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A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent

alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from

3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at

significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target

gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2

family of apoptosis regulators and the NF-kB pathway.We show that cancer cells containing amplifications surrounding the

MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a

large majority of SCNAs identified in individual cancer types are present in several cancer types.

The development of cancer is driven by the acquisition of somatic
genetic alterations, including single base substitutions, transloca-
tions, infections, and copy-number alterations1,2. Recent advances
in genome characterization technologies have enabled increasingly
systematic efforts to characterize these alterations in human cancer
samples3. Identification of these genome alterations can provide
important insights into the cellular defects that cause cancer and
suggest potential therapeutic strategies2.

Somatic copy-number alterations (SCNAs,distinguished fromgerm-
line copy-number variations, CNVs; see Supplementary Note 1a)
are extremely common in cancer4–6. Genomic analyses of cancer
samples, by cytogenetic studies and more recently by array-based
profiling, have identified recurrent alterations associated with par-
ticular cancer types4–6. In some cases, focal SCNAs have led to the

identification of cancer-causing genes and suggested specific thera-
peutic approaches7–14.

A critical challenge in the genome-wide analysis of SCNAs is distin-
guishing the alterations that drive cancer growth from the numerous,
apparently random alterations that accumulate during tumorigenesis
(see Supplementary Note 1b). By studying a sufficiently large collection
of cancer samples, it should ultimately be possible to create a com-
prehensive, high-resolution catalogue of all SCNAs consistently assoc-
iated with the development of all major types of cancer. Key open
questions include: the extent to which significant SCNAs are associated
withknowncancer-relatedgenesor indicate thepresenceofnewcancer-
related genes in particular cancer types; the extent towhich large sample
collections can be used to pinpoint the precise ‘targets’ of recurrent
amplifications or deletions and thereby to identify cancer-related genes
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(see Supplementary Note 2); and the extent to which SCNAs are
restricted to particular types or shared across many cancer types, sug-
gesting common biological pathways.

In this paper, we explore these issues by studying copy-number
profiles from 3,131 cancers across more than two dozen cancer types,
with the data all derived from a single experimental platform and
analysed with a common, rigorous statistical methodology.

A collection of 3,131 copy-number profiles across cancer

The 3,131 cancer copy-number profiles consisted of 2,509 profiles
determined by our laboratory (see references in Supplementary
Note 3), including more than 800 previously unpublished profiles,
and 622profiles determined by other groups11,15,16.Most (2,965) come
from 26 cancer types, each represented by more than 20 specimens.
Seventeen cancer types are represented by at least 40 specimens each
(Supplementary Table 1). Most profiles (2,520) were obtained from
tissue specimens, with the remainder from cancer cell lines (541) and
melanoma short-term cultures (70).

Copy-number measurements were obtained on the Affymetrix
250K Sty array, containing probes for 238,270 single nucleotide poly-
morphisms (SNPs). We compared the signal intensities from each
cancer specimen to array data from 1,480 normal tissue specimens
(of which 1,140 were paired with cancer specimens from the same

individual) to identify regions of somatically generated SCNA. We
recorded the genomic position, length and amplitude of change in
normalized copy-number for every SCNA(Supplementary Fig. 1a and
Supplementary Methods).

We observed a total of 75,700 gains and 55,101 losses across the
3,131 cancers, for a mean of 24 gains (median5 12) and 18 losses
(median5 12) per sample. For most (17 out of 26) cancer types, the
mean number of SCNAs per sample was within twofold of these
overall means (Supplementary Fig. 1b). Across all samples, 8.3% of
amplification and 8.7% of deletion breakpoints (excluding those
occurring within centromeres or telomeres) occurred in regions of
segmental duplication, which is enriched relative to the proportion of
the genome in such regions (5.1% of SNPs; P, 10220 in each case)
and probably reflects a predisposition to SCNA formation17. An
average of 17% of the genome was amplified and 16% deleted in a
typical cancer sample, compared to averages of 0.35% and less than
0.1% in normal samples (representing germline CNVs and occa-
sional analytic artefacts).

Background rates of focal and arm-level SCNAs

Across the entire genome, the most prevalent SCNAs are either very
short (focal) or almost exactly the length of a chromosome arm or
whole chromosome (arm-level) (Fig. 1a). The focal SCNAs occur at a
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Figure 1 | Identification of significant arm-level and focal SCNAs across

cancer. a, Length distribution of SCNAs. b, The significance of arm-level
SCNAs. The length-adjusted Z-scores for gains (x-axis) and losses (y-axis) of
indicated chromosome arms are shown. Arms in red, blue, purple and black
show significant gain, loss, both, or neither, respectively. c, The significance of

focal SCNAs. GISTIC q-values (x-axis) for deletions (left, blue) and
amplifications (right, red) are plotted across the genome (y-axis). Known or
putative gene targets within the peak regions (TRB@, indicated by an asterisk,
is immediately adjacent) are indicated for the 20 most significant peaks;
values in parentheses represent the number of genes in the peak region.
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frequency inversely related to their lengths, with a median length of
1.8megabases (Mb) (range 0.5 kilobases (kb)–85Mb).

Arm-level SCNAs occur approximately 30 times more frequently
than would be expected by the inverse-length distribution associated
with focal SCNAs (Fig. 1a). This observation is seen across all cancer
types (Supplementary Fig. 2), and applies to both copy gains and
losses (data not shown). As a result, in a typical cancer sample, 25%of
the genome is affected by arm-level SCNAs and 10% by focal SCNAs,
with 2% overlap. All arm-level (and most focal) SCNAs are of low
amplitude (usually single-copy changes), but some focal SCNAs can
range to very high amplitude.When analysing SCNAs for evidence of
significant alteration in cancer, we accounted for the difference in
background rates between arm-level and focal SCNAs by considering
them separately.

Several studies have analysed patterns of arm-level SCNAs across
large numbers of cancer specimens4–6, and our results are mainly in
agreement with theirs. We also observed that the frequency of arm-
level SCNAs decreases with the length of chromosome arms. Adjusted
for this trend, most chromosome arms show strong evidence of pref-
erential gain or loss, but rarely both, across many cancer lineages (see
Fig. 1b and Supplementary Note 4).

The large size of arm-level SCNAs makes it difficult to determine
the specific target gene or genes. By contrast, mapping of focal SCNAs
has great power to pinpoint the important genes targeted by these
events7–14.

Pooled analysis of focal SCNAs

We determined the regions in which SCNAs occur at a significantly
high frequency. For this purpose, we calculated the genome-average
‘background’ rates for SCNAs inourdata set as a functionof length and
amplitude, and used the GISTIC (genomic identification of significant
targets in cancer) algorithm18 with improvements as described in
Supplementary Methods.

We identified 158 independent regions of significant focal SCNAs,
including 76 amplifications and 82 deletions, in the pooled analysis of
all our data (Fig. 1c and Supplementary Table 2). This number was
relatively robust to changes in the number of samples (Supplemen-
tary Fig. 3a) and removal of individual cancer types from the pooled
analysis (Supplementary Fig. 3b). Indeed, a stratified analysis of 680
samples distributed evenly across the 17 most highly represented
cancer types identified 76% of these significant SCNAs, similar to
the number expected based on the reduced power of this smaller
sample set (Supplementary Fig. 3a).

The most frequent of these significant focal SCNAs (MYC ampli-
fications andCDKN2A/B deletions) involve 14% of samples, whereas
the least frequent are observed in 2.3% of samples for amplifications
and 1.5% for deletions. The frequency of significant arm-level SCNAs
is higher (15–29% of samples; Supplementary Fig. 3c). These fre-
quencies are likely to be underestimates, as some SCNAs are not
detected owing to contamination of cancer samples with DNA from
adjacent normal cells, technical error, and the incomplete spatial
resolution afforded by the SNP array platform.

For each of the 158 significant focal SCNAs, we determined a
confidence interval (‘peak region’) that has a 95% likelihood of con-
taining the targeted gene (Supplementary Fig. 3d). Our large data set
enables more sensitive and high-resolution detection of peak regions
than previous copy-number analyses (see Supplementary Note 5 and
Supplementary Table 3). An even larger data set would be desirable,
on the basis of analyses showing that the increase in resolution with
sample size has not reached a plateau (Supplementary Fig. 3e).

The 76 focal amplification peak regions contain a median of 6.5
genes each (range 0–143, includingmicroRNAs). Sixteen regions con-
tain more than 25 genes each; the remaining 60 regions contain in
aggregate 364 potential target genes. We found that 25 of the 76
regions (33%) contain functionally validated oncogenes documented
to be activated by amplification (Supplementary Table 2), including
nine of the top ten regions (MYC, CCND1, ERBB2, CDK4, NKX2-1,

MDM2,EGFR,FGFR1 andKRAS; Fig. 1c andSupplementaryTable 2).
The tenth region, on 1q, contains nine genes; we present evidence later
that the target gene in this region is the anti-apoptotic BCL2 family
member,MCL1.

The 82 focal deletion peaks contain a median of seven genes each
(range 1–173). Nineteen regions contain at least 25 genes each; the
remaining 63 regions contain in aggregate 474 potential target genes.
Nine of the 82 regions (11%) contain functionally validated tumour
suppressor genes documented to be inactivated by deletion
(Supplementary Table 2). Two other deletions (involving ETV6

and the span from TMPRSS2 to ERG) are associated with transloca-
tion events that create oncogenes. Another deletion adjacent to the
T-cell-receptor-b locus occurs in acute lymphoblastic leukaemia and
likely is not associated with cancer, as it occurs during normal T-cell
development.

The remaining 70 deletion peaks do not contain known tumour
suppressor genes, translocation sites, or somatic rearrangements.
More than one-third (26) contain large genes, the genomic loci of
which span more than 750 kilobases (kb); none of these genes has
been convincingly demonstrated to be a tumour suppressor gene.
Conversely, 19 of the 40 largest genes in the genome occur in deletion
peaks (Fig. 2a; P5 33 1029). This association between deletions and
large genes could be due to a propensity for both to occur in regions
of low gene density. Indeed, large genes tend to occur in gene-poor
regions (Fig. 2a, bottom), and an analysis of all SCNAs in the data set
shows that deletions (but not amplifications) show a bias towards
regions of low gene density (up to 30% below the genome average;
Fig. 2b). Even after removing the 26 SCNAs containing large genes,
the gene density among the remaining deletions is still 25% below the
genome average. These observations suggest that some of the dele-
tions may not be related to cancer aetiology, but rather may reflect a
high frequency of deletion or low levels of selection against deletion
in these regions.
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Figure 2 | Characteristics of significant focal SCNAs. a, Enrichment of
large genes in deletion peaks. Genes are ranked by the amount of genome
occupied. Local gene density is normalized against the genome-wide average.
b, Average gene density among genomic regions as a function of their copy
number. c, GRAIL analysis20 P-values, plotted for each peak region, reflect
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Most known amplified oncogenes reside within the 76 amplified
regions, although there are exceptions. For example, MITF

19 is prob-
ably undetected because it is a lineage-specific oncogene restricted to
melanoma.At least tenknowndeleted tumour suppressor genes donot
reside in the deleted regions in the pooled analysis (BRCA2, FBXW7,
NF2, PTCH1, SMARCB1, STK11, SUFU, VHL, WT1 and WTX (also
known as FAM123B)). Some of these are specific to cancer types not
represented in our data set (for example, NF2, WT1 and WTX),
whereas others (for example, BRCA2, FBXW7, STK11 and VHL)
primarily suffer arm-level deletions (with possible further deletions
beyond the resolutionof the arrayplatform).Other tumour suppressor
genesmay bemissed if they lie within regions inwhich the background
deletion rates are lower than the genome-wide average, or if they are
adjacent to genes inwhich deletion is poorly tolerated (whichwould be
expected to occur more readily in regions of high gene density; see
Supplementary Note 1b). Such tumour suppressors might be inacti-
vated by point mutations more often than SCNAs.

