frame the parallel landscape with seven questions, and to 
recommend the following: 

• The overarching goal should be to make it easy to write programs that execute 
efficiently on highly parallel computing systems 

• The target should be 1000s of cores per chip, as these chips are built from 
processing elements that are the most efficient in MIPS (Million Instructions per 
Second) per watt, MIPS per area of silicon, and MIPS per development dollar. 

• Instead of traditional benchmarks, use 13 “Dwarfs” to design and evaluate parallel 
programming models and architectures. (A dwarf is an algorithmic method that 
captures a pattern of computation and communication.) 

• “Autotuners” should play a larger role than conventional compilers in translating 
parallel programs. 

• To maximize programmer productivity, future programming models must be 
more human-centric than the conventional focus on hardware or applications.  

• To be successful, programming models should be independent of the number of 
processors. 

• To maximize application efficiency, programming models should support a wide 
range of data types and successful models of parallelism: task-level parallelism, 
word-level parallelism, and bit-level parallelism. 
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• Architects should not include features that significantly affect performance or 
energy if programmers cannot accurately measure their impact via performance 
counters and energy counters. 

• Traditional operating systems will be deconstructed and operating system 
functionality will be orchestrated using libraries and virtual machines. 

• To explore the design space rapidly, use system emulators based on Field 
Programmable Gate Arrays (FPGAs) that are highly scalable and low cost. 

 
Since real world applications are naturally parallel and hardware is naturally parallel, 
what we need is a programming model, system software, and a supporting architecture 
that are naturally parallel. Researchers have the rare opportunity to re-invent these 
cornerstones of computing, provided they simplify the efficient programming of highly 
parallel systems. 
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1.0 Introduction 
The computing industry changed course in 2005 when Intel followed the lead of IBM’s 
Power 4 and Sun Microsystems’ Niagara processor in announcing that its high 
performance microprocessors would henceforth rely on multiple processors or cores. The 
new industry buzzword “multicore” captures the plan of doubling the number of standard 
cores per die with every semiconductor process generation starting with a single 
processor. Multicore will obviously help multiprogrammed workloads, which contain a 
mix of independent sequential tasks, but how will individual tasks become faster? 
Switching from sequential to modestly parallel computing will make programming much 
more difficult without rewarding this greater effort with a dramatic improvement in 
power-performance. Hence, multicore is unlikely to be the ideal answer. 
 
A diverse group of University of California at Berkeley researchers from many 
backgrounds—circuit design, computer architecture, massively parallel computing, 
computer-aided design, embedded hardware and software, programming languages, 
compilers, scientific programming, and numerical analysis—met between February 2005 
and December 2006 to discuss parallelism from these many angles. We borrowed the 
good ideas regarding parallelism from different disciplines, and this report is the result. 
We concluded that sneaking up on the problem of parallelism via multicore solutions was 
likely to fail and we desperately need a new solution for parallel hardware and software.  
 

Although compatibility with old binaries and C programs is valuable to industry, and 
some researchers are trying to help multicore product plans succeed, we have been 
thinking bolder thoughts. Our aim is to realize thousands of processors on a chip for new 
applications, and we welcome new programming models and new architectures if they 
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Embedded & Server 

Computing 
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7. How to measure success? 

Hardware 
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hardware 
building blocks? 
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connect them? 
 
 
 
 

Programming Models 
5. How to describe applications and 
kernels? 
6. How to program the hardware? 
 

Applications 
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applications? 
 
 
 

Figure 1. A view from Berkeley: seven critical questions for 21st Century parallel computing. 
(This figure is inspired by a view of the Golden Gate Bridge from Berkeley.) 
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simplify the efficient programming of such highly parallel systems. Rather than 
multicore, we are focused on “manycore”. Successful manycore architectures and 
supporting software technologies could reset microprocessor hardware and software 
roadmaps for the next 30 years.  
 
Figure 1 shows the seven critical questions we used to frame the landscape of parallel 
computing research. We do not claim to have the answers in this report, but we do offer 
non-conventional and provocative perspectives on some questions and state seemingly 
obvious but sometimes-neglected perspectives on others.  
 
Note that there is a tension between embedded and high performance computing, which 
surfaced in many of our discussions. We argue that these two ends of the computing 
spectrum have more in common looking forward than they did in the past. First, both are 
concerned with power, whether it is battery life for cell phones or the cost of electricity 
and cooling in a data center. Second, both are concerned with hardware utilization. 
Embedded systems are always sensitive to cost, but efficient use of hardware is also 
required when you spend $10M to $100M for high-end servers. Third, as the size of 
embedded software increases over time, the fraction of hand tuning must be limited and 
so the importance of software reuse must increase. Fourth, since both embedded and 
high-end servers now connect to networks, both need to prevent unwanted accesses and 
viruses. Thus, the need is increasing for some form of operating system for protection in 
embedded systems, as well as for resource sharing and scheduling. 
 
Perhaps the biggest difference between the two targets is the traditional emphasis on real-
time computing in embedded, where the computer and the program need to be just fast 
enough to meet the deadlines, and there is no benefit to running faster. Running faster is 
usually valuable in server computing. As server applications become more media-
oriented, real time may become more important for server computing as well. This report 
borrows many ideas from both embedded and high performance computing. 
 
The organization of the report follows the seven questions of Figure 1. Section 2 
documents the reasons for the switch to parallel computing by providing a number of 
guiding principles. Section 3 reviews the left tower in Figure 1, which represents the new 
applications for parallelism. It describes the original “Seven Dwarfs”, which we believe 
will be the computational kernels of many future applications. Section 4 reviews the right 
tower, which is hardware for parallelism, and we separate the discussion into the classical 
categories of processor, memory, and switch. Section 5 covers programming models and 
Section 6 covers systems software; they form the bridge that connects the two towers in 
Figure 1. Section 7 discusses measures of success and describes a new hardware vehicle 
for exploring parallel computing. We conclude with a summary of our perspectives. 
Given the breadth of topics we address in the report, we provide 134 references for 
readers interested in learning more. 
 
In addition to this report, we also started a web site and blog to continue the conversation 
about the views expressed in this report. See view.eecs.berkeley.edu. 
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2.0 Motivation  
The promise of parallelism has fascinated researchers for at least three decades. In the 
past, parallel computing efforts have shown promise and gathered investment, but in the 
end, uniprocessor computing always prevailed. Nevertheless, we argue general-purpose 
computing is taking an irreversible step toward parallel architectures. What’s different 
this time? This shift toward increasing parallelism is not a triumphant stride forward 
based on breakthroughs in novel software and architectures for parallelism; instead, this 
plunge into parallelism is actually a retreat from even greater challenges that thwart 
efficient silicon implementation of traditional uniprocessor architectures.  
 
In the following, we capture a number of guiding principles that illustrate precisely how 
everything is changing in computing. Following the style of Newsweek, they are listed as 
pairs of outdated conventional wisdoms and their new replacements. We later refer to 
these pairs as CW #n. 

1. Old CW: Power is free, but transistors are expensive. 
• New CW is the “Power wall”: Power is expensive, but transistors are “free”. That 

is, we can put more transistors on a chip than we have the power to turn on. 
2. Old CW: If you worry about power, the only concern is dynamic power. 
• New CW: For desktops and servers, static power due to leakage can be 40% of 

total power. (See Section 4.1.) 
3. Old CW: Monolithic uniprocessors in silicon are reliable internally, with errors 

occurring only at the pins.  
• New CW: As chips drop below 65 nm feature sizes, they will have high soft and 

hard error rates. [Borkar 2005] [Mukherjee et al 2005] 
4. Old CW: By building upon prior successes, we can continue to raise the level of 

abstraction and hence the size of hardware designs. 
• New CW: Wire delay, noise, cross coupling (capacitive and inductive), 

manufacturing variability, reliability (see above), clock jitter, design validation, 
and so on conspire to stretch the development time and cost of large designs at 65 
nm or smaller feature sizes. (See Section 4.1.) 

5. Old CW: Researchers demonstrate new architecture ideas by building chips. 
• New CW: The cost of masks at 65 nm feature size, the cost of Electronic 

Computer Aided Design software to design such chips, and the cost of design for 
GHz clock rates means researchers can no longer build believable prototypes. 
Thus, an alternative approach to evaluating architectures must be developed. (See 
Section 7.3.) 

6. Old CW: Performance improvements yield both lower latency and higher 
bandwidth. 

• New CW: Across many technologies, bandwidth improves by at least the square 
of the improvement in latency. [Patterson 2004]  

7. Old CW: Multiply is slow, but load and store is fast. 
• New CW is the “Memory wall” [Wulf and McKee 1995]: Load and store is slow, 

but multiply is fast. Modern microprocessors can take 200 clocks to access 
Dynamic Random Access Memory (DRAM), but even floating-point multiplies 
may take only four clock cycles. 
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8. Old CW: We can reveal more instruction-level parallelism (ILP) via compilers 
and architecture innovation. Examples from the past include branch prediction, 
out-of-order execution, speculation, and Very Long Instruction Word systems. 

• New CW is the “ILP wall”: There are diminishing returns on finding more ILP. 
[Hennessy and Patterson 2007] 

9. Old CW: Uniprocessor performance doubles every 18 months. 
• New CW is Power Wall + Memory Wall + ILP Wall = Brick Wall. Figure 2 plots 

processor performance for almost 30 years. In 2006, performance is a factor of 
three below the traditional doubling every 18 months that we enjoyed between 
1986 and 2002. The doubling of uniprocessor performance may now take 5 years.  

10. Old CW: Don’t bother parallelizing your application, as you can just wait a little 
while and run it on a much faster sequential computer. 

• New CW: It will be a very long wait for a faster sequential computer (see above).  
11. Old CW: Increasing clock frequency is the primary method of improving 

processor performance. 
• New CW: Increasing parallelism is the primary method of improving processor 

performance. (See Section 4.1.) 
12. Old CW: Less than linear scaling for a multiprocessor application is failure. 
• New CW: Given the switch to parallel computing, any speedup via parallelism is a 

success. 
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Figure 2. Processor performance improvement between 1978 and 2006 using integer SPEC [SPEC 2006] 
programs. RISCs helped inspire performance to improve by 52% per year between 1986 and 2002, which 
was much faster than the VAX minicomputer improved between 1978 and 1986. Since 2002, performance 
has improved less than 20% per year. By 2006, processors will be a factor of three slower than if progress 
had continued at 52% per year. This figure is Figure 1.1 in [Hennessy and Patterson 2007].  
 
Although the CW pairs above paint a negative picture about the state of hardware, there 
are compensating positives as well. First, Moore’s Law continues, so we will soon be 
able to put thousands of simple processors on a single, economical chip (see Section 
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4.1.2). For example, Cisco is shipping a product with 188 Reduced Instruction Set 
Computer (RISC) cores on a single chip in a 130nm process [Eatherton 2005]. Second, 
communication between these processors within a chip can have very low latency and 
very high bandwidth. These monolithic manycore microprocessors represent a very 
different design point from traditional multichip multiprocessors, and so provide promise 
for the development of new architectures and programming models. Third, the open 
source software movement means that the software stack can evolve much more quickly 
than in the past. As an example, note the widespread use of Ruby on Rails. Version 1.0 
appeared in just December 2005. 

3.0 Applications and Dwarfs 
The left tower of Figure 1 is applications. In addition to traditional desktop, server, 
scientific, and embedded applications, the importance of consumer products is increasing.  
 
We decided to mine the parallelism experience of the high-performance computing 
community to see if there are lessons we can learn for a broader view of parallel 
computing. The hypothesis is not that traditional scientific computing is the future of 
parallel computing; it is that the body of knowledge created in building programs that run 
well on massively parallel computers may prove useful in parallelizing future 
applications. Furthermore, many of the authors from other areas, such as embedded 
computing, were surprised at how well future applications in their domain mapped 
closely to problems in scientific computing. 
 
The conventional way to guide and evaluate architecture innovation is to study a 
benchmark suite based on existing programs, such as EEMBC (Embedded 
Microprocessor Benchmark Consortium) or SPEC (Standard Performance Evaluation 
Corporation) or SPLASH (Stanford Parallel Applications for Shared Memory) [EEMBC 
2006] [SPEC 2006] [Singh et al 1992] [Woo et al 1992]. One of the biggest obstacles to 
innovation in parallel computing is that it is currently unclear how to express a parallel 
computation best. Hence, it seems unwise to let a set of existing source code drive an 
investigation into parallel computing. There is a need to find a higher level of abstraction 
for reasoning about parallel application requirements. 
 
Our goal is to delineate application requirements in a manner that is not overly specific to 
individual applications or the optimizations used for certain hardware platforms, so that 
we can draw broader conclusions about hardware requirements. Our approach, described 
below, is to define a number of “dwarfs”, which each capture a pattern of computation 
and communication common to a class of important applications. 

3.1 Seven Dwarfs 
We were inspired by the work of Phil Colella, who identified seven numerical methods 
that he believed will be important for science and engineering for at least the next decade 
[Colella 2004]. Figure 3 introduces the Seven Dwarfs, which constitute classes where 
membership in a class is defined by similarity in computation and data movement. The 
dwarfs are specified at a high level of abstraction to allow reasoning about their behavior 
across a broad range of applications. Programs that are members of a particular class can 
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be implemented differently and the underlying numerical methods may change over time, 
but the claim is that the underlying patterns have persisted through generations of 
changes and will remain important into the future. 
 
