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Preface

The Laplace transform is a wonderful tool for solving ordinary and

partial differential equations and has enjoyed much success in this

realm. With its success, however, a certain casualness has been bred

concerning its application, without much regard for hypotheses and

when they are valid. Even proofs of theorems often lack rigor, and

dubious mathematical practices are not uncommon in the literature

for students.

In the present text, I have tried to bring to the subject a certain

amount of mathematical correctness and make it accessible to un-

dergraduates. To this end, this text addresses a number of issues that

are rarely considered. For instance, when we apply the Laplace trans-

form method to a linear ordinary differential equation with constant

coefficients,

any
(n) + an−1y

(n−1) + · · · + a0y � f (t),

why is it justified to take the Laplace transform of both sides of

the equation (Theorem A.6)? Or, in many proofs it is required to

take the limit inside an integral. This is always frought with danger,

especially with an improper integral, and not always justified. I have

given complete details (sometimes in the Appendix) whenever this

procedure is required.
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Furthermore, it is sometimes desirable to take the Laplace trans-

form of an infinite series term by term. Again it is shown that

this cannot always be done, and specific sufficient conditions are

established to justify this operation.

Another delicate problem in the literature has been the applica-

tion of the Laplace transform to the so-called Dirac delta function.

Except for texts on the theory of distributions, traditional treatments

are usually heuristic in nature. In the present text we give a new and

mathematically rigorous account of the Dirac delta function based

upon the Riemann–Stieltjes integral. It is elementary in scope and

entirely suited to this level of exposition.

One of the highlights of the Laplace transform theory is the

complex inversion formula, examined in Chapter 4. It is the most so-

phisticated tool in the Laplace transform arsenal. In order to facilitate

understanding of the inversion formula and its many subsequent

applications, a self-contained summary of the theory of complex

variables is given in Chapter 3.

On the whole, while setting out the theory as explicitly and

carefully as possible, the wide range of practical applications for

which the Laplace transform is so ideally suited also receive their

due coverage. Thus I hope that the text will appeal to students of

mathematics and engineering alike.

Historical Summary. Integral transforms date back to the work of

Léonard Euler (1763 and 1769), who considered them essentially in

the form of the inverse Laplace transform in solving second-order,

linear ordinary differential equations. Even Laplace, in his great

work, Théorie analytique des probabilités (1812), credits Euler with

introducing integral transforms. It is Spitzer (1878) who attached

the name of Laplace to the expression

y �
∫ b

a

esxφ(s) ds

employed by Euler. In this form it is substituted into the differential

equation where y is the unknown function of the variable x.

In the late 19th century, the Laplace transform was extended to

its complex form by Poincaré and Pincherle, rediscovered by Petzval,
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and extended to two variables by Picard, with further investigations

conducted by Abel and many others.

The first application of the modern Laplace transform occurs in

the work of Bateman (1910), who transforms equations arising from

Rutherford’s work on radioactive decay

dP

dt
� −λiP,

by setting

p(x) �
∫ ∞

0

e−xtP(t) dt

and obtaining the transformed equation. Bernstein (1920) used the

expression

f (s) �
∫ ∞

0

e−suφ(u) du,

calling it the Laplace transformation, in his work on theta functions.

The modern approach was given particular impetus by Doetsch in

the 1920s and 30s; he applied the Laplace transform to differential,

integral, and integro-differential equations. This body of work cul-

minated in his foundational 1937 text, Theorie und Anwendungen der

Laplace Transformation.

No account of the Laplace transformation would be complete

without mention of the work of Oliver Heaviside, who produced

(mainly in the context of electrical engineering) a vast body of

what is termed the “operational calculus.” This material is scattered

throughout his three volumes, Electromagnetic Theory (1894, 1899,

1912), and bears many similarities to the Laplace transform method.

Although Heaviside’s calculus was not entirely rigorous, it did find

favor with electrical engineers as a useful technique for solving

their problems. Considerable research went into trying to make the

Heaviside calculus rigorous and connecting it with the Laplace trans-

form. One such effort was that of Bromwich, who, among others,

discovered the inverse transform

X(t) �
1

2πi

∫ γ+i∞

γ−i∞
etsx(s) ds

for γ lying to the right of all the singularities of the function x.
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1
C H A P T E R

...........................................

Basic
Principles

Ordinary and partial differential equations describe the way certain

quantities vary with time, such as the current in an electrical circuit,

the oscillations of a vibrating membrane, or the flow of heat through

an insulated conductor. These equations are generally coupled with

initial conditions that describe the state of the system at time t � 0.

A very powerful technique for solving these problems is that of

the Laplace transform, which literally transforms the original differ-

ential equation into an elementary algebraic expression. This latter

can then simply be transformed once again, into the solution of the

original problem. This technique is known as the “Laplace transform

method.” It will be treated extensively in Chapter 2. In the present

chapter we lay down the foundations of the theory and the basic

properties of the Laplace transform.

1.1 The Laplace Transform

Suppose that f is a real- or complex-valued function of the (time)

variable t > 0 and s is a real or complex parameter. We define the

1



1. Basic Principles2

Laplace transform of f as

F(s) � L
(

f (t)
)

�
∫ ∞

0

e−stf (t) dt

� lim
τ→∞

∫ τ

0

e−stf (t) dt (1.1)

whenever the limit exists (as a finite number). When it does, the

integral (1.1) is said to converge. If the limit does not exist, the integral

is said to diverge and there is no Laplace transform defined for f . The

notation L(f ) will also be used to denote the Laplace transform of

f , and the integral is the ordinary Riemann (improper) integral (see

Appendix).

The parameter s belongs to some domain on the real line or in

the complex plane. We will choose s appropriately so as to ensure

the convergence of the Laplace integral (1.1). In a mathematical and

technical sense, the domain of s is quite important. However, in a

practical sense, when differential equations are solved, the domain

of s is routinely ignored. When s is complex, we will always use the

notation s � x + iy.

The symbol L is the Laplace transformation, which acts on

functions f � f (t) and generates a new function, F(s) � L
(

f (t)
)

.

Example 1.1. If f (t) ≡ 1 for t ≥ 0, then

L
(

f (t)
)

�
∫ ∞

0

e−st1 dt

� lim
τ→∞

(

e−st

−s

∣

∣

∣

∣

τ

0

)

� lim
τ→∞

(

e−sτ

−s
+

1

s

)

(1.2)

�
1

s

provided of course that s > 0 (if s is real). Thus we have

L(1) �
1

s
(s > 0). (1.3)
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If s ≤ 0, then the integral would diverge and there would be no re-

sulting Laplace transform. If we had taken s to be a complex variable,

the same calculation, with Re(s) > 0, would have given L(1) � 1/s.

In fact, let us just verify that in the above calculation the integral

can be treated in the same way even if s is a complex variable. We

require the well-known Euler formula (see Chapter 3)

eiθ � cos θ + i sin θ, θ real, (1.4)

and the fact that |eiθ| � 1. The claim is that (ignoring the minus sign

as well as the limits of integration to simplify the calculation)
∫

est dt �
est

s
, (1.5)

for s � x + iy any complex number �� 0. To see this observe that
∫

est dt �
∫

e(x+iy)tdt

�
∫

ext cos yt dt + i

∫

ext sin yt dt

by Euler’s formula. Performing a double integration by parts on both

these integrals gives
∫

estdt �
ext

x2 + y2

[

(x cos yt + y sin yt) + i(x sin yt − y cos yt)
]

.

Now the right-hand side of (1.5) can be expressed as

est

s
�

e(x+iy)t

x + iy

�
ext(cos yt + i sin yt)(x − iy)

x2 + y2

�
ext

x2 + y2

[

(x cos yt + y sin yt) + i(x sin yt − y cos yt)
]

,

which equals the left-hand side, and (1.5) follows.

Furthermore, we obtain the result of (1.3) for s complex if we

take Re(s) � x > 0, since then

lim
τ→∞

|e−sτ | � lim
τ→∞

e−xτ � 0,
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killing off the limit term in (1.3).

Let us use the preceding to calculate L(cos ωt) and L(sin ωt)

(ω real).

Example 1.2. We begin with

L(eiωt) �
∫ ∞

0

e−steiωtdt

� lim
τ→∞

e(iω−s)t

iω − s

∣

∣

∣

∣

τ

0

�
1

s − iω
,

since limτ→∞ |eiωτe−sτ | � limτ→∞ e−xτ � 0, provided x � Re(s) >

0. Similarly, L(e−iωt) � 1/(s + iω). Therefore, using the linearity

property of L, which follows from the fact that integrals are linear

operators (discussed in Section 1.6),

L(eiωt) + L(e−iωt)

2
� L

(

eiωt + e−iωt

2

)

� L(cos ωt),

and consequently,

L(cos ωt) �
1

2

(

1

s − iω
+

1

s + iω

)

�
s

s2 + ω2
. (1.6)

Similarly,

L(sin ωt) �
1

2i

(

1

s − iω
−

1

s + iω

)

�
ω

s2 + ω2

(

Re(s) > 0
)

.