Over-represented gene families and pathways

We assessed potential cancer-causing genes in the SCNAs using
GRAIL (gene relationships among implicated loci)20, an algorithm
that searches for functional relationships among genomic regions.
GRAIL scores each gene in a collection of genomic regions for its
‘relatedness’ to genes in other regions based on textual similarity
between published abstracts for all papers citing the genes, on the
notion that some target genes will function in common pathways.

We found that 47 of the 158 peak regions (34 of the 76 amplifica-
tion peaks and 13 of the 82 deletion peaks) contain genes significantly
related to genes in other peak regions (Fig. 2c). In 21 of these regions,
the highest-scoring gene was a previously validated target of SCNA in
human cancer (Supplementary Table 2). Across all peak regions, the
literature terms most significantly enriched refer to gene families
important in cancer pathogenesis, such as kinases, cell cycle regula-
tors, and MYC family members (Fig. 2d, top and Supplementary
Table 4).

To discover new genes, we next examined the 122 regions without
previously documented SCNA targets. The most significantly
enriched literature term associated with the amplification peaks
was ‘apoptosis’ (Fig. 2d, bottom and Supplementary Table 4). Two
of the five known anti-apoptotic members of the BCL2 family21

(MCL1 and BCL2L1) are in amplification peaks. Two of eleven
pro-apoptotic members (BOK and BBC3) were also found among
deletion peaks, for a total of four of the 16 known BCL2 family
members, with anti-apoptotic genes amplified but not deleted and
vice versa for pro-apoptotic genes (Fig. 3a; P5 33 10210). Although
some BCL2 family members are known to be translocation and point
mutation targets22–26, pathway dysregulation by copy-number
change has not been well-described. Later, we describe functional
validation that MCL1 and BCL2L1 are targets of amplifications that
encompass them.

The second-ranking term among amplification peaks without
known targets was ‘NF-kB’, reflecting a preponderance of members
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of this pathway (TRAF6, IKBKB, IKBKG, IRAK1 and RIPK1;
P5 0.001 for pathway enrichment27) and consistent with an emer-
ging recognition of its importance in several cancer types28–30.

Because some gene families may have been missed by GRAIL, we
separately analysed gene ontology (GO) terms for association with
amplification peaks (data not shown). We identified significant
enrichment of genes associated with ‘molecular adaptor activity’
(GO: 0060090, P5 43 10210), including IRS2, GRB2, GRB7,
GAB2, GRAP, TRAF2, TRAF6 and CRKL. IRS2 and GAB2 are known
to be transforming when overexpressed31,32, and CRKL has been
reported as an essential gene among cells in which it is amplified33.

Amplifications of MCL1 and BCL2L1

MCL1 is one of nine genes in an amplification peak in cytoband
1q21.2 (Fig. 3b and Supplementary Table 2) with focal amplifications
observed in 10.9% of cancers across multiple tissue types. Fluor-
escence in situ hybridization (FISH) of the MCL1 region in lung
and breast cancers showed much higher rates of focal amplification
(Supplementary Fig. 4a–b). Amplifications of 1q21.2 were previously
reported in two studies of lung adenocarcinoma7,34 and one of mel-
anoma35, but the peak regions in these studies contained 86, 36 and 53
genes respectively.

Weexaminedwhether cell growthdepends onMCL1 in the presence
of gene amplification by measuring the rate of change in cell number
after activating an inducible short hairpin RNA (shRNA) against
MCL1 in cells with and without 1q21.2 amplification. We observed a
more pronounced reduction in proliferation rates among fourMCL1-

amplified cell lines, compared to threeMCL1-unamplified control cell
lines (P5 0.05; Fig. 3c) (all achieved.70% knockdown; Supplemen-
tary Fig. 4c). Reducing the expression of six of the other genes (all
by .70%; Supplementary Fig. 4d) within the 1q21.2 amplicon in
NCI-H2110 cells produced no significant effects (Fig. 3d). Similar
effects were observed after MCL1 depletion with many shRNAs and
short interfering RNAs (siRNAs) (Supplementary Fig. 4e). Growth of
NCI-H2110 xenografts were also inhibited by induction of anti-MCL1

shRNA (Fig. 3e).
BCL2L1 is one of five genes in a peak region of amplification on

20q11.21 (Supplementary Fig. 5a). Amplifications of this region have
been previously noted in lung cancer36, giant-cell tumour of bone37,
and embryonic stem cell lines (the latter also amplifying a region
including BCL2)38,39, but functional validation of BCL2L1 as a gene
targeted by these amplifications has not been reported.We examined
BCL2L1 dependency using shRNA against BCL2L1 in cells with and
without 20q11.21 amplification. We observed a more pronounced
reduction in proliferation rates among six BCL2L1-amplified lines
(including SKLU1, which was MCL1-independent), compared to
sevenBCL2L1-unamplified lines (P5 0.006; Fig. 3f). These decreased
proliferative rates were associated with increased apoptosis (Sup-
plementary Fig. 5b).

We then sought to explore how amplification of these BCL2 family
members might act in cancer by examining other SCNAs found in
cancers carryingMCL1 or BCL2L1 amplifications. Themost frequent
other focal SCNA in these cancers was amplification of the region
carryingMYC (observed in approximately two-thirds of these cases).
BCL2 has previously been shown to reduceMYC-induced apoptosis
in lymphoid cells40. We found that overexpression of MCL1 and
BCL2L1 in immortalized bronchial epithelial cells also reduces
MYC-induced apoptosis (Supplementary Fig. 5c, d). Oncogenic roles
for MCL1and BCL2L1 have been previously suggested by reports of
increased rates of lymphoma and leukaemia in transgenic mice41,42.
Somatic amplification of MCL1 and BCL2L1 may therefore be a
common mechanism for cancers, including carcinomas, to increase
cell survival.

Sharing of focal SCNAs across cancer types

Our analysis of a large number of cancer types with a high-resolution
platform afforded an opportunity to quantify the degree to which

significant focal SCNAs are shared across cancer types.We performed
separate analyses of each of the 17 cancer types represented by at least
40 samples and compared the significant SCNAs to those from a
pooled analysis of the remaining samples, excluding the cancer type
in question.

Most focal SCNAs identified in any one of these 17 cancer types are
also found in the pooled analysis excluding that cancer type (median
79% overlap, versus 10% for randomly permuted regions, P, 0.001;
Fig. 4) and, indeed, in the 158 regions from the overall pool.
Nonetheless, cancer-type-restricted analyses identified a further
199 significant SCNAs (145 regions of amplification, 54 regions of
deletion; Supplementary Table 5). (These exclude 79 regions of amp-
lification on chromosome 12 found only in dedifferentiated liposar-
comas that are probably related to the ring chromosomes in that
disease43). However, many of these regions were even found to occur
in more than one cancer type (median two). As would be expected,
the 158 regions in the pooled analysis were found in more cancer
types (median five) and were better localized (median size 1.5Mb
versus 11Mb in the lineage-restricted analyses).

Arm-level alterations, like focal SCNAs, tend to be shared among
several cancer types (Supplementary Note 4). Previous studies have
demonstrated a tendency for cancers of similar developmental
lineages to exhibit similar recurrent arm-level SCNAs44. We found
that this tendency was much more apparent for arm-level than focal
SCNAs (see Supplementary Note 6), suggesting that arm-level
SCNAs are shaped to a greater extent by developmental context.

Portal for cancer genomics

The raw data and analyses from this study are available at http://
www.broadinstitute.org/tumorscape, including segmented copy-
number data (viewable using the Integrative Genomics Viewer; J.
Robinson et al., manuscript in preparation) and profiles describing
the significance of copy-number changes. The portal also supports
gene copy-number queries across and within individual cancer types
(instructions are in Supplementary Note 7).
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Figure 4 | Most significant focal SCNA peaks identified in any one cancer

type are also identified in the rest of the data set (its complement). The top
Venn diagram represents median results across the 17 cancer types
represented by .40 samples. Venn diagrams representing the specific
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Diagrams are not drawn to scale.
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Discussion

This study represents the largest analysis so far of high-resolution
copy-number profiles of cancer specimens. Several features of the
copy-number landscape apply to the vast majority of cancer types.
There is a notably high prevalence of arm-level SCNAs4–6, which
probably reflects the ease with which such mutational events occur
compared to focal events45,46. The analysis also shows a strong
tendency for significant focal SCNAs in one cancer type to be also
found in several others.

We identified a total of 357 significant regions of focal SCNA,
including 158 regions in the pooled analysis and 199 regions in ana-
lyses of individual cancer types. These are surely underestimates of
the number of regions that are significantly altered in cancer. Many
cancer types were represented by relatively few samples; others were
not represented at all. Some SCNAs were missed owing to the reso-
lution limit of the array platform. Further efforts will be needed to
characterize larger numbers of cancer genomes at higher resolution
to create a comprehensive catalogue of the significant SCNAs and
define their occurrence in difference cancer types.

An important challenge is to identify the cancer gene targets of each
of these SCNAs. Less than one-quarter of the 158 common peak
regions are associated with previously validated targets of SCNAs in
human cancer. Although a subset of the SCNAs may represent dele-
tion events that are tolerated but not causally involved in cancer (as
suggested by the correlation with gene-poor regions) or frequent
owing tomechanistic bias (for example, associatedwith fragile sites)47,
many more cancer-causing genes are likely to be found through ana-
lysis of SCNAs.TheGRAIL analysis of ourpeak regions points tomore
than a dozen probable candidates, and the functional analysis of
MCL1 and BCL2L1 strongly implicates these genes as amplification
targets. Moreover, some SCNAs may contain several functional
targets10.

Identification of the target genes will require both genomic and
functional studies. For focal events, the copy-number profiles of
further samples at higher resolution can help narrow the lists of
candidates. Nucleotide sequencing may identify point mutations,
especially in the case of heterozygous deletions. Because overlapping
SCNAs in different cancer types may target different genes, all can-
didates should be functionally tested separately in each cancer type in
appropriate model systems.

Although many canonical oncogenes and tumour suppressor
genes are known to be altered across several cancer types and func-
tionally relevant inmodel systems of diverse tissue origins1, it has not
been clear whether these genes are typical or represent a discovery
bias towards genes relevant to many cancer types. By studying a large
number of cancers of multiple types, we have found that most of the
significant SCNAs within any single cancer type tend to be found in
other cancer types as well. Similar findings for point mutations and
translocations would suggest that the appearance of tremendous
diversity across cancer genomes may reflect the combinations of a
limited number of functionally relevant events.

