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Abstract. Concurrent compositions of recursive programs with finite
data are a natural abstraction model for concurrent programs. Since
reachability is undecidable for this class, a restricted form of reachabil-
ity has become popular in the formal verification literature, where the
set of states reached within k context-switches, for a fixed small con-
stant k, is explored. In this paper, we consider the language theory of
these models: concurrent recursive programs with finite data domains
that communicate using shared memory and work within k round-robin
rounds of context-switches, and where further the stack operations are
made visible (as in visibly pushdown automata). We show that the cor-
responding class of languages, for any fixed k, forms a robust subclass
of context-sensitive languages, closed under all the Boolean operations.
Our main technical contribution is to show that these automata are de-
terminizable as well. This is the first class we are aware of that includes
non-context-free languages, and yet has the above properties.

1 Introduction

Concurrent threads with recursive procedures that communicate using shared
memory is a natural and attractive model, as it models concurrent imperative
programs naturally. While message-passing is more common in the distributed
computing world where processes run on different machines, the advent of multi-
core computing has led to an increased interest in shared-memory programs.

In the methodology of model-checking for program verification, a common
paradigm is to analyze a program by verifying a model of it, where the model is
obtained by abstracting or simplifying the data-domain used by a program, but
preserving control flows accurately. Many program analysis frameworks, such
as data-flow analysis or predicate abstraction, fall under this category. Hence
concurrent recursive programs where variables range over a finite data-domain
are an attractive model of study.

The automata-theoretic model of a concurrent program with recursion and
shared-memory communication is simply an automaton with multiple stacks.
(Note that in such a model, the shared memory, and hence the communication
between processes, resides in the control state of the automaton.) Since Turing
machines can be simulated by an automaton with two stacks, the emptiness prob-
lem for these automata, and hence the model-checking problem, is undecidable.
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In order to overcome this barrier, a recent proposal is to search only the space
reached by these automata using a bounded number of context-switches. In other
words, we view the computation as occurring in k consecutive stages (for a fixed
constant k), where in each stage only one of the concurrent threads is active. This
restriction in the automaton model translates to restricting the computation to
k stages, where in each stage, only one of the stacks is manipulated. It turns out
that in this model the reachability problem is decidable (for any fixed k) [16].

The idea of checking and testing concurrent programs under a context-
switching bound has gained attention in recent years for several reasons. First,
there is an intuitive appeal that one expects most concurrency errors to manifest
themselves within a few context-switches. This has been argued fairly effectively
in recent experimental studies (see [14]). Second, the model-checking problem
for bounded context-switching is decidable [16], thus yielding exact algorithmic
methods to solve the reachability problem. And third, checking concurrent pro-
grams under a context-bound can be done compositionally— we can search the
state space by avoiding to build explicitly the product of local states of all au-
tomata, and instead work with only the space defined by a single thread and k
copies of shared variables. The last aspect is in fact a very appealing (and the
least articulated) aspect of bounded context-switching that has been exploited
in recent work: model-checking tools for concurrent Boolean programs have been
developed [8,12,17], and translations of concurrent programs to sequential pro-
grams have been developed that reduce bounded context-switching reachability
to sequential reachability, even for general C-programs [9,12]. In recent work,
the above translation has even been used to verify concurrent programs under a
context-bound using deductive verification tools for sequential software [11].

In this paper, we undertake a language and automata-theoretic study of the
concurrent programs with recursion under a context-switching bound. While
research has so far concentrated on the computation of reachable states, we
instead look at the class of languages accepted by these automata. In doing so,
we make the calls and returns to procedures in the concurrent program visible—
for sequential programs this yields the class of visibly pushdown automata [1],
which has been shown to define a robust class of context-free languages, and has
led to a flurry of research (see [19] for a list of papers in this area).

We consider automata with n stacks, where an execution goes through k
round-robin schedules of computation, i.e., a round is a fixed sequence of exactly
n contexts, one for each stack. In a context for a stack i, for i = 1, . . . , n, the
automaton can only read letters pertaining to stack i and manipulate stack i.