Some evidence for the existence of this particular set of “equivalence classes” can be 
found in the numerical libraries that have been built around these equivalence classes: for 
example, FFTW for spectral methods [Frigo and Johnson 1998], LAPACK/ScaLAPACK 
for dense linear algebra [Blackford et al 1996], and OSKI for sparse linear algebra 
[Vuduc et al 2006]. We list these in Figure 3, together with the computer architectures 
that have been purpose-built for particular dwarfs: for example, GRAPE for N-body 
methods [Tokyo 2006], vector architectures for linear algebra [Russell 1976], and FFT 
accelerators [Zarlink 2006]. Figure 3 also shows the inter-processor communication 
patterns exhibited by members of a dwarf when running on a parallel machine [Vetter 
and McCracken 2001] [Vetter and Yoo 2002] [Vetter and Meuller 2002] [Kamil et al 
2005]. The communication pattern is closely related to the memory access pattern that 
takes place locally on each processor. 

3.2 Finding More Dwarfs 
The dwarfs present a method for capturing the common requirements of classes of 
applications while being reasonably divorced from individual implementations. Although 
the nomenclature of the dwarfs comes from Phil Colella’s discussion of scientific 
computing applications, we were interested in applying dwarfs to a broader array of 
computational methods. This led us naturally to the following questions: 

• How well do the Seven Dwarfs of high performance computing capture 
computation and communication patterns for a broader range of applications? 

• What dwarfs need to be added to cover the missing important areas beyond high 
performance computing? 

If we find that an expanded set of dwarfs is broadly applicable, we can use them to guide 
innovation and evaluation of new prototypes. As long as the final list contains no more 
than two- or three-dozen dwarfs, architects and programming model designers can use 
them to measure success. For comparison, SPEC2006 has 29 benchmarks and EEMBC 
has 41. Ideally, we would like good performance across the set of dwarfs to indicate that 
new manycore architectures and programming models will perform well on applications 
of the future. 
 
Dwarfs are specified at a high level of abstraction that can group related but quite 
different computational methods. Over time, a single dwarf can expand to cover such a 
disparate variety of methods that it should be viewed as multiple distinct dwarfs. As long 
as we do not end up with too many dwarfs, it seems wiser to err on the side of embracing 
new dwarfs. For example, unstructured grids could be interpreted as a sparse matrix 
problem, but this would both limit the problem to a single level of indirection and 
disregard too much additional information about the problem. 
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Dwarf Description Communication Pattern 

(Figure axes show 
processors 1 to 256, with 

black meaning no 
communication) 

NAS 
Benchmark / 
Example HW 

1. Dense Linear 
Algebra 
(e.g., BLAS 
[Blackford et al 
2002], 
ScaLAPACK 
[Blackford et al 
1996], or 
MATLAB 
[MathWorks 
2006]) 

Data are dense matrices or vectors. 
(BLAS Level 1 = vector-vector; 
Level 2 = matrix-vector; and Level 3 
= matrix-matrix.) Generally, such 
applications use unit-stride memory 
accesses to read data from rows, and 
strided accesses to read data from 
columns. 

The communication pattern of 
MadBench, which makes 
heavy use of ScaLAPACK for 
parallel dense linear algebra, is 
typical of a much broader 
class of numerical algorithms 

Block 
Triadiagonal 
Matrix, Lower 
Upper 
Symmetric 
Gauss-Seidel / 
Vector 
computers, Array 
computers 

2. Sparse Linear 
Algebra 
(e.g., SpMV, 
OSKI [OSKI 
2006], or 
SuperLU 
[Demmel et al 
1999]) 

Data sets include many zero values. 
Data is usually stored in compressed 
matrices to reduce the storage and 
bandwidth requirements to access all 
of the nonzero values. One example 
is block compressed sparse row 
(BCSR). Because of the compressed 
formats, data is generally accessed 
with indexed loads and stores. 

SuperLU (communication 
pattern pictured above) uses 
the BCSR method for 
implementing sparse LU 
factorization. 

Conjugate 
Gradient / Vector 
computers with 
gather/scatter 

3. Spectral 
Methods 
(e.g., FFT 
[Cooley and 
Tukey 1965]) 

Data are in the frequency domain, as 
opposed to time or spatial domains. 
Typically, spectral methods use 
multiple butterfly stages, which 
combine multiply-add operations and 
a specific pattern of data 
permutation, with all-to-all 
communication for some stages and 
strictly local for others. 

PARATEC: The 3D FFT 
requires an all-to-all 
communication to implement 
a 3D transpose, which requires 
communication between every 
link. The diagonal stripe 
describes BLAS-3 dominated 
linear-algebra step required for 
orthogonalization.  

Fourier 
Transform / 
DSPs, Zalink 
PDSP [Zarlink 
2006] 
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Dwarf Description Communication Pattern 
(Figure axes show 

processors 1 to 256, with 
black meaning no 
communication) 

NAS 
Benchmark / 
Example HW 

4. N-Body 
Methods 
(e.g., Barnes-Hut 
[Barnes and Hut 
1986], Fast 
Multipole 
Method 
[Greengard and 
Rokhlin 1987]) 

Depends on interactions between 
many discrete points. Variations 
include particle-particle methods, 
where every point depends on all 
others, leading to an O(N2) 
calculation, and hierarchical particle 
methods, which combine forces or 
potentials from multiple points to 
reduce the computational complexity 
to O(N log N) or O(N). 

PMEMD’s communication 
pattern is that of a particle 
mesh Ewald calculation. 

(no benchmark) / 
GRAPE 
[Tokyo 2006], 
MD-GRAPE 
[IBM 2006] 

5. Structured 
Grids 
(e.g., Cactus 
[Goodale et al 
2003] or Lattice-
Boltzmann 
Magneto- 
hydrodynamics 
[LBMHD 2005]) 

Represented by a regular grid; points 
on grid are conceptually updated 
together. It has high spatial locality. 
Updates may be in place or between 
2 versions of the grid. The grid may 
be subdivided into finer grids in areas 
of interest (“Adaptive Mesh 
Refinement”); and the transition 
between granularities may happen 
dynamically. 

Communication pattern for 
Cactus, a PDE solver using 7-
point stencil on 3D block-
structured grids.  

Multi-Grid, 
Scalar Penta-
diagonal / 
QCDOC 
[Edinburg 2006], 
BlueGeneL 

6. Unstructured 
Grids 
(e.g., ABAQUS 
[ABAQUS 2006] 
or FIDAP 
[FLUENT 
2006]) 

An irregular grid where data 
locations are selected, usually by 
underlying characteristics of the 
application. Data point location and 
connectivity of neighboring points 
must be explicit. The points on the 
grid are conceptually updated 
together. Updates typically involve 
multiple levels of memory reference 
indirection, as an update to any point 
requires first determining a list of 
neighboring points, and then loading 
values from those neighboring 
points. 

 Unstructured 
Adaptive / 
Vector 
computers with 
gather/scatter, 
Tera Multi 
Threaded 
Architecture 
[Berry et al 
2006] 

7. Monte Carlo 
(e.g., Quantum 
Monte Carlo 
[Aspuru-Guzik et 
al 2005]) 

Calculations depend on statistical 
results of repeated random trials. 
Considered embarrassingly parallel. 

Communication is typically 
not dominant in Monte Carlo 
methods. 

Embarrassingly 
Parallel / NSF 
Teragrid 

Figure 3. Seven Dwarfs, their descriptions, corresponding NAS benchmarks, and example computers.  
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To investigate the general applicability of the Seven Dwarfs, we compared the list against 
other collections of benchmarks: EEMBC from embedded computing and from 
SPEC2006 for desktop and server computing. These collections were independent of our 
study, so they act as validation for whether our small set of computational kernels are 
good targets for applications of the future. We will describe the final list in detail in 
Section 3.5, but from our examination of the 41 EEMBC kernels and the 26 SPEC2006 
programs, we found four more dwarfs to add to the list: 

o Combinational Logic generally involves performing simple operations on 
very large amounts of data often exploiting bit-level parallelism. For example, 
computing Cyclic Redundancy Codes (CRC) is critical to ensure integrity and 
RSA encryption for data security. 

o Graph Traversal applications must traverse a number of objects and examine 
characteristics of those objects such as would be used for search. It typically 
involves indirect table lookups and little computation. 

o Graphical Models applications involve graphs that represent random 
variables as nodes and conditional dependencies as edges. Examples include 
Bayesian networks and Hidden Markov Models. 

o Finite State Machines represent an interconnected set of states, such as 
would be used for parsing. Some state machines can decompose into multiple 
simultaneously active state machines that can act in parallel. 

 
To go beyond to EEMBC and SPEC, we examined three increasingly important 
application domains to see if we should increase the number of dwarfs: machine learning, 
database software, and computer graphics and games. 
 
3.2.1 Machine Learning 
One of the most promising areas for the future of computing is the use of statistical 
machine learning to make sense from the vast amounts of data now available due to faster 
computers, larger disks, and the use of the Internet to connect them all together. 
 
Michael Jordan and Dan Klein, our local experts in machine learning, found two dwarfs 
that should be added to support machine learning: 

o Dynamic programming is an algorithmic technique that computes solutions 
by solving simpler overlapping subproblems. It is particularly applicable for 
optimization problems where the optimal result for a problem is built up from 
the optimal result for the subproblems. 

o Backtrack and Branch-and-Bound: These involve solving various search 
and global optimization problems for intractably large spaces. Some implicit 
method is required in order to rule out regions of the search space that contain 
no interesting solutions. Branch and bound algorithms work by the divide and 
conquer principle: the search space is subdivided into smaller subregions 
(“branching”), and bounds are found on all the solutions contained in each 
subregion under consideration. 
 

Many other well-known machine-learning algorithms fit into the existing dwarfs: 
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o Support Vector Machines [Cristianini and Shawe-Taylor 2000]: Dense linear 
algebra. 

o Principal Component Analysis [Duda and Hart 1973]: Dense or sparse linear 
algebra, depending on the details of implementation. 

o Decision Trees [Poole et al 1998]: Graph traversal. 
o Hashing: Combinational logic. 

 
3.2.2 Database Software 
Jim Gray of Microsoft Research believes sort is at the heart of modern databases. He 
sponsors an annual competition to see who can come up with the fastest sorter assuming 
the data is on the disk at the beginning and end. You win MinuteSort by sorting the most 
data in a minute, organized as 100-byte records. The 2006 winner sorted 400 million 
records (40 GB) on a 32-way shared memory multiprocessor using 1.6 GHz Itanium 2 
processors with 128 GB of main memory and 128 disks. Its uses a commercial sorting 
package called Nsort, which does sorts either the records directly or pointers to records. 
[Nyberg et al 2004] The sorting algorithm is sample sort. While it will be important to 
have efficient interfaces between I/O and main memory to sort large files fast, sorting 
does not add to our list of dwarfs. 
 
Another important function of modern databases is hashing. Unlike a typical hash, a 
database hash will compute over a lot of data, perhaps half of main memory. Once again, 
these computation and communication patterns do not expand the dwarfs. 
 
Joe Hellerstein, our local expert in databases, said the future of databases was large data 
collections typically found on the Internet. A key primitive to explore such collections is 
MapReduce, developed and widely used at Google. [Dean and Ghemawat 2004] The first 
phase maps a user supplied function onto thousands of computers, processing key/value 
pairs to generate a set of intermediate key/value pairs, The second phase reduces the 
returned values from all those thousands of instances into a single result by merging all 
intermediate values associated with the same intermediate key. Note that these two 
phases are highly parallel yet simple to understand. Borrowing the name from a similar 
function in Lisp, they call this primitive “MapReduce”. 
 
MapReduce is a more general version of the pattern we had previously called “Monte 
Carlo”: the essence is a single function that executes in parallel on independent data sets, 
with outputs that are eventually combined to form a single or small number of results. In 
order to reflect this broader scope, we changed the name of the dwarf to “MapReduce”. 
 
A second thrust for the future of databases was in genetics, exemplified by the widely 
popular BLAST (Basic Local Alignment Search Tool) code. [Altschul et al 1990] 
BLAST is a heuristic method used to find areas of DNA/protein sequences that are 
similar from a database. There are three main steps: 

1. Compile a list of high-scoring words from the sequence 
2. Scan database for hits from this list 
3. Extend the hits to optimize the match 

Although clearly important, BLAST did not extend our list of dwarfs. 
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3.2.3 Computer Graphics and Games 
While the race to improve realism has pushed graphics processing unit (GPU) 
performance up into the Teraflops range, graphical realism is not isolated to drawing 
polygons and textures on the screen. Rather, modeling of the physical processes that 
govern the behavior of these graphical objects requires many of the same computational 
models used for large-scale scientific simulations. The same is true for many tasks in 
computer vision and media processing, which form the core of the “applications of the 
future” driving the technology roadmaps of hardware vendors. 
 
Employing on-chip parallelism to accelerate computer graphics is considered a solved 
problem for all practical purposes via GPUs. The principle burden for the host processor 
at this point centers on modeling the physical properties of the graphical elements that 
comprise the game or the user interface. Realistic physics requires computational 
modeling of physical processes that are essentially the same as those required for 
scientific computing applications. The computational methods employed are very much 
like those that motivate the seven original dwarfs.  
 
