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Abstract
Motivation: In a previous paper, we presented a polyno-
mial time dynamic programming algorithm for predicting
optimal RNA secondary structure including pseudoknots.
However, a formal grammatical representation for RNA
secondary structure with pseudoknots was still lacking.
Results: Here we show a one-to-one correspondence
between that algorithm and a formal transformational
grammar. This grammar class encompasses the context-
free grammars and goes beyond to generate pseudoknotted
structures. The pseudoknot grammar avoids the use of
general context-sensitive rules by introducing a small
number of auxiliary symbols used to reorder the strings
generated by an otherwise context-free grammar. This
formal representation of the residue correlations in RNA
structure is important because it means we can build
full probabilistic models of RNA secondary structure,
including pseudoknots, and use them to optimally parse
sequences in polynomial time.
Contact: eddy@genetics.wustl.edu

Introduction
Biological sequence analysis algorithms treat DNA, RNA,
and protein molecules as strings of nucleotide or amino
acid residues. Most biological sequence analysis algo-
rithms further assume uncorrelated strings of residues, in
which the identity of a residue at one position has no effect
on the identity of another residue. This second assumption
breaks down most dramatically in RNA sequence analysis.
RNA secondary structure significantly constrains RNA
sequence, because it produces strong long-distance pair-
wise correlations between Watson–Crick base pairs. RNA
secondary structure prediction algorithms (Zuker and
Stiegler, 1981) and RNA sequence/structure alignment
algorithms (e.g. recognizing homologues of a known RNA
structure in a sequence database) (Eddy and Durbin, 1994;
Sakakibara et al., 1994; Lefebvre, 1996) are applications
which must adopt models that deal with long-distance
pairwise correlations between residues.

∗To whom correspondence should be addressed.

Computational linguistics is a rich source of ideas for
how to model strings with correlated symbols (Searls,
1992). A central concept is the Chomsky hierarchy of
formal transformational grammars (Chomsky, 1959).
The assumptions of most biological sequence algorithms
correspond to those of the regular grammars, the lowest
level in the Chomsky hierarchy. In order of increasing
power to describe higher-order correlations, the other
levels of the Chomsky hierarchy are the context-free, the
context-sensitive, and the unrestricted grammars. Polyno-
mial time algorithms are available to optimally parse (e.g.
align, or recognize) strings generated by the regular gram-
mars or the context-free grammars. In contrast, parsing
context-sensitive languages is NP-complete, and there is
no parser for unrestricted languages that is guaranteed to
halt. There is thus a line in the sand somewhere between
the context-free and the context-sensitive languages;
beyond it, efficient, optimal general parsing algorithms
are not available.

From a computational linguistics standpoint, the
language of RNA is dominated by nested pairwise corre-
lations (as in RNA stem-loops, Figure 1) which are easily
generated by the context-free grammars (Searls, 1992).
Stochastic context-free grammars have explicitly been
used to create probabilistic models that describe RNA
secondary structure (Sakakibara et al., 1994; Eddy and
Durbin, 1994). The popular MFOLD RNA secondary
structure prediction algorithm (Zuker and Stiegler, 1981)
seeks minimal energy structures using thermodynamic
parameters, rather than seeking maximum likelihood
structures using probabilities, but the dynamic program-
ming algorithm that MFOLD uses is essentially identical
to the CYK algorithm used to parse sequences with
stochastic context-free grammars.

However, the language of RNA also includes important
non-nested (crossed) correlations known as pseudoknots
(Figure 1). RNA pseudoknots are functionally important
in several known RNAs (ten Dam et al., 1992). For
example, by comparative analysis, RNA pseudoknots are
conserved in ribosomal RNAs (Zimmerman and Dahlberg,
1996), the catalytic core of group I introns, and RNase P
RNAs (Cech, 1993). Pseudoknotted structures have been
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Fig. 1. Left: a stem-loop composed of three nested interactions.
Right: A simple pseudoknot constructed from the previous nested
stem-loop by introducing additional correlations between nu-
cleotides inside the hairpin loop and nucleotides outside the original
stem-loop.

observed by structure determination of the 3′ end of plant
viral RNAs (Kolk et al., 1998), where pseudoknots are
apparently used to mimic tRNA structure, and for two
ribozymes of the hepatitis delta virus (Ferre-D’Amare et
al., 1998). In vitro RNA evolution (SELEX) experiments
have yielded families of RNA structures which appear
to share a common pseudoknotted structure, such as
RNA ligands selected to bind HIV-1 reverse transcriptase
(Tuerk et al., 1992; Burke et al., 1996).