The visibility of actions on the stack immediately implies that the class of
languages is closed under union and intersection. Surprisingly, we show that the
nondeterministic and deterministic versions of these automata are equivalent.
The determinization construction is the key technical theorem in this paper,
and crucially uses the compositional reasoning of the automata using interfaces
of tuples of global states that we alluded to earlier. Determinizability gives us
closure under complement as well, and hence shows that the class of automata
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with k-rounds of round-robin scheduling is a robust class closed under all Boolean
operations.

The class of languages accepted by visibly multi-stack pushdown automata
with a bounded number of context-switching rounds is the only class we are
aware of that includes non-context-free languages, has a decidable emptiness
(and membership) problem, is closed under all Boolean operations, and is fur-
ther determinizable. (It is easy to see that this class is a subclass of context-
sensitive languages, i.e. languages accepted by nondeterministic Turing machines
with linear space). Note that standard complexity classes defined using resource
constraints seldom have a decidable emptiness problem (one can prove undecid-
ability by padding input).

We make several other observations regarding these automata. First, when
the automata are generalized to have no bound on the number of round-robins
of schedule, they are not determinizable. Second, it is well-known now that the
emptiness problem restricted to only the words that can be accepted up to a
bounded number of round-robins is decidable for these automata and in fact is
NP-complete [13,16]. Thus, from the closure under boolean operations, it follows
that universality and inclusion are decidable. Third, since these automata define
a subclass of bounded-phase multi-stack pushdown automata [10], it follows
that the Parikh theorem holds for the bounded context-switching class as well.
Further, we show that the monadic second-order logic on n-nested words with
k rounds, where the logic has n binary relations corresponding to the n nesting
relations on the word, corresponds exactly to the class of languages introduced
in this paper.

Notice that our results show that the k-round-robin executions of multi-stack
automata, which define a subclass of context-sensitive languages is determiniz-
able. In [10], we show that even if there is one phase where a 2-stack automaton
can push onto both stacks, followed by two phases where the automaton can pop
from one stack only in each phase, is non-determinizable. This one example of
non-determinizability rules out most natural extensions of multi-stack automata
(where restrictions are based only on the patterns of pushes and pops) from being
determinizable, and leads us to conjecture that considerably larger and deter-
minizable sub-classes of context-sensitive languages defined using multi-stack
nondeterministic automata are unlikely to exist.

In conclusion, the contribution of this paper is to exhibit a class of lan-
guages (those accepted by multi-stack automata with bounded rounds of context-
switches), the first that we are aware of, that includes certain non-context-free
languages, and has all the desirable properties that regular languages possess:
closure under Boolean operations, decidable problems of membership, emptiness,
and inclusion, determinizability and an MSO characterization.

Related Work: The classes of multi-stack automata studied in this paper are
proper subclasses of the multi-stack automata which work in a bounded number
of phases, where in each phase, symbols can be pushed into all stacks but popped
only from one stack [10]. Though the class of languages accepted by bounded
phase multi-stack automata is closed under all Boolean operations as well, such
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automata are not determinizable, while the class of automata we consider here
are. To the best of our knowledge, the class of automata we have introduced
in this paper is the first extension of visibly pushdown automata with multiple
stacks which is determinizable. [4] gives a wrong determinization construction for
2-stack visibly pushdown automata, which are indeed not determinizable (even if
the stacks usage is constrained such that pop operations on the second stack are
allowed only if the first stack is empty) as shown in [6]. Also, the class of 2-stack
visibly pushdown automata is in general not closed under complement [2], while
the answer is not known when such automata are constrained with an ordering
on the usage of stacks (the proof of such closure property given in [4] relied
on the determinizability of the model). Our determinization construction uses
tuples of global states to capture the points at which context-switching occurs,
similar to earlier papers [12,9] that reduce reachability in concurrent programs to
reachability in sequential programs. However, the determinizability result does
not follow from such conversions as the latter only preserve reachability, and not
language equivalence (after all, sequential programs with finite data domains
define only context-free languages). Besides the papers we have already cited,
bounded context-switching has also been exploited for systems with heaps [3],
systems communicating using queues [7], and weighted pushdown systems [13].