For instance, modeling of liquids and liquid behavior used for special effects in movies 
are typically done using particle methods such as Smooth Particle Hydrodynamics (SPH) 
[Monaghan 1982]. The rendering of the physical model is still done in OpenGL using 
GPUs or software renderers, but the underlying model of the flowing shape of the liquid 
requires the particle-based fluid model. There are several other examples where the desire 
to model physical properties in game and graphics map onto the other dwarfs:  

o Reverse kinematics requires a combination of sparse matrix computations and 
graph traversal methods.  

o Spring models, used to model any rigid object that deforms in response to 
pressure or impact such as bouncing balls or Jell-O, use either sparse matrix or 
finite-element models.  

o Collision detection is a graph traversal operation as are the Octrees and Kd 
trees employed for depth sorting and hidden surface removal.  

o Response to collisions is typically implemented as a finite-state machine. 
Hence, the surprising conclusion is that games and graphics did not extend the drawfs 
beyond the 13 identified above. 
 
One encouraging lesson to learn from the GPUs and graphics software is that the APIs do 
not directly expose the programmer to concurrency. OpenGL, for instance, allows the 
programmer to describe a set of “vertex shader” operations in Cg (a specialized language 
for describing such operations) that are applied to every polygon in the scene without 
having to consider how many hardware fragment processors or vertex processors are 
available in the hardware implementation of the GPU.  
 
3.2.4 Summarizing the Next Six Dwarfs 
Figure 4 shows six more dwarfs that were added because of the studies in the prior 
section. Note that we consider the algorithms independent of the data sizes and types (see 
Section 5.3). 
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Dwarf Description 

8. Combinational Logic 
(e.g., encryption) 

Functions that are implemented with logical functions and stored state. 

9. Graph traversal (e.g., 
Quicksort) 

Visits many nodes in a graph by following successive edges. These 
applications typically involve many levels of indirection, and a relatively 
small amount of computation. 

10. Dynamic 
Programming 

Computes a solution by solving simpler overlapping subproblems. 
Particularly useful in optimization problems with a large set of feasible 
solutions. 

11. Backtrack and 
Branch+Bound 

Finds an optimal solution by recursively dividing the feasible region into 
subdomains, and then pruning subproblems that are suboptimal. 

12. Construct Graphical 
Models 

Constructs graphs that represent random variables as nodes and 
conditional dependencies as edges. Examples include Bayesian networks 
and Hidden Markov Models. 

13. Finite State Machine 
 

A system whose behavior is defined by states, transitions defined by 
inputs and the current state, and events associated with transitions or 
states. 

Figure 4. Extensions to the original Seven Dwarfs.  
 
Although 12 of the 13 Dwarfs possess some form of parallelism, finite state machines 
(FSMs) look to be a challenge, which is why we made them the last dwarf. Perhaps FSMs 
will prove to be embarrassingly sequential just as MapReduce is embarrassingly parallel. 
If it is still important and does not yield to innovation in parallelism, that will be 
disappointing, but perhaps the right long-term solution is to change the algorithmic 
approach. In the era of multicore and manycore. Popular algorithms from the sequential 
computing era may fade in popularity. For example, if Huffman decoding proves to be 
embarrassingly sequential, perhaps we should use a different compression algorithm that 
is amenable to parallelism. 
 
In any case, the point of the 13 Dwarfs is not to identify the low hanging fruit that are 
highly parallel. The point is to identify the kernels that are the core computation and 
communication for important applications in the upcoming decade, independent of the 
amount of parallelism. To develop programming systems and architectures that will run 
applications of the future as efficiently as possible, we must learn the limitations as well 
as the opportunities. We note, however, that inefficiency on embarrassingly parallel code 
could be just as plausible a reason for the failure of a future architecture as weakness on 
embarrassingly sequential code. 
 
More dwarfs may need to be added to the list. Nevertheless, we were surprised that we 
only needed to add six dwarfs to cover such a broad range of important applications. 

3.3 Composition of Dwarfs  
Any significant application, such as an MPEG4 (Moving Picture Experts Group) decoder 
or an IP (Internet Protocol) forwarder, will contain multiple dwarfs that each consume a 
significant percentage of the application’s computation. Hence, the performance of a 
large application will depend not only on each dwarf’s performance, but also on how 
dwarfs are composed together on the platform.  
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The collection of dwarfs comprising an application can be distributed on a multiprocessor 
platform in two different ways:  

1. Temporally distributed or time-shared on a common set of processors, or 
2. Spatially distributed or space-shared, with each dwarf uniquely occupying one or 

more processors. 
The selection of temporal or spatial distribution will in part depend on the structure of 
communication between dwarfs. For example, some applications are structured as a 
number of serial phases, where each phase is a dwarf that must complete before we start 
the next. In this case, it would be natural to use time multiplexing to allocate the whole 
set of processors to each phase. Other applications can be structured as a network of 
communicating dwarfs running concurrently, in which case it would be natural to 
distribute the dwarfs spatially across the available processors. 
 
The two forms of distribution can be applied hierarchically. For example, a dwarf may be 
implemented as a pipeline, where the computation for an input is divided into stages with 
each stage running on its own spatial division of the processors. Each stage is time 
multiplexed across successive inputs, but processing for a single input flows through the 
spatial distribution of pipeline stages. 
 
Two software issues arise when considering the composition of dwarfs: 

1. The choice of composition model—how the dwarfs are put together to form a 
complete application. The scientific software community has recently begun the 
move to component models [Bernholdt et al 2002]. In these models, however, 
individual modules are not very tightly coupled and this may affect the efficiency 
of the final application. 

2. Data structure translation. Various algorithms may have their own preferred data 
structures, such as recursive data layouts for dense matrices. This may be at odds 
with the efficiency of composition, as working sets may have to be translated 
before use by other dwarfs. 

 
These issues are pieces of a larger puzzle. What are effective ways to describe 
composable parallel-code libraries? Can we write a library such that it encodes 
knowledge about its ideal mapping when composed with others in a complete parallel 
application? What if the ideal mapping is heavily dependent on input data that cannot be 
known at compile time? 

3.4 Intel Study  
Intel believes that the increase in demand for computing will come from processing the 
massive amounts of information available in the “Era of Tera”. [Dubey 2005] Intel 
classifies the computation into three categories: Recognition, Mining, and Synthesis, 
abbreviated as RMS. Recognition is a form of machine learning, where computers 
examine data and construct mathematical models of that data. Once the computers 
construct the models, Mining searches the web to find instances of that model. Synthesis 
refers to the creation of new models, such as in graphics. Hence, RMS is related to our 
examination of machine learning, databases, and graphics in Sections 3.2.1 to 3.3.3.  
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The common computing theme of RMS is “multimodal recognition and synthesis over 
large and complex data sets” [Dubey 2005]. Intel believes RMS will find important 
applications in medicine, investment, business, gaming, and in the home. Intel’s efforts in 
Figure 5 show that Berkeley is not alone in trying to organize the new frontier of 
computation to underlying computation kernels in order to guide architectural research. 
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Figure 5. Intel’s RMS and how it maps down to functions that are more primitive. Of the five categories at 
the top of the figure, Computer Vision is classified as Recognition, Data Mining is Mining, and Rendering, 
Physical Simulation, and Financial Analytics are Synthesis. [Chen 2006] 
 

3.5 Dwarfs Summary 
Figure 6 summarizes our investigation and shows the presence of the 13 Dwarfs in a 
diverse set of application benchmarks including EEMBC, SPEC2006, machine learning, 
graphics/games, database software, and Intel’s RMS. As mentioned above, several of the 
programs use multiple dwarfs, and so they are listed in multiple categories. We do not 
believe that our list of dwarfs is yet complete, and we anticipate the addition of more 
dwarfs in the future. At the same time we are surprised at what a diverse set of important 
applications is supported by a modest number of dwarfs. 



17 

 
Dwarf Embedded Computing General Purpose 

Computing 
Machine Learning Graphics / 

Games 
Databases Intel RMS 

1. Dense Linear 
Algebra (e.g., 
BLAS or 
MATLAB) 

EEMBC Automotive: iDCT, FIR, 
IIR, Matrix Arith; EEMBC 
Consumer: JPEG, RGB to CMYK, 
RGB to YIQ; EEMBC Digital 
Entertainment: RSA MP3 Decode, 
MPEG-2 Decode, MPEG-2 
Encode, MPEG-4 Decode; 
MPEG-4 Encode; EEMBC 
Networking: IP Packet; EEMBC 
Office Automation: Image 
Rotation; EEMBC Telecom: 
Convolution Encode; EEMBC 
Java: PNG 

SPEC Integer: Quantum 
computer simulation 
(libquantum), video 
compression (h264avc) 
SPEC Fl. Pl.: Hidden Markov 
models (sphinx3)  
 

Support vector 
machines, princpal 
component analysis, 
independent component 
analysis 

 Database hash 
accesses large 
contiguous 
sections of 
memory 

Body Tracking, 
media synthesis 
linear 
programming, K-
means, support 
vector machines, 
quadratic 
programming, 
PDE: Face, PDE: 
Cloth* 

2. Sparse Linear 
Algebra (e.g., 
SpMV, OSKI, or 
SuperLU) 

EEMBC Automotive: Basic Int + 
FP, Bit Manip, CAN Remote 
Data, Table Lookup, Tooth to 
Spark; EEMBC Telecom: Bit 
Allocation; EEMBC Java: PNG 

SPEC Fl. Pt.: Fluid dynamics 
(bwaves), quantum chemistry 
(gamess; tonto), linear program 
solver (soplex)  
 

Support vector 
machines, principal 
component analysis, 
independent component 
analysis 

Reverse 
kinematics; Spring 
models 

 Support vector 
machines, 
quadratic 
programming, 
PDE: Face, PDE: 
Cloth* 
PDE: 
Computational 
fluid dynamics 

3. Spectral 
Methods (e.g., 
FFT) 

EEMBC Automotive: FFT, iFFT, 
iDCT; EEMBC Consumer: JPEG; 
EEMBC Entertainment: MP3 
Decode 

 Spectral clustering Texture maps  PDE: 
Computational 
fluid dynamics 
PDE: Cloth 

4. N-Body 
Methods (e.g., 
Barnes-Hut, Fast 
Multipole 
Method)  

 SPEC Fl. Pt.: Molecular 
dynamics (gromacs, 32-bit; 
namd, 64-bit)  

    

5. Structured 
Grids (e.g., 
Cactus or 
Lattice-
Boltzmann 
Magneto-

EEMBC Automotive: FIR, IIR; 
EEMBC Consumer: HP Gray-
Scale; EEMBC Consumer: JPEG; 
EEMBC Digital Entertainment: 
MP3 Decode, MPEG-2 Decode, 
MPEG-2 Encode, MPEG-4 
Decode; MPEG-4 Encode; 
EEMBC Office Automation: 

SPEC Fl. Pt.: Quantum 
chromodynamics 
(milc),magneto hydrodynamics 
(zeusmp), general relativity 
(cactusADM), fluid dynamics 
(leslie3d-AMR; lbm), finite 
element methods (dealII-AMR; 
calculix), Maxwell’s E&M 

 Smoothing; 
interpolation 
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Dwarf Embedded Computing General Purpose 
Computing 

Machine Learning Graphics / 
Games 

Databases Intel RMS 

hydrodynamics) Dithering; EEMBC Telecom: 
Autocorrelation 

eqns solver (GemsFDTD), 
quantum crystallography 
(tonto), weather modeling 
(wrf2-AMR) 

6. Unstructured 
Grids (e.g., 
ABAQUS or 
FIDAP) 

  Belief propagation   Global 
illumination 

7. MapReduce 
(e.g., Monte 
Carlo) 
 

 SPEC Fl. Pt.: Ray tracer 
(povray) 

Expectation 
maximization 

 MapReduce  

8. Combinational 
Logic 

EEMBC Digital Entertainment: 
AES, DES ; EEMBC Networking: 
IP Packet, IP NAT, Route Lookup; 
EEMBC Office Automation: Image 
Rotation; EEMBC Telecom: 
Convolution Encode 

 Hashing  Hashing  

9. Graph  
Traversal 

EEMBC Automotive: Pointer 
Chasing, Tooth to Spark; EEMBC 
Networking: IP NAT, OSPF, 
Route Lookup; EEMBC Office 
Automation: Text Processing; 
EEMBC Java: Chess, XML 
Parsing 

 Bayesian networks, 
decision trees 

Reverse 
kinematics, 
collision detection, 
depth sorting, 
hidden surface 
removal 

Transitive 
closure 

Natural language 
processing 

10. Dynamic 
Programming 

EEMBC Telecom: Viterbi Decode SPEC Integer: Go (gobmk) Forward-backward, 
inside-outside, variable 
elimination, value 
iteration 

 Query 
optimization 

 

11. Back-track 
and Branch 
+Bound 

 SPEC Integer: Chess (sjeng), 
network simplex algorithm 
(mcf), 2D path finding library 
(astar) 

Kernel regression, 
constraint satisfaction, 
satisficability 

   

12. Graphical 
Models 

EEMBC Telecom: Viterbi Decode SPEC Integer: Hidden Markov 
models (hmmer) 

Hidden Markov models    
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Dwarf Embedded Computing General Purpose 
Computing 

Machine Learning Graphics / 
Games 

Databases Intel RMS 

13. Finite State 
Machine 

EEMBC Automotive: Angle To 
Time, Cache “Buster”, CAN 
Remote Data, PWM, Road Speed, 
Tooth to Spark; EEMBC 
Consumer: JPEG; EEMBC Digital 
Entertainment: Huffman Decode, 
MP3 Decode, MPEG-2 Decode, 
MPEG-2 Encode, MPEG-4 
Decode; MPEG-4 Encode; 
EEMBC Networking: QoS, TCP; 
EEMBC Office Automation: Text 
Processing; EEMBC Telecom: Bit 
Allocation; EEMBC Java: PNG 

SPEC Integer: Text processing 
(perlbench), compression 
(bzip2), compiler (gcc), video 
compression (h264avc), 
network discrete event 
simulation (omnetpp), XML 
transformation (xalancbmk) 

 Response to 
collisions 

  

Figure 6. Mapping of EEMBC, SPEC2006, Machine Learning, Graphcs/Games, Data Base, and Intel’s RMS to the 13 Dwarfs. *Note that SVM, QP, PDE:Face, 
and PDE:Cloth may use either dense or sparse matrices, depending on the application. 
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4.0 Hardware 
Now that we have given our views of applications and dwarfs for parallel computing in 
the left tower of Figure 1, we are ready for examination of the right tower: hardware. 
Section 2 above describes the constraints of present and future semiconductor processes, 
but they also present many opportunities.  
 