(1.7)

The Laplace transform of functions defined in a piecewise

fashion is readily handled as follows.

Example 1.3. Let (Figure 1.1)

f (t) �

{

t 0 ≤ t ≤ 1

1 t > 1.
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t

f�t�

O �

�

FIGURE 1.1

From the definition,

L
(

f (t)
)

�
∫ ∞

0

e−stf (t) dt

�
∫ 1

0

te−stdt + lim
τ→∞

∫ τ

1

e−stdt

�
te−st

−s

∣

∣

∣

∣

1

0

+
1

s

∫ 1

0

e−stdt + lim
τ→∞

e−st

−s

∣

∣

∣

∣

τ

1

�
1 − e−s

s2

(

Re(s) > 0
)

.

Exercises 1.1

1. From the definition of the Laplace transform, compute L
(

f (t)
)

for

(a) f (t) � 4t (b) f (t) � e2t

(c) f (t) � 2 cos 3t (d) f (t) � 1 − cos ωt

(e) f (t) � te2t (f) f (t) � et sin t

(g) f (t) �
{

1 t ≥ a

0 t < a
(h) f (t) �







sin ωt 0 < t <
π

ω

0
π

ω
≤ t
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(i) f (t) �
{

2 t ≤ 1

et t > 1.

2. Compute the Laplace transform of the function f (t) whose graph

is given in the figures below.

t

f�t�

O

�

�

�a�

t

f�t�

�

O � �

�b�

FIGURE E.1 FIGURE E.2

1.2 Convergence

Although the Laplace operator can be applied to a great many

functions, there are some for which the integral (1.1) does not

converge.

Example 1.4. For the function f (t) � e(t2),

lim
τ→∞

∫ τ

0

e−stet2

dt � lim
τ→∞

∫ τ

0

et2−stdt � ∞

for any choice of the variable s, since the integrand grows without

bound as τ → ∞.

In order to go beyond the superficial aspects of the Laplace trans-

form, we need to distinguish two special modes of convergence of

the Laplace integral.

The integral (1.1) is said to be absolutely convergent if

lim
τ→∞

∫ τ

0

|e−stf (t)| dt

exists. If L
(

f (t)
)

does converge absolutely, then
∣

∣

∣

∣

∣

∫ τ′

τ

e−stf (t) dt

∣

∣

∣

∣

∣

≤
∫ τ′

τ

|e−stf (t)|dt → 0
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as τ → ∞, for all τ′ > τ. This then implies that L
(

f (t)
)

also converges

in the ordinary sense of (1.1).∗

There is another form of convergence that is of the utmost im-

portance from a mathematical perspective. The integral (1.1) is said

to converge uniformly for s in some domain � in the complex plane if

for any ε > 0, there exists some number τ0 such that if τ ≥ τ0, then
∣

∣

∣

∣

∫ ∞

τ

e−stf (t) dt

∣

∣

∣

∣

< ε

for all s in �. The point here is that τ0 can be chosen sufficiently

large in order to make the “tail” of the integral arbitrarily small,

independent of s.

Exercises 1.2

1. Suppose that f is a continuous function on [0, ∞) and |f (t)| ≤
M < ∞ for 0 ≤ t < ∞.

(a) Show that the Laplace transform F(s) � L
(

f (t)
)

con-

verges absolutely (and hence converges) for any s satisfying

Re(s) > 0.

(b) Show that L
(

f (t)
)

converges uniformly if Re(s) ≥ x0 > 0.

(c) Show that F(s) � L
(

f (t)
)

→ 0 as Re(s) → ∞.

2. Let f (t) � et on [0, ∞).

(a) Show that F(s) � L(et) converges for Re(s) > 1.

(b) Show that L(et) converges uniformly if Re(s) ≥ x0 > 1.

∗Convergence of an integral
∫ ∞

0

ϕ(t) dt

is equivalent to the Cauchy criterion:

∫ τ′

τ

ϕ(t)dt → 0 as τ → ∞, τ ′ > τ.
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(c) Show that F(s) � L(et) → 0 as Re(s) → ∞.

3. Show that the Laplace transform of the function f (t) � 1/t, t > 0

does not exist for any value of s.

1.3 Continuity Requirements

Since we can compute the Laplace transform for some functions and

not others, such as e(t2), we would like to know that there is a large

class of functions that do have a Laplace tranform. There is such a

class once we make a few restrictions on the functions we wish to

consider.

Definition 1.5. A function f has a jump discontinuity at a point

t0 if both the limits

lim
t→t−0

f (t) � f (t−0 ) and lim
t→t+0

f (t) � f (t+0 )

exist (as finite numbers) and f (t−0 ) �� f (t+0 ). Here, t → t−0 and t → t+0
mean that t → t0 from the left and right, respectively (Figure 1.2).

Example 1.6. The function (Figure 1.3)

f (t) �
1

t − 3

t

f�t�

O t�

f�t�
�
�

f�t�� �

FIGURE 1.2
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t

f�t�

�O

FIGURE 1.3

t

f�t�

O

�

FIGURE 1.4

has a discontinuity at t � 3, but it is not a jump discontinuity since

neither limt→3− f (t) nor limt→3+ f (t) exists.

Example 1.7. The function (Figure 1.4)

f (t) �

{

e− t2

2 t > 0

0 t < 0

has a jump discontinuity at t � 0 and is continuous elsewhere.

Example 1.8. The function (Figure 1.5)

f (t) �

{

0 t < 0

cos 1
t

t > 0

is discontinuous at t � 0, but limt→0+ f (t) fails to exist, so f does not

have a jump discontinuity at t � 0.
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t

f�t�

O

�

�� FIGURE 1.5

t

f�t�

O �� �� �� �� �� b

FIGURE 1.6

The class of functions for which we consider the Laplace

transform defined will have the following property.

Definition 1.9. A function f is piecewise continuous on the in-

terval [0, ∞) if (i) limt→0+ f (t) � f (0+) exists and (ii) f is continuous

on every finite interval (0, b) except possibly at a finite number

of points τ1, τ2, . . . , τn in (0, b) at which f has a jump discontinuity

(Figure 1.6).

The function in Example 1.6 is not piecewise continuous on

[0, ∞). Nor is the function in Example 1.8. However, the function

in Example 1.7 is piecewise continuous on [0, ∞).

An important consequence of piecewise continuity is that on

each subinterval the function f is also bounded. That is to say,

|f (t)| ≤ Mi, τi < t < τi+1, i � 1, 2, . . . , n − 1,

for finite constants Mi.
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In order to integrate piecewise continuous functions from 0 to b,

one simply integrates f over each of the subintervals and takes the

sum of these integrals, that is,

∫ b

0

f (t) dt �
∫ τ1

0

f (t) dt +
∫ τ2

τ1

f (t) dt + · · · +
∫ b

τn

f (t) dt.

This can be done since the function f is both continuous and

bounded on each subinterval and thus on each has a well-defined

(Riemann) integral.

Exercises 1.3

Discuss the continuity of each of the following functions and locate

any jump discontinuities.

1. f (t) �
1

1 + t

2. g(t) � t sin
1

t
(t �� 0)

3. h(t) �







t t ≤ 1

1

1 + t2
t > 1

4. i(t) �







sinh t

t
t �� 0

1 t � 0

5. j(t) �
1

t
sinh

1

t
(t �� 0)

6. k(t) �







1 − e−t

t
t �� 0

0 t � 0

7. l(t) �

{

1 2na ≤ t < (2n + 1)a

−1 (2n + 1)a ≤ t < (2n + 2)a
a > 0, n � 0, 1, 2, . . .

8. m(t) �
[

t

a

]

+1, for t ≥ 0, a > 0, where [x] � greatest integer ≤ x.
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1.4 Exponential Order

The second consideration of our class of functions possessing a well-

defined Laplace transform has to do with the growth rate of the

functions. In the definition

L
(

f (t)
)

�
∫ ∞

0

e−stf (t) dt,

when we take s > 0
(

or Re(s) > 0
)

, the integral will converge as long

as f does not grow too rapidly. We have already seen by Example 1.4

that f (t) � et2

does grow too rapidly for our purposes. A suitable rate

of growth can be made explicit.

Definition 1.10. A function f has exponential order α if there

exist constants M > 0 and α such that for some t0 ≥ 0,

|f (t)| ≤ M eαt, t ≥ t0.