METHODS SUMMARY

DNA extracted from cancer specimens and normal tissue was labelled and hybri-
dized to the Affymetrix 250K Sty I array to obtain signal intensities and genotype
calls. Signal intensities were normalized against data from 1,480 normal samples.
Copy-number profiles were inferred using GLAD48 and changes of.0.1 copies in
either direction were called SCNAs. The significance of focal SCNAs (covering
,0.5 chromosome arms) was determined using GISTIC18, with modifications to
score SCNAs directly proportional to amplitude and to allow summation of non-
overlapping deletions affecting the same gene. Peak region boundaries were deter-
mined so that the change in the GISTIC score from peak to boundary had,5%
likelihood of occurring by random fluctuation. P-values for Figs 2b and 4 were
determined by comparing the gene densities of SCNAs and fraction overlap of
peak regions, respectively, to the same quantities calculated from random permu-
tations of the locations of these SCNAs and peak regions. RNA interference was
performed by inducible and stable expression of shRNA lentiviral vectors and by
siRNA transfection. Proliferation in inducible shRNA experiments was measured

in triplicate every half-hour on 96-well plates by a real-time electric sensing system
(ACEA Bioscience), and in stable shRNA expression and siRNA transfection
experiments byCellTiterGlo (Promega). Apoptosis wasmeasured by immunoblot
against cleaved PARP, and FACS analysis of cells stainedwith antibody to annexin
V and propidium iodide. Tumour growth in nude mice was measured by caliper
twice weekly. Expression ofMYC,MCL1 and BCL2L1 was performed with retro-
viral vectors in lung epithelial cells immortalized by introduction of SV40 and
hTERT49.
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SCNAs of nearly the same length, across the 16 tumor types with >40 samples. Data are 

presented as in Figure 1a.  
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Supplementary Figure 4. The frequency and significance of MCL1 amplification in human cancers. a) Representative 

FISH results showing high-level MCL1 amplification (green signals) in the breast cancer cell line HCC1954. The 

chromosome 1 centromere is stained red. b) Summary of MCL1 FISH results in a panel of 47 primary breast cancer and 

90 primary lung cancer samples. High-level MCL1 amplification (blue) was defined as MCL1 copy number greater than 

3x that of the chromosome 1 centromere; focal, low-level MCL1 amplification (red) was defined as MCL1 copy numbers 

less than this but exceeding the centromere; and polysomy of 1q (green) was defined as equal copy numbers of both MCL1 

and the chromosome 1 centromere but exceeding the number of copies of the chromosome 11 centromere. c) Efficacy of 

doxycycline-inducible MCL1 knock-down. Western blot analysis of MCL1 protein levels in the 7 cell lines tested in 

Figure 3c before and after induction of inducible anti-MCL1 shRNA or non-targeting control. GAPDH was used as a 

protein loading control. For H2110 (MCL1 amplified) and H1792 (MCL1 unamplified), cleaved PARP levels were also 

determined before and after induced expression of anti-MCL1 and non-targeting shRNAs. d) siRNA knock-down efficacy 

for MCL1 and neighboring genes. Quantitative RT-PCR was used to measure mRNA transcript expression before and after 

introduction of siRNAs against the 7 non-provisional genes in the MCL1 peak in H2110 cells (as shown in Figure 3d). 

The expression of each transcript after knock-down is graphed as a fraction of the expression in mock-treated cell lines. 

No expression of CTSK was detected in mock-transfected H2110 cells. e) Comparison of the effects of multiple 

anti-MCL1 shRNAs and siRNAs in H2110 cells. H2110 cells were infected with three independent shRNA constructs 

against MCL1, and treated with an anti-MCL1 Dharmacon siRNA SMART pool and a single siRNA sequence from that 

pool. For each treatment, the change in cell number (proliferation rate) over 48 hours (as measured by CellTiterGlo, 

Promega), relative to non-targeting control, is shown.
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Supplementary Figure 5. Supporting data for BCL2L1 and MCL1 experiments. a) Segmented copy-number 

profiles among 50 tumors of various lineages (shown across the top) with focal amplification of BCL2L1 are 

displayed for the region around BCL2L1 (genomic locations are indicated on the left; distances are proportional to 

the number of SNP array markers mapping to the region). b) Efficacy of BCL2L1 knock-down in cell lines. 

Western blot analysis of BCL2L1 and cleaved PARP protein levels in 6 cell lines tested in figure 3e after infection 

with anti-BCL2L1 shRNA or non-targeting control. Actin was used as a protein loading control. c) Increased levels 

of apoptosis induced by MYC expression in immortalized lung epithelial cells   are reversed by expression of MCL1 

or BCL2L1. Cells transduced with viruses expressing MYC, MYC and MCL1, MYC and BCL2L1, or vector controls 

were cultured for 24 hours. Adherent and floating cells were pooled and levels of cleaved PARP, MCL1, BCL2L1, 

MYC, and actin (as loading control) were assessed by immunoblot. d) In a separate experiment, these cells were 

washed, stained with anti-Annexin antibody (BioVision) and propidium iodide (Sigma), and analyzed by flow 
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Supplementary Figure 7. Clustering of tumor types by arm-level and focal SCNAs. a) Specific 

arm-level SCNAs can reach high frequencies among individual cancer types. Copy-number profiles 

(only arm-level SCNAs were included in this view) are displayed for samples selected among five 

tumor types (arranged across the x-axis) across all autosomes (positions indicated along the 

y-axis). Red and blue represent gains and losses, respectively. b) Arm-level SCNAs distribute 
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tumor types (arranged across the x-axis) across all autosomes (positions indicated along the 

y-axis). Red and blue represent gains and losses, respectively. b) Arm-level SCNAs distribute 

across cancer types by developmental lineage. For each of the 26 cancer types studied, each 

chromosome arm was assigned an excess amplification score representing the frequency of 

arm-level gain minus the frequency of arm-level loss. Positive and negative scores are displayed 

in red and blue, respectively. Tumor types are arranged along the x-axis according to the results of 

unsupervised hierarchical clustering (see Supplementary Methods) of these scores (dendrogram is 

on the bottom). Developmental lineage reflects the ICD-O classification scheme except for 

melanoma, which we designated as of neural lineage due to its derivation from the neural crest. 

c) All 158 significant focal events (arranged on y-axis according to significance of amplification, 

followed by significance of deletion) across the 26 cancer types studied in part b), arranged along the 

x-axis according to the results of unsupervised hierarchical clustering of excess amplification scores 

(dendrogram is on the bottom). d) Excess amplification scores are displayed for the 10 most 

significant focal amplifications (upper panel) and deletions (lower panel), ranked top to bottom and 

denoted by putative target genes from each region. The ordering of the tumor types along the x-axis 

is the same as in part c).
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Supplementary Figure 8. Average level of focal amplification (top) and deletion (bottom) along a 

chromosome arm. Each chromosome arm was rescaled to a common length, and the average G-score 

(in blue; see Supplementary Methods) across all chromosome arms and samples was calculated as a 

function of distance from the telomere.  For comparison, the green line corresponds to our False 

Discovery Rate q-value threshold of 0.25; G-scores above this line are considered significant.  The 

variations observed in average G-score along the chromosome arm are small compared to this threshold.  

However, there is a tendency for telomeric regions to be focally deleted.  As a result, telomeric deletions 

have to rise less above the average level to attain significance. 
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Supplementary Methods 
 

1. DNA isolation and hybridization to arrays 

 
Previously published SNP array datasets were generated as described (Barretina, in 

review) 
1,2,3,4,5,6,7,8,9,10,11,12,13

. For unpublished data, DNA was obtained from cell line 

pellets or tumors frozen at the time of surgical dissection and maintained at -80C until 

use, with the exception of 11 gliomas from which sufficiently high-quality DNA could be 

obtained from paraffin-embedded samples 
14

. The majority of tumors were obtained at 

primary surgery, with the exceptions of 27 prostate tumors obtained through rapid 

autopsy programs at the Universities of Washington 
15

 and Michigan 
16

. Each sample was 

genotyped using the Sty I chip of the 500K Human Mapping Array wet (Affymetrix), 

containing probes to 238,270 SNP loci, according to manufacturer’s instructions. In brief, 

250 ng of genomic DNA was digested with the StyI restriction enzyme (New England 

Biolabs), ligated to an adaptor with T4 ligase (New England Biolabs), and PCR-amplified 

using a 9700 Thermal Cycler I (Applied Biosystems) and Titanium Taq (Clontech) to 

achieve fragments ranging from 200-1100 bp. These fragments were pooled, 

concentrated, processed through a clean-up step, and further fragmented with DNaseI 

(Affymetrix) before being labeled, denatured, and hybridized to arrays. Arrays were then 

scanned using the GeneChip Scanner 3000 7G (Affymetrix). Samples were processed in 

batches of 96 on a single plate using a Biomek FX robot with dual 96 and span-8 heads 

(Beckman Coulter) and a GeneChip Fluidics Station FS450 (Affymetrix) and tracked 

using 2D barcode racks and single tube readers (ABGene). Raw data are available at 

www.broad.mit.edu/tumorscape.  

 
2. Generation of segmented data 

 
Probe-level signal intensities were normalized to a common reference array using 

quantile normalization 
17

 and combined to form SNP-level signal intensities using the 

model-based expression (PM/MM) method 
18

.  For each tumor, genome-wide copy 

number estimates were obtained using tangent normalization, in which tumor signal 

intensities are divided by signal intensities from the linear combination of all normal 

samples that is most similar to the tumor (to be described in greater detail in Getz et al, in 

preparation). This linear combination of normal samples tends to match the noise profile 

of the tumor better than any set of individual normal samples, thereby reducing the 

contribution of noise to the final copy-number profile. However, similar results were also 

obtained using other previously described methods 
19

 (data not shown). Normal samples 

used in this process were confirmed to lack contamination with tumor cells by visual 

inspection of their copy-number profiles. Copy number profiles were segmented using 

the Gain and Loss of DNA (GLAD) algorithm 
20

 with default parameters. Results were 

robust to modification of these parameters or use of Circulary Binary Segmentation 
21

 

(data not shown).  SNP markers within previously mapped CNVs 
22

 were removed, as 

were the 10,000 SNPs with the highest absolute G-scores (see below) in our panel of 
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1480 normal samples and any SNPs that were aberrant in >1% of these normal samples.  

Segments containing fewer than 6 SNPs were removed. 

 

3. Determination of SCNA lengths and amplitudes  
 

Copy-number profiles were deconstructed into individual SCNAs as shown in 

Supplementary Figure 1a. The method (to be described in greater detail in Mermel et al, 

in preparation) determines the minimum number of SCNAs required to reconstruct the 

copy-number profile. Initially, amplifications are only allowed to overlap amplifications 

and vice versa for deletions, providing a unique solution to the lengths and amplitudes of 

these SCNAs. In reality, however, amplifications may overlap deletions, leading to many 

possible SCNA combinations that could produce a given profile. We applied an iterative 

optimization algorithm to determine which of these solutions was most likely. Here, the 

distributions of lengths and amplitudes for SCNAs determined in one iteration were then 

used to score the likelihood of different possible SCNA combinations in the next 

iteration. To reduce computation time, the number of possible SCNA combinations was 

limited by allowing only two SCNAs per chromosome to form basal copy-number levels 

with which both amplification and deletion SCNAs might overlap. These basal SCNAs 

were separated by a single breakpoint that might reside anywhere in the chromosome. 