We organize our observations on hardware around the three components first used to 
describe computers more than 30 years ago: processor, memory, and switch [Bell and 
Newell 1970]. 

4.1 Processors: Small is Beautiful 
In the development of many modern technologies, such as steel manufacturing, we can 
observe that there were prolonged periods during which bigger equated to better. These 
periods of development are easy to identify: The demonstration of one tour de force of 
engineering is only superseded by an even greater one. Due to diminishing economies of 
scale or other economic factors, the development of these technologies inevitably hit an 
inflection point that forever changed the course of development. We believe that the 
development of general-purpose microprocessors is hitting just such an inflection point.  
 
New Conventional Wisdom #4 in Section 2 states that the size of module that we can 
successfully design and fabricate is shrinking. New Conventional Wisdoms #1 and #2 in 
Section 2 state that power is proving to be the dominant constraint for present and future 
generations of processing elements. To support these assertions we note that several of 
the next generation processors, such as the Tejas Pentium 4 processor from Intel, were 
canceled or redefined due to power consumption issues [Wolfe 2004]. Even 
representatives from Intel, a company generally associated with the “higher clock-speed 
is better” position, warned that traditional approaches to maximizing performance 
through maximizing clock speed have been pushed to their limit [Borkar 1999] 
[Gelsinger 2001]. In this section, we look past the inflection point to ask: What processor 
is the best building block with which to build future multiprocessor systems?  
 
There are numerous advantages to building future microprocessors systems out of smaller 
processor building blocks: 

• Parallelism is an energy-efficient way to achieve performance [Chandrakasan et al 
1992]. 

• Many small cores give the highest performance per unit area for parallel codes. 
• A larger number of smaller processing elements allows a finer-grained ability to 

perform dynamic voltage scaling and power down. 
• A small processing element is an economical element that is easy to shut down in 

the face of catastrophic defects and easier to reconfigure in the face of large 
parametric variation. The Cisco Metro chip [Eatherton 2005] adds four redundant 
processors to each die, and Sun sells 4-processor, 6-processor, or 8-processor 
versions of Niagara based on the yield of a single 8-processor design. Graphics 
processors are also reported to be using redundant processors in this way, as is the 
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IBM Cell microprocessor for which only 7 out of 8 synergistic processors are 
used in the Sony Playstation 3 game machine. 

• A small processing element with a simple architecture is easier to design and 
functionally verify. In particular, it is more amenable to formal verification 
techniques than complex architectures with out-of-order execution. 

• Smaller hardware modules are individually more power efficient and their 
performance and power characteristics are easier to predict within existing 
electronic design-automation design flows [Sylvester and Keutzer 1998] 
[Sylvester and Keutzer 2001] [Sylvester et al 1999].  

 
While the above arguments indicate that we should look to smaller processor 
architectures for our basic building block, they do not indicate precisely what circuit size 
or processor architecture will serve us the best. We argued that we must move away from 
a simplistic “bigger is better” approach; however, that does not immediately imply that 
“smallest is best”. 

4.1.1 What processing element is optimum? 
Determining the optimum processing element will entail the solution, or at least 
approximating the solution, of a multivariable optimization problem that is dependent on 
the application, environment for deployment, workload, constraints of the target market, 
and fabrication technology. It is clear, however, that the tradeoff between performance 
and power will be of central importance across the entire spectrum of system applications 
for current and future multiprocessor systems.  
 
It is important to distinguish between energy (Joules) and power (Joules/second or 
Watts), which is the rate of consuming energy. Energy per task is usually a metric to be 
minimized in a design, whereas peak power consumption is usually treated as a design 
constraint. The energy used by a computation affects the battery life of a mobile device, 
and the cost of powering a server farm. Peak power determines the cost of packaging and 
cooling the processor, and these costs rise as a steep step-function of the amount of power 
to be dissipated. Chip temperature must be limited to avoid excessive leakage power. 
High chip temperature may also lead to a reduced lifetime due to electromigration and 
other high temperature reliability issues. Reasonable upper limits for peak power 
consumption may be 150W for air-cooled server and desktop chips, 40W for a laptop, 
and 2W for low cost/low power embedded applications.  
 
Different applications will present different tradeoffs between performance and energy 
consumption. For example, many real-time tasks (e.g., viewing a DVD movie on a 
laptop) have a fixed performance requirement for which we seek the lowest energy 
implementation. Desktop processors usually seek the highest performance under a 
maximum power constraint. Note that the design with the lowest energy per operation 
might not give the highest performance under a power constraint, if the design cannot 
complete tasks fast enough to exhaust the available power budget. 
 
If all tasks were highly parallelizable and silicon area was free, we would favor cores 
with the lowest energy per instruction (SPEC/Watt). However, we also require good 
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performance on less parallel codes, and high throughput per-unit-area to reduce die costs. 
The challenge is to increase performance without adversely increasing energy per 
operation or silicon area. 
 
The effect of microarchitecture on energy and delay was studied in [Gonzalez and 
Horowitz 1996]. Using energy-delay product (SPEC2/W) as a metric, the authors 
determined that simple pipelining is significantly beneficial to delay while increasing 
energy only moderately. In contrast, superscalar features adversely affected the energy-
delay product. The power overhead needed for additional hardware did not outweigh the 
performance benefits. Instruction-level parallelism is limited, so microarchitectures 
attempting to gain performance from techniques such as wide issue and speculative 
execution achieved modest increases in performance at the cost of significant area and 
energy overhead. 
 
The optimal number of pipeline stages in a microarchitecture has been investigated by a 
number of researchers [Hrishikesh et al 2002] [Srinivasan et al 2002] [Harstein and 
Puzak 2003] [Heo and Asanovic 2004]. These results are summarized and reviewed in 
[Chinnery 2006]. Note that to date uniprocessor benchmarks, such as SPEC, have been 
the most common benchmarks for measuring computational and energy efficiency. We 
believe that future benchmark sets must evolve to reflect a more representative mix of 
applications, including parallel codes based on the 13 dwarfs, to avoid over-optimization 
for single-thread performance. As the results mentioned above have dependencies on 
process technology, logic family, benchmark set, and workload it is hard to generalize the 
results for our purposes. However, a review of this literature together with an analysis of 
empirical data on existing architectures gathered by Horowitz [Horowitz 2006], Paulin 
[Paulin 2006], and our own investigations [Chong and Catanzaro 2006] indicates that 
shallower pipelines with in-order execution have proven to be the most area and energy 
efficient. Given these physical and microarchitectural considerations, we believe the 
efficient building blocks of future architectures are likely to be simple, modestly 
pipelined (5-9 stages) processors, floating point units, vector, and SIMD processing 
elements. Note that these constraints fly in the face of the conventional wisdom of 
simplifying parallel programming by using the largest processors available. 
 

4.1.2 Will we really fit 1000s of cores on one economical chip 
This significant reduction in the size and complexity of the basic processor building 
block of the future means that many more cores can be economically implemented on a 
single die; furthermore, this number can double with each generation of silicon. For 
example, the “manycore” progression might well be 128, 256, 512, ... cores instead of the 
current “multicore” plan of 2, 4, 8, ... cores over the same semiconductor process 
generations. 
 
There is strong empirical evidence that we can achieve 1000 cores on a die when 30nm 
technology is available. (As Intel has taped out a 45-nm technology chip, 30 nm is not so 
distant in the future.) Cisco today embeds in its routers a network processor with 188 
cores implemented in 130 nm technology. [Eatherton 2005] This chip is 18mm by 18mm, 
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dissipates 35W at a 250MHz clock rate, and produces an aggregate 50 billion instructions 
per second. The individual processor cores are 5-stage Tensilica processors with very 
small caches, and the size of each core is 0.5 mm2. About a third of the die is DRAM and 
special purpose functions. Simply following scaling from Moore's Law would arrive at 
752 processors in 45nm and 1504 in 30nm. Unfortunately, power may not scale down 
with size, but we have ample room before we push the 150W limit of desktop or server 
applications. 
 

4.1.3 Does one size fit all? 
We would like to consider briefly the question as to whether multiprocessors of the future 
will be built as collections of identical processors or assembled from diverse 
heterogeneous processing elements. Existing embedded multiprocessors, such as the Intel 
IXP network processing family, keep at least one general-purpose processor on the die to 
support various housekeeping functions and to provide the hardware base for more 
general (e.g. Linux) operating system support. Similarly, the IBM Cell has one general-
purpose processor and eight tailored processing elements. Keeping a larger processor on 
chip may help accelerate “inherently sequential” code segments or workloads with fewer 
threads [Kumar et al 2003].  
 
As Amdahl observed 40 years ago, the less parallel portion of a program can limit 
performance on a parallel computer [Amdahl 1967]. Hence, one reason to have different 
“sized” processors in a manycore architecture is to improve parallel speedup by reducing 
the time it takes to run the less parallel code. For example, assume 10% of the time a 
program gets no speed up on a 100-processor computer. Suppose to run the sequential 
code twice as fast, a single processor would need 10 times as many resources as a simple 
core runs due to bigger power budget, larger caches, a bigger multiplier, and so on. Could 
it be worthwhile? Using Amdahl’s Law [Hennessy and Patterson 2007], the comparative 
speedups of a homogeneous 100 simple processor design and a heterogeneous 91-
processor design relative to a single simple processor are: 

SpeedupHomogeneous = 1 / (0.1 – 0.9/100) = 9.2 times faster  
SpeedupHeterogeneous = 1 / (0.1/2 – 0.9/90) = 16.7 times faster 

In this example, even if a single larger processor needed 10 times as many resources to 
run twice as fast, it would be much more valuable than 10 smaller processors it replaces. 
 
In addition to helping with Amdahl’s Law, heterogeneous processor solutions can show 
significant advantages in power, delay, and area. Processor instruction-set configurability 
[Killian et al 2001] is one approach to realizing the benefits of processor heterogeneity 
while minimizing the costs of software development and silicon implementation, but this 
requires custom fabrication of each new design to realize the performance benefit, and 
this is only economically justifiable for large markets. 
 
Implementing customized soft-processors in pre-defined reconfigurable logic is another 
way to realize heterogeneity in a homogenous implementation fabric; however, current 
area (40X), power (10X), and delay (3X) overheads [Kuon and Rose 2006] appear to 
make this approach prohibitively expensive for general-purpose processing. A promising 
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approach that supports processor heterogeneity is to add a reconfigurable coprocessor as 
a separate chip [Hauser and Wawrzynek 1997] [Arnold 2005]. This obviates the need for 
new custom silicon. Current data is insufficient to determine whether such approaches 
can provide energy-efficient solutions. 
 
On the other hand, a single replicated processing element has many advantages; in 
particular, it offers ease of silicon implementation and a regular software environment. 
Managing heterogeneity in an environment with thousands of threads may make a 
difficult problem impossible. 
 
Will the possible power and area advantages of heterogeneous multicores win out versus 
the flexibility and software advantages of homogeneous multicores? Alternatively, will 
the processor of the future be like a transistor: a single building block that can be woven 
into arbitrarily complex circuits? Alternatively, will a processor be more like a NAND 
gate in a standard-cell library: one instance of a family of hundreds of closely related but 
unique devices? In this section, we do not claim to have resolved these questions. Rather 
our point is that resolution of these questions is certain to require significant research and 
experimentation, and the need for this research is more imminent than industry’s 
multicore multiprocessor roadmap would otherwise indicate. 