Clearly the exponential function eat has exponential order α � a,

whereas tn has exponential order α for any α > 0 and any n ∈ N

(Exercises 1.4, Question 2), and bounded functions like sin t, cos t,

tan−1 t have exponential order 0, whereas e−t has order −1. How-

ever, et2

does not have exponential order. Note that if β > α, then

exponential order α implies exponential order β, since eαt ≤ eβt,

t ≥ 0. We customarily state the order as the smallest value of α that

works, and if the value itself is not significant it may be suppressed

altogether.

Exercises 1.4

1. If f1 and f2 are piecewise continuous functions of orders α and

β, respectively, on [0, ∞), what can be said about the continuity

and order of the functions

(i) c1f1 + c2f2, c1, c2 constants,

(ii) f · g?

2. Show that f (t) � tn has exponential order α for any α > 0, n ∈ N.

3. Prove that the function g(t) � et2

does not have exponential order.



1.5. The Class L 13

1.5 The Class L

We now show that a large class of functions possesses a Laplace

transform.

Theorem 1.11. If f is piecewise continuous on [0, ∞) and of exponen-

tial order α, then the Laplace transform L(f ) exists for Re(s) > α and

converges absolutely.

Proof. First,

|f (t)| ≤ M1 eαt, t ≥ t0,

for some real α. Also, f is piecewise continuous on [0, t0] and hence

bounded there (the bound being just the largest bound over all the

subintervals), say

|f (t)| ≤ M2, 0 < t < t0.

Since eαt has a positive minimum on [0, t0], a constant M can be

chosen sufficiently large so that

|f (t)| ≤ M eαt, t > 0.

Therefore,

∫ τ

0

|e−stf (t)|dt ≤ M

∫ τ

0

e−(x−α)tdt

�
M e−(x−α)t

−(x − α)

∣

∣

∣

∣

τ

0

�
M

x − α
−

M e−(x−α)τ

x − α
.

Letting τ → ∞ and noting that Re(s) � x > α yield

∫ ∞

0

|e−stf (t)|dt ≤
M

x − α
. (1.8)

Thus the Laplace integral converges absolutely in this instance (and

hence converges) for Re(s) > α. ✷
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Example 1.12. Let f (t) � eat, a real. This function is continuous

on [0, ∞) and of exponential order a. Then

L(eat) �
∫ ∞

0

e−steatdt

�
∫ ∞

0

e−(s−a)tdt

�
e−(s−a)t

−(s − a)

∣

∣

∣

∣

∞

0

�
1

s − a

(

Re(s) > a
)

.

The same calculation holds for a complex and Re(s) > Re(a).

Example 1.13. Applying integration by parts to the function f (t) �
t (t ≥ 0), which is continuous and of exponential order, gives

L(t) �
∫ ∞

0

t e−stdt

�
−t e−st

s

∣

∣

∣

∣

∞

0

+
1

s

∫ ∞

0

e−stdt

�
1

s
L(1)

(

provided Re(s) > 0
)

�
1

s2
.

Performing integration by parts twice as above, we find that

L(t2) �
∫ ∞

0

e−stt2dt

�
2

s3

(

Re(s) > 0
)

.

By induction, one can show that in general,

L(tn) �
n!

sn+1

(

Re(s) > 0
)

(1.9)

for n � 1, 2, 3, . . . . Indeed, this formula holds even for n � 0, since

0! � 1, and will be shown to hold even for non-integer values of n

in Section 2.1.

Let us define the class L as the set of those real- or complex-

valued functions defined on the open interval (0, ∞) for which the
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Laplace transform (defined in terms of the Riemann integral) exists

for some value of s. It is known that whenever F(s) � L
(

f (t)
)

exists

for some value s0, then F(s) exists for all s with Re(s) > Re(s0), that

is, the Laplace transform exists for all s in some right half-plane (cf.

Doetsch [2], Theorem 3.4). By Theorem 1.11, piecewise continuous

functions on [0, ∞) having exponential order belong to L. However,

there certainly are functions in L that do not satisfy one or both of

these conditions.

Example 1.14. Consider

f (t) � 2t et2

cos(et2

).

Then f (t) is continuous on [0, ∞) but not of exponential order.

However, the Laplace transform of f (t),

L
(

f (t)
)

�
∫ ∞

0

e−st2t et2

cos(et2

)dt,

exists, since integration by parts yields

L
(

f (t)
)

� e−st sin(et2

)
∣

∣

∣

∞

0
+ s

∫ ∞

0

e−st sin(et2

) dt

� − sin(1) + s L
(

sin(et2

)
) (

Re(s) > 0
)

.

and the latter Laplace transform exists by Theorem 1.11. Thus we

have a continuous function that is not of exponential order yet

nevertheless possesses a Laplace transform. See also Remark 2.8.

Another example is the function

f (t) �
1

√
t
. (1.10)

We will compute its actual Laplace transform in Section 2.1 in the

context of the gamma function. While (1.10) has exponential order

α � 0
(

|f (t)| ≤ 1, t ≥ 1
)

, it is not piecewise continuous on [0, ∞)

since f (t) → ∞ as t → 0+, that is, t � 0 is not a jump discontinuity.

Exercises 1.5

1. Consider the function g(t) � t et2

sin(et2

).
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(a) Is g continuous on [0, ∞)? Does g have exponential order?

(b) Show that the Laplace transform F(s) exists for Re(s) > 0.

(c) Show that g is the derivative of some function having

exponential order.

2. Without actually determining it, show that the following func-

tions possess a Laplace transform.

(a)
sin t

t
(b)

1 − cos t

t

(c) t2 sinh t

3. Without determining it, show that the function f , whose graph is

given in Figure E.3, possesses a Laplace transform. (See Question

3(a), Exercises 1.7.)

t

f�t�

�

�

�

�

a �a �a �aO

FIGURE E.3

1.6 Basic Properties of the Laplace

Transform

Linearity. One of the most basic and useful properties of the

Laplace operator L is that of linearity, namely, if f1 ∈ L for Re(s) > α,

f2 ∈ L for Re(s) > β, then f1 + f2 ∈ L for Re(s) > max{α, β}, and

L(c1f1 + c2f2) � c1L(f1) + c2L(f2) (1.11)
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for arbitrary constants c1, c2.

This follows from the fact that integration is a linear process, to

wit,
∫ ∞

0

e−st
(

c1f1(t) + c2f2(t)
)

dt

� c1

∫ ∞

0

e−stf1(t) dt + c2

∫ ∞

0

e−stf2(t) dt (f1, f2 ∈ L).

Example 1.15. The hyperbolic cosine function

cosh ωt �
eωt + e−ωt

2

describes the curve of a hanging cable between two supports. By

linearity

L(cosh ωt) �
1

2
[L(eωt) + L(e−ωt)]

�
1

2

(

1

s − ω
+

1

s + ω

)

�
s

s2 − ω2
.

Similarly,

L(sinh ωt) �
ω

s2 − ω2
.

Example 1.16. If f (t) � a0 + a1t + · · · + ant
n is a polynomial of

degree n, then

L
(

f (t)
)

�
n

∑

k�0

akL(tk)

�
n

∑

k�0

akk!

sk+1

by (1.9) and (1.11).

Infinite Series. For an infinite series,
∑∞

n�0 ant
n, in general it is not

possible to obtain the Laplace transform of the series by taking the

transform term by term.
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Example 1.17.

f (t) � e−t2 �
∞
∑

n�0

(−1)nt2n

n!
, −∞ < t < ∞.

Taking the Laplace transform term by term gives

∞
∑

n�0

(−1)n

n!
L(t2n) �

∞
∑

n�0

(−1)n

n!

(2n)!

s2n+1

�
1

s

∞
∑

n�0

(−1)n(2n) · · · (n + 2)(n + 1)

s2n
.

Applying the ratio test,

lim
n→∞

∣

∣

∣

∣

un+1

un

∣

∣

∣

∣

� lim
n→∞

2(2n + 1)

|s|2
� ∞,

and so the series diverges for all values of s.

However, L(e−t2

) does exist since e−t2

is continuous and bounded

on [0, ∞).

So when can we guarantee obtaining the Laplace transform of an

infinite series by term-by-term computation?

Theorem 1.18. If

f (t) �
∞
∑

n�0

ant
n

converges for t ≥ 0, with

|an| ≤
Kαn

n!
,

for all n sufficiently large and α > 0, K > 0, then

L
(

f (t)
)

�
∞
∑

n�0

anL(tn) �
∞
∑

n�0

ann!

sn+1

(

Re(s) > α
)

.