Pseudoknots (non-nested correlations) are more difficult
to model than palindromic (nested) correlations. Pseu-
doknots cannot be generated using a single context-free
grammar, nor can they be predicted by MFOLD. The
next category of languages in the Chomsky hierarchy, the
context-sensitive languages, are unattractive because for
them parsing is an NP-complete problem. Some attempts
to model the language of RNA pseudoknots involve
using intersections of context-free grammars (Brown and
Wilson, 1996; Lefebvre, 1996). However, the intersecting
grammar approach is a heuristic, and guaranteed opti-
mality of the resulting parse is unfortunately sacrificed.
Similarly, most ‘conventional’ approaches (i.e. not based
on ideas borrowed from linguistics) to the prediction of
pseudoknotted RNA structures are also heuristic (Abra-
hams et al., 1990; Gultyaev et al., 1995; van Batenburg et
al., 1995).

It is now clear that pseudoknotted RNA structures can
be parsed using optimal polynomial time parsing algo-
rithms. Stormo’s group (Cary and Stormo, 1995; Tabaska
et al., 1998) has showed that polynomial-time maximum
weighted matching algorithms can deal with pseudo-
knotted RNA structures. Subsequently, we described a
polynomial-time dynamic programming algorithm for
minimum energy RNA secondary structure prediction
(Rivas and Eddy, 1999), which mirrors the essential
features of the MFOLD algorithm while extending it to
pseudoknotted structures. However, in that paper, we only
developed the recognition algorithm, and did not develop
the formal grammar that corresponded to it.

A formal pseudoknot grammar, in stochastic form,
would allow us to develop full probabilistic models of

pseudoknotted RNA structures. This means we could
deal with pseudoknots not only in the problem of single-
sequence structure prediction by minimum energy (Rivas
and Eddy, 1999), but also in the essentially statistical
problems of consensus secondary structure prediction
by comparative analysis, or of structural homology
recognition in database searches (Eddy and Durbin,
1994).

In this paper we describe a formal transformational
grammar that corresponds to the pseudoknot folding
algorithm described in (Rivas and Eddy, 1999). The
approach we take is to develop a grammar formalism
that extends and includes the context-free grammars.
Comparable approaches in the computational linguistics
literature include the mildly context-sensitive grammars
(Joshi et al., 1991), string variable grammars (Searls,
1993), indexed grammars (Aho, 1968), or cut grammars
(Searls, 1999). The key feature of our grammar is the
use of special nonterminal symbols which dictate specific
rearrangements of substrings in a derivation, an idea
that has long been used in problems concerning natural
language processing (Gazdar et al., 1985).

The paper is organized as follows. First, we specify
the components of this class of grammars. Then we give
a simple example grammar that deals with the classical
example of a copy language. This language requires more
power than the one provided by context-free grammars.
We then give a generalized form of the grammar class,
and point out the specific approximations that lead to the
particular grammar instances that generate the copy lan-
guage and the RNA folding including pseudoknots. The
recognition algorithm for these two particular grammars
works in polynomial time. Finally, we give the specific
grammar that corresponds to the parsing algorithm in Ri-
vas and Eddy (1999) for single-sequence RNA secondary
structure prediction including pseudoknots. This grammar
closely captures the main features of the accepted thermo-
dynamic model for RNA secondary structure (Turner et
al., 1987; Zuker and Stiegler, 1981), extended to include
pseudoknotted structures.

Crossed-interaction grammar
Components of the grammar
A grammar G that includes crossing interactions (pseudo-
knots) can be defined by the sextuple

G = {V, T, S, I, P, R}. (1)

• V is the finite set of nonterminal symbols.

• T is the finite set of terminal symbols (the alphabet).
T ∗, the set of all strings over T , includes the empty
string ε, and an additional empty string, ∧, the ‘hole’
string, which also has length zero.
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• S is the start nonterminal (S ∈ V ).

• I is the finite set of extra nonterminal symbols. These
symbols, together with the hole string (which acts as a
marker), will differentiate this grammar from a conven-
tional context-free grammar.