4.2 Memory Unbound 
The DRAM industry has dramatically lowered the price per gigabyte over the decades, to 
$100 per gigabyte today from $10,000,000 per gigabyte in 1980 [Hennessy and Patterson 
2007]. Alas, as mentioned in CW #8 in Section 2, the number of processor cycles to 
access main memory has grown dramatically as well, from a few processor cycles in 
1980 to hundreds today. Moreover, the memory wall is the major obstacle to good 
performance for almost half dwarfs (see Figure 9 in Section 8). Thomas Sterling 
expressed this concern in his provocative question to panelists at the SC06 conference: 
“will multicore ultimately be asphyxiated by the memory wall?” [Sterling 2006] 
 
The good news is that if we look inside a DRAM chip, we see many independent, wide 
memory blocks. [Patterson et al 1997] For example, a 512 Mbit DRAM is composed of 
hundreds of banks, each thousands of bits wide. Clearly, there is potentially tremendous 
bandwidth inside a DRAM chip waiting to be tapped, and the memory latency inside a 
DRAM chip is obviously much better than from separate chips across an interconnect. 
 
In creating a new hardware foundation for parallel computing hardware, we should not 
limit innovation by assuming main memory must be in separate DRAM chips connected 
by standard interfaces. New packaging techniques, such as 3D stacking, might allow 
vastly increased bandwidth and reduced latency and power between processors and 
DRAM. Although we cannot avoid global communication in the general case with 
thousands of processors and hundreds of DRAM banks, some important classes of 
computation have almost entirely local memory accesses and hence can benefit from 
innovative memory designs.  
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Another reason to innovate in memory is that increasingly, the cost of hardware is 
shifting from processing to memory. The old Amdahl rule of thumb was that a balanced 
computer system needs about 1 MB of main memory capacity per MIPS of processor 
performance [Hennessy and Patterson 2007].  
 
Whereas DRAM capacity kept pace with Moore’s Law by quadrupling capacity every 
three years between 1980 and 1992, it slowed to doubling every two years between 1996 
and 2002. Today we still use the 512 Mbit DRAM that was introduced in 2002. 
 
Manycore designs will unleash a much higher number of MIPS in a single chip. Given 
the current slow increase in memory capacity, this MIPS explosion suggests a much 
larger fraction of total system silicon in the future will be dedicated to memory. 

4.3 Interconnection networks 
At the level of the physical hardware interconnect, multicores have initially employed 
buses or crossbar switches between the cores and cache banks, but such solutions are not 
scalable to 1000s of cores. We need on-chip topologies that scale close to linearly with 
system size to prevent the complexity of the interconnect from dominating cost of 
manycore systems. Scalable on-chip communication networks will borrow ideas from 
larger-scale packet-switched networks [Dally and Towles 2001]. Already chip 
implementations such as the IBM Cell employ multiple ring networks to interconnect the 
nine processors on the chip and use software-managed memory to communicate between 
the cores rather than conventional cache-coherency protocols. 
 
Although there has been research into statistical traffic models to help refine the design of 
Networks-on-Chip [Soteriou et al 2006], we believe the 13 Dwarfs can provide even 
more insight into communication topology and resource requirements for a broad-array 
of applications. Based on studies of the communication requirements of existing 
massively concurrent scientific applications that cover the full range of dwarfs [Vetter 
and McCracken 2001] [Vetter and Yoo 2002] [Vetter and Meuller 2002] [Kamil et al 
2005], we make the following observations about the communication requirements in 
order to develop a more efficient and custom-tailored solution: 
• The collective communication requirements are strongly differentiated from point-to-

point requirements. Collective communication, requiring global communication, 
tended to involve very small messages that are primarily latency bound. As the 
number of cores increases, the importance of these fine-grained, smaller-than-cache-
line-sized, collective synchronization constructs will likely increase. Since latency is 
likely to improve much more slowly than bandwidth (see CW #6 in Section 2), the 
separation of concerns suggests adding a separate latency-oriented network dedicated 
to the collectives. They already appeared in prior MPPs. [Hillis and Tucker 1993] 
[Scott 1996] As a recent example at large scale, the IBM BlueGene/L has a “Tree” 
network for collectives in addition to a higher-bandwidth “Torus” interconnect for 
point-to-point messages. Such an approach may be beneficial for chip interconnect 
implementations that employ 1000s of cores.  

• The sizes of most point-to-point messages are typically large enough that they remain 
strongly bandwidth-bound, even for on-chip interconnects. Therefore, each point-to-
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point message would prefer a dedicated point-to-point pathway through the 
interconnect to minimize the chance of contention within the network fabric. So while 
the communication topology does not require a non-blocking crossbar, the on-chip 
network should have high total bandwidth and support careful mapping of message 
flows onto the on-chip interconnect topology. 

• These studies observed that most point-to-point communications were stable and 
sparse, and primarily bandwidth bound. With the exception of the 3D FFT (see Figure 
2), the point-to-point messaging requirements tend utilize only a fraction of the 
available communication paths through a fully connected network switch fabric such 
as a crossbar or fat-tree. For on-chip interconnects, a non-blocking crossbar will 
likely be grossly over-designed for most application requirements and would 
otherwise be a waste of silicon given the resource requirements scale as the square of 
the number of interconnected processor cores. Applications that do not exhibit the 
communication patterns of the “spectral” dwarf, a lower-degree interconnect topology 
for on-chip interconnects may prove more space and power efficient. 

• Although the communication patterns are observed to be sparse, they are not 
necessarily isomorphic to a low-degree, fixed-topology interconnect such as a torus, 
mesh, or hypercube. Therefore, assigning a dedicated path to each point-to-point 
message transfer is not solved trivially by any given fixed-degree interconnect 
topology. To this end, one would either want to carefully place jobs so that they 
match the static topology of the interconnect fabric or employ an interconnect fabric 
that can be reconfigured to conform to the application’s communication topology. 

 
The communication patterns observed thus far are closely related to the underlying 
communication/computation patterns. Given just 13 dwarfs, the interconnect may need to 
target a relatively limited set of communication patterns. It also suggests that the 
programming model provide higher-level abstractions for describing those patterns.  
 
For the bandwidth bound communication pathways, we desire an approach to minimizing 
the surface area occupied by the switch while conforming to the requirements of the 
application's communication topology. The direct approach to optimizing the 
interconnect topology to the application requirements is to augment the packet switches 
using circuit switches to reconfigure the wiring topology between the switches to meet 
the application communication requirements while maintaining the 
multiplexing/demultiplexing capability afforded by the packet switches. The inverse 
approach to this problem relies on software to manage task mapping and task migration 
to adapt to lower degree static interconnect topologies. The circuit switched approach 
offers a faster way to reconfigure the interconnect topology, which may prove important 
for applications that have rapidly changing/adaptive communication requirements. In 
both cases, runtime performance monitoring systems (see Section 4.6), compile-time 
instrumentation of codes to infer communication topology requirements, or auto-tuners 
(see Section 6.1) will play an important role inferring an optimal interconnect topology 
and communication schedule. 
 
One can use less complex circuit switches to provision dedicated wires that enable the 
interconnect to adapt to communication pattern of the application at runtime. A hybrid 
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design that combined packed switches with an optical circuit switch was proposed as a 
possible solution to the problem at a macro scale. [Kamil et al 2005] [Shalf et al 2005]. 
However, at a micro-scale, hybrid switch designs that incorporate electrical circuit 
switches to adapt the communication topology may be able to meet all of the needs of 
future parallel applications. A hybrid circuit-switched approach can result in much 
simpler and area-efficient on-chip interconnects for manycore processors by eliminating 
unused circuit paths and switching capacity through custom runtime reconfiguration of 
the interconnect topology. 
 

4.4 Communication Primitives 
Initially, applications are likely to treat multicore and manycore chips simply as 
conventional symmetric multiprocessors (SMPs). However, chip-scale multiprocessors 
(CMPs) offer unique capabilities that are fundamentally different from SMPs, and which 
present significant new opportunities: 

• The inter-core bandwidth on a CMP can be many times greater than is typical for 
an SMP, to the point where it should cease to be a performance bottleneck. 

• Inter-core latencies are far less than are typical for an SMP system (by at least an 
order of magnitude). 

• CMPs could offer new lightweight coherency and synchronization primitives that 
only operate between cores on the same chip. The semantics of these fences are 
very different from what we are used to on SMPs, and will operate with much 
lower latency. 

If we simply treat multicore chips as traditional SMPs—or worse yet, by porting MPI 
applications (see Figure 7 in Section 5)—then we may miss some very interesting 
opportunities for new architectures and algorithm designs that can exploit these new 
features. 

4.4.1 Coherency 
Conventional SMPs use cache-coherence protocols to provide communication between 
cores, and mutual exclusion locks built on top of the coherency scheme to provide 
synchronization. It is well known that standard coherence protocols are inefficient for 
certain data communication patterns (e.g., producer-consumer traffic), but these 
inefficiencies will be magnified by the increased core count and the vast increase in 
potential core bandwidth and reduced latency of CMPs. More flexible or even 
reconfigurable data coherency schemes will be needed to leverage the improved 
bandwidth and reduced latency. An example might be large, on-chip, caches that can 
flexibly adapt between private or shared configurations. In addition, real-time embedded 
applications prefer more direct control over the memory hierarchy, and so could benefit 
from on-chip storage configured as software-managed scratchpad memory. 

4.4.2 Synchronization Using Locks 
Inter-processor synchronization is perhaps the area where there is the most potential for 
dramatic improvement in both performance and programmability. There are two 
categories of processor synchronization: mutual exclusion and producer-consumer. For 
mutual exclusion, only one of a number of contending concurrent activities at a time 
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should be allowed to update some shared mutable state, but typically, the order does not 
matter. For producer-consumer synchronization, a consumer must wait until the producer 
has generated a required value. Conventional systems implement both types of 
synchronization using locks. (Barriers, which synchronize many consumers with many 
producers, are also typically built using locks on conventional SMPs).  
 
These locking schemes are notoriously difficult to program, as the programmer has to 
remember to associate a lock with every critical data structure and to access only these 
locks using a deadlock-proof locking scheme. Locking schemes are inherently non-
composable and thus cannot form the basis of a general parallel programming model. 
Worse, these locking schemes are implemented using spin waits, which cause excessive 
coherence traffic and waste processor power. Although spin waits can be avoided by 
using interrupts, the hardware inter-processor interrupt and context switch overhead of 
current operating systems makes this impractical in most cases. 

4.4.3 Synchronization Using Transactional Memory 
A possible solution for mutual exclusion synchronization is to use transactional memory 
[Herlihy and Moss 1993]. Multiple processors speculatively update shared memory 
inside a transaction, and will only commit all updates if the transaction completes 
successfully without conflicts from other processors. Otherwise, updates are undone and 
execution is rolled back to the start of the transaction. The transactional model enables 
non-blocking mutual exclusion synchronization (no stalls on mutex locks or barriers) 
[Rajwar and Goodman 2002]. Transactional memory simplifies mutual exclusion because 
programmers do not need to allocate and use explicit lock variables or worry about 
deadlock.  
 
The Transactional Coherence & Consistency (TCC) scheme [Kozyrakis and Olukotun 
2005] proposes to apply transactions globally to replace conventional cache-coherence 
protocols, and to support producer-consumer synchronization through speculative 
rollback when consumers arrive before producers. 
 
Transactional memory is a promising but still active research area. Current software-only 
schemes have high execution time overheads, while hardware-only schemes either lack 
facilities required for general language support or require very complex hardware. Some 
form of hybrid hardware-software scheme is likely to emerge, though more practical 
experience with the use of transactional memory is required before even the functional 
requirements for such a scheme are well understood. 

4.4.4 Synchronization Using Full-Empty Bits in Memory 
Reducing the overhead of producer-consumer synchronization would allow finer-grained 
parallelization, thereby increasing the exploitable parallelism in an application. Earlier 
proposals have included full-empty bits on memory words, and these techniques could be 
worth revisiting in the manycore era [Alverson et al 1990] [Alverson et al 1999]. Full-
empty bits have proven instrumental for enabling efficient massively parallel graph 
algorithms (corresponding to the “graph following” dwarf) that are essential for emerging 
bioinformatics, database, and information processing applications [Bader and Madduri 
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2006].  In particular, recent work by Jon Berry et al. [Berry et al 2006] has demonstrated 
that graph processing algorithms executing on a modest 4 processor MTA, which offers 
hardware support for full-empty bits, can outperform the fastest system on the 2006 
Top500 list – the 64k processor BG/L system.  

4.4.5 Synchronization Using Message Passing 
Shared memory is a very powerful mechanism, supporting flexible and anonymous 
communication, and single-chip CMP implementations reduce many of the overheads 
associated with shared memory in multi-chip SMPs. Nevertheless, message passing 
might have a place between cores in a manycore CMP, as messages combine both data 
transfer and synchronization in a form that is particularly suited to producer-consumer 
communications. 

4.5 Dependability 
CW #3 in Section 2 states that the next generation of microprocessors will face higher 
soft and hard error rates. Redundancy in space or in time is the way to make dependable 
systems from undependable components. Since redundancy in space implies higher 
hardware costs and higher power, we must use redundancy judiciously in manycore 
designs. The obvious suggestion is to use single error correcting, double error detecting 
(SEC/DED) encoding for any memory that has the only copy of data, and use parity 
protection on any memory that just has a copy of data that can be retrieved from 
elsewhere. Servers that have violated those guidelines have suffered dependability 
problems [Hennessy and Patterson 2007].  
 