Proof. Since f (t) is represented by a convergent power series, it is

continuous on [0, ∞). We desire to show that the difference
∣

∣

∣

∣

∣

L
(

f (t)
)

−
N
∑

n�0

anL(tn)

∣

∣

∣

∣

∣

�

∣

∣

∣

∣

∣

L

(

f (t) −
N
∑

n�0

ant
n

)∣

∣

∣

∣

∣
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≤ Lx

(
∣

∣

∣

∣

∣

f (t) −
N
∑

n�0

ant
n

∣

∣

∣

∣

∣

)

converges to zero as N → ∞, where Lx

(

h(t)
)

�
∫ ∞

0 e−xth(t) dt, x �
Re(s).

To this end,
∣

∣

∣

∣

∣

f (t) −
N
∑

n�0

ant
n

∣

∣

∣

∣

∣

�

∣

∣

∣

∣

∣

∞
∑

n�N+1

ant
n

∣

∣

∣

∣

∣

≤ K

∞
∑

n�N+1

(αt)n

n!

� K

(

eαt −
N
∑

n�0

(αt)n

n!

)

since ex �
∑∞

n�0 xn/n!. As h ≤ g implies Lx(h) ≤ Lx(g) when the

transforms exist,

Lx

(∣

∣

∣

∣

∣

f (t) −
N
∑

n�0

ant
n

∣

∣

∣

∣

∣

)

≤ K Lx

(

eαt −
N
∑

n�0

(αt)n

n!

)

� K

(

1

x − α
−

N
∑

n�0

αn

xn+1

)

� K

(

1

x − α
−

1

x

N
∑

n�0

(α

x

)n

)

→ 0
(

Re(s) � x > α
)

as N → ∞. We have used the fact that the geometric series has the

sum
∞
∑

n�0

zn �
1

1 − z
, |z| < 1.

Therefore,

L
(

f (t)
)

� lim
N→∞

N
∑

n�0

anL(tn)
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�
∞
∑

n�0

ann!

sn+1

(

Re(s) > α
)

. ✷

Note that the coefficients of the series in Example 1.17 do not

satisfy the hypothesis of the theorem.

Example 1.19.

f (t) �
sin t

t
�

∞
∑

n�0

(−1)nt2n

(2n + 1)!
.

Then,

|a2n| �
1

(2n + 1)!
<

1

(2n)!
, n � 0, 1, 2, . . . ,

and so we can apply the theorem:

L

(

sin t

t

)

�
∞
∑

n�0

(−1)nL(t2n)

(2n + 1)!

�
∞
∑

n�0

(−1)n

(2n + 1)s2n+1

� tan−1

(

1

s

)

, |s| > 1.

Here we are using the fact that

tan−1 x �
∫ x

0

dt

1 + t2
�

∫ x

0

∞
∑

n�0

(−1)nt2n

�
∞
∑

n�0

(−1)nx2n+1

2n + 1
, |x| < 1,

with x � 1/s, as we can integrate the series term by term. See also

Example 1.38.

Uniform Convergence. We have already seen by Theorem 1.11

that for functions f that are piecewise continuous on [0, ∞) and of

exponential order, the Laplace integral converges absolutely, that is,
∫ ∞

0 |e−stf (t)| dt converges. Moreover, for such functions the Laplace

integral converges uniformly.
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To see this, suppose that

|f (t)| ≤ M eαt, t ≥ t0.

Then
∣

∣

∣

∣

∫ ∞

t0

e−stf (t) dt

∣

∣

∣

∣

≤
∫ ∞

t0

e−xt|f (t)|dt

≤ M

∫ ∞

t0

e−(x−α)tdt

�
M e−(x−α)t

−(x − α)

∣

∣

∣

∣

∞

t0

�
M e−(x−α)t0

x − α
,

provided x � Re(s) > α. Taking x ≥ x0 > α gives an upper bound

for the last expression:

M e−(x−α)t0

x − α
≤

M

x0 − α
e−(x0−α)t0 . (1.12)

By choosing t0 sufficiently large, we can make the term on the right-

hand side of (1.12) arbitrarily small; that is, given any ε > 0, there

exists a value T > 0 such that
∣

∣

∣

∣

∫ ∞

t0

e−stf (t) dt

∣

∣

∣

∣

< ε, whenever t0 ≥ T (1.13)

for all values of s with Re(s) ≥ x0 > α. This is precisely the con-

dition required for the uniform convergence of the Laplace integral

in the region Re(s) ≥ x0 > α (see Section 1.2). The importance

of the uniform convergence of the Laplace transform cannot be

overemphasized, as it is instrumental in the proofs of many results.

F(s) → Ŵ as s → ∞. A general property of the Laplace transform

that becomes apparent from an inspection of the table at the back

of this book (pp. 210–218) is the following.

Theorem 1.20. If f is piecewise continuous on [0, ∞) and has

exponential order α, then

F(s) � L
(

f (t)
)

→ 0
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as Re(s) → ∞.

In fact, by (1.8)
∣

∣

∣

∣

∫ ∞

0

e−stf (t) dt

∣

∣

∣

∣

≤
M

x − α
,

(

Re(s) � x > α
)

,

and letting x → ∞ gives the result.

Remark 1.21. As it turns out, F(s) → 0 as Re(s) → ∞ when-

ever the Laplace transform exists, that is, for all f ∈ L (cf. Doetsch

[2], Theorem 23.2). As a consequence, any function F(s) without

this behavior, say (s − 1)/(s + 1), es/s, or s2, cannot be the Laplace

transform of any function f .

Exercises 1.6

1. Find L(2t + 3e2t + 4 sin 3t).

2. Show that L(sinh ωt) �
ω

s2 − ω2
.

3. Compute

(a) L(cosh2 ωt) (b) L(sinh2 ωt).

4. Find L(3 cosh 2t − 2 sinh 2t).

5. Compute L(cos ωt) and L(sin ωt) from the Taylor series represen-

tations

cos ωt �
∞
∑

n�0

(−1)n(ωt)2n

(2n)!
, sin ωt �

∞
∑

n�0

(−1)n(ωt)2n+1

(2n + 1)!
,

respectively.

6. Determine L(sin2 ωt) and L(cos2 ωt) using the formulas

sin2 ωt �
1

2
−

1

2
cos 2ωt, cos2 ωt � 1 − sin2 ωt,

respectively.

7. Determine L

(

1 − e−t

t

)

.
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Hint:

log(1 + x) �
∞
∑

n�0

(−1)nxn+1

n + 1
, |x| < 1.

8. Determine L

(

1 − cos ωt

t

)

.

9. Can F(s) � s/log s be the Laplace transform of some function f ?

1.7 Inverse of the Laplace Transform

In order to apply the Laplace transform to physical problems, it is

necessary to invoke the inverse transform. If L
(

f (t)
)

� F(s), then

the inverse Laplace transform is denoted by

L
−1

(

F(s)
)

� f (t), t ≥ 0,

which maps the Laplace transform of a function back to the original

function. For example,

L
−1

(

ω

s2 + ω2

)

� sin ωt, t ≥ 0.

The question naturally arises: Could there be some other func-

tion f (t) �≡ sin ωt with L−1
(

ω/(s2 + ω2)
)

� f (t)? More generally, we

need to know when the inverse transform is unique.

Example 1.22. Let

g(t) �

{

sin ωt t > 0

1 t � 0.

Then

L
(

g(t)
)

�
ω

s2 + ω2
,

since altering a function at a single point (or even at a finite number

of points) does not alter the value of the Laplace (Riemann) integral.

This example illustrates that L−1
(

F(s)
)

can be more than one

function, in fact infinitely many, at least when considering functions
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with discontinuities. Fortunately, this is the only case (cf. Doetsch

[2], p. 24).

Theorem 1.23. Distinct continuous functions on [0, ∞) have distinct

Laplace transforms.

This result is known as Lerch’s theorem. It means that if we restrict

our attention to functions that are continuous on [0, ∞), then the

inverse transform

L
−1

(

F(s)
)

� f (t)

is uniquely defined and we can speak about the inverse, L−1
(

F(s)
)

.

This is exactly what we shall do in the sequel, and hence we write

L
−1

(

ω

s2 + ω2

)

� sin ωt, t ≥ 0.

Since many of the functions we will be dealing with will be so-

lutions to differential equations and hence continuous, the above

assumptions are completely justified.

Note also that L−1 is linear, that is,

L
−1

(

a F(s) + b G(s)
)

� a f (t) + b g(t)

if L
(

f (t)
)

� F(s), L
(

g(t)
)

� G(s). This follows from the linearity of

L and holds in the domain common to F and G.

Example 1.24.

L
−1

(

1

2(s − 1)
+

1

2(s + 1)

)

�
1

2
et +

1

2
e−t

� cosh t, t ≥ 0.

One of the practical features of the Laplace transform is that it

can be applied to discontinuous functions f . In these instances, it

must be borne in mind that when the inverse transform is invoked,

there are other functions with the same L−1
(

F(s)
)

.