• P is the finite set of productions. The I symbols can
only appear in the right-hand side of these productions.

• R is the finite set of rearrangement rules. The re-
arrangements are applied after the productions P ,
when all the conventional nonterminals have been
eliminated. The extra symbols I are then used to
rearrange (according to R) the strings generated by the
productions P .

A simple example: copy-language grammar
A simple example of a language that includes crossing
interactions is a copy language. A copy language for the
alphabet T = {a, b} consists of a set of patterns (such as
ab, or aba, etc.) that are duplicated. The apparently simple
string abab in which both as and both bs are correlated is
an example of a crossed interaction.

A grammar of the type described in (1) that generates the
copy language

L = {ε, w ∧ w | w ∈ (a, b)∗} (2)

requires only two nonterminals V = {W, WH }, of which
W is the start nonterminal. To take care of the crossed
interactions we require three extra symbols

I = {(, ), ×}. (3)

The productions P are given by

W −→ W W | (WH × WH ) | ε (4)

WH −→ a ∧ a | b ∧ b | (WH × WH ) | ∧. (5)

The vertical bars indicate disjunction. ε is the usual empty
string. We also introduce a second empty string ∧ (which
we call the ‘hole’ string). The hole string also has length
zero but it is different from ε because it determines the
possible point of insertion of another string. Note that the
I symbols (3) can only appear in the right-hand side of the
P productions (4) and (5).

In this example we use only one rearrangement R,

(m1 ∧ m′
1 × m2 ∧ m′

2) −→
R

m1m2 ∧ m′
1m′

2, (6)

for any string of terminals m1, m′
1, m2, and m′

2 in the
alphabet T . The parentheses indicate that a rearrangement
has to be performed once the strings of terminals have
been generated. That is, rearrangements take place only
after all conventional nonterminals have been eliminated.

Rearrangements in inner parentheses are performed first.
Once all rearrangements have been performed, and the
extra symbols I have been eliminated, the ∧ hole string
becomes just equivalent to the empty string ε.

There is a simple diagrammatic representation associ-
ated with this grammar. None of the productions for W
in (4) includes the ∧ string, and in the derivations from
W the final step has to produce a ε string. Therefore, the
nonterminal W is diagrammatically represented by a no-
hole diagram (or no-gap matrix). On the other hand, some
of the productions for WH (5) include the ∧ string, and in
the derivations from WH the final step has to include a ∧
string. Therefore the nonterminal WH is diagrammatically
represented by a diagram with a hole (or gap matrix).
The extra symbol × represents the crossing necessary to
put together two WH gap matrices. The diagrammatic
representation of productions in (4) and (5) in which we
observe how the rearrangements take place is as follows:

W

−→

∣
∣
∣
∣
∣

W · W

∣
∣
∣
∣
∣

(WH × WH)

,

WH

−→

a ∧ a

∣
∣
∣
∣
∣

b ∧ b

∣
∣
∣
∣
∣

(WH × WH)

.

Adopting the conventions introduced in Rivas and Eddy
(1999), a wavy line represents the coordinated emission of
two terminals; a discontinuous line indicates no emission.
(In RNA language, the wavy line represents the emission
of two paired nucleotides.)

With this grammar we can generate the toy ‘knotted’
sequence

a b a b

in the following way

W �⇒ (WH × WH )
∗�⇒ (a ∧ a × b ∧ b) (7)

�⇒
R

ab ∧ ab.

When we apply a production A → α, we call that
a derivation and it is represented by a double arrow.
Similarly a single derivation for a rearrangement gets
represented by �⇒

R
. (Steps that include a multiple (but

finite) number of derivations are represented by
∗�⇒ and

∗�⇒
R

respectively.)
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Schematically, the rearrangement derivation can be visual-
ized as

(
a ∧ a × b ∧ b

)
�⇒
R a b ∧ a b

.

The use of parentheses allows us to create more compli-
cated pseudoknotted structures. For example, the sequence

a b a a b a

can be parsed with the previous grammar in the following
way:

W �⇒ (WH × WH )

�⇒ (WH × (WH × WH ))
∗�⇒ (a ∧ a × (b ∧ b × a ∧ a)) (8)

�⇒
R

(a ∧ a × ba ∧ ba)

�⇒
R

aba ∧ aba.