For example, if the L1 data cache uses write through to an L2 cache with write back, then 
the L1 data cache needs only parity while the L2 cache needs SEC/DED. The cost for 
SEC/DED is a function of the logarithm of the word width, with 8 bits of SEC/DED for 
64 bits of data being a popular size. Parity needs just one bit per word. Hence, the cost in 
energy and hardware is modest. 
 
Mainframes are the gold standard of dependable hardware design, and among the 
techniques they use is repeated retransmission to try to overcome soft errors. For 
example, they would retry a transmission 10 times before giving up and declaring to the 
operating system that it uncovered an error. While it might be expensive to include such a 
mechanism on every bus, there are a few places where it might be economical and 
effective. For example, we expect a common design framework for manycore will be 
globally asynchronous but locally synchronous per module, with unidirectional links and 
queues connecting together these larger function blocks. It would be relatively easy to 
include a parity checking and limited retransmission scheme into such framework. 
 
It may also be possible to fold in dependability enhancements into mechanisms included 
to enhance performance or to simplify programming. For example, Transactional 
Memory above (Section 4.4.3) simplifies parallel programming by rolling back all 
memory events to the beginning of a transaction in the event of mis-speculation about 
parallelism. Such a rollback scheme could be co-opted into helping with soft errors. 
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Virtual Machines can also help systems resilient to failures by running different programs 
in different virtual machines (see Section 6.2). Virtual machines can move applications 
from a failing processor to a working processor in a manycore chip before the hardware 
stops. Virtual machines can help cope with software failures as well due to the strong 
isolation they provide, making an application crash much less likely to affect others. 
 
In addition to these seemingly obvious points, there are open questions for dependability 
in the manycore era: 

• What is the right granularity to check for errors? Whole processors, or even down 
to registers? 

• What is the proper response to an error? Retry, or decline to use the faulty 
component in the future? 

• How serious are errors? Do we need redundant threads to have confidence in the 
results, or is a modest amount of hardware redundancy sufficient? 

4.6 Performance and Energy Counters 
Performance counters were originally created to help computer architects evaluate their 
designs. Since their value was primarily introspective, they had the lowest priority during 
development. Given this perspective and priority, it is not surprising that measurement of 
important performance events were often inaccurate or missing: why delay the product 
for bugs in performance counters that are only useful to the product’s architects? 
 
The combination of Moore’s Law and the Memory Wall led architects to design 
increasingly complicated mechanisms to try to deliver performance via instruction level 
parallelism and caching. Since the goal was to run standard programs faster without 
change, architects were not aware of the increasing importance of performance counters 
to compiler writers and programmers in understanding how to make their programs run 
faster. Hence, the historically cavalier attitude towards performance counters became a 
liability for delivering performance even on sequential processors. 
 
The switch to parallel programming, where the compiler and the programmer are 
explicitly responsible for performance, means that performance counters must become 
first-class citizens. In addition to monitoring traditional sequential processor performance 
features, new counters must help with the challenge of efficient parallel programming.  
 
Section 7.2 below lists efficiency metrics to evaluate parallel programs, which suggests 
performance counters to help manycore architectures succeed: 

- To minimize remote accesses, identify and count the number of remote accesses 
and amount of data moved in addition to local accesses and local bytes 
transferred. 

- To balance load, identify and measure idle time vs. active time per processor. 
- To reduce synchronization overhead, identify and measure time spent in 

synchronization per processor. 
As power and energy are increasingly important, they need to be measured as well. 
Circuit designers can create Joule counters for the significant modules from an energy 
and power perspective. On a desktop computer, the leading energy consumers are 
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processors, main memory, caches, the memory controller, the network controller, and the 
network interface card.  
 
Given Joules and time, we can calculate Watts. Unfortunately, measuring time is getting 
more complicated. Processors traditionally counted processor clock cycles, since the 
clock rate was fixed. To save energy and power, some processors have adjustable 
threshold voltages and clock frequencies. Thus, to measure time accurately, we now need 
a “picosecond counter” in addition to a clock cycle counter.  
 
While performance and energy counters are vital to the success of parallel processing, the 
good news is that they are relatively easy to include. Our main point is to raise their 
priority: do not include features that significantly affect performance or energy if 
programmers cannot accurately measure their impact. 

5.0 Programming Models 
Figure 1 shows that a programming model is a bridge between a system developer’s 
natural model of an application and an implementation of that application on available 
hardware. A programming model must allow the programmer to balance the competing 
goals of productivity and implementation efficiency. Implementation efficiency is always 
an important goal when parallelizing an application, as programs with limited 
performance needs can always be run sequentially. We believe that the keys to achieving 
this balance are two conflicting goals: 

• Opacity abstracts the underlying architecture. Abstraction obviates the need for 
the programmer to learn the architecture’s intricate details and increases 
programmer productivity. 

• Visibility makes the key elements of the underlying hardware visible to the 
programmer. It allows the programmer to realize the performance constraints of 
an application by exploring design parameters such as thread boundaries, data 
locality, and the implementation of elements of the application.  

While maximizing the raw performance/power of future multicores is important, the real 
key to their success is the programmer’s ability to harvest that performance.  
 
Figure 7 shows the current lack of agreement on the opacity/visibility tradeoff. It lists 10 
examples of programming models for five critical parallel tasks that go from requiring 
the programmer to make explicit decisions for all tasks for efficiency to models that make 
all the decisions for the programmer for productivity. In between these extremes, the 
programmer does some tasks and leaves the rest to the system. 
 
The struggle is delivering performance while raising the level of abstraction. Going too 
low may achieve performance, but at the cost of exacerbating the software productivity 
problem, which is already a major hurdle for the information technology industry. Going 
too high can reduce productivity as well, for the programmer is then forced to waste time 
trying to overcome the abstraction to achieve performance.  
 
In the following sections, we present some recommendations for designers of 
programming systems for parallel machines. Instead of the conventional focus just on 
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hardware, applications, or mathematical formalisms, create and evaluate programming 
models inspired more by results from psychology (Section 5.1). A few seemingly obvious 
but often neglected characteristics for a successful parallel model that raise the level of 
abstraction without hurting efficiency are making programs independent of the number of 
processors (Section 5.2), supporting a rich set of data types (Section 5.3), and supporting 
styles of parallelism that have been proven successful in the past (Sections 5.4). 
 
Model Domain Task 

Identification 
Task 
Mapping 

Data 
Distribution 

Commun- 
ication 
Mapping 

Synchro- 
nization 

Real-Time 
Workshop 
[MathWorks 
2004] 

DSP Explicit Explicit Explicit Explicit Explicit 

TejaNP [Teja 
2003] 

Network Explicit Explicit Explicit Explicit Explicit 

YAPI 
[Brunel et al 
2000] 

DSP Explicit Explicit Explicit Explicit Implicit 

MPI [Snir et 
al 1998] 

HPC Explicit Explicit Explicit Implicit Implicit 

Pthreads 
[Pthreads 
2004] 

General Explicit Explicit Implicit Implicit Explicit 

StreamIt 
[Gordon et al 
2002] 

DSP Explicit Implicit Explicit Implicit Implicit 

MapReduce 
[Dean and 
Ghemawat 
2004] 

Large 
Data 
sets 

Explicit Implicit Implicit Implicit Explicit 

Click to 
network 
processors 
[Plishker et 
al 2004] 

Network Implicit Implicit Implicit Implicit Explicit 

OpenMP 
[OpenMP 
2006] 

HPC Implicit 
(directives, 
some explicit) 

Implicit Implicit Implicit Implicit 
(directives, 
some explicit) 

HPF 
[Koelbel et al 
1993] 

HPC Implicit Implicit Implicit 
(directives) 

Implicit Implicit 

Figure 7. Comparison of 10 current parallel programming models for 5 critical tasks, sorted from most explicit to 
most implicit. High-performance computing applications [Pancake and Bergmark 1990] and embedded applications 
[Shah et al 2004a] suggest these tasks must be addressed one way or the other by a programming model: 1) Dividing 
the application into parallel tasks; 2) Mapping computational tasks to processing elements; 3) Distribution of data to 
memory elements; 4) mapping of communication to the inter-connection network; and 5) Inter-task synchronization. 
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5.1 Programming model efforts inspired by psychological 
research 
Developing programming models that productively enable development of highly 
efficient implementations of parallel applications is the biggest challenge facing the 
deployment of future manycore systems. Hence, research in programming models is a 
high priority. In our view, programming model development in the past has been 
hardware-centric, application-centric, or formalism-centric.Hardware-centric 
programming models are typically developed by the hardware-manufacturers themselves 
in an attempt to maximize the efficiency of the hardware they produce. For example, the 
C-variant known as IXP-C [Intel 2004], together with library elements known as 
microblocks, was developed for the Intel IXP family of network processors [Adiletta et al 
2002]. Such environments typically do not offer the desired productivity improvements 
or support for the broader parallel programming process–architecting, debugging, and so 
on – involved in the development of a parallel application.  
 
Application-centric programming models, such as Matlab [MathWorks 2006], are 
typically focused on easing the development of related application domains. These 
models also don’t support the broader parallel programming process nor do they offer 
support for fine-tuning implementations to realize efficiency constraints.  
 
Formalism-centric programming models, such as Actors [Hewitt et al 1973], try to reduce 
the chance of programmer making mistakes by having clean semantics and offer the 
chance to remove bugs by verifying correctness of portions of the code. 
 
All three goals are obviously important: efficiency, productivity, and correctness. It is 
striking, however, that research from psychology has had almost no impact, despite the 
obvious fact that the success of these models will be strongly affected by the human 
beings who use them. Testing methods derived from the psychology research community 
have been used to great effect for HCI, but are sorely lacking in language design and 
software engineering. For example, there is a rich theory investigating the causes of 
human errors, which is well known in the human-computer interface community, but 
apparently it has not penetrated the programming model and language design community. 
[Kantowitz and Sorkin 1983] [Reason 1990] There have been some initial attempts to 
identify the systematic barriers to collaboration between the Software Engineering (SE) 
and HCI community and propose necessary changes to the CS curriculum to bring these 
fields in line, but there has been no substantial progress to date on these proposals. 
[Seffah 2003] [Pyla et al 2004] We believe that integrating research on human 
psychology and problem solving into the broad problem of designing, programming, 
debugging, and maintaining complex parallel systems will be critical to developing 
broadly successful parallel programming models and environments. 
 
Transactional memory is an example of a programming model that helps prevent human 
errors. Programmers have a difficult time determining when to synchronize in parallel 
code, and often get it wrong. An advantage of transactional memory is that the system 
will ensure correctness, even when programmers make incorrect assumptions about the 
safety of parallelizing a piece of code. The payoff of transactional memory is not 
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primarily efficiency, formalism, or even productivity; it is that programs can work 
properly even when programmers err or overly aggressive auto-parallelizing compilers 
make mistakes. 
 
Not only do we ignore insights about human cognition in the design of our programming 
models, we do not follow their experimental method to resolve controversies about how 
people use them. That method is human-subject experiments, which is so widespread that 
most campuses have committees that must be consulted before you can perform such 
experiments. Subjecting our assumptions about the process or programming to formal 
testing often yields unexpected results that challenge our intuition. [Mattson 1999] 
 
A small example is a study comparing programming using shared memory vs. message 
passing. These alternatives have been the subject of hot debates for decades, and there is 
no consensus on which is better and when. A recent paper compared efficiency and 
productivity of small programs written both ways for small parallel processors by novice 
programmers. [Hochstein et al 2005] While this is not the final word on the debate, it 
does indicate a path to try to resolve important programming issues. Fortunately, there 
are a growing number of examples of groups that have embraced user studies to evaluate 
the productivity of computer languages. [Kuo et al 2005] [Solar-Lezama et al 2005] 
[Ebcioglu et al 2006] 
 
We believe that future successful programming models must be more human-centric. 
They will be tailored to the human process of productively architecting and efficiently 
implementing, debugging, and maintaining complex parallel applications on equally 
complex manycore hardware. Furthermore, we believe we must use human subject 
experiments to resolve open issues for us to make progress in discovering how to make it 
genuinely easy to program manycore systems efficiently. 
 

5.2 Models must be independent of the number of processors 
MPI, the current dominant programming model for parallel scientific programming, 
forces coders to be aware of the exact mapping of computational tasks to processors. This 
style has been recognized for years to increase the cognitive load on programmers, and 
has persisted primarily because it is expressive and delivers the best performance. [Snir et 
al 1998] [Gursoy and Kale 2004] 
 
Because we anticipate a massive increase in exploitable concurrency, we believe that this 
model will break down in the near future, as programmers have to explicitly deal with 
decomposing data, mapping tasks, and performing synchronization over thousands of 
processing elements. 
 
Recent efforts in programming languages have focused on this problem and their 
offerings have provided models where the number of processors is not exposed [Deitz 
2005] [Allen et al 2006] [Callahan et al 2004] [Charles et al 2005]. While attractive, these 
models have the opposite problem—delivering performance. In many cases, hints can be 
provided to co-locate data and computation in particular memory domains. In addition, 
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because the program is not over-specified, the system has quite a bit of freedom in 
mapping and scheduling that in theory can be used to optimize performance. Delivering 
on this promise is, however, still an open research question.  