Example 1.25. An important function occurring in electrical

systems is the (delayed) unit step function (Figure 1.7)

ua(t) �

{

1 t ≥ a

0 t < a,
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t

ua�t�

O

�

a FIGURE 1.7

for a ≥ 0. This function delays its output until t � a and then as-

sumes a constant value of one unit. In the literature, the unit step

function is also commonly defined as

ua(t) �

{

1 t > a

0 t < a,

for a ≥ 0, and is known as the Heaviside (step) function. Both defini-

tions of ua(t) have the same Laplace transform and so from that point

of view are indistinguishable. When a � 0, we will write ua(t) � u(t).

Another common notation for the unit step function ua(t) is u(t−a).

Computing the Laplace transform,

L
(

ua(t)
)

�
∫ ∞

0

e−stua(t) dt

�
∫ ∞

a

e−stdt

�
e−st

−s

∣

∣

∣

∣

∞

a

�
e−as

s

(

Re(s) > 0
)

.

It is appropriate to write
(

with either interpretation of ua(t)
)

L
−1

(

e−as

s

)

� ua(t),
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although we could equally have written L−1
(

e−as/s
)

� va(t) for

va(t) �

{

1 t > a

0 t ≤ a,

which is another variant of the unit step function.

Another interesting function along these lines is the following.

Example 1.26. For 0 ≤ a < b, let

uab(t) �
1

b − a

(

ua(t) − ub(t)
)

�











0 t < a

1
b−a

a ≤ t < b

0 t ≥ b,

as shown in Figure 1.8.

Then

L
(

uab(t)
)

�
e−as − e−bs

s(b − a)
.

Exercises 1.7

1. Prove that L−1 is a linear operator.

2. A function N(t) is called a null function if
∫ t

0

N(τ) dτ � 0,

for all t > 0.

(a) Give an example of a null function that is not identically

zero.

t

uab�t�

O a b

�

b�a

FIGURE 1.8
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(b) Use integration by parts to show that

L
(

N(t)
)

� 0,

for any null function N(t).

(c) Conclude that

L
(

f (t) + N(t)
)

� L
(

f (t)
)

,

for any f ∈ L and null function N(t). (The converse is also

true, namely, if L(f1) ≡ L(f2) in a right half-plane, then f1
and f2 differ by at most a null function. See Doetsch [2],

pp. 20–24).

(d) How can part (c) be reconciled with Theorem 1.23?

3. Consider the function f whose graph is given in Question 3 of

Exercises 1.5 (Figure E.3).

(a) Compute the Laplace transform of f directly from the explicit

values f (t) and deduce that

L
(

f (t)
)

�
1

s(1 − e−as)

(

Re(s) > 0, a > 0
)

.

(b) Write f (t) as an infinite series of unit step functions.

(c) By taking the Laplace transform term by term of the infinite

series in (b), show that the same result as in (a) is attained.

1.8 Translation Theorems

We present two very useful results for determining Laplace trans-

forms and their inverses. The first pertains to a translation in the

s-domain and the second to a translation in the t-domain.

Theorem 1.27 (First Translation Theorem). If F(s) � L
(

f (t)
)

for

Re(s) > 0, then

F(s − a) � L
(

eatf (t)
) (

a real, Re(s) > a
)

.

Proof. For Re(s) > a,

F(s − a) �
∫ ∞

0

e−(s−a)tf (t) dt
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�
∫ ∞

0

e−steatf (t) dt

� L
(

eatf (t)
)

. ✷

Example 1.28. Since

L(t) �
1

s2

(

Re(s) > 0
)

,

then

L(t eat) �
1

(s − a)2

(

Re(s) > a
)

,

and in general,

L(tneat) �
n!

(s − a)n+1
, n � 0, 1, 2, . . .

(

Re(s) > a
)

.

This gives a useful inverse:

L
−1

(

1

(s − a)n+1

)

�
1

n!
tneat, t ≥ 0.

Example 1.29. Since

L(sin ωt) �
ω

s2 + ω2
,

then

L(e2t sin 3t) �
3

(s − 2)2 + 9
.

In general,

L(eat cos ωt) �
s − a

(s − a)2 + ω2

(

Re(s) > a
)

L(eat sin ωt) �
ω

(s − a)2 + ω2

(

Re(s) > a
)

L(eat cosh ωt) �
s − a

(s − a)2 − ω2

(

Re(s) > a
)

L(eat sinh ωt) �
ω

(s − a)2 − ω2

(

Re(s) > a
)

.
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Example 1.30.

L
−1

(

s

s2 + 4s + 1

)

� L
−1

(

s

(s + 2)2 − 3

)

� L
−1

(

s + 2

(s + 2)2 − 3

)

− L
−1

(

2

(s + 2)2 − 3

)

� e−2t cosh
√

3t −
2

√
3

e−2t sinh
√

3 t.

In the first step we have used the procedure of completing the square.

Theorem 1.31 (Second Translation Theorem). If F(s) � L
(

f (t)
)

,

then

L
(

ua(t)f (t − a)
)

� e−asF(s) (a ≥ 0).

This follows from the basic fact that
∫ ∞

0

e−st[ua(t)f (t − a)] dt �
∫ ∞

a

e−stf (t − a) dt,

and setting τ � t − a, the right-hand integral becomes
∫ ∞

0

e−s(τ+a)f (τ) dτ � e−as

∫ ∞

0

e−sτf (τ) dτ

� e−asF(s).

Example 1.32. Let us determine L
(

g(t)
)

for (Figure 1.9)

g(t) �

{

0 0 ≤ t < 1

(t − 1)2 t ≥ 1.

t

g�t�

O � FIGURE 1.9
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Note that g(t) is just the function f (t) � t2 delayed by (a �) 1 unit

of time. Whence

L
(

g(t)
)

� L
(

u1(t)(t − 1)2
)

� e−s
L(t2)

�
2e−s

s3

(

Re(s) > 0
)

.

The second translation theorem can also be considered in inverse

form:

L
−1

(

e−asF(s)
)

� ua(t)f (t − a), (1.14)

for F(s) � L
(

f (t)
)

, a ≥ 0.

Example 1.33. Find

L
−1

(

e−2s

s2 + 1

)

.

We have

e−2s

s2 + 1
� e−2s

L(sin t),

so by (1.14)

L
−1

(

e−2s

s2 + 1

)

� u2(t) sin(t − 2), (t ≥ 0).

This is just the function sin t, which gets “turned on” at time t � 2.

Exercises 1.8

1. Determine

(a) L(e2t sin 3t) (b) L(t2e−ωt)

(c) L
−1

(

4

(s − 4)3

)

(d) L(e7t sinh
√

2 t)

(e) L
−1

(

1

s2 + 2s + 5

)

(f) L
−1

(

s

s2 + 6s + 1

)
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(g) L
(

e−at cos(ωt + θ)
)

(h) L
−1

(

s

(s + 1)2

)

.

2. Determine L
(

f (t)
)

for

(a) f (t) �
{

0 0 ≤ t < 2

eat t ≥ 2
(b) f (t) �

{

0 0 ≤ t < π
2

sin t t ≥ π
2

(c) f (t) � uπ(t) cos(t − π).

3. Find

(a) L
−1

(

e−2s

s3

)

(b) L
−1

(

E

s
−

s

s2 + 1
e−as

)

(E constant)

(c) L
−1

(

e−πs

s2 − 2

)

.

1.9 Differentiation and Integration of

the Laplace Transform

As will be shown in Chapter 3, when s is a complex variable, the

Laplace transform F(s) (for suitable functions) is an analytic func-

tion of the parameter s. When s is a real variable, we have a formula

for the derivative of F(s), which holds in the complex case as well

(Theorem 3.3).

Theorem 1.34. Let f be piecewise continuous on [0, ∞) of exponential

order α and L
(

f (t)
)

� F(s). Then

dn

dsn
F(s) � L

(

(−1)ntnf (t)
)

, n � 1, 2, 3, . . . (s > α). (1.15)

Proof. By virtue of the hypotheses, for s ≥ x0 > α, it is justified

(cf. Theorem A.12) to interchange the derivative and integral sign
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in the following calculation.

d

ds
F(s) �

d

ds

∫ ∞

0

e−stf (t) dt

�
∫ ∞

0

∂

∂s
e−stf (t) dt

�
∫ ∞

0

−te−stf (t) dt

� L
(

− tf (t)
)

.

Since for any s > α, one can find some x0 satisfying s ≥ x0 > α,

the preceding result holds for any s > α. Repeated differentiation

(or rather induction) gives the general case, by virtue of L
(

tkf (t)
)

being uniformly convergent for s ≥ x0 > α. ✷

Example 1.35.