  

4. Length and amplitude thresholds 

 

The length of each SCNA was converted into chromosome-arm units by calculating the 

fraction of each chromosome arm covered by the SCNA; for SCNAs that cross the 

centromere, the length is expressed as the sum of the fractions of each chromosome arm 

covered by the SCNA. This normalization allowed for the comparison of events 

occurring on chromosome arms of different length and results in length values ranging 

between 0 and 2.  Five chromosomes (13, 14, 15, 21, and 22) have fewer than 8 probes 

mapping to the short (p) arm; for these chromosomes, only the q-arm is counted, resulting 

in a maximal SCNA length of 1.  Removal of these chromosomes does not substantially 

affect the distribution of SCNA lengths as shown in Figure 1a or Supplementary Figure 

2, nor does it explain the excess of single-arm length SCNAs relative to focal SCNAs of 

nearly the same size (data not shown).  

 

SCNAs with lengths > 0.98 chromosome arms were used for arm-level analyses and 

SCNAs with lengths < 0.5 chromosome arms were used for focal analyses. The results of 

these focal analyses were not significantly different when the focal length threshold was 

varied from 0.3 to 0.98 (data not shown). 

 

Only SCNAs with copy number changes >0.1 or <-0.1 inferred copies were included in 

subsequent analyses.  These thresholds were achieved in 0.35% and <0.1% of 

amplifications and deletions in normal samples (representing rare germline CNVs and 

occasional analytic artifact). 

 

5. Assessing the significance and tissue distribution of arm-level SCNAs 
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Across the entire dataset, we noted that the frequency with which chromosomal arms are 

measured to undergo gain or loss is negatively correlated with the size of that arm 

(Supplementary Figure 6).  Two potential explanations for this trend are that longer 

chromosome arms have a lower background rate of copy number change, or that copy 

changes affecting larger chromosome arms are subject to a greater degree of negative 

selection.   In either case, deviations from this trend suggest the presence of additional 

selective pressures.  Chromosome arm-level SCNAs which are observed less frequently 

than predicted likely undergo additional negative selective pressure. Conversely, arm-

level SCNAs that are observed more frequently than predicted are likely to be affected by 

either positive selection, or a relative absence of negative selection.    

 

To determine which arms were significantly enriched/depleted among copy gains and 

losses, and therefore suggesting the presence of additional selective pressures, we 

compared the expected frequency of gain and loss for each arm, determined by linear 

regression (average alteration frequency vs. # genes on chromosome arm), with the actual 

frequency observed over the entire dataset.  Since samples with gain of a chromosome 

arm cannot have loss of the same arm, we computed the frequency of gains and loss 

among the undeleted and unamplified samples, respectively.  By decoupling the gains 

and losses in this way, the frequency metric follows a binomial distribution; z-scores for 

each arm were calculated using the normal approximation to the binomial (Figure 1b), 

and the resulting p-values were corrected for multiple hypothesis testing using the 

Benjamini-Hochberg FDR method 
23

.   

 

To assess how these tissue specific arm-level patterns compared across tumor types, we 

computed the frequency of arm-level gain minus the frequency of arm-level loss for each 

arm within each tumor type for which we had greater than 20 samples (see 

Supplementary Figure 7b).  Hierarchical clustering of the resulting values was performed 

using the Pearson correlation distance metric and complete linkage.  Replicate clustering 

with multiple distance metrics and filtering criteria gave broadly similar results (data not 

shown).  To identify the arm-level changes that most significantly differentiated between 

the resulting major tissue clusters, we utilized the Comparative Marker Selection Tool 
24

 

available in the GenePattern Software Suite 
25

 

(http://www.broad.mit.edu/cancer/software/genepattern/), using the signal-to-noise test 

statistic (Supplementary Table 6). 

 

6. Identification of Recurrent Focal SCNAs 

 

Significantly recurrent focal SCNAs were identified using the GISTIC methodology 
19

, 

with three improvements described below (and to be described in greater detail in 

Mermel et al, in preparation). The motivation behind GISTIC is to identify regions where 

SCNAs are observed significantly more frequently than the background rate.  In the 

absence of independent estimates of the background rate, the previous version of GISTIC 

used the overall frequency of SCNAs across the genome, taking in account the amplitude 

of copy number change.  In part, the improvements described below make use of the 

large number of segments available in this dataset to refine our estimates of the 

background rate of SCNA to more accurately reflect its dependence on both amplitude 
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and length. It should be noted that the existence of widespread positive or negative 

selective pressure may lead to inaccurately high or low estimates of this background rate.  

Indeed, as described in the main text, the finding that deletions tend to preferentially 

avoid gene-dense regions (Figure 2b) is consistent with the presence of widespread 

negative selective pressures that may lead us to underestimate the background rate of 

deletion.   

 

A. Scoring of the Genome 

 

Optimally, each marker should be scored (GISTIC uses the “G-score”) by the probability 

of undergoing all the events observed at that marker—either by multiplying the 

probabilities of each event, or (as is the procedure in GISTIC) adding the logs of those 

probabilities. With the large dataset available in the current study, we have been able to 

revise the scoring scheme to reflect these probabilities more accurately. The probability 

of a marker undergoing a focal SCNA appeared to be approximately equal for SCNAs of 

all lengths up to the level of a chromosome arm because the frequency of longer SCNAs 

was inversely proportional to their length (Figure 1a).  Therefore, we did not include a 

length term in the G-score, other than to separate arm-level SCNAs. We found both 

amplifications and deletions to be exponentially less frequent with increasing amplitude 

(measured as number of copies); therefore we scored each SCNA proportional to its 

amplitude. We also found focal deletions (not amplifications) were less frequent in 

regions with arm-level deletions in the same sample; these were therefore scored with 

more weight. 

  

Another possible factor determining the background rate of SCNAs is the presence of 

repeat sequences or segmental duplications. Recombination of homologous DNA 

sequences such as segmental duplications has been posited to be a mechanism by which 

focal SCNAs are generated 
26

. Although we did observe a statistically significant 

enrichment of breakpoints in regions of segmental duplication (see Main Text), the 

effects on the distribution of SCNAs across the genome are not clear.  One expectation 

might be that more SCNAs would be observed near centromeres and telomeres, which 

are heavily enriched for repetitive sequences.  We evaluated this by rescaling each 

chromosome arm to a single size and summing copy-number profiles across all samples 

and arms (Supplementary Figure 8).  There was little bias toward telomeric or 

centromeric amplifications.  Some excess of telomeric deletions were observed (at 

approximately 1/3 of the level required to attain significance), but we did not observe 

excess centromeric deletions.  Due to the small magnitude of these effects and the 

uncertainty as to their source, we did not account for them in our model of the 

background rate. 

 

An additional modification was implemented for the deletions analysis to account for the 

fact that deletions affecting any part of a gene are likely to have similar functional 

consequences.  In this new approach, termed ‘Gene-GISTIC’, each gene (rather than SNP 

marker) is given a single G-score reflecting the maximal level of deletion seen anywhere 

in that gene, summed over all samples.  One complication is that genes with more SNPs 

are more likely to score higher by chance alone. Gene-GISTIC corrects for this by using 
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G-scores generated from similar-sized windows in permuted data as the null distribution 

when calculating significance values (to be described in detail in Mermel, et al, in 

preparation). 

 

The Gene-GISTIC approach provides a more accurate weighting of the significance of 

genes subject to frequent but non-overlapping deletions and an increase in overall power 

due to a reduction in the number of independent hypotheses tested (from the total number 

of markers on the array to the number of genes in the genome).  A direct comparison of 

the results of Gene-GISTIC and the traditional SNP-based GISTIC deletions analysis 

found 82 peaks by Gene-GISTIC compared to 64 by SNP-GISTIC; 62 peaks overlapped 

(Supplementary Table 7). Known tumor suppressor genes tended to rank higher in the 

Gene GISTIC results (not shown). One potential drawback to the Gene-GISTIC approach 

is that regions without known genes (RefSeq genes and miRNAs were included in this 

study) will not be scored and potentially significant deletions may be missed.  Indeed, 11 

peaks were more significant according to SNP-GISTIC than Gene-GISTIC 

(Supplementary Table 7), likely due to the underweighting of deletions occurring outside 

of known genes. 

 

B. Peak Region Identification 

 

To identify independently significant regions in a single chromosome, GISTIC employed 

a greedy “peel-off” algorithm approach that identifies the most significant peak, removes 

all SCNAs spanning that peak, and then rescores the chromosome to identify additional 

significant peaks. We have modified the algorithm to increase the sensitivity for 

additional peaks. SCNAs are allowed to contribute to secondary peaks with a weighting 

proportional to the evidence that the secondary peak represents a separate event from the 

primary peak. In brief, after removing the SCNAs overlapping the primary peak, the next 

highest-scoring peak is identified. “Disjoint G-scores” for both the primary and 

secondary peaks are calculated based only on SCNAs that overlap one or the other peak 

but not both. SCNAs that overlap both peaks are then allowed to contribute to each peak 

with a weighting proportional to the disjoint G-score of that peak divided by the sum of 

disjoint G-scores over both peaks, and the significance of each peak is redetermined. The 

procedure is performed iteratively until no further significant peaks are identified. The 

modification improves the sensitivity of the method for identifying known cancer genes 

without substantially decreasing its specificity (to be described in detail in Mermel et al, 

in preparation). 

 

C. Peak Region Boundary Determination 

 

We have also modified the method employed by GISTIC to define the boundaries of each 

peak region, to add an explicit accounting for the likelihood passenger events or other 

sources of noise have displaced the local G-score peak from the gene target 

(Supplementary Figure 3d). The variations in G-scores across the genome in permuted 

data are tabulated to determine the likelihood of observing any given change in G-score 

(ΔG) over any given distance. We set the boundaries of each peak region such that the 
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decrease in the G-score from peak to boundary had a likelihood of 5% or less, 

representing the 95% confidence interval for inclusion of the gene target. 

 

7. The effect of gene size and density on observed SCNA frequency 

 

To determine whether large genes are associated with peak regions of amplification or 

deletion, we ranked genes according to the genomic footprint of their coding sequence, 

defined as the largest difference between transcription start and stop sites over all 

annotated transcripts in genome build hg18.  We computed the local gene density around 

each gene by counting the number of annotated genes residing within a 4 Mb window 

centered around the midpoint of the gene and dividing by the average number of genes in 

the 4 Mb window around all genes in the genome. 

 

To determine the relationship between SCNA frequency and gene density, we first 

discretized each copy number profile based on the following 7 copy number ranges: < 1, 

1-1.5, 1.5-1.75, 1.75-2.3, 2.3-3, 3-4, and > 4.  The gene density within each of these copy 

number ranges was calculated by dividing the total number of genes residing within each 

copy number bin across all samples by the number of SNP markers covered by those 

regions; these density values (in genes per SNP; similar values were obtained using genes 

per Mb) were normalized against the average gene density across the genome in Figure 

2b.  We computed the significance of deviations from the average gene density by 

comparing the gene density for each copy number bin to the distribution of gene densities 

in 1e6 random permutations of identically sized regions across the genome.  The green 

lines in Figure 2b correspond to the gene densities giving Bonferonni-corrected p-values 

of .01.  These lines spread outward at extreme copy numbers because the number of 

segments residing within these bins is smaller.  