5.3 Models must support a rich set of data sizes and types 
Although the algorithms were often the same in embedded and server benchmarks in 
Section 3, the data types were not. SPEC relies on single- and double-precision floating 
point and large integer data, while EEMBC uses integer and fixed-point data that varies 
from 1 to 32 bits. [EEMBC 2006] [SPEC 2006] Note that most programming languages 
only support the subset of data types found originally in the IBM 360 announced 40 years 
ago: 8-bit characters, 16- and 32-bit integers, and 32- and 64-bit floating-point numbers. 
 
This leads to the relatively obvious observation. If the parallel research agenda inspires 
new languages and compilers, they should allow programmers to specify at least the 
following sizes (and types): 

• 1 bit (Boolean) 
• 8 bits (Integer, ASCII) 
• 16 bits (Integer, DSP fixed point, Unicode) 
• 32 bits (Integer, Single-precision floating point, Unicode) 
• 64 bits (Integer, Double-precision floating point 
• 128 bits (Integer, Quad-Precision floating point 
• Large integer (>128 bits) (Crypto) 

 
Mixed precision floating-point arithmetic—separate precisions for input, internal 
computations, and output—has already begun to appear for BLAS routines [Demmel et al 
2002]. A similar and perhaps more flexible structure will be required so that all methods 
can exploit it. While support for all of these types can mainly be provided entirely in 
software, we do not rule out additional hardware to assist efficient implementations of 
very wide data types. 
 
In addition to the more “primitive” data types described above, programming 
environments should also provide for distributed data types. These are naturally tightly 
coupled to the styles of parallelism that are expressed, and so influence the entire design. 
The languages proposed in the DARPA High Productivity Language Systems program 
are currently attempting to address this issue, with a major concern being support for 
user-specified distributions. 

5.4 Models must support of proven styles of parallelism  
Programming languages, compilers, and architectures have often placed their bets on one 
style of parallel programming, usually forcing programmers to express all parallelism in 
that style. Now that we have a few decades of such experiments, we think that the 
conclusion is clear: some styles of parallelism have proven successful for some 
applications, and no style has proven best for all. 
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Rather than placing all the eggs in one basket, we think programming models and 
architectures should support a variety of styles so that programmers can use the superior 
choice when the opportunity occurs. We believe that list includes at least the following: 

1. Independent task parallelism is an easy-to-use, orthogonal style of parallelism 
that should be supported in any new architecture. As a counterexample, older 
vector computers could not take advantage of task-level parallelism despite 
having many parallel functional units. Indeed, this was one of the key arguments 
used against vector computers in the switch to massively parallel processors. 

2. Word-level parallelism is a clean, natural match to some dwarfs, such as sparse 
and dense linear algebra and unstructured grids. Examples of successful support 
include array operations in programming languages, vectorizing compilers, and 
vector architectures. Vector compilers would give hints at compile time about 
why a loop did not vectorize, and non-computer scientists could then vectorize the 
code because they understood the model of parallelism. It has been many years 
since that could be said about a new parallel language, compiler, and architecture. 

3. Bit-level parallelism may be exploited within a processor more efficiently in 
power, area, and time than between processors. For example, the Secure Hash 
Algorithm (SHA) for cryptography has significant parallelism, but in a form that 
requires very low latency communication between operations on small fields. 

 
In addition to the styles of parallelism, we also have the issue of the memory model. 
Because parallel systems usually contain memory distributed throughout the machine, the 
question arises of the programmer’s view of this memory. Systems providing the illusion 
of a uniform shared address space have been very popular with programmers. However, 
scaling these to large systems remains a challenge. Memory consistency issues (relating 
to the visibility and ordering of local and remote memory operations) also arise when 
multiple processors can update the same locations, each likely having a cache. Explicitly 
partitioned systems (such as MPI) sidestep many of these issues, but programmers must 
deal with the low-level details of performing remote updates themselves. 

6.0 Systems Software 
In addition to programming models, compilers and operating systems help span the gap 
between applications and hardware towers of Figure 1. In our view, both of these vital 
programs have grown so large over the decades that it is hard to do the innovation that 
may need as we switch to parallelism. Hence, instead of completely re-engineering 
compilers for parallelism, we recommend relying more on autotuners that search to yield 
efficient parallel code (Section 6.1). Instead of relying on the conventional large, 
monolithic operating systems, we recommend relying more on virtual machines and 
system libraries to include only those functions needed by the application (Section 6.2) 

6.1 Autotuners vs. Traditional Compilers  
Regardless of the programming model, performance of future parallel applications will 
crucially depend on the quality of the generated code, traditionally the responsibility of 
the compiler. For example, it may need to select a suitable implementation of 
synchronization constructs or optimize communication statements. Additionally, the 
compiler must generate good sequential code; a task complicated by complex 
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microarchitectures and memory hierarchies. The compiler selects which optimizations to 
perform, chooses parameters for these optimizations, and selects from among alternative 
implementations of a library kernel. The resulting space of optimization alternatives is 
large. Such compilers will start from parallelism indicated in the program implicitly or 
explicitly, and attempt to increase its amount or modify its granularity—a problem that 
can be simplified, but not sidestepped, by a good programming model. 
 
6.1.1 The Difficulty of Enhancing Modern Compilers 
Unfortunately, it is difficult to add new optimizations to compilers, presumably needed in 
the transition from instruction-level parallelism to task- and data-level parallelism. As a 
modern compiler contains millions of lines of code and new optimizations often require 
fundamental changes to its internal data structures, the large engineering investment is 
difficult to justify, as compatibility with language standards and functional correctness of 
generated code are usually much higher priorities than output code quality. Moreover, 
exotic automatic optimization passes are difficult to verify against all possible inputs 
versus the few test cases required to publish a paper in a research conference. 
Consequently, users have become accustomed to turning off sophisticated optimizations, 
as they are known to trigger more than their fair share of compiler bugs. 
 
Due to the limitations of existing compilers, peak performance may still require 
handcrafting the program in languages like C, FORTRAN, or even assembly code. 
Indeed, most scalable parallel codes have all data layout, data movement, and processor 
synchronization manually orchestrated by the programmer. Such low-level coding is 
labor intensive, and usually not portable to different hardware platforms or even to later 
implementations of the same instruction set architecture. 
 
6.1.2 The Promise of Search-Based Autotuners 
Our vision is that relying on search embedded in various forms of software synthesis can 
solve these problems. Synthesizing efficient programs through search has been used in 
several areas of code generation, and has had several notable successes. [Massalin 1987] 
[Granlund et al 2006] [Warren 2006]. 
 
In recent years, “Autotuners” [Bilmes et al 1997] [Frigo and Johnson 1998] [Frigo and 
Johnson 2005] [Granlund et al 2006] [Im et al 2005] [Whaley and Dongarra 1998] gained 
popularity as an effective approach to producing high-quality portable scientific code. 
Autotuners optimize a set of library kernels by generating many variants of a given kernel 
and benchmarking each variant by running on the target platform. The search process 
effectively tries many or all optimization switches and hence may take hours to complete 
on the target platform. Search needs to be performed only once, however, when the 
library is installed. The resulting code is often several times faster than naive 
implementations, and a single autotuner can be used to generate high-quality code for a 
wide variety of machines. In many cases, the autotuned code is faster than vendor 
libraries that were specifically hand-tuned for the target machine! This surprising result is 
partly explained by the way the autotuner tirelessly tries many unusual variants of a 
particular routine, often finding non-intuitive loop unrolling or register blocking factors 
that lead to better performance.  
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For example, Figure 8 shows how performance varies by a factor of four with blocking 
options on Itanium 2. The lesson from autotuning is that by searching many possible 
combinations of optimization parameters, we can sidestep the problem of creating an 
effective heuristic for optimization policy. 

 
Figure 8. Sparse matrix performance on Itanium 2 for a finite element problem using block compressed 
sparse row (BCSR) format [Im et al 2005]. Performance (color-coded, relative to the 1x1 baseline) is 
shown for all block sizes that divide 8x8—16 implementations in all. These implementations fully unroll 
the innermost loop and use scalar replacement for the source and destination vectors. You might reasonably 
expect performance to increase relatively smoothly as r and c increase, but this is clearly not the case. 
Platform: 900 MHz Itanium-2, 3.6 Gflop/s peak speed. Intel v8.0 compiler. 
 
 
The popularity of autotuners could lead to changes in benchmarks. Conventional 
benchmarks such as SPEC are distributed as source code that must be compiled and run 
unaltered. This code often contains manual optimizations favoring a particular target 
computer, such as a particular cache blocking. Autotuned code, however, would allow a 
benchmark to find the best approach for each target automatically. 
 
6.1.3 Extending Autotuners to Parallelism 
We believe that autotuning can help with the compilation of parallel code as well. 
Parallel architectures, however, introduce many new optimization parameters, and so far, 
no successful autotuners for parallel codes exist. For any given problem, there may be 
several parallel algorithms, each with alternative parallel data layouts. The optimal choice 
may depend not only on the processor architecture but also on the parallelism of the 
computer, as well as the network bandwidth and latency. Consequently, in a parallel 
setting, the search space can be much larger than that for a sequential kernel.  
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To reduce the search space, it may be possible to decouple the search for good data 
layout and communication patterns from the search for a good compute kernel, especially 
with the judicial use of performance models. The network and memory performance may 
be characterized relatively quickly using test patterns, and then plugged into performance 
models for the network to derive suitable code loops for the search over compute kernels 
[Vadhiyar et al 2000]. 

6.2 Deconstructing operating system support 
Although programming models live above the operating system layer, the efficiency of 
that layer can strongly affect the efficiency of the programs that rely upon it. Just as 
processors have crossed an inflection point of the benefits of growing larger, we believe 
operating systems have as well. Going forward, we believe that operating systems must 
be deconstructed, with virtual machines enabling end applications to select only the 
portion of the OS capabilities that are needed rather be forced to accept a gargantuan soft 
stack. Just as hardware is moving away from a single monolithic processor, operating 
systems may be moving away from a single monolithic program. We lay out those 
arguments in this section. 
 
6.2.1 Increasing Need of Protection in Embedded Computing 
One place where there is the greatest tension between the embedded and server 
communities in the past is operating systems. Embedded systems have historically had 
very minimal application-specific run-time systems, with tight control over real-time 
scheduling, but with little support for protection and virtualization. This reflects the 
desire to reduce processor cost, memory footprint, and power consumption, and the 
assumption that software will be custom written for a particular embedded system by the 
manufacturer. Traditional server operating systems have millions of lines of code, and 
provide a very rich set of features. Protection and virtualization are essential to support 
large software systems built using a range of third-party code written to industry-standard 
APIs, and communicating over the unsecured global Internet. 
 
We believe these two worlds are colliding and merging, as embedded systems increase in 
functionality. For example, cell phones and game machines now support multi-gigabyte 
file systems and complex Web browsers. In particular, cell phone manufacturers who 
have previously resisted the installation of third-party software due to reliability 
concerns, now realize that a standard API must be provided to allow user extensibility, 
and this will require much more sophisticated and stable operating systems and the 
hardware support these require. 
 
Since embedded computers are increasingly connected to networks, we think they will be 
increasingly vulnerable to viruses and other attacks. Indeed, the first personal computer 
operating systems dropped protection since developers thought a PC had only a single 
user, which worked OK until we connected PCs to the Internet. Imagine how much better 
our lives would be if security had been a PC OS priority before they joined the Internet. 
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6.2.2 Virtual Machines to the Rescue 
Traditional OSes are too large and brittle to support radical innovation but contain 
millions of lines of valuable legacy code essential to application functionality. The 
resurgence of interest in virtual machines (VMs) is evidence that operating systems have 
reached their own technology inflexion point. VM technology allows a complete 
operating system with running applications to be treated as a software component, 
manipulated by a virtual machine monitor (VMM) or hypervisor. The VMM inserts a 
thin software layer between a guest OS and the hardware to give the guest OS the illusion 
that it is running on its own copy of the real hardware. This approach allows a very small, 
very low overhead VMM to provide innovative protection and resource sharing without 
having to run or modify multimillion-line OSes.  
 
Virtual machines appear to be the future of server operating systems. For example, AMD, 
Intel, and Sun have all modified their instruction set architectures to support virtual 
machines. VMs have become popular in server computing for a few reasons: [Hennessy 
and Patterson 2007] 

• To provide a greater degree of protection against viruses and attacks; 
• To cope with software failures by isolating a program inside a single VM so as 

not to damage other programs; and 
• To cope with hardware failures by migrating a virtual machine from one computer 

to another without stopping the programs 
VMMs provide an elegant solution to the failure of conventional OSes to provide such 
features. VMMs are also a great match to manycore systems, in that space sharing will be 
increasingly important when running multiple applications on 1000s of processors.  
 
What is the cost of a VMM? The overhead of running an OS on a VMM is generally a 
function of the instruction set architecture. We believe manycore architectures for 
embedded and server should support virtualization, as the hardware costs are trivial. By 
designing an instruction set architecture to be virtualizable, the software overhead can be 
very low. Indeed, an important architectural goal would be to provide the support that 
helps prevent the VMM from growing over time.  
 