L(t cos ωt) � −
d

ds
L(cos ωt)

� −
d

ds

s

s2 + ω2

�
s2 − ω2

(s2 + ω2)2
.

Similarly,

L(t sin ωt) �
2ωs

(s2 + ω2)2
.

For n � 1 we can express (1.15) as

f (t) � −
1

t
L

−1

(

d

ds
F(s)

)

(t > 0) (1.16)

for f (t) � L−1
(

F(s)
)

. This formulation is also useful.

Example 1.36. Find

f (t) � L
−1

(

log
s + a

s + b

)

.
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Since

d

ds
log

(

s + a

s + b

)

�
1

s + a
−

1

s + b
,

f (t) � −
1

t
L

−1

(

1

s + a
−

1

s + b

)

�
1

t
(e−bt − e−at).

Not only can the Laplace transform be differentiated, but it can

be integrated as well. Again the result is another Laplace transform.

Theorem 1.37. If f is piecewise continuous on [0, ∞) and of exponen-

tial order α, with F(s) � L
(

f (t)
)

and such that limt→0+ f (t)/t exists,

then
∫ ∞

s

F(x) dx � L

(

f (t)

t

)

(s > α).

Proof. Integrating both sides of the equation

F(x) �
∫ ∞

0

e−xtf (t) dt (x real),

we obtain
∫ ∞

s

F(x) dx � lim
w→∞

∫ w

s

(∫ ∞

0

e−xtf (t) dt

)

dx.

As
∫ ∞

0 e−xtf (t) dt converges uniformly for α < s ≤ x ≤ w (1.12), we

can reverse the order of integration (cf. Theorem A.11), giving

∫ ∞

s

F(x) dx � lim
w→∞

∫ ∞

0

(∫ w

s

e−xtf (t) dx

)

dt

� lim
w→∞

∫ ∞

0

[

e−xt

−t
f (t)

]w

s

dt

�
∫ ∞

0

e−st f (t)

t
dt − lim

w→∞

∫ ∞

0

e−wt f (t)

t
dt

� L

(

f (t)

t

)

,
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as limw→∞ G(w) � 0 by Theorem 1.20 for G(w) � L
(

f (t)/t
)

. The

existence of L
(

f (t)/t
)

is ensured by the hypotheses. ✷

Example 1.38.

(i) L

(

sin t

t

)

�
∫ ∞

s

dx

x2 + 1
�

π

2
− tan−1 s

� tan−1

(

1

s

)

(s > 0).

(ii) L

(

sinh ωt

t

)

�
∫ ∞

s

ω dx

x2 − ω2

�
1

2

∫ ∞

s

(

1

x − ω
−

1

x + ω

)

dx

�
1

2
ln

s + ω

s − ω
(s > |ω|).

Exercises 1.9

1. Determine

(a) L(t cosh ωt) (b) L(t sinh ωt)

(c) L(t2 cos ωt) (d) L(t2 sin ωt).

2. Using Theorem 1.37, show that

(a) L

(

1 − e−t

t

)

� log

(

1 +
1

s

)

(s > 0)

(b) L

(

1 − cos ωt

t

)

� 1
2

log

(

1 +
ω2

s2

)

(s > 0).

[Compare (a) and (b) with Exercises 1.6, Question 7 and 8,

respectively.]

(c) L

(

1 − cosh ωt

t

)

�
1

2
log

(

1 −
ω2

s2

)

(s > |ω|).

3. Using (1.16), find

(a) L
−1

(

log

(

s2 + a2

s2 + b2

))

(b) L
−1

(

tan−1 1

s

)

(s > 0).
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4. If

L
−1

(

e−a
√

s

√
s

)

�
e−a2/4t

√
πt

,

find L−1(e−a
√

s).

1.10 Partial Fractions

In many applications of the Laplace transform it becomes neces-

sary to find the inverse of a particular transform, F(s). Typically it

is a function that is not immediately recognizable as the Laplace

transform of some elementary function, such as

F(s) �
1

(s − 2)(s − 3)
,

for s confined to some region �
(

e.g., Re(s) > α
)

. Just as in calcu-

lus (for s real), where the goal is to integrate such a function, the

procedure required here is to decompose the function into partial

fractions.

In the preceding example, we can decompose F(s) into the sum

of two fractional expressions:

1

(s − 2)(s − 3)
�

A

s − 2
+

B

s − 3
,

that is,

1 � A(s − 3) + B(s − 2). (1.17)

Since (1.17) equates two polynomials [1 and A(s − 3) + B(s − 2)]

that are equal for all s in �, except possibly for s � 2 and s � 3, the

two polynomials are identically equal for all values of s. This follows

from the fact that two polynomials of degree n that are equal at more

than n points are identically equal (Corollary A.8).

Thus, if s � 2, A � −1, and if s � 3, B � 1, so that

F(s) �
1

(s − 2)(s − 3)
�

−1

s − 2
+

1

s − 3
.
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Finally,

f (t) � L
−1

(

F(s)
)

� L
−1

(

−
1

s − 2

)

+ L
−1

(

1

s − 3

)

� −e2t + e3t.

Partial Fraction Decompositions. We will be concerned with the

quotient of two polynomials, namely a rational function

F(s) �
P(s)

Q (s)
,

where the degree of Q (s) is greater than the degree of P(s), and P(s)

and Q (s) have no common factors. Then F(s) can be expressed as a

finite sum of partial fractions.

(i) For each linear factor of the form as + b of Q (s), there

corresponds a partial fraction of the form

A

as + b
, A constant.

(ii) For each repeated linear factor of the form (as + b)n, there

corresponds a partial fraction of the form

A1

as + b
+

A2

(as + b)2
+· · ·+

An

(as + b)n
, A1, A2, . . . , An constants.

(iii) For every quadratic factor of the form as2 + bs + c, there

corresponds a partial fraction of the form

As + B

as2 + bs + c
, A, B constants.

(iv) For every repeated quadratic factor of the form (as2 +bs+c)n,

there corresponds a partial fraction of the form

A1s + B1

as2 + bs + c
+

A2s + B2

(as2 + bs + c)2
+ · · · +

Ans + Bn

(as2 + bs + c)n
,

A1, . . . , An, B1, . . . , Bn constants.

The object is to determine the constants once the polynomial

P(s)/Q (s) has been represented by a partial fraction decomposition.

This can be achieved by several different methods.
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Example 1.39.

1

(s − 2)(s − 3)
�

A

s − 2
+

B

s − 3

or

1 � A(s − 3) + B(s − 2),

as we have already seen. Since this is a polynomial identity valid for

all s, we may equate the coefficients of like powers of s on each side

of the equals sign (see Corollary A.8). Thus, for s, 0 � A + B; and

for s0, 1 � −3A − 2B. Solving these two equations simultaneously,

A � −1, B � 1 as before.

Example 1.40. Find

L
−1

(

s + 1

s2(s − 1)

)

.

Write

s + 1

s2(s − 1)
�

A

s
+

B

s2
+

C

s − 1
,

or

s + 1 � As(s − 1) + B(s − 1) + Cs2,

which is an identity for all values of s. Setting s � 0 gives B � −1;

setting s � 1 gives C � 2. Equating the coefficients of s2 gives 0 �
A + C, and so A � −2. Whence

L
−1

(

s + 1

s2(s − 1)

)

� −2L
−1

(

1

s

)

− L
−1

(

1

s2

)

+ 2L
−1

(

1

s − 1

)

� −2 − t + 2et.

Example 1.41. Find

L
−1

(

2s2

(s2 + 1)(s − 1)2

)

.

We have

2s2

(s2 + 1)(s − 1)2
�

As + B

s2 + 1
+

C

s − 1
+

D

(s − 1)2
,
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or

2s2 � (As + B)(s − 1)2 + C(s2 + 1)(s − 1) + D(s2 + 1).

Setting s � 1 gives D � 1. Also, setting s � 0 gives 0 � B − C + D, or

−1 � B − C.

Equating coefficients of s3 and s, respectively,

0 � A + C,

0 � A − 2B + C.

These last two equations imply B � 0. Then from the first equation,

C � 1; finally, the second equation shows A � −1. Therefore,

L
−1

(

2s2

(s2 + 1)(s − 1)2

)

� −L
−1

(

s

s2 + 1

)

+ L
−1

(

1

s − 1

)

+ L
−1

(

1

(s − 1)2

)

� − cos t + et + tet.