 
8. GRAIL Analysis 

 
To compare the functional relatedness of the genes identified by our focal SCNA 

analysis, we utilized the GRAIL algorithm 
27

 (full methods and algorithm available at 

www.broad.mit.edu/mpg/grail) on amplification and deletion peak regions separately, 

using the default parameters. In brief, GRAIL determines the relatedness between any 

two genes in different peak regions based upon the frequency with which the same terms 

are found in PubMed abstracts citing each gene (all PubMed abstracts until December 

2006 are used). Each gene is scored by its level of relatedness to all genes in all other 

peak regions, and assigned a p-value reflecting the likelihood of achieving such a score 

by chance. Each peak region is assigned the p-value of its most significant gene with a 

multiple hypothesis correction to reflect the number of genes in the peak. The literature 

terms most associated with the top genes in each peak region are noted. To confirm the p-

values assigned to the peak regions were not overestimates of significance, we compared 

them to similar p-values generated using 1000 permutations of the locations of the peak 

regions (“permuted controls” in Figure 2c). 

 

9. GO Term Analysis 
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The latest Gene Ontology annotations were downloaded from The Gene Ontology 

website (http://www.geneontology.org/GO.downloads.ontology.shtml).  We associated 

each GO term with all genes that are annotated with that term or any of its descendent 

terms in the GO hierarchy.  We assessed enrichment of each GO term by comparing the 

number of genes associated with that term and present in our amplification and deletion 

peak regions to the number expected if these genes were distributed at random across the 

genome.  Peak regions with greater than 25 genes were eliminated from the analysis to 

maximize power, and at most 2 genes from each peak region were allowed to count 

towards the enrichment score to eliminate confounding due to genomic clustering of 

close homologues.  GO terms with fewer than 10 associated genes were excluded from 

the analysis to avoid significant enrichments based only on very small numbers of genes.  

The significance of the enrichment for each peak was calculated using the G-test, with an 

FDR correction to account for the number of hypotheses being tested. 

 

 

10. Peak Region Overlap 

 

To quantify the degree of overlap among peak regions identified in different datasets, we 

counted two peaks as being the same if their 95% confidence intervals overlap.  P-values, 

representing the likelihood of obtaining the observed levels of overlap if peak regions 

were randomly distributed, were determined by permuting the locations of the peak 

regions in each dataset 1,000 times and determining the fraction of peaks that overlap in 

each permutation. 

  

To count the total number of non-overlapping peak regions identified across all cancer 

sets, we first removed peaks that overlapped with any of the 158 peaks in the pooled 

analysis. The remaining peak regions were sorted by size (smallest to largest); starting 

with the smallest peak, we examined each peak for overlap with any smaller peak. If 

overlap was observed, the larger of the two peaks was removed. 

 

11. Fluorescence in-situ hybridization (FISH)   

 

Four-micron tissue microarray (TMA) sections were mounted on standard glass slides 

and baked at 60°C for at least two hours, then de-paraffinized and digested using methods 

described previously 
28

. 

 

The following DNA probes were co-hybridized: RP11-54A4 (SpectrumGreen), which 

maps to 1q21.2 and includes MCL1; D1Z5 (SpectrumOrange), which maps to 1p11-q11 

(SpectrumOrange); and D11Z1 (SpectrumAqua), which maps to 11p11.11-q11.11.  The 

D1Z5 and D11Z1 probes were purchased from Abbott Molecular/Vysis, Inc. The MCL1 

probe was obtained from CHORI (www.chori.org), direct-labeled using nick translation 

and precipitated using standard protocols. Final probe concentration was approximately 

50-100 ng/ul. D1Z5 and D11Z1 final probe concentrations followed manufacturer's 

recommendations. 
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TMA sections and probes were co-denatured, hybridized at least 16 hrs at 37°C in a 

darkened humid chamber, washed in 2X SSC at 70°C for 10 min, rinsed in room 

temperature 2X SSC, and counterstained with DAPI (4',6-diamidino-2-phenylindole, 

Abbott Molecular/Vysis, Inc.). Slides were imaged using an Olympus BX51 fluorescence 

microscope. Individual images were captured using an Applied Imaging system running 

CytoVision Genus version 3.9. 

 

12. Cell culture conditions 

 

NCI-H2110, HCC 1954, HCC 1171, NCI-H1568, NCI-H322, NCI-H1792, SKLU1, NCI-

H647, NCI-H520, NCI-H2228, LCLC-97TM1, PC9, NCI-H1437, and NCI-H3122 cells 

were maintained in RPMI 1640 plus 2 mM L-glutamine (Cellgro) supplemented with 

10% fetal bovine serum (Gemini Bio-Products), 1 mM sodium pyruvate, and 

penicillin/streptomycin (Cellgro). For A549 and Calu6 cells, F12K and DMEM 

respectively were substituted for RPMI. Immortalized lung epithelial cells 
29

 were 

maintained in SAGM small airway cell basal medium with supplements (Lonza). 

 

13. Quantitative PCR 

 

Quantitative real-time PCR was performed with an ABI 7900 HT Sequence Detection 

System (Applied Biosystems) using the QuantiTect SYBR Green kit (Qiagen). Copy-

numbers were quantified relative to the repetitive sequence element Line-1 as previously 

described 
30

.  For MCL1, the forward and reverse primer sequences were 

CTTCCAAGGTAAGGGGGTTC and ACTGACTCGTTTCGGTTTCC, respectively; for 

BCL2L1 the forward and reverse primer sequences were 

CCTCTCCCGACCTGTGATAC and CTTCCTCGGAAAGTCACTCC, respectively. 

 

14. RNAi and cDNA expression 

 

Inducible shRNA vectors were generated as previously described 
31

 using sequences 

targeted against MCL1 (GCATTGGCATCTTTGGATTTC) and scrambled control 

(GTGGACTCTTGAAAGTACTAT) 
32

. Stable shRNA vectors were provided by The 

RNAi Consortium 
33

 and sequences were inserted to target MCL1 

(GCTAAACACTTGAAGACCATA, GGATTGTGACTCTCATTTCTT, and 

GCAGGATTGTGACTCTCATTT), and BCL2L1 (CGTGTCTGTATTTATGTGTGA, 

CCACCAGGAGAACCACTACAT, and TGGCCTCAGAATTGATCATTT),  as well 

luciferase and LacZ (CGCGATCGTAATCACCCGAGT and 

CTCTGGCTAACGGTACGCGTA) controls. Lentiviruses were made by transfection of 

293T packaging cells with a three plasmid system 
34,35

. Target cells were incubated with 

lentivirus for one hour in the presence of 8 µg/ml polybrene. Infections leading to >30% 

decreases in proliferation due to viral toxicity were repeated at lower titer. Cells were 

selected using puromycin at 2 mg/ml over 2-3 days or until all of the non-infected cells 

died. 

 

Knockdown of MCL1, ADAMTSL4, CTSK, CTSS, ECM1, ENSA, GOLPH3L, and a non-

targeting control  was also achieved by transfection with siRNA siGenome SMARTpools 
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(Dharmacon), and the single sequence #13 (GAUUGUGACUCUCAUUUCUUU) from 

the MCL1 SMARTpool as previously described 
36

. 

 

Retroviral vectors were used to introduce specific genes into immortalized lung epithelial 

cells 
37

. MCL1 and BCL2L1 cDNAs were each introduced into pWZL-BLAST; MYC 

cDNA was introduced into pBABE-Puro. 

 

15. Cell proliferation assays 

 

Proliferation of cells in inducible MCL1 knockdown experiments was measured using the 

xCELLigence RTCA machine (Acea Biosciences). Cells were seeded at 1500 cells/well 

in 96-well plates and doxycycline (100 ng/ml) or vehicle control was added after 24 

hours. Electrical impedence was measured every 30 minutes for 48 hours post-induction. 

Each measurement was performed in triplicate on at least two separate occasions. 

Proliferation of cells in all other experiments was measured using CellTiterGlo reagent 

(Promega). with measurements taken at 0 and 48 hours post-infection or -transfection (for 

MCL1 shRNA and siRNA experiments, respectively) or at 3 and 7 days post-infection 

(BCL2L1 shRNA experiments). Cell proliferation assays performed on cells infected with 

stable shRNA vectors were performed immediately after lentiviral infection, in parallel 

on aliquots treated with and without puromycin. The data presented represent cells not 

treated with puromycin, although similar results obtained in both cases (data not shown). 

 

16. Xenografts 

 

Female nu/nu mice maintained in pathogen-free facilities were implanted subcutaneously 

with 5e6 cells infected with inducible shRNA vectors against MCL1 or scrambled 

control. Tumor size was assessed by calipers twice weekly. When tumors reached 100 

mm
3 

(11 days post-implant), eight mice in each group were fed doxycycline 25 mg/kg po 

qd and eight additional control mice were fed D5W for an additional 11 days. 

 

17. Immunoblot analysis 

 

Both adherent and floating cells were harvested after incubation overnight and lysed 

using 2x SDS sample buffer (125 mM Tris-base, 138 mM SDS, 10% β-mercaptoethanol, 

20% glycerol, bromophenol blue, pH 6.8). Lysates were boiled for 10 min., cleared of 

insoluble material by centrifugation at 16,000 x g, and subjected to SDS-10% 

polyacrylamide gel electrophoresis (PAGE). Blots were probed with antibodies against 

MYC (ab32, Abcam), MCL1 (ab32087, Abcam), BCL2L1 (2762, Cell Signaling), 

cleaved PARP (9541, Cell Signaling), GAPDH (MAB374, Chemicon), and actin 

(ab8227, Abcam). 

 

18. Flow cytometry 

 

Adherent and floating cells were harvested after incubation overnight and stained with 

Annexin V-FITC (Sigma) and propidium iodide (BioVision). Flow cytometric analysis 

was performed on 3e4 cells using the BD LSR II flow cytometer (BD Biosciences). 
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Supplementary Note 1: Background and Terminology 

 

a) Somatic vs. Germline Copy Number Changes 

 

Throughout this paper, we use the term somatic copy number alteration (SCNA) to refer 

to somatic changes in the number of copies of a DNA sequence that arise during the 

process of cancer development.  SCNA should not be confused with two similar terms, 

copy number variation (CNV) and copy number polymorphism (CNP), which refer to 

copy number changes in DNA segments present in an individual’s germline DNA.  

Definitions of these terms, as used throughout the manuscript, are as follows: 

 

Somatic Copy Number Alteration (SCNA):  A sequence that is found at different copy 

numbers in an individual’s germline DNA and in the DNA of a clonal sub-population of 

cells. 

 

Copy Number Variation (CNV):  A DNA sequence that is found at different copy 

numbers in the germline DNA of two different individuals.   

 

Copy Number Polymorphism (CNP): A locus that exhibits CNV above some specified 

frequency (typically 1-5%) among individuals within a population.   

 

Because not all of the cancer DNA specimens in our dataset are matched to normal DNA 

specimens, we cannot be entirely confident that any given copy number change observed 

in a cancer DNA sample was not present in the germline of the patient.  To avoid 

confounding our analysis of somatic CNAs with germline CNVs, we have masked from 

our dataset all markers covering previously annotated CNPs 
22

, as well as those markers 

found to be altered in at least 1% of the normal samples in our dataset (see 

Supplementary Methods, above). 