Schematically the two rearrangement derivations corre-
spond to

(
a ∧ a ×

(
b ∧ b × a ∧ a

) )

�⇒
R

(
a ∧ a × b a ∧ b a

)

�⇒
R

a b a ∧ a b a
.

From the diagrammatic representation of the grammar,
it is an easy observation that the recognition algorithm has
a worse-case complexity of O(n6) in time and O(n4) in
space, for a string of length n.

General formalism
In the general formalism for a crossed-interaction grammar
given an alphabet T = {a1, · · · , an}, we define T ∗ the set
of all strings over T as

T ∗ = {ε, ∧, a1, . . . , a1a1, a1a2, . . . , a1a1a1, a1a1a2, . . .}.
Where ε is the empty string, and ∧ is the ‘hole’ string
which also has length zero but it is different from ε

because it acts as a marker of the possible splice point for
the insertion of another string. Nonterminals that do not

include the ∧ string in their derivation are the ‘non-gapped
nonterminals’. Nonterminals that include the ∧ string in
their derivation are the gapped nonterminals.

• The set of productions P have the general form

P = {A → α | A ∈ V, α ∈ (V (I V )∗ ∪ T )∗}. (9)

Derivations are similar to those of context-free
grammars except that extra symbols I may appear
interspersed in between nonterminals V in the right-
hand side of the productions. We introduce the notation
I V = {iα | α ∈ V and i ∈ I }.

• The rearrangements R are of the general form,

R = {(γ ) →
R

m | γ ∈ (T ∪ I )∗, m ∈ T ∗}. (10)

The rearrangements are applied after the productions
P , when all the conventional nonterminals have
been eliminated. In the rearrangement rules the extra
symbols I are used to reorder the strings generated by
the productions (9). In the absence of extra symbols I ,
the ∧ empty string becomes equivalent to the ε empty
string.

• The language generated by this grammar L(G) is

L(G) = {m | m ∈ T ∗ such that S
∗⇒ γ

∗⇒
R

m,

for γ ∈ (T ∪ I )∗}. (11)

We say that α1
∗⇒ α2 if α2 can be derived from α1

in a finite number of derivations. Therefore, a string
belongs to L(G) if it consists only of terminals (extra
symbols are not allowed), and it can be generated from
the start nonterminal S.

In the particular case I = ∅, then α ∈ (V ∪ T )∗ in (9).
The rearrangement rules then turn into an identity, the
wedge string becomes equivalent to the empty string, and
the grammar becomes a standard context-free grammar.

In general, for unrestricted transitions A → α with α ∈
(V (I V )∗ ∪ T )∗ parsing using this grammar is non-trivial
and probably an NP-complete problem. The key to make
the grammar tractable is to realize that

(V (I V )∗ ∪ T )∗ = ∪∞
n=0(V (I V )n ∪ T )∗. (12)

If we truncate this infinite sum by using only the term of
lowest order (n = 0) we have again a context-free gram-
mar (A → α, α ∈ (V ∪ T )∗). For n > 0 we deviate
from a context-free grammar. The copy language grammar
presented in the previous section corresponds to truncat-
ing the infinite sum keeping only the first two terms (A →
α, α ∈ (V ∪ T )∗ ∪ (V I V ∪ T )∗) (with a specific set of
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extra symbols I = {(, ), ×}). For RNA pseudoknots, a spe-
cific grammar adhering to the same approximation is quite
adequate to describe a large number of pseudoknot struc-
tures. This restriction is equivalent to the one introduced in
Rivas and Eddy (1999) in the diagrammatic representation,
and corresponds to not allowing more than two gap matri-
ces to come together at a given time. For the specific case
of the RNA pseudoknot grammar (below) we have devel-
oped a recognition algorithm (Rivas and Eddy, 1999) that
works in polynomial time.

RNA pseudoknot grammar
The grammar to describe RNA pseudoknots has the fol-
lowing specifications:

• The grammar has the following nonterminals,

V = {W, WB, V ab, WH , V abcd
H , I S1, I S2}. (13)

W , WB , and V ab are non-gapped nonterminals.
WH and V abcd

H are the gapped nonterminals, for
a, b, c, d ∈ T . I S1 and I S2 are the nonterminals that
create hairpin loops and loops closed by two interac-
tions (stems, bulges and internal loops) respectively.