2 Multi-Stack Pushdown Automata

In this section we give the notation and definitions to introduce the model of
automata we will use in the rest of the paper.

Given two positive integers i and j, i ≤ j, we denote with [i, j] the set of
integers k with i ≤ k ≤ j, and with [j] the set [1, j].

An n-stack call-return alphabet is a tuple ˜Σn = 〈Σi
c, Σ

i
r, Σ

i
int〉ni=1 of pairwise

disjoint finite alphabets. For any i ∈ [n], Σi
c is a finite set of calls of stack i, Σi

r

is a finite set of returns of stack i, and Σi
int is a finite set of internal actions of

stack i. For any such ˜Σn, let

– Σi = Σi
c ∪ Σi

r ∪ Σi
int , for every i ∈ [n];

– Σc =
⋃n

i=1 Σi
c, Σr =

⋃n
i=1 Σi

r, and Σint =
⋃n

i=1 Σi
int ;

– Σ = Σc ∪ Σr ∪ Σint .

A multi-stack visibly pushdown automaton over such an alphabet must push
on stack i exactly one symbol when it reads a call of the i-th alphabet, and pop
exactly one symbol from stack i when it reads a return of the i-th alphabet.
Also, it cannot touch any stack when reading an internal symbol.

Definition 1. (Multi-stack visibly pushdown automaton) A multi-stack
visibly pushdown automaton (Mvpa) over the n-stack call-return alphabet ˜Σn =
〈Σi

c, Σ
i
r, Σ

i
int〉ni=1, is a tuple M = (Q, QI , Γ, δ, QF ) where Q is a finite set of

states, QI ⊆ Q is the set of initial states, Γ is a finite stack alphabet that
contains a special bottom-of-stack symbol ⊥, δ ⊆ (Q × Σc × Q × (Γ\ {⊥})) ∪
(Q × Σr × Γ × Q) ∪ (Q × Σint × Q), and QF ⊆ Q is the set of final states.
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Moreover, M is deterministic if |QI | = 1, and |{(q, a, q′) ∈ δ} ∪ {(q, a, q′, γ) ∈
δ} ∪ {(q, a, γ′, q′) ∈ δ}| ≤ 1, for every given q ∈ Q, a ∈ Σ and γ′ ∈ Γ .

Let us fix an n-stack alphabet ˜Σn for the rest of the paper.
A transition (q, a, q′, γ), for a ∈ Σi

c and γ 	=⊥, is a push-transition where on
input a, γ is pushed onto stack i and the control changes from q to q′. Similarly,
(q, a, γ, q′) for a ∈ Σi

r is a pop-transition where on input a, γ is read from the
top of stack i and popped (except for γ =⊥, which is never popped), and the
control changes from q to q′. A transition (q, a, q′), for a ∈ Σint , is an internal
transition where on input a the control changes from q to q′.

A stack content σ is a nonempty finite sequence over Γ where the bottom-of-
stack symbol ⊥ appears always in the end, i.e., σ ∈ (Γ \ {⊥})∗.{⊥}. A configu-
ration of an Mvpa M over ˜Σn is a tuple C = 〈q, σ1, . . . , σn〉, where q ∈ Q and
each σi is a stack content. Moreover, C is initial if q ∈ QI and σi =⊥ for every
i ∈ [n], and accepting if q ∈ QF . Transitions between configurations are defined
as follows: 〈q, σ1, . . . , σn〉 a−→M 〈q′, σ′

1, . . . , σ
′
n〉 if one of the following holds (M is

omitted whenever it is clear from the context):

[Push] If a ∈ Σi
c (i.e., a is a call of stack i), then ∃γ ∈ Γ \ {⊥} such that

(q, a, q′, γ) ∈ δ, σ′
i = γ · σi, and σ′

h = σh for every h ∈ ([n] \ {i}).
[Pop] If a ∈ Σi

r (i.e., a is a return of stack i), then ∃γ ∈ Γ such that (q, a, γ, q′) ∈
δ, σ′

h = σh for every h ∈ ([n] \ {i}), and either γ 	=⊥ and σi = γ · σ′
i, or

γ = σi = σ′
i =⊥.