 

The amplitude of copy number change 

 

In the cytogenetics literature, “gains” has traditionally referred to increases of one or a 

small number of copies of a DNA segment, typically spanning a large genomic region. In 

contrast, “amplifications” has referred to more focal events that can reach much higher 

copy numbers.  A similar distinction has been made between “losses” and “deletions”.  

Current analytical methods do not allow the determination of absolute copy number from 

array-based platforms, rendering these distinctions less clear.  For consistency, we refer 

to arm-level events as “gains” or “losses” because of their large genomic extent and 

tendency to involve limited copy number changes, and focal events as “amplifications” 

and “deletions” due to their more limited extent and propensity to reach higher copy 

numbers.   

 

b) Background Rates and Selection of SCNAs 
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Oncogenesis is an evolutionary process 
38

. DNA alterations are acquired at random 

according to a rate of generation that is determined by the competing processes of 

mutation and repair, and which may vary according to the type of aberration and the 

genetic and cellular context. Once acquired, these alterations may be neutral, or may be 

subject to positive selection (if they promote oncogenesis) or negative selection (if they 

have deleterious effects on the cell). In the absence of selective pressure, an alteration 

will be observed at a “background rate” equal to its generation rate times the number of 

cell divisions. The frequency with which an alteration is observed in cancer specimens is 

determined by both this background rate and the degree of selective advantage or 

disadvantage it confers.  

 

Alterations that promote oncogenesis (often referred to as “driver events”), in particular, 

should be present at above the background rate.  Alterations that do not contribute to the 

cancer phenotype (often referred to as “passenger events”) may nevertheless be observed 

in the bulk of a cancer sample if a subsequent beneficial alteration (driver event) provides 

the cell a net fitness advantage.  This process is often referred to as “hitch-hiking” 
39

.  

Indeed, even somewhat deleterious alterations may achieve fixation through hitch-hiking 

if the subsequent driver events confer a net fitness advantage to the cell.  The process by 

which a cell is able to reach fixation through a less fit intermediate has been described as 

“stochastic tunneling” 
40

.  The result of hitch-hiking and stochastic tunneling is that many 

alterations observed in cancer genomes do not promote oncogenesis. 

 

Systematic efforts to discover all oncogenic somatic genetic alterations therefore require 

both an accurate model of the background rate and a sufficiently large collection of 

cancer samples to provide sufficient power to detect  alterations occurring above this 

frequency 
19,41,42,43

. For point mutations, reasonable estimates of the background rates are 

provided by the synonymous and intergenic mutation frequencies, which are believed to 

be selectively neutral 
44

. By contrast, no clear distinction has been defined between 

selected and neutral SCNAs, making precise estimation of the background rates difficult. 

A common approach to making these estimates is to assume the background rates are 

similar to the overall rate of SCNA within each chromosome 
45,46

 or across the entire 

genome 
19,47

.  

 

While this approach of estimating the background mutation rate from the observed data is 

statistically unbiased, the fact that the observed data has already been subjected to a 

selective process in vivo makes it is impossible to precisely distinguish between variation 

due to differences in mutation rates from variation due to differences in the level of 

selective advantage or disadvantage conferred by each mutation.  An additional 

complication is that the background rate estimated from the data will also include false 

positive events (due to technical noise from the measuring platform) and false negative 

events (that occur below the detection limit of the measuring platform).  Therefore, 

somatic alterations may appear to occur at a significantly elevated frequency across 

samples for at least four reasons: (i) they are generated in that region at a rate 

significantly above the genome-wide average, (ii) they occur in a region subject to 

significantly less negative selection than the typical genomic region, (iii) they give a 

selective advantage to cells harboring them (i.e. they are driver alterations), or (iv) they 
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represent systematic artifact.  While the statistical background rate estimated from the 

observed data is useful in the identification of regions altered at statistically significant 

frequencies – potentially suggesting the presence of positive selection –  one should not 

simply equate this rate with the biological background mutation rate, or assume that all 

mutations occurring at an elevated frequency are drivers.  Conversely, one should not 

assume that all mutations occurring at rates equal to or lower than the estimated 

background rate are passengers. 

 

The interpretation of the significance of a frequent mutation therefore depends on our 

understanding of its particular background rate.  This rate may vary according to specific 

features of the mutation, such as the type of base pair substitution for point mutations or 

the length, magnitude, and surrounding sequence for copy number alterations.  Naïve 

analyses which do not account for these features – by assuming, for example, that SCNAs 

are equally likely to occur anywhere in the genome or to be of any size – will be biased 

towards regions with high background mutation rates and away from regions with low 

background mutation rates.  For example, it is known that point mutation rates vary 

significantly according to the type of substitution (e.g. transition vs. transversion) and 

sequence context (e.g. CpG vs. non CpG); various statistical methods for the analysis of 

point mutations take this variation into account to avoid biasing the results towards genes 

or regions with many mutable bases 
41,42,43

.  The background mutation rate may also be 

underestimated if many mutations confer negative selective pressure and therefore are 

observed less commonly than they occur.  In this case, a neutral mutation observed at the 

true background rate may appear to be significantly enriched in cancer. 

 

One of the goals in the analysis of SCNAs is to identify features that correlate with the 

frequency with which these SCNAs are observed.  Whether these features influence 

SCNA frequencies through mechanistic effects on background mutation rates, through 

selective pressure, or through association with technical artifact should be determined by 

appropriate validation experiments. 

 

Supplementary Note 2: The impact of sample size on focal 

SCNA analysis 

In this paper, we have utilized the large sample collection generated by analyzing DNA 

specimens across multiple cancer types to increase our power to identify and resolve the 

targets of significant regions of focal SCNA.  To understand the effects of sample size on 

the ability to discover targets of focal SCNA, we must separately consider the two critical 

steps in our focal SCNA analysis: 1) identifying that a region is undergoing SCNA 

significantly above the background rate, and therefore is likely be subject to positive 

selection; and 2) given that a region of SCNA is undergoing selection, resolving the 

genomic region most likely to contain the target gene(s).   

 

Step 1: Identifying that a region of SCNA is undergoing positive selection 
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The GISTIC G-score at each marker locus is constructed to estimate the probability of 

observing the set of SCNAs covering that locus by chance, taking into account both the 

frequency and mean amplitude of SCNA (see Supplementary Methods).  To compute the 

significance of each region, the G-score is compared to the distribution of G-scores 

expected if the SCNAs in the region were all random events generated at the background 

rate. GISTIC estimates this background rate using the overall rate of focal SCNA across 

the genome. 

 

For a focal SCNA occurring at a fixed frequency and average amplitude, the power to 

detect that region generally increases with sample size.  However, the relationship 

between detection power and sample size is complicated by several additional issues.  For 

one thing, combining heterogeneous sample sets can reduce the power to detect SCNAs 

that are primarily enriched in a single subset (by reducing the frequency of the region of 

interest in the combined dataset).  That is, mixing cancer specimens across tissue types 

will diminish the power to detect true lineage restricted SCNAs.  Mixing samples with 

different background rates of alteration can similarly affect the statistical power of the 

combined analysis in ways that obscure the effect of sample size alone.   

 

Across the 17 individual cancer types studied in our dataset, there is a weak but 

significant association between sample size and the number of significant focal SCNAs 

detected (r = 0.51, p = .04; data not shown).   Of course, because the total number of 

‘true’ driver SCNAs in each cancer type is unknown, the number of significant SCNAs 

identified in any given cancer type is not a direct measure of statistical power.  A more 

informative measure of the relationship between sample size and statistical power is 

demonstrated by an analysis of randomly selected subsets of the entire dataset 

(Supplementary Fig 3a).  Since each subset is drawn from the same total dataset, the 

expected frequency and background rate of each subset is, on average, the same.  As can 

be seen, increasing the number of samples increased the number of peaks identified over 

all subset sizes, indicating that our increased sample size led to increased power overall.  

However, it is also clear that the number of peaks appears to be saturating by 3131 

samples, suggesting that adding additional samples will not greatly increase our power to 

detect novel SCNA targets (at least for a similarly composed dataset).  

 

Step 2: Resolving the genomic region most likely to contain the target gene(s) 

 

Once a region of significant focal SCNA has been identified, the next step is to define the 

genomic boundaries likely to contain the target gene(s) of that SCNA.  Most approaches 

to resolving this region directly or indirectly compute the minimal common region 

(MCR) of overlap among the SCNAs covering the significant locus, as this is the region 

most likely to contain a targeted gene.  However, due to both technical and biological 

noise (e.g. segmentation artifacts or random “passenger” SCNAs that confer no selective 

advantage to the cell), the MCR may be displaced from the actual location of the gene 

targets.  We have developed a statistically based approach (see above and Mermel et al., 

manuscript in preparation) that models the expected variations in the G-score using the 

observed level of noise across the genome to determine a wider region than the MCR for 

which we are 95% confident contains the true target gene. 
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The two major determinants to how narrowly a significant region of SCNA can be 

refined are the size of the MCR due to SCNAs overlapping the target gene (here called 

“driver SCNAs”) and the noise level contributed by SCNAs that do not necessarily 

overlap the target gene (here called “passenger SCNAs”; these may represent real SCNAs 

or analytic artifact).   

 

By definition, the size of the MCR can never increase with the addition of samples 

containing driver SCNAs, and will more typically decrease.  Indeed, under the 

simplifying assumptions that driver SCNA breakpoints are random with a uniform 

distribution between 0 and some maximal distance L units away from a target gene, the 

minimum distance to a breakpoint will scale as 1/(n+1) 
48

,  where n represents the number 

of samples with driver SCNAs.  This reduces to 1/n when n is large, implying that the 

expected size of the MCR is inversely proportional to the number of samples harboring 

the driver SCNA.  In reality, the assumptions behind this derivation do not hold exactly, 

as there is a minimal observed SCNA length that depends on the resolution of the 

measuring platform, and SCNA breakpoints are likely to be scattered non-uniformly 

across the genome.  Nonetheless, for the vast majority of focal peak regions, the model 

does a reasonably good job of approximating actual MCR sizes in random subsets of the 

dataset (data not shown), suggesting that number of samples remains the major factor 

limiting the resolution of most focal peaks.  The fact that the MCR resolution scales 

inversely with the absolute number of driver SCNAs, rather than the overall frequency of 

aberration, implies that once a region of significant SCNA has been detected, the addition 

of extra samples (even if they contain a low frequency of alteration at a given locus) will 

only help to resolve the target gene.  In particular, doubling the number of samples with 

the driver SCNA will halve the expected size of the MCR. 

 

The relationship between the noise level due to passenger SCNAs and sample size is 

difficult to model as it depends on the particular mix of samples in the dataset as well as 

the underlying error model of the measuring platform and analytical methods.  Insofar as 

the noise around a given locus is unbiased, the errors from additional samples with 

passenger SCNAs will tend to cancel, whereas the signal contributed by samples with 

driver SCNAs will tend to add.  Overall, this will result in more confident boundary 

estimation with greater numbers of samples. In fact, according to the central limit 

theorem, the error in boundary estimation will decrease as 1/√N, where N represents the 

total number of samples (including those with driver and passenger SCNAs).    This 

result, like the one above, suggests that increasing numbers of samples will tend to 

provide more precise estimates of the location of the target gene. 