Simple Poles. Suppose that we have F(t) � L
(

f (t)
)

for

F(s) �
P(s)

Q (s)
�

P(s)

(s − α1)(s − α2) · · · (s − αn)
, αi �� αj,

where P(s) is a polyomial of degree less than n. In the terminology of

complex variables (cf. Chapter 3), the αis are known as simple poles

of F(s). A partial fraction decomposition is

F(s) �
A1

s − α1

+
A2

s − α2

+ · · · +
An

s − αn

. (1.18)

Multiplying both sides of (1.18) by s − αi and letting s → αi yield

Ai � lim
s→αi

(s − αi)F(s). (1.19)

(

In Chapter 3 we will see that the Ais are the residues of F(s) at the

poles αi.
)

Therefore,

f (t) � L
−1

(

F(s)
)

�
n

∑

i�1

L
−1

(

Ai

s − αi

)

�
n

∑

i�1

Aie
αit.
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Putting in the expression (1.19) for Ai gives a quick method for

finding the inverse:

f (t) � L
−1

(

F(s)
)

�
n

∑

i�1

lim
s→αi

(s − αi) F(s) eαit. (1.20)

Example 1.42. Find

L
−1

(

s

(s − 1)(s + 2)(s − 3)

)

.

f (t) � lim
s→1

(s − 1) F(s)et + lim
s→−2

(s + 2) F(s)e−2t + lim
s→3

(s − 3) F(s) e3t

� −
1

6
et −

2

15
e−2t +

3

10
e3t.

Exercises 1.10

1. Find L−1 of the following transforms F(s) by the partial fraction

method.

(a)
1

(s − a)(s − b)
(b)

s

2s2 + s − 1

(c)
s2 + 1

s(s − 1)3
(d)

s

(s2 + a2)(s2 + b2)
(a �� b)

(e)
s

(s2 + a2)(s2 − b2)
(f)

s + 2

s5 − 3s4 + 2s3

(g)
2s2 + 3

(s + 1)2(s2 + 1)2
(h)

s2 + s + 3

s(s3 − 6s2 + 5s + 12)

(See Example 2.42).

2. Determine

L
−1

(

s2

(s2 − a2)(s2 − b2)(s2 − c2)

)

(a) by the partial fraction method

(b) by using (1.20).



2
C H A P T E R

...........................................

Applications
and Properties

The various types of problems that can be treated with the Laplace

transform include ordinary and partial differential equations as well

as integral and integro-differential equations. In this chapter we

delineate the principles of the Laplace transform method for the

purposes of solving all but PDEs (which we discuss in Chapter 5).

In order to expand our repetoire of Laplace transforms, we

discuss the gamma function, periodic functions, infinite series, con-

volutions, as well as the Dirac delta function, which is not really a

function at all in the conventional sense. This latter is considered

in an entirely new but rigorous fashion from the standpoint of the

Riemann–Stieltjes integral.

2.1 Gamma Function

Recall from equation (1.9) that

L(tn) �
n!

sn+1
, n � 1, 2, 3, . . . .

41
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In order to extend this result for non-integer values of n, consider

L(tν) �
∫ ∞

0

e−sttνdt (ν > −1).

Actually, for −1 < ν < 0, the function f (t) � tν is not piecewise

continuous on [0, ∞) since it becomes infinite as t → 0+. However,

as the (improper) integral
∫ τ

0 tνdt exists for ν > −1, and f (t) � tν is

bounded for all large values of t, the Laplace transform, L(tν), exists.

By a change of variables, x � st (s > 0),

L(tν) �
∫ ∞

0

e−x
(x

s

)ν 1

s
dx

�
1

sν+1

∫ ∞

0

xνe−x dx. (2.1)

The quantity

Ŵ(p) �
∫ ∞

0

xp−1e−xdx (p > 0)

is known as the (Euler) gamma function. Although the improper in-

tegral exists and is a continuous function of p > 0, it is not equal to

any elementary function (Figure 2.1).

Then (2.1) becomes

L(tν) �
Ŵ(ν + 1)

sν+1
, ν > −1, s > 0. (2.2)

p

��p�

O �

�

���� � �

FIGURE 2.1
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Comparing (1.9) with (2.2) when v � n � 0, 1, 2, . . . yields

Ŵ(n + 1) � n!. (2.3)

Thus we see that the gamma function is a generalization of the no-

tion of factorial. In fact, it can be defined for all complex values of

ν, ν �� 0, −1, −2, · · ·, and enjoys the factorial property

Ŵ(ν + 1) � ν Ŵ(ν), ν �� 0, −1, −2, . . .

(see Exercises 2.1, Question 1).

Example 2.1. For ν � −1/2,

L
(

t−
1
2

)

�
Ŵ
(

1
2

)

s
1
2

,

where

Ŵ
(

1
2

)

�
∫ ∞

0

x− 1
2 e−x dx.

Making a change of variables, x � u2,

Ŵ
(

1
2

)

� 2

∫ ∞

0

e−u2

du.

This integral is well known in the theory of probability and has the

value
√

π. (To see this, write

I2 �
(∫ ∞

0

e−x2

dx

)(∫ ∞

0

e−y2

dy

)

�
∫ ∞

0

∫ ∞

0

e−(x2+y2)dx dy,

and evaluate the double integral by polar coordinates, to get I �√
π/2.)

Hence

L
(

t−
1
2

)

�
√

π

s
(s > 0) (2.4)

and

L
−1

(

s− 1
2

)

�
1

√
πt

(t > 0). (2.5)

Example 2.2. Determine

L(log t) �
∫ ∞

0

e−st log t dt.
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Again setting x � st, s > 0,

L(log t) �
∫ ∞

0

e−x log
(x

s

) 1

s
dx

�
1

s

(∫ ∞

0

e−x log x dx − log s

∫ ∞

0

e−xdx

)

� −
1

s
(log s + γ), (2.6)

where

γ � −
∫ ∞

0

e−x log x dx � 0.577215 . . .

is Euler’s constant. See also Exercises 2.1, Question 4.

Infinite Series. If

f (t) �
∞
∑

n�0

ant
n+ν (ν > −1)

converges for all t ≥ 0 and |an| ≤ K(αn/n!), K, α > 0, for all n

sufficiently large, then

L
(

f (t)
)

�
∞
∑

n�0

anŴ(n + ν + 1)

sn+ν+1

(

Re(s) > α
)

.

This generalizes Theorem 1.18 (cf. Watson [14], P 1.3.1). In terms of

the inverse transform, if

F(s) �
∞
∑

n�0

an

sn+ν+1
(ν > −1), (2.7)

where the series converges for |s| > R, then the inverse can be

computed term by term:

f (t) � L
−1

(

F(s)
)

�
∞
∑

n�0

an

Ŵ(n + ν + 1)
tn+ν, t ≥ 0. (2.8)

To verify (2.8), note that since the series in (2.7) converges for

|s| > R,
∣

∣

∣

an

sn

∣

∣

∣
≤ K
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for some constant K and for all n. Then for |s| � r > R,

|an| ≤ K rn. (2.9)

Also,

rn <
2n

n
rn �

αn

n
, (2.10)

taking α � 2r. Since Ŵ(n + ν + 1) ≥ Ŵ(n) for ν > −1, n ≥ 2, (2.9) and

(2.10) imply

|an|
Ŵ(n + ν + 1)

≤
K αn

n Ŵ(n)
�

K αn

n!
, (2.11)

as required.

Furthermore, (2.11) guarantees
∣

∣

∣

∣

an

Ŵ(n + ν + 1)

∣

∣

∣

∣

tn ≤
K(αt)n

n!
(t ≥ 0),

and as
∑∞

n�0 (αt)n/n! � eαt converges, (2.8) converges absolutely.

This also shows that f has exponential order.

Taking ν � 0 in (2.7): If

F(s) �
∞
∑

n�0

an

sn+1

converges for |s| > R, then the inverse is given by

f (t) � L
−1

(

F(s)
)

�
∞
∑

n�0

an

n!
tn.

Example 2.3. Suppose

F(s) �
1

√
s + a

�
1

√
s

(

1 +
a

s

)− 1
2

(a real).

Using the binomial series expansion for (1 + x)α,

F(s) �
1

√
s

[

1 −
1

2

(a

s

)

+
(

1
2

) (

3
2

)

2!

(a

s

)2

−
(

1
2

) (

3
2

) (

5
2

)

3!

(a

s

)3

+ · · · +
(−1)n · 1 · 3 · 5 · · · (2n − 1)

2nn!

(a

s

)n

+ · · ·
]
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�
∞
∑

n�0

(−1)n · 1 · 3 · 5 · · · (2n − 1)an

2nn! sn+ 1
2

, |s| > |a|.

Inverting in accordance with (2.8),

f (t) � L
−1

(

F(s)
)

�
∞
∑

n�0

(−1)n1 · 3 · 5 · · · (2n − 1)antn− 1
2

2nn! Ŵ
(

n + 1
2

)

�
1

√
t

∞
∑

n�0

(−1)n1 · 3 · 5 · · · (2n − 1)antn

2nn! Ŵ
(

n + 1
2

) .