[Internal] If a ∈ Σint, then (q, a, q′) ∈ δ, and σ′
h = σh for every h ∈ [n].

For a word w = a1 . . . am in Σ∗, a run of M on w from C0 to Cm, denoted
C0

w−→M Cm, is a sequence of transitions Ci−1
ai−→ Ci for i ∈ [m] where each Ci

is a configuration. A word w ∈ Σ∗ is accepted by an Mvpa M if there is an
initial configuration C and an accepting configuration C′ such that C

w−→M C′.
The language accepted by M is denoted with L(M).

A visibly pushdown automaton [1] is an Mvpa with just one stack.

Definition 2. (Visibly pushdown automaton) A visibly pushdown automa-
ton, denoted Vpa, is an Mvpa over ˜Σn with n = 1. A language over Σ accepted
by a Vpa is a visibly pushdown language. With Vpl we denote the class of
visibly pushdown languages.

2.1 Restricting to a Bounded Number of Rounds

A context over Σi, with i ∈ [n], is a word in (Σi)∗. A round over ˜Σn is a word w
of Σ∗ of the form w1w2 . . . wn where for each i ∈ [n], wi is a context over Σi. A
k-round word over ˜Σn is a word of Σ∗ that can be obtained as the concatenation
of k rounds over ˜Σn. Let Round( ˜Σn, k) denote the set of all the k-round words
over ˜Σn.
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Σ1
c = {a}, Σ1

r = {b}, Σ1
int = ∅, Σ2

c = {x}, Σ2
r = {y}, Σ2

int = ∅

A = ( 2, {qi|i ∈ [0, 5]}, {q0}, {#, $}, δ, {q5} )

δ = { (q0, a, q1, $), (q1, a, q1, #), (q1, x, q2, $), (q2, x, q2, #), (q2, b, #, q3),

(q3, b, #, q3), (q3, b, $, q4), (q2, b, $, q4), (q4, y, #, q4), (q4, y, $, q5) }

q0 q1 q2 q3 q4 q5
push(a, $) push(x, $) pop(b, #) pop(b, $) pop(y, $)

push(a, #) push(x, #) pop(b, #) pop(y, #)

pop(b, $)

Fig. 1. A 2–round Mvpa recognizing the language { at xs bt ys | t, s ≥ 1 }

Definition 3. (Multi-stackVisiblypushdownlanguageswithk-rounds)

For any k, a k-round multi-stack visibly pushdown automaton (k-round Mvpa)
over ˜Σn is a tupleA = (k, Q, QI , Γ, δ, QF )whereM = (Q, QI , Γ, δ, QF ) is anMvpa

over ˜Σn.Moreover,A is deterministic iffM is deterministic. The language accepted
by A is L(A) = L(M) ∩ Round( ˜Σn, k) and is called a k-round multi-stack visibly
pushdown language. The class of k-round multi-stack visibly pushdown languages
is denoted with k-Rvpl. The set

⋃

k≥1 k-Rvpl is denoted with Rvpl (the class of
multi-stack visibly pushdown languages with a bounded number of rounds).

Example 1. Figure 1 gives a formal definition of a 2–round Mvpa A over ˜Σ2

that accepts the language {atxsbtys |t, s ≥ 1}. (Note that this language is not
context-free and A is deterministic.) The automaton A checks whether the input
word has the form a+x+b+y+ using its control states. A starts in the control
state q0. When it reads the first call symbol a it pushes the symbol $ onto the
stack S1; for all the remaining a’s A pushes the symbol # onto S1. Stack S1 will
contain as many symbols as the number of read a’s. When the first call symbol
x of stack 2 is read a $ symbol is pushed onto stack S2, for the remaining x’s
the symbol # is pushed onto stack S2. As in the previous case, stack S2 will
contain as many symbols as the x’s which are read. Stack S1 is then popped for
each return symbol b until S1 is empty (read the symbol $). Then only return
symbols y can be read. Stack S2 is popped for each read y until it gets empty
(popping the symbol $). After that A moves into the accepting state q5. ��
The main result on Mvpas with a bounded number of rounds, that we show in
this paper, is that the class of languages accepted by the deterministic and the
nondeterministic models coincide. Notice that the boundedness of the number
of rounds is crucial in our proof. In fact, determinizability does not hold in gen-
eral for Mvpas. To see this consider the language L = {(ab)icjdi−jxjyi−j |i ∈
N, j ∈ [i]} over ˜Σ2 = (Σ1