 

Empirically, we observe that for all but the most frequent regions of SCNA (where we 

are likely saturating the resolution limit of the array), our ability to resolve the target 

region is roughly inversely proportional to the size of a randomly chosen subset (see 

Supplementary Figure 3e), as predicted by the models above.  The median number of 

genes per peak region roughly halves when increasing the sample size from 1600 to 

3131, suggesting that further improvements in resolution could be achieved with further 

increases in the sample size.   
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Supplementary Note 3: Data sources 
 

The 250K SNP array data used in this study were obtained from several sources, 

including previously published data from our laboratory1,2,3,4,5,6,7,8,9,13,28,58,68 (Barretina et al, 

in review; Brachmann et al, in preparation; Bass et al, in preparation) and other 

groups10,11,12 and previously unpublished data from cancer and normal specimens 

(Supplementary Table 1).  The published cancer copy-number profiles include 510 non-

small cell lung cancers9,10,13,58,68, 388 acute lymphoblastic leukemias10,11,12, 130 breast 

cancers1,2,10, 215 myeloproliferative disorders8, 151 colorectal cancers10,28, 2 

medulloblastomas10, 111 renal cancers7,10, 106 hepatocellular cancers3,10, 77 melanomas4,10, 

7 ovarian cancers10, 54 prostate cancers6,10, 73 esophageal adenocarcinomas (Bass et al, in 

preparation), 52 dedifferentiated liposarcomas (Barretina et al, in review), 40 esophageal 

squamous cell cancers10,13, 21 gastrointestinal stromal tumors (GISTs; Barretina et al, in 

review), 10 gliomas10, 21 small cell lung cancers10, 36 myxofibrosarcomas (Barretina et 

al, in review), 32 leiomyosarcomas10 (Barretina et al, in review), 31 neuroblastomas5,10, 25 

synovial sarcomas (Barretina et al, in review), 26 mesotheliomas (Brachmann et al, in 

preparation), 24 pleomorphic liposarcomas (Barretina et al, in review), 23 gastric 

cancers10 (Bass et al, in preparation), 4 thyroid cancers10, 21 non-Hodgkin’s lymphomas10, 

and 115 miscellaneous other types of cancer10 (Barretina et al, in review). 

 

Supplementary Note 4: A Pooled analysis of arm-level SCNAs 
 

Several previous studies have analyzed arm-level SCNAs in large numbers of cancer 

samples characterized by low-resolution array or cytogenetic technologies 
49,50

.  These 

studies have identified arm-level SCNAs observed frequently both within and across 

cancer subtypes.  Moreover, these arm-level SCNAs have been shown to segregate by 

cancer type, with cancers of similar developmental origin showing similar patterns of 

SCNA. 

 

In parallel to our approach to focal SCNAs, we compared frequencies of arm-level SCNA 

to estimates of their background rates.  In many ways, this analysis serves to highlight 

certain broad similarities between arm-level and focal SCNAs.   

 

As with our focal SCNA analysis, our analysis of arm-level SCNAs began with a 

systematic evaluation of the observed rate of these events across the genome.  We 

observed that arm-level alterations are more common in short rather than long 

chromosome arms (Supplementary Figure 6). The correlation is stronger when the length 

of the chromosome arm is measured by number of genes rather than megabases (p = 

0.0005).  This trend is observed in separate analyses of 25 of the 26 cancer types most 

represented in our dataset. The sole exception is hepatocellular carcinoma, which shows 

no trend in either direction—in part due to a very high frequency of amplification of the 

longest chromosome arm, 1q. In 13 of these 26 cancer types, including examples from all 

developmental lineages, this trend reached statistical signficance within a single type 

(data not shown).  Although both focal and arm-level SCNAs exhibit decreasing 
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frequency with length, the strength of the trend differs in the two cases.  Several 

possibilities may account for this, including differences in the mechanisms by which 

these SCNAs are generated, the effects of selection, and experimental artifact. 

 

A caveat to this analysis is that we do not distinguish between whole-chromosome and 

single-arm-level SCNAs, although the mechanisms and rates between these may differ.  

Indeed, in separate analyses of these two types of SCNA, both trend towards fewer events 

in SCNAs covering more genes.  However, this trend was significant only for whole-

chromosome SCNAs (p = 0.003), not single-arm-level events (p = 0.28) (data not 

shown).  This may be due to the ambiguities inherent in attempting to separate these two 

types of SCNA: namely, any whole-chromosome SCNA is equivalent to concordant 

SCNAs in both of its arms.  Single-arm-level SCNAs can only be detected when the two 

arms are discordant (as is frequently observed with deletion of 8p and amplification of 

8q).  As a result, fewer single-arm-level SCNAs will be detected, reducing the power 

available to identify significant trends.  Moreover, any SCNA of an acrocentric 

chromosome (chromosomes 13, 14, 15, 21, and 22) is inherently ambiguous, as it is 

simultaneously a whole-chromosome and single-arm SCNA.  For these reasons, we 

present a unified analysis of arm-level SCNAs that includes whole-chromosome SCNAs. 

 

The prevalence of specific arm-level SCNAs, however, is not fully explained by the 

number of genes present in each of these arms. Indeed, the high frequency of specific 

arm-level gains and losses suggests enrichment due to selective pressure, as has been 

noted in many prior publications 
50,51,52

.  To our knowledge, however, none of these prior 

publications has determined the statistical significance of arm-level SCNA by explicitly 

comparing the frequencies of arm-level SCNAs to the expected rate given their gene 

number (see Supplementary Methods, above).  Across all cancers, 11 of the 39 autosomal 

chromosome arms exhibit copy number gains and 17 exhibit copy number losses 

significantly more often than predicted by the number of genes they contain (Figure 1b; 

see Supplementary Methods). The vast majority of these are strikingly significant, with 

the most prominent being amplifications of 1q, 20q, and 7p (p < 1e-85 in each case), and 

deletions of 17p, 9p, and 13q (p < 1e-33 for each).  Interestingly, the most significantly 

deleted arms contain some of the most frequently mutated tumor suppressor genes, 

including TP53 (17p), CDKN2A/B (9p), and RB1 (13q), suggesting that the striking 

enrichment of loss of these arms may be due largely to these genes (Supplementary Table 

8).  Only nine of the 39 chromosome arms are neither significantly gained nor lost. 

Despite the finding that most chromosome arms exhibit significant gains or losses, only 

one (14q) shows both (p = 0.003). 

  

Indeed, the striking significance of these arm-level SCNAs across cancer reflects a 

directional consistency across many different cancer types. In particular, we analyzed 

arm-level SCNAs separately in each of the 17 cancer types represented by greater than 40 

samples (Supplementary Table 8). The 11 significantly gained chromosome arms 

identified in the pooled analysis were found to be independently gained in a median of 8 

cancer types (range 2-11); these same arms were only rarely found to undergo significant 

loss in any cancer type (median 0, range 0-2 types). Similarly, the 17 significantly deleted 

arms in the pooled analysis were found to be independently lost in a median of 4 cancer 



26www.nature.com/nature

doi: 10.1038/nature08822 SUPPLEMENTARY INFORMATION

types (range 2-9), and were only sporadically gained in specific subtypes (median 1, 

range 0-2 types; note that these gains were predominantly seen in hematopoietic cancers). 

Chromosome 14q, the only arm found to be both gained and lost in the pooled analysis, 

was significantly gained in 4 cancer types (acute lymphoblastic leukemia, non-small cell 

lung carcinoma, small cell lung cancer, and prostate carcinoma) and lost in 3 cancer types 

(GIST, melanoma, and renal carcinoma). The mutually exclusive gains or losses observed 

for nearly all chromosome arms across large numbers of cancer types suggest that the 

selective pressures that shape these events operate in tissues throughout the body rather 

than being confined to limited, tissue-specific microenvironments. 

 

We were also interested in the extent to which the significant arm-level SCNAs are 

shared across tissue boundaries.  Prior studies have shown many arm-level SCNAs to be 

prevalent in multiple cancer types 
50,51,52

.  We compared the arm-level SCNAs identified 

as significant in each of the 17 well-represented cancer types to those identified in their 

“complement” (i.e. the entire dataset excluding the cancer type in question).  Similar to 

focal SCNAs, we observed that the large majority (median of 87%) of the arm-level 

SCNAs identified in any cancer type were also significant in the complement (versus 

37% overlap expected by chance). Across all the cancer types, we identified 26 ‘lineage-

restricted’ events not found in the complementary pooled analysis (19 arm-level gains 

and 7 arm level losses), for an average of 1.6 new arm-level SCNAs per tissue type 

(range 0-7). Nine of these arm-level gains are identified exclusively among hematopoietic 

cancers. These lineage-restricted arm-level SCNAs may reflect important lineage-specific 

biology. An interesting example is 13q, which is frequently lost across most cancer types, 

but is gained in 50% of colorectal cancers, possibly due to the oncogenic effects of CDK8 

and the unique requirement for intact RB1 (both on 13q) observed in colorectal cancer 
28,53

. Chromosome 2 is the only chromosome not significantly altered in at least one 

cancer type. 

Supplementary Note 5: Comparison of focal peak regions to 18 

prior publications 
 

To compare our focal peak regions to the results of prior high-resolution cancer copy-

number analyses, we compared these regions to a set of 18 publications which reported 

copy-number regions of interest determined through the use of oligonucleotide arrays on 

at least 40 samples within any of the 17 major cancer types in our dataset 
1,4,6,7,11,19,54,55,56,57,58,59,60,61,62,63,64,65

. 

  

Among the 76 peak regions of amplification reported here, 18 had not been identified in 

any of the prior publications (Supplementary Table 3). For each region of interest, most 

of these publications reported the minimal common region of overlap across their sample 

set; here we report a more conservative peak region that is much wider than the minimal 

common region of overlap to account for the effects of biological and technical noise. 

Nevertheless, of the 58 amplified regions identified in both this study and at least one of 

the prior 18 publications, 33 were found to be narrower (and therefore better-resolved) in 

the present analysis. The size of these regions was a median of 30% of the minimum size 

of the overlapping regions of interest in any of these prior 18 publications.  For example, 
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the peak region including GRB2 was identified in one of these 18 publications, but is only 

2% of the size of the region in that publication, engendering a much greater ability to 

focus in on GRB2 as a possible target.  Indeed, GRB2 is a member of the molecular 

adaptor family of genes, which we find to be highly enriched among the peak regions of 

amplification (see Main Text) and, although not known to be an oncogene, is known to 

play a central role in cancer cell cycle and motility 
66

. 

 

Among the 82 peak regions of deletion reported here, 18 had also not been identified in 

any of the prior publications. Our deletion analysis was performed at gene-level 

resolution to achieve greater power in detecting non-overlapping deletions affecting large 

genes (see Supplementary Methods), whereas all the prior publications extended to 

marker-level resolution. Nevertheless, among the 64 regions identified in both this study 

and at least one of the prior publications, 21 were found to be narrower in the present 

analysis, with a median size of 10% of the minimum size from the prior publications. A 

more comparable marker-level analysis of our data (SNP-GISTIC, see Supplementary 

Methods) exhibited narrower peak regions than in 73% of those regions that had been 

previously reported (data not shown).  