• The alphabet is the RNA alphabet

TRNA = {a, c, g, u}. (14)

• There are six extra symbols

I = {(, ), ×, ×L , ×R, ⊃}. (15)

These special nonterminals are specific for pseu-
doknots and model the different types of knotted
bifurcations present in RNA.

• Production rules.

The nonterminal W is the start nonterminal. [The
nonterminal WB has similar productions to W (just
substitute WB for W in the following recursions), but
it appears only in enclosed structures after a pair has
already been emitted (i.e. multiloops).] The production
rules for W are (excluding coaxials or danglings):

(16)

i j

W

−→

i j

siVsisjsj

∣
∣
∣
∣
∣ i j

i+1
siW

∣
∣
∣
∣
∣ i j

j-1
Wsj

∣
∣
∣
∣
∣

i jk k+1

W · W

∣
∣
∣
∣
∣

i j

WH × WH

,

where si ∈ T stands for the terminal (nucleotide)
emitted in position i .

V ab is the nonterminal we are at after a paired emission
a, b ∈ T has occurred. The production rules for
nonterminal V ab are,

(17)
i j

Vsisj

−→

i j

IS1

∣
∣
∣
∣
∣

i jk l

(IS2 ⊃ skVskslsl)

∣
∣
∣
∣
∣ i j

i+1 k j-1

WB · WB

∣
∣
∣
∣
∣

i j

WH × WH

.

WH and V abcd
H are nonterminals specific for pseudo-

knots and correspond to the gap matrices whx and vhx
described in Rivas and Eddy (1999). WH is the nonter-
minal that introduces pseudoknots, and its recursion is
given by

(18)

i jk l

WH

−→
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i jk l

(siV
sisjsksl
H sj ⊃ sk ∧ sl)

∣
∣
∣

i jk l

siWHsj

∣
∣
∣

i jk l

(WH ⊃ sk ∧ sl)

∣
∣
∣

i jk l

siWH

∣
∣
∣

i jk l

WHsj

∣
∣
∣

i jk l

(WH ⊃ sk∧)

∣
∣
∣

i jk l

(WH ⊃ ∧sl)

∣
∣
∣

i jk l

(WB ∧ WB)

∣
∣
∣

i jr k l

WB · WH

∣
∣
∣

i jr k l

(WH ⊃ WB∧)

∣
∣
∣

i jk l s

WH · WB

∣
∣
∣

i jk l s

(WH ⊃ ∧WB)

∣
∣
∣

i jr k l s

(WH ⊃ WH)

∣
∣
∣

i jkl

(WH × WH)

∣
∣
∣

i jk l

(WH ×R WH)

∣
∣
∣

i jk l

(WH ×L WH)

.

V abcd
H is the nonterminal we are in after emitting two

pairs a, b ∈ T and c, d ∈ T in a pseudoknot. The
recursion for nonterminal V abcd

H is

(19)
i jk l

Vsisjsksl
H

−→

i jk l

IS2

∣
∣
∣
∣
∣

i jm k l n

(Vsisjsmsn
H ⊃ smVsmsnsksl

H sn)

∣
∣
∣
∣
∣

i jk l

WH

.

Moreover, the RNA language requires nonterminals
to take care of length distributions for hairpin loops
(IS1s), and internal loops (bulges, stems, and internal
loops that we collect under the name of IS2s). For
the nonterminals required to take care of loop-length
distributions, we have for hairpin loops,

I S1 −→ ε | s1 | s1s2 | . . . | s1 . . . smaxloop. (20)

For stems, bulges and internal loops,

I S2 −→ ∧ | s1 · · · sk∧ | ∧s1 · · · sk |
s1 · · · si−1 ∧ si · · · sk, (21)

with 1 ≤ i ≤ k and 1 ≤ k ≤ maxloop.

• The rearrangement rules are

(m1 ∧ m′
1 × m2 ∧ m′

2) −→
R

m1m2 ∧ m′
1m′

2,

(m1 ∧ m′
1 ×L m2 ∧ m′

2) −→
R

m2m1m′
2 ∧ m′

1,

(m1 ∧ m′
1 ×R m2 ∧ m′

2) −→
R

m1 ∧ m2m′
1m′

2, (22)

(m1 ∧ m′
1 ⊃ m2 ∧ m′

2) −→
R

m1m2 ∧ m′
2m′

1,

for any sequence m1, m′
1, m2, and m′

2 ∈ T ∗.