c , Σ1
r , ∅, Σ2

c , Σ2
r , ∅), with Σ1

c = {a}, Σ1
r = {c, d}, Σ2

c =
{b}, Σ2

r = {x, y}. First, observe that since the number of occurrences of ab is
unbounded in L and a and b are from different stacks, this language contains
words with an unbounded number of rounds and thus cannot be accepted by a
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k-round Mvpa for any fixed k. Further, this language is accepted by a nonde-
terministic Mvpa which guesses nondeterministically the index j when pushing
symbols on reading a and b. However, it is not accepted by any deterministic
Mvpa, since a deterministic Mvpa would need an unbounded number of control
states to store the index j (see [10]). Nondeterminizability of Mvpa also follows
from the non-complementability of Mvpa [2]. Therefore, we have:

Theorem 1. The class of Mvpa is not closed under determinization.

3 Determinization of k-Round Mvpas

In this section we prove the main result of this paper: if A is a k-round Mvpa

over ˜Σn, then there exists a deterministic k-round Mvpa AD over ˜Σn such that
L(A) = L(AD).

Fix a k-round Mvpa A = (k, Q, QI , Γ, δ, QF ) over ˜Σn = 〈Σj
c , Σj

r , Σ
j
int〉nj=1

and a word w ∈ Round( ˜Σn, k).
For ease of presentation, in the rest of this section we assume that each context

of w is not empty. Also, we denote with w[i, j] the j-th context of the i-th round
in w, and with Aj , j ∈ [n], the Vpa (Q, QI , Γ, δ′, QF ) over 〈Σj

c , Σj
r , Σ

j
int〉 where

δ′ ⊆ δ is the set of all moves of δ on symbols of Σj (i.e., the Vpa which equals
A on the j-th stack).

The main idea behind our construction of AD is to look at the executions of A
on w as shown in Fig. 2. The automaton A is seen as a composition of the Aj ’s.
Initially A is in control state q〈1,1〉. Then, it starts the computation by passing
q〈1,1〉 to A1. A1 reads w[1, 1] and reaches a control state q′〈1,1〉 with stack content
σ〈1,1〉. At this point, A stops A1 and passes q〈1,2〉 = q′〈1,1〉 to A2. A2 reads w[1, 2]
and reaches a state q′〈1,2〉 with stack content σ〈1,2〉. And so on, from A3 through
An, until q′〈1,n〉 is reached. Now, A passes q〈2,1〉 = q′〈1,n〉 to A1. Since this is the
first time A1 is re-activated after reading w[1, 1], its stack (i.e., the first one) has
not changed in the meantime. Thus A1 starts now from control state q〈2,1〉 and
stack content σ〈1,1〉. Then, again by reading w[2, 1], A1 reaches a control state
q′〈2,1〉 and A2 is started from control state q〈2,2〉 = q′〈2,1〉 and stack content σ〈1,2〉,
and so on, until completion of the whole run.

The salient aspect in the above description is that each run of A on w can be
computed by running each Aj individually on w[1, j], . . . , w[k, j], provided that
q〈1,j〉, . . . , q〈k,j〉 are fed. Also, note that Aj computes a relation of state pairs
〈q〈i,j〉, q′〈i,j〉〉 which are connected by a run of Aj over words w[i, j] for i ∈ [k],
and thus, a relation of tuples 〈q〈i,j〉, q′〈i,j〉〉ki=1 corresponding to words 〈w[i, j]〉ki=1.
We call such tuples switching vectors. Note that the switching vectors store all
the information we need to stitch together the local runs of all Aj ’s in order to
build a global run of A.