 

Supplementary Note 6: Tissue-type clustering of arm-level and 

focal SCNAs   
 

We were interested in examining how the SCNAs identified in the pooled analysis vary 

across individual cancer types, focusing on the 26 cancer types represented by at least 20 

samples in our collection. Some of the arm-level SCNAs occur at very high frequencies 

within individual subtypes (Supplementary Figure 7a). Indeed, 13 of the 26 cancer types 

exhibited at least one arm-level SCNA that was present in the majority of samples of that 

tumor type. By contrast, focal SCNAs were rarely present in the majority of samples of a 

given cancer type, with only 6 of 26 types exhibiting a focal SCNA present in a majority 

of samples. 

 

We were also interested in quantifying the extent to which arm-level and focal SCNAs 

are shared between cancers of similar developmental lineage. Prior studies have 

demonstrated a tendency for cancers of similar developmental lineage to cluster together 

on the basis of overall copy number 
67

, but did not separate out the contributions of these 

two types of events.  Therefore, for each cancer type, we generated an aggregate SCNA 

profile by subtracting the frequency of loss from the frequency of gain for each 

significant arm-level and focal SCNA.  We then clustered the resulting “consensus” 

SCNA profiles for each cancer type.   

 

This particular clustering metric attempts to capture the net balance of arm-level changes 

rather than their absolute frequency; for example, a tumor type with 50% gains and 50% 

losses of a particular locus would receive the same score as a tumor type with no gains or 

losses of that locus.  However, the clustering results were largely robust to the use of 

alternative clustering metrics, including scoring each cancer type according to the 

absolute frequency of gain and loss at each locus, and different clustering parameters 
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such as complete vs. average linkage and Euclidean vs. Correlation Distance metrics.  

Also, the high degree of variability within cancer types suggests that this analysis will be 

influenced by the particular sampling of cancers within each type.  For this reason we 

restricted the analysis to cancer types with >20 tumors (most were represented by >45 

tumors) and looked for general features driving the major clusters rather than the specific 

placement of each cancer type. 

 

Hierarchical clustering of cancer types based on arm-level SCNA profiles 

(Supplementary Figure 7b) revealed a pattern that closely mimicked the developmental 

lineage of the tissue types. Three major sub-clusters are readily apparent: a major division 

between hematopoietic cancers and all other cancer types, followed by a division 

between epithelial and non-epithelial solid tumors. Within these latter two groups, there 

are distinct sub-clusters of related tumors, including gastrointestinal (gastric, esophageal 

adenocarcinoma, and colorectal), gynecologic (ovarian, breast), sarcomas (plus renal 

cancer), and neural tumors (plus non-Hodgkin’s lymphoma). The segregation of cancer 

types by developmental lineage is highly non-random (p < 1e-5; see Supplementary 

Methods), and more consistent than the previous attempts using overall SCNA profiles 
49

. 

Specific arm-level SCNAs that distinguish these major subclusters, such as gain of 

chromosome arm 8q and loss of 17p in epithelial tumors, were identified through 

comparative marker selection analysis 
24

 and are listed in Supplementary Table 6. 

 

In contrast, hierarchical clustering of cancer types based on focal SCNAs does not 

recapitulate developmental lineage as closely (Supplementary Figure 7c). Although there 

was a tendency for tumors of similar lineages to cluster together (p = .01), all three major 

clusters contained several representatives of each lineage. Consistent with this 

observation, the ten most significant amplified regions (Supplementary Figure 7d, top 

panel) and deleted regions (Supplementary Figure 7d, bottom panel) frequently exhibit 

significant levels of focal SCNA in cancers across diverse lineages. For example, both 

EGFR and MDM2 amplifications are frequently observed in gliomas (neural) and non-

small cell lung cancers (epithelial), but not in medulloblastomas (neural) or small cell 

lung cancers (epithelial). 

 

The finding that arm-level CNAs, but not focal CNAs, appear to cluster predominantly 

on the basis on developmental lineage suggests that developmentally encoded selective 

pressures shape the pattern of these events within specific cancer types.  By contrast, such 

pressures appear to be less important in shaping the pattern of focal CNAs observed 

within and between individual cancer types. 

Supplementary Note 7: How to use the cancer copy number 

web portal 

The cancer copy number portal accompanying this paper 

(www.broadinstitute.org/tumorscape) was designed to facilitate interpretation of this 

copy number dataset for the general research community.  In addition to allowing 

download and visualization of both the raw and segmented copy number data, we have 

integrated a web service that allows for rapid querying of pre-processed analyses of the 
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copy number data for all the well-represented cancer subtypes in the dataset, as well as 

several defined aggregated datasets (such as all cancers, all epithelial cancers and all 

sarcoma cancers). 

At present, there are two primary modes for querying these analyses: by gene and by 

cancer type.  Below, we summarize the typical use case for each of these modes and 
present an outline for how to approach and interpret the portal data. 

1) By Gene Analysis: 

The “By Gene” analysis mode is designed to quickly summarize the evidence that 

any given gene is the target of SCNA within a given cancer subtype.  It is based 

on GISTIC analyses of 17 individual cancer types and an additional 6 aggregated 

datasets, as described in the Supplementary Methods above. 

 

To access, first click on the ‘Analyses’ tab on the navigation bar on the left side of 

the portal, then click on the ‘by Gene’ sub-tab.  Enter the HUGO gene symbol 

(e.g. KRAS, MYC, CDK4) of any Refseq gene, then hit “Search”.  After a few 

seconds, the results from your gene should be loaded.  You will see three tabs 

(“Summary”, “Amplifications”, and “Deletions”), followed by the gene symbol 

you queried and its genomic coordinates (in genome build hg18).   

 

Below that, you will see two paragraphs separately summarizing the evidence for 

that gene being a target of amplifications (first paragraph) and deletions (second 

paragraph).  The first sentence of this summary paragraph states whether or not 

the gene is significantly amplified or deleted across the entire cancer copy number 

dataset, and whether or not the gene is present within a peak region of 

amplification or deletion in the entire dataset.  A gene may be significantly altered 

but fail to reside within the peak region of alteration; although we cannot rule out 

the possibility that the gene is targeted by focal SCNAs, the fact that it is not in 

the peak region means that there is greater evidence for at least one other region 

on the same chromosome.  Conversely, a gene may reside in a peak region of 

alteration but be insignificantly altered; this is usually due to an inability to 

confidently resolve the peak region and provides very little evidence that the gene 

is an actual target of SCNA.  For genes that lie within a peak region of alteration, 

the number of additional genes in that peak are also listed; the fewer the genes in 

the peak, the more likely it is that that gene is the actual target. 

 

After the summary for the entire cancer dataset, we provide a summary of the 

results across the different independent cancer subtypes.  In particular, we list the 

number of independent subtypes in which that gene was significantly altered and 

the number of subtypes in which the gene was located in a peak region of 

alteration.  Because looking across many different datasets increases the 

likelihood that a gene will be in a peak region by chance alone, care must be taken 

before interpreting the significance of these numbers.  For comparison, we list the 

fraction of genes in the genome which are significantly altered or located in a 

peak region of alteration in at least as many subtypes as the current gene of 
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interest.  This allows some estimation of the likelihood that the gene in question is 

a false positive arising due to the number of hypotheses being tested. 

 

To see more detailed information on the Amplifications or Deletions affecting this 

gene, click on the “Amplifications” or “Deletions” tab above the summary 

statements.  This will load a table of the GISTIC results, where each row 

corresponds to one of the analyzed subsets.  The rows are color-coded to quickly 

summarize the significance of SCNA for that gene and whether it is located in a 

peak region.  For each row, we list the coordinates of the nearest peak region in 

that subtype (this will include the gene if it is located within a peak region) along 

with the number of genes in the peak and the false-discovery rate (FDR) q-value 

for the queried gene.  The smaller the number of genes and the smaller the q-

value, the more likely it is that the given gene is actually the target of SCNA in 

that cancer type.   Note that when there are no peak regions identified in the 

chromosome in question in a cancer type, no peak region is listed and the number 

of genes is set to 0 by default. 

 

We also list three different measures of the frequency of SCNA for the gene in 

each cancer type.  Overall frequency measures the fraction of cancers that exhibit 

any SCNA at that gene. Focal frequency measures the fraction of cancers that 

exhibit SCNAs spanning less than half a chromosome arm in length. High-level 

frequency measures the fraction of cancers that exhibit SCNAs of greater than 1 

copy. All these numbers are likely to be underestimates due to the effects of 

contaminating normal cells in many of the cancer samples and the limited 

resolution of the copy number platform. 

 

There are several additional navigation features that can be unveiled by clicking 

on various parts of the table.  Clicking on any underlined cancer subtype name 

will take you to the “By Cancer Type” analysis page for that subtype (see below).  

Clicking on the underlined coordinates for any peak region will open the copy 

number data in that region for that cancer type in the integrated genome viewer 

(IGV) (Robinson et al, in preparation).  Finally, clicking anywhere else in any row 

with at least 1 gene in the nearest peak region will cause the gene symbols for the 

all genes in that peak to be listed in the sidebar to the right of the table.  Clicking 

on any gene in this sidebar will load the “By Gene” analysis page for that gene.  

2) By Cancer Type Analysis 

 

The “By Cancer Type” analysis mode is designed to quickly summarize the 

significant regions of focal CNA within each cancer subtype.  It is based on the 

same GISTIC analyses of 17 individual cancer types and an additional 6 

aggregated datasets, as described in the Supplementary Methods and “By Gene” 

analysis section above. 

 

To access, first click on the “Analyses” tab on the navigation bar on the left side 

of the portal, then click on the “By Cancer Type” sub-tab.  By default, the 
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“all_cancers” subtype (representing all 3,131 cancer DNA samples present in our 

dataset) is selected first.  By convention, aggregated tumor subsets are denoted by 

the prefix “all_” to distinguish them from individual cancer subtypes. To select a 

new cancer subtype, simply click the down arrow next to the name of the cancer 

type, select the cancer type of interest from the drop-down list, and hit “Search”.  

After a few seconds, the data from that cancer type should be loaded. 

 

The first tab you will see is the “Summary” tab, which contains a summary of the 

samples comprising the selected subset.  In particular, we list the total number of 

DNA samples and cell lines for each subtype contained within that subset; for 

aggregated datasets, we also list the total number of samples and subtypes 

contained within the subset.  Finally, we list the number of peak regions of focal 

SCNA identified in the dataset. 

 

To view the regions of SCNA in more detail, click on the “Amplifications” or 

“Deletions” tab.  This will load a table of the GISTIC results for that subset, 

sorted from most to least significant according to the FDR q-value.  For each 

significant region of SCNA (represented by a single row in the table), we list the 

genomic coordinates of the peak region boundaries, the number of genes 

contained in the peak, the residual q-value for that peak (a measure of the 

likelihood that the peak was falsely discovered), and three different measures of 

the frequency of that event (as in the “By Gene” analysis described above).  Note 

that the residual q-value for a peak will tend to differ from the overall q-value for 

genes in that peak, for two reasons: 1) the peak region may extend over genes 

with varied q-values, and 2) unlike the overall q-value, the residual q-value 

accounts for the possibility that a single SCNA may extend across more than one 

peak region by penalizing each of those peak regions (see Supplementary 

Methods). 

 

As with the “By Gene” tables, clicking on any row with more than one gene in the 

peak will result in a list of the genes in that peak region appearing in the right-

hand sidebar.  Clicking on one of these genes will load the corresponding “By 

Gene” Analysis page.  Clicking on the underlined peak region will load the copy 

number data for that region in the selected cancer subtype in the integrated 

genome viewer (IGV). 
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