6.2.3 Deconstructing Operating Systems 
Rosenblum argues that the future of server operating system could essentially be libraries 
where only the functions needed are linked into the application, on top of a thin VMM 
layer providing protection and sharing of hardware resources. [Rosenblum 2006] This 
vision is similar to embedded OSes today. For example, VxWorks lets the user choose 
which features of the OS will be included in this embedded application. [Wind River 
2006] Hence, we see operating systems having more in common for embedded and server 
computing. 
 
While this vision is compelling, it is not binding. An application can run either a very thin 
or a very thick OS on top of the VMM, or even multiple OSes simultaneously to 
accommodate different task needs. For example, a real-time code and a best effort code 
running on different cores, or a minimal data-plane OS on multiple high-density cores 
and a complex control-plane OS on a large general-purpose core. 
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7.0 Metrics for Success 
Having covered the six questions from the full bridge in Figure 1, we need to decide how 
to best invent and evaluate answers to those questions. In the following, we focus on 
maximizing two metrics–programmer productivity and final implementation efficiency–
and to provide a vehicle to help researchers innovate more quickly. 

7.1 Maximizing programmer productivity  
Having thousands of processing elements on a single chip presents a major programming 
challenge to application designers. The adoption of the current generation of on-chip 
multiprocessors has been slow due to the difficulty of getting applications correctly and 
productively implemented on these devices. For example, the trade press speaking of 
current on-chip multiprocessors targeted for network applications says [Weinberg 2004]: 

“ ... network processors with powerful and complex packet-engine sets have 
proven to be notoriously difficult to program.”  

Earlier on-chip multiprocessors such as the TI TMS320C80 failed altogether because 
application designers could not tap their performance productively. Thus, the ability to 
productively program these high-performance multiprocessors of the future is as at least 
as important as providing high-performance silicon implementations of these 
architectures. 
 
Another area that deserves consideration is the addition of hardware structures that assist 
language productivity features. For example, supporting transactional memory entirely in 
software may be too slow to be useful, but can be made efficient with hardware support. 
Other examples of this include support for garbage collection, fine-grained 
synchronization (the Cray MTA), one-sided messaging, trace collection for debugging 
[Xu et al 2003], and performance and energy counters to aid program optimization (see 
Section 4.5). 
 
Productivity is a multifaceted term that is difficult to quantify. However, case studies 
such as [Shah et al 2004b] and the work in the ongoing DARPA HPCS program [HPCS 
2006] build our confidence that productivity is amenable to quantitative comparison. In 
addition, work in the psychology of programming can also inform our evaluation efforts. 

7.2. Maximizing application performance  
One implication of Figure 2 is that for 15 years application performance steadily 
increased simply by running applications on new generations of processors with minimal 
additional programmer effort. As processor performance growth has slowed, new ideas 
will be required to realize further application performance gains. Radical ideas are 
required to make manycore architectures a secure and robust base for productive software 
development since the existing literature only shows successes in narrow application 
domains such as Cisco’s 188-processor Metro chip for networking applications 
[Eatherton 2005]. 
 
Moreover, since the power wall has forced us to concede the battle for maximum 
performance of individual processing elements, we must aim at winning the war for 
application efficiency through optimizing total system performance. This will require 
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extensive design space exploration. The general literature on design-space exploration is 
extensively reviewed in [Gries 2004] and the state-of-the art in commercial software 
support for embedded processor design-space exploration using CoWare or Tensilica 
toolsets is presented in [Gries and Keutzer 2005]. However, evaluating full applications 
requires more than astute processing element definition; the full system-architecture 
design space including memory and interconnect must be explored. Although these 
design space explorations focus on embedded processors, we believe that the processors 
of manycore systems will look more like embedded processors than current desktop 
processors (see Section 4.1.2.). 
 
New efficiency metrics will make up the evaluation of the new parallel architecture. As 
in the sequential world, there are many “observables” from program execution that 
provide hints (such as cache misses) to the overall efficiency of a running program. In 
addition to serial performance issues, the evaluation of parallel systems architectures will 
focus on: 

- Minimizing remote accesses. In the case where data is accessed by computational 
tasks that are spread over different processing elements, we need to optimize its 
placement so that communication is minimized. 

- Load balance. The mapping of computational tasks to processing elements must 
be performed in such a way that the elements are idle (waiting for data or 
synchronization) as little as possible. 

- Granularity of data movement and synchronization. Most modern networks 
perform best for large data transfers. In addition, the latency of synchronization is 
high and so it is advantageous to synchronize as little as possible. 

Software design environments for embedded systems such as those described in [Rowen 
and Leibson 2005] lend greater support to making these types of system-level decisions. 
To make help programmers progress towards these goals, we recommend hardware 
counters that can measure these performance issues (see Section 4.6). 
 
The conventional path for exploring new architectures for the last decade has been 
simulation. We are skeptical that software simulation alone will provide sufficient 
throughput for thorough evaluation of manycore systems architectures. Nor will per-
project hardware prototypes that require long development cycles be sufficient. The 
development of these ad hoc prototypes will be far too slow to influence the decisions 
that industry will need to make regarding future manycore system architectures. We need 
a platform where feedback from software experiments on novel manycore architectures 
running real applications with representative workloads will lead to new system 
architectures within days, not years. 

7.3 RAMP: Research Accelerator for Multiple Processors 
The Research Accelerator for Multiple Processor (RAMP) project is an open-source 
effort of ten faculty at six institutions to create a computing platform that will enable 
rapid innovation in parallel software and architecture [Arvind et al 2005] [Wawrzynek et 
al 2006]. RAMP is inspired by: 

1. The difficulty for researchers to build modern chips, as described in CW #5 in 
Section 2. 
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2. The rapid advance in field-programmable gate arrays (FPGAs), which are 
doubling in capacity every 18 months. FPGAs now have the capacity for millions 
of gates and millions of bits of memory, and they can be reconfigured as easily as 
modifying software. 

3. Flexibility, large scale, and low cost trumps absolute performance for researchers, 
as long as performance is fast enough to do their experiments in a timely fashion. 
This perspective suggests the use of FPGAs for system emulation. 

4. Smaller is better (see Section 4.1) means many of these hardware modules can fit 
inside an FPGA today, avoiding the much tougher mapping problems of the past 
when a single module had to span many FPGAs. 

5. The availability of open-source modules, from Opencores.org, Open SPARC, and 
Power.org, which can be inserted into FPGAs with little effort [Opencores 2006] 
[OpenSPARC 2006] [Power.org 2006]. 

 
While the idea for RAMP is just 18 months old, the group has made rapid progress. It has 
financial support from NSF and several companies and it has working hardware based on 
an older generation of FPGA chips. Although RAMP will run, say, 20 times more slowly 
than real hardware, it will emulate many different speeds of components accurately to 
report correct performance as measured in the emulated clock rate.  
 
The group plans to develop three versions of RAMP to demonstrate what can be done: 

• Cluster RAMP (“RAMP Blue”): Led by the Berkeley contingent, this version will 
a large-scale example using MPI for high performance applications like the NAS 
parallel benchmarks [Van der Wijngaart 2002] or TCP/IP for Internet applications 
like search. An 8-board version will run the NAS benchmarks on 256 processors. 

• Transactional Memory RAMP (“RAMP Red”): Led by the Stanford contingent, 
this version will implement cache coherency using the TCC version of 
transactional memory [Hammond et al 2004]. A single board system runs 100 
times faster than the Transactional Memory simulator. 

• Cache-Coherent RAMP (“RAMP White”): Led by the CMU and Texas 
contingents, this version will implement a ring-based coherency or snoop based 
coherency.  

All will share the same “gateware”—processors, memory controllers, switches, and so 
on—as well as CAD tools, including co-simulation. [Chung et al 2006] 
 
The goal is to make the “gateware” and software freely available on a web site, to 
redesign the boards to use the recently announced Virtex 5 FPGAs, and finally to find a 
manufacturer to sell them at low margin. The cost is estimated to be about $100 per 
processor and the power about 1 watt per processor, yielding a 1000 processor system 
that costs about $100,000, that consumes about one kilowatt, and that takes about one 
quarter of a standard rack of space. 
 
The interactions between massively parallel programming models, real-time constraints, 
protection, and virtualization provide a rich ground for architecture and software systems 
research. The hope is that the advantages of large-scale multiprocessing, standard 
instruction sets and OSes, low cost, low power, and ease-of-change will make RAMP a 
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standard platform for parallel research for many types of researchers. If it creates a 
“watering hole effect” in bringing many disciplines together, it could lead to innovation 
that will more rapidly develop successful answers to the seven questions of Figure 1. 

8.0 Conclusion 
CWs # 1, 7, 8, and 9 in Section 2 say the triple whammy of the Power, Memory, and 
Instruction Level Parallelism Walls has forced microprocessor manufacturers to bet their 
futures on parallel microprocessors. This is no sure thing, as parallel software has an 
uneven track record. 
 
From a research perspective, however, this is an exciting opportunity. Virtually any 
change can be justified—new programming languages, new instruction set architectures, 
new interconnection protocols, and so on—if it can deliver on the goal of making it easy 
to write programs that execute efficiently on manycore computing systems.  
 
This opportunity inspired a group of us at Berkeley from many backgrounds to spend 
nearly two years discussing the issues, leading to the seven questions of Figure 1 and the 
following unconventional perspectives:  

• Regarding multicore versus manycore: We believe that manycore is the future of 
computing. Furthermore, it is unwise to presume that multicore architectures and 
programming models suitable for 2 to 32 processors can incrementally evolve to 
serve manycore systems of 1000s of processors. 

• Regarding the application tower: We believe a promising approach is to use 13 
Dwarfs as stand-ins for future parallel applications since applications are rapidly 
changing and because we need to investigate parallel programming models as 
well as architectures.  

• Regarding the hardware tower: We advise using simple processors, to innovate in 
memory as well as in processor design, to consider separate latency-oriented and 
bandwidth-oriented networks. Since the point-to-point communication patterns 
are very sparse, a hybrid interconnect design that uses circuit switches to tailor the 
interconnect topology to application requirements could be more area and power 
efficient than a full-crossbar and more computationally efficient than a static 
mesh topology. Traditional cache coherence is unlikely to be sufficient to 
coordinate the activities of 1000s of cores, so we recommend a richer hardware 
support for fine-grained synchronization and communication constructs. Finally, 
do not include features that significantly affect performance or energy if you do 
not provide counters that let programmers accurately measure their impact. 

• Regarding the programming models that bridge the two towers: To improve 
productivity, programming models must be more human-centric and engage the 
full range of issues associated with developing a parallel application on manycore 
hardware. To maximize application efficiency as well as programmer 
productivity, programming models should be independent of the number of 
processors, they should allow programmers to use a richer set of data types and 
sizes, and they should support successful and well-known parallel models of 
parallelism: independent task, word-level, and bit-level parallelism. 
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• We also think that autotuners should take on a larger, or at least complementary, 
role to compilers in translating parallel programs. Further, we argue that 
traditional operating systems will be deconstructed and operating system 
functionality will be orchestrated using virtual machines. 

• To provide an effective parallel computing roadmap quickly so that industry can 
safely place its bets, we encourage researchers to use autotuners and RAMP to 
explore this space rapidly and to measure success by how easy it is to program the 
13 Dwarfs to run efficiently on manycore systems. 

• While embedded and server computing have historically evolved along separate 
paths, in our view the manycore challenge brings them much closer together. By 
leveraging the good ideas from each path, we believe we will find better answers 
to the seven questions in Figure 1. 

 
As a test case to see the usefulness of these observations, one of the authors was invited 
to a workshop that posed the question of what could you do if you had infinite memory 
bandwidth? We approached the problem using the dwarfs, asking which were 
computationally limited and which were limited by memory. Figure 9 below gives the 
results of our quick study, which was that memory latency was a bigger problem than 
memory bandwidth, and some dwarfs were not limited by memory bandwidth or latency. 
Whether our answer was correct or not, it was exciting to have a principled framework to 
rely upon to try to answer such open and difficult questions. 
 
This report is intended to be the start of a conversation about these perspectives. There is 
an open, exciting, and urgent research agenda to flush out the concepts represented by the 
two towers and span of Figure 1. We invite you to participate in this important discussion 
by visiting view.eecs.berkeley.edu. 

Dwarf Performance Limit: Memory Bandwidth, 
Memory Latency, or Computation? 

1. Dense Matrix Computationally limited 
2. Sparse Matrix Currently 50% computation, 50% memory BW 
3. Spectral (FFT) Memory latency limited 
4. N-Body Computationally limited 
5. Structured Grid Currently more memory bandwidth limited 
6. Unstructured Grid Memory latency limited 
7. MapReduce Problem dependent 
8. Combinational Logic  CRC problems BW; crypto problems 

computationally limited 
9. Graph traversal  Memory latency limited 
10. Dynamic Programming Memory latency limited 
11. Backtrack and Branch+Bound ? 
12. Construct Graphical Models ? 
13. Finite State Machine Nothing helps! 
Figure 9. Limits to performance of dwarfs, inspired by an suggestion by IBM that a packaging technology 
could offer virtually infinite memory bandwidth. While the memory wall limited performance for almost 
half the dwarfs, memory latency is a bigger problem than memory bandwidth 
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