This suggests the following scheme to construct AD. First, for each Aj , con-
struct a Vpa A′

j that computes the switching vectors corresponding to 〈w[i, j]〉ki=1

when reading w[1, j]# . . .#w[k, j]#, where # is a fresh internal symbol (com-
puted switching vectors are stored in the final states). Construct for each A′

j an
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q〈1,1〉

q〈2,1〉

q′〈1,1〉

q′〈2,1〉

q〈k,1〉 q′〈k,1〉

A1

q〈3,1〉

w[k, 1]

q〈1,2〉

q〈2,2〉

q′〈1,2〉

q′〈2,2〉

q〈k,2〉 q′〈k,2〉

A2

w[1, 2]

w[2, 2]

w[k, 2]

q〈1,n〉

q〈2,n〉

q′〈1,n〉

q′〈2,n〉

q〈k,n〉 q′〈k,n〉

An

w[1, n]

w[2, n]

w[k, n]

w[1, 1]

w[2, 1]

q〈1,3〉

q〈2,3〉

q′〈1,3〉

q′〈2,3〉

q〈k,3〉 q′〈k,3〉

A3

w[1, 3]

w[2, 3]

w[k, 3]

q′〈k−1,n〉

Fig. 2. Decomposition of a k-round Mvpa

equivalent deterministic Vpa AD
j , and then, AD by composing them such that:

(1) the states of AD are the cross product of the states of the AD
j ’s; (2) in each

context over Σj , except for the first symbol, only AD
j is executed, and on reading

the first symbol a of a context j +1 of a round i, AD
j is executed on input # and

AD
j+1 is executed on input a; (3) a word w is accepted if the computed switching

vectors for each AD
j can be composed according to a scheme such as in Fig. 2,

i.e., they form a sequence of compatible tuples.
The above sketched construction is formally addressed in the rest of this

section (more details are available in the Appendix). We start by defining the
switching vectors, and then construct the Vpa computing the switching vectors
for a given Vpa. We then define the concept of compatible tuples and prove that
acceptance of A can be checked by verifying the existence of a sequence of com-
patible switching vectors of A1, . . . , An. Finally, we construct AD by composing
the Vpas computing the switching vectors of A1, . . . , An and argue its soundness
and completeness.

3.1 Visibly Pushdown Automata Computing Switching-Vectors

Definition 4. (Switching Vectors) Let M be a Vpa over ˜Σ1 with set of
control states Q, and u = 〈ui〉ki=1 be a tuple of k words in Σ∗. The tuple V =
〈 (qi, q′i) 〉ki=1 ∈ (Q × Q)k, is a switching-vector of M with respect to u if there
exist k pairs of M configurations 〈(Ci, C

′
i)〉ki=1, with Ci = 〈qi, σi〉 and C′

i =
〈q′i, σ′

i〉, such that (1) σ1 =⊥, (2) σ′
i = σi+1, for every i ∈ [k−1] (3) Ci

ui−→M C′
i,

for every i ∈ [k].

In the next lemma we prove the existence of a Vpa T , called switching automaton,
that computes switching-vectors of a given Vpa.

Lemma 1. (Switching Automata) Let M be a Vpa over 〈Σc, Σr, Σint 〉, and
let # be a fresh symbol not in Σ. Then, there exists a nondeterministic Vpa T
over 〈Σc, Σr, Σint ∪ {#}〉 such that V is a switching-vector of M with respect
to 〈ui〉ki=1 ∈ Σk iff while reading the word u1#u2# . . . #uk#, T enters a state
which contains V (denoted as 〈V 〉).
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Sketch of the Proof. The idea behind the construction of the Vpa T is the
following. T nondeterministically guesses, in its initial state, a switching-vector
V = 〈 (qi, q′i) 〉ki=1 ∈ (Q × Q)k and then simulates M on all the non-# symbols.
In doing this, besides the current control state of M , T also keeps track of the
index i of the current word ui which it is reading. Whenever T reads the symbol
#, it changes the control state of M according to the guessed V : if T reads the
i-th #, and q′i is the state of M before reading #, then T changes the state
of M from q′i to qi+1, with an internal move on #, thus matching the guessed
switching-vector. In the end, when T reads the last # (the k-th one) and the
control state of M is q′k, then T moves into a final state 〈V 〉. ��

3.2 Compatible Tuples

Definition 5. (Compatible Tuples) Let Vj = 〈 (q〈i,j〉, q′〈i,j〉) 〉ki=1 for j ∈ [n],
a sequence of compatible tuples V1, V2, . . . , Vn is such that

– q′〈i,j〉 = q〈i,j+1〉, for every i ∈ [k], j ∈ [n − 1], and
– q′〈i,n〉 = q〈i+1,1〉, for every i ∈ [k − 1].