A recognition algorithm for the grammar presented
here (with some additional features such as danglings
and coaxials) has been implemented in Rivas and Eddy
(1999) as a non-stochastic model using thermodynamic
parameters (Turner et al., 1987) to describe the different
transitions. The dynamic programming algorithm has a
time complexity of O(L6) and a storage complexity of
O(L4), for a RNA sequence of length L . The algorithm
is able to predict a large number of the RNA pseudoknots
found—either confirmed or proposed—in the literature
(Rivas and Eddy, 1999).

This RNA pseudoknot grammar also permits us to define
a probabilistic model similar to those that have been devel-
oped for context-free grammars (Eddy and Durbin, 1994).
In this way we can implement a full probabilistic model
for RNA folding with pseudoknots. The pseudoknot gram-
mar described here is also ambiguous (in the formal sense)
and, therefore, it is able to capture alternative secondary
structures when the parser is implemented as an Inside al-
gorithm (Searls, 1999).

Conclusion
Previously, we described a polynomial-time dynamic pro-
gramming algorithm for optimal RNA structure prediction
including pseudoknots. The RNA pseudoknot algorithm
was implemented in a non-stochastic form using free
energies to estimate the energetically optimal folding.
This recognition algorithm is more complicated than a
context-free parser, but a formal grammar associated with
the algorithm had not yet been developed. In this paper we
have specified such a grammar for RNA pseudoknots. We
have introduced a general grammar class (for which we do
not specify a parser), and a specific grammar instance that
corresponds to our RNA pseudoknot parsing algorithm.
The pseudoknot grammar has an equivalent diagrammatic
representation in terms of Feynman diagrams that provides
a systematic means for its implementation. With a formal
pseudoknot grammar in hand, it will be straightforward to
produce a stochastic version of the recognition algorithm
that would allow us to include pseudoknots in statistical
problems such as homology recognition and consensus
secondary structure prediction.

Acknowledgments
This work was supported by NIH grant HG01363. E.R.
acknowledges the support of a postdoctoral fellowship
granted by the Sloan foundation. We thank an anonymous
reviewer for detailed and useful comments.

References
Aho,A.V. (1968) Indexed grammars—an extension of context-free

grammars. J. ACM, 15, 647–671.

339



E.Rivas and S.R.Eddy

Abrahams,J.P., van der Berg,M., van Batenburg,E. and Pleij,C.W.A.
(1990) Prediction of RNA secondary structure, including pseu-
doknotting, by computer simulation. Nucl. Acids Res., 18, 3035–
3044.

Brown,M. and Wilson,C. (1996) RNA pseudoknot modeling using
intersections of stochastic context free grammars with applica-
tions to database search. Pacific Symposium on Biocomputing
1996.

Burke,D.H., Scates,L., Andrews,K. and Gold,L. (1996) Bent pseu-
doknots and novel RNA inhibitors of type 1 human immunod-
eficiency virus (HIV-1) reverse transcriptase. J. Mol. Biol., 264,
650–666.

Cary,R.B. and Stormo,G.D. (1995) Graph-theoretic approach to
RNA modeling using comparative data. In Rawlings,C. et
al., (eds), ISMB-95. AAAI Press, Menlo Park, CA, pp. 75–80.

Cech,T.R. (1993) Structure and mechanism of the large catalytic
RNAs: Group I and group II introns and ribonuclease P. In Geste-
land,R.F. and Atkins,J.F. (eds), The RNA World. Cold Spring Har-
bor Press, New York, pp. 239–270.

Chomsky,D. (1959) On certain formal properties of grammars. In-
form. Cont., 2, 137–176.

Durbin,R., Eddy,S.R., Krogh,A. and Mitchison,G.J. (1998) Biologi-
cal Sequence Analysis: Probabilistic Models of Proteins and Nu-
cleic Acids. Cambridge University Press, Cambridge, UK.

Eddy,S.R. and Durbin,R. (1994) RNA sequence analysis using co-
variance models. Nucl. Acids Res., 22, 2079–2088.
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