The following lemma is used in the next section to argue soundness and complete-
ness of the determinization construction. It relates the acceptance of a word by
a k-round Mvpa to the existence of a sequence of compatible switching-vectors.

Lemma 2. Let w ∈ Round( ˜Σn, k), A = (k, Q, QI , Γ, δ, QF ) be a k-round Mvpa

over ˜Σn, and wj = 〈w[i, j]〉ki=1, for j ∈ [n]. The word w ∈ L(A) iff for each
j ∈ [n], there exists a switching-vector Vj = 〈 (q〈i,j〉, q′〈i,j〉) 〉ki=1 of the Vpa Aj

with respect to wj such that V1, V2, . . . , Vn is a sequence of compatible tuples,
q〈1,1〉 ∈ QI , and q〈k,n〉 ∈ QF .

3.3 Determinization of k-Round Mvpas

Theorem 2. (Determinizability) If A is a k-round Mvpa over ˜Σn, then
there exists a deterministic k-round Mvpa AD over ˜Σn such that L(A) = L(AD).
Moreover, the size of AD is doubly exponential in the number of rounds, and
singly exponential in the number of stacks and the number of states of A.

Proof. For j ∈ [n], let Tj be a switching automaton which accepts the same
language as Aj and is constructed according to Lemma 1, and Sj be the deter-
ministic Vpa such that L(Sj) = L(Tj) which is obtained via the construction
given in [1]. Thus, a state of Sj contains the set of reachable control states of
Tj. From the definition of Tj, it is easy to see that the Sj state reached on input
u1#u2# . . .#uk# is the set of all the switching-vectors of Aj with respect to
〈ui〉ki=1 ∈ Σk.

The idea behind the construction of AD is the following. AD simulates each Sj ,
by keeping track of the control state of every Sj . The entire simulation mimics
the schema shown in Fig. 2. After the input word w is completely read, AD
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reaches a state storing the set of all switching-vectors of each Aj . The states of
AD which contain a sequence of compatible tuples are defined final. Thus, from
Lemma 2, AD accepts the input word w if and only if A also does.

An issue that has to be addressed in the simulation of all Sj is the following.
Let w be the input word of A. Sj needs to read a symbol # when a context-
switch happens, i.e., at the end of each context j of each round. Thus, the idea
is to simulate the move on # meanwhile AD processes the first symbol of the
next context. This solves the problem for all the occurrences of # but the last
one (no other context follows). Thus, for the simulation of Sn in the last round,
we keep a pair (q, q#) where q is the current state of Sn in the simulation, and
q# is the state computed from q by applying the transition on #. Thus, q is used
to simulate the moves of Sn, and q# is considered only for acceptance. ��

4 Discussion

The class of languages studied in this paper is closely related to the class of
bounded-phase MVPAs studied in [10]; using this relationship, we can derive
many properties for Rvpls. Intuitively, a phase is a stage of computation of a
multi-stack automaton where push actions are allowed on all stacks while pop
actions are allowed only on one (hence phases generalize contexts).

Mvpa with a bounded number of phases. Given a word w ∈ Σ∗, we denote
with Ret(w) the set of all returns in w. A word w is a phase if Ret(w) ⊆ Σi

r,
for some i ∈ [n]. For any k, a k-phase word is a word w ∈ Σ∗ such that w can
be factorized as w = w1w2 . . . wk′ where k′ ≤ k and wh is a phase, for every
h ∈ [k′]. With Phases( ˜Σn, k) we denote the set of all k-phase words over ˜Σn.

For any k, a k-phase multi-stack visibly pushdown automaton (k-phase Mvpa)
over ˜Σn is a tuple A = (k, Q, QI , Γ, δ, QF ) where M = (Q, QI , Γ, δ, QF ) is an
Mvpa over ˜Σn. The language accepted by A is L(A) = L(M) ∩ Phases( ˜Σn, k).
The class of languages accepted by k-phase Mvpas is denoted with k-Pvpl, and
the set

⋃

k>0 k-Pvpl is denoted with Pvpl (the class of all languages accepted
by a k-phase Mvpa for some k).

Theorem 3 ([10]). Let k be any positive integer. k-Pvpls are closed under
union, intersection, and complement. The membership, emptiness, inclusion,
equivalence, and universality problems are decidable for k-Pvpls. k-Pvpls are
not determinizable.

The notion of phase is less restrictive than the notion of context, i.e., a context
is a phase, and hence a round of context-switching can be simulated using a
bounded number of phases. Hence:

Lemma 3. Let the number of stacks be n. Then k-Rvpl ⊂ (k · n)-Pvpl and
Rvpl ⊂ Pvpl.

Closure properties and decision problems. Closure under union and inter-
section of k-Rvpl can be shown with standard constructions, and decidability
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Closure properties Decision Problems
∪ ∩ Compl. Determ. Emptiness Univ./ Equiv./Incl.

Reg. Yes Yes Yes Yes Nlog-c Pspace-c

Vpl Yes Yes Yes Yes Ptime-c Exptime-c

CFL Yes No No No Ptime-c Undecidable
Rvpl Yes Yes Yes Yes NP-c 2Exptime
Pvpl Yes Yes Yes No 2Etime-c 3Exptime

2Exptime-hard

CSL Yes Yes Yes Unknown Undecidable Undecidable

Fig. 3. Summary of main closure properties and decision problems

of decision problems such as membership and emptiness can be inherited from
k-Pvpl. Notice that since complementation of k-Rvpl is defined with respect
to words with bounded rounds of context-switching, closure under complement
does not immediately follow from closure under complement for k-Pvpl. How-
ever, closure under complement for k-Rvpl follows from determinizability of the
corresponding class of automata. Therefore, we get the following results:

Theorem 4. Let k be any positive integer. k-Rvpls are closed under union, in-
tersection, and complement. The membership, emptiness, inclusion, equivalence,
and universality problems are decidable for k-Rvpls.

The table in Figure 3 summarizes the closure properties and decision problems
for CSLs, CFLs, Vpls, Pvpls, Rvpls, and regular languages (see [1] for Vpls,
and [5] for CSLs,CFLs and regular languages). In the table, Nlog-c stands for
Nlog-complete, and so on.
Parikh Theorem. The Parikh mapping Φ(w), introduced by Parikh [15], as-
sociates a word with the vector of natural numbers that reflect the number of
occurrences of the symbols in the word. This mapping extends to languages in
the natural way. Since a Parikh theorem holds for k-phase Mvpas [10], from
Lemma 3 we get:

Corollary 1. For every Rvpl L over ˜Σn, there exists a regular language L′

over Σ such that Φ(L′) = Φ(L). Moreover, L′ can be effectively computed.

ALogicalCharacterization. Consider the monadic second-order logic (MSOμ)
over ˜Σn defined by:

ϕ := Pa(x)|x ∈ X |x ≤ y|μj(x, y)|¬ϕ|ϕ ∨ ϕ|∃xϕ|∃Xϕ

where j ∈ [n], a ∈ Σ, x, y are a first-order variables and X is a set variable [10].
The models are words over Σ. Each of the n binary relations μj (j ∈ [n]) is

interpreted as the nested matching relation of calls and returns of Σj . We denote
with Rk(ϕ) the set of all words of Round( ˜Σn, k) that satisfy a sentence ϕ. By
standard techniques that convert MSO to automata (given that the automata
are closed under boolean operations and projection), we get (see [18]):

Theorem 5. A language L is a k-Rvpl over ˜Σn iff there is an MSOμ sentence
ϕ over ˜Σn with Rk(ϕ) = L.
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