Here we can use the formula ν Ŵ(ν) � Ŵ(ν + 1) to find by induction

that

Ŵ

(

n +
1

2

)

� Ŵ

(

1

2

)(

1 · 3 · 5 · · · (2n − 1)

2n

)

�
√

π

(

1 · 3 · 5 · · · (2n − 1)

2n

)

.

Thus

f (t) �
1

√
t

∞
∑

n�0

(−1)nantn
√

π n!

�
1

√
πt

e−at.

Note that in this case f (t) can also be determined from the first

translation theorem (1.27) and (2.5).

Exercises 2.1

1. Establish the “factorial property” of the gamma function

Ŵ(ν + 1) � ν Ŵ(ν),

for ν > 0.

2. Compute

(a) Ŵ
(

3
2

)

(b) Ŵ(3)
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(c) Ŵ
(

− 1
2

)

(d) Ŵ
(

− 3
2

)

.

3. Compute

(a) L

(

e3t

√
t

)

(b) L−1

(

e−2s

√
s

)

(c) L−1

(

1

(s − a)3/2

)

(d) L−1

(

∞
∑

n�0

(−1)n

sn+1

)

, |s| > 1

(e) L
−1

(

∞
∑

n�1

(−1)n+1

ns2n

)

, |s| > 1

(f) L(
√

t).

4. (a) Show that

∂

∂ν
tν−1 � tν−1 log t.

(b) From (a) and 2.2 prove that

L(tν−1 log t) �
Ŵ′(ν) − Ŵ(ν) log s

sν
, s > 0, ν > 0.

(c) Conclude that

L(log t) � −
1

s
(log s + γ),

where

γ � −
∫ ∞

0

e−x log x dx � 0.577215 . . . ,

is the Euler constant as in (2.6).

2.2 Periodic Functions

If a function f is periodic with period T > 0, then f (t) � f (t + T),

−∞ < t < ∞. The periodic functions sin t and cos t both have period
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t

f�t�

T �T �TO FIGURE 2.2

T � 2π, whereas tan t has period T � π. Since the functions f with

which we are dealing are defined only for t ≥ 0, we adopt the same

condition for periodicity as above for these functions as well.

The function f in Figure 2.2, is periodic with period T. We define

F1(s) �
∫ T

0

e−stf (t) dt, (2.12)

which is the Laplace transform of the function denoting the first

period and zero elsewhere.

The Laplace transform of the entire function f is just a particular

multiple of this first one.

Theorem 2.4. If F(s) � L
(

f (t)
)

and f is periodic of period T, then

F(s) �
1

1 − e−sT
F1(s). (2.13)

Proof.

F(s) �
∫ ∞

0

e−stf (t) dt �
∫ T

0

e−stf (t) dt +
∫ ∞

T

e−stf (t) dt.

Changing variables with τ � t − T in the last integral,
∫ ∞

T

e−stf (t) dt �
∫ ∞

0

e−s(τ+T)f (τ + T) dτ

� e−sT

∫ ∞

0

e−sτf (τ) dτ
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by the periodicity of f . Therefore,

F(s) �
∫ T

0

e−stf (t) dt + e−sTF(s);

solving,

F(s) �
1

1 − e−sT
F1(s). ✷

Example 2.5. Find the Laplace transform of the square–wave

function depicted in Figure 2.3. This bounded, piecewise continuous

function is periodic of period T � 2a, and so its Laplace transform

is given by

F(s) �
1

1 − e−2as
F1(s),

where

F1(s) �
∫ 2a

a

e−stdt

�
1

s
(e−as − e−2as). (2.14)

Thus,

F(s) �
e−as

s(1 + e−as)
�

1

s(1 + eas)
.
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Observe that (2.13) can be written as

F(s) �
∞
∑

n�0

e−nTsF1(s)
(

x � Re(s) > 0
)

. (2.15)

In the case of the square–wave (Figure 2.3), the function can be

expressed in the form

f (t) � ua(t) − u2a(t) + u3a(t) − u4a(t) + · · · . (2.16)

Since F1(s) � (1/s)(e−as − e−2as), we have from (2.15)

F(s) � L
(

f (t)
)

�
∞
∑

n�0

e−2nas 1

s
(e−as − e−2as) (T � 2a)

�
1

s

∞
∑

n�0

(e−(2n+1)as − e−(2n+2)as)

�
1

s
(e−as − e−2as + e−3as − e−4as + · · ·)

� L
(

ua(t)
)

− L
(

u2a(t)
)

+ L
(

u3a(t)
)

− L
(

u4a(t)
)

+ · · · ,

that is, we can take the Laplace transform of f term by term.

For other periodic functions with a representation as in (2.16),

taking the Laplace transform in this fashion is often useful and

justified.

Example 2.6. The half –wave–rectified sine function is given by

f (t) �

{

sin ωt 2nπ
ω

< t <
(2n+1)π

ω

0
(2n+1)π

ω
< t <

(2n+2)π
ω

,
n � 0, 1, 2, . . .

(Figure 2.4). This bounded, piecewise continuous function is

periodic with period T � 2π/ω. Thus,

L
(

f (t)
)

�
1

1 − e− 2πs
ω

F1(s),

where

F1(s) �
∫ π

ω

0

e−st sin ωt dt
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�
e−st

s2 + ω2
(−s sin ωt − ω cos ωt)

∣

∣

∣

∣

π
ω

0

�
ω

s2 + ω2
(1 + e− πs

ω ).

Consequently,

L
(

f (t)
)

�
ω

(s2 + ω2)(1 − e− πs
ω )

.

The full–wave–rectified sine function (Figure 2.5)

f (t) � | sin ωt|,

t

f�t�

O ��

�

��

�

�

�

�

FIGURE 2.5
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with T � π/ω, has

L
(

f (t)
)

�
1

1 − e− πs
ω

F1(s)

�
ω

s2 + ω2

(

1 + e− πs
ω

1 − e− πs
ω

)

�
ω

s2 + ω2
coth

πs

2ω
.

Exercises 2.2

1. For Figures E.4–E.7, find the Laplace transform of the periodic

function f (t).

t

f�t�

�

a �a �a �aO FIGURE E.4

t

f�t�

�

a �a �a �aO

��
FIGURE E.5
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�
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2. Compute the Laplace transform of the function

f (t) � u(t) − ua(t) + u2a(t) − u3a(t) + · · ·

term by term and compare with Question 1(a).

3. Express the function in Question 1(b) as an infinite series of unit

step functions and compute its Laplace transform term by term.

4. Determine f (t) � L−1
(

F(s)
)

for

F(s) �
1 − e−as

s(eas + e−as)

(

Re(s) > 0, a > 0
)

by writing F(s) as an infinite series of exponential functions and

computing the inverse term by term. Draw a graph of f (t) and

verify that indeed L
(

f (t)
)

� F(s).

2.3 Derivatives

In order to solve differential equations, it is necessary to know the

Laplace transform of the derivative f ′ of a function f . The virtue of

L(f ′) is that it can be written in terms of L(f ).
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Theorem 2.7 (Derivative Theorem).

Suppose that f is continuous on (0, ∞) and of exponential order α

and that f ′ is piecewise continuous on [0, ∞). Then

L
(

f ′(t)
)

� sL
(

f (t)
)

− f (0+)
(

Re(s) > α
)

. (2.17)

Proof. Integrating by parts,
∫ ∞

0

e−stf ′(t) dt � lim
δ→0
τ→∞

∫ τ

δ

e−stf ′(t) dt

� lim
δ→0
τ→∞

[

e−stf (t)
∣

∣

∣

τ

δ
+ s

∫ τ

δ

e−stf (t) dt

]

� lim
δ→0
τ→∞

[

e−sτf (τ) − e−sδf (δ) + s

∫ τ

δ

e−stf (t) dt

]

� −f (0+) + s

∫ ∞

0

e−stf (t) dt
(

Re(s) > α
)

.

Therefore,

L
(

f ′(t)
)

� sL
(

f (t)
)

− f (0+).

We have made use of the fact that for Re(s) � x > α,

|e−sτf (τ)| ≤ e−xτM eατ

� M e−(x−α)τ → 0 as τ → ∞.

Also, note that f (0+) exists since f ′(0+) � limt→0+ f ′(t) exists (see

Exercises 2.3, Question 1). Clearly, if f is continuous at t � 0, then

f (0+) � f (0) and our formula becomes

L
(

f ′(t)
)

� s L
(

f (t)
)

− f (0). (2.18)

✷

Remark 2.8. An interesting feature of the derivative theorem is

that we obtain L
(

f ′(t)
)

without requiring that f ′ itself be of expo-

nential order. Example 1.14 was an example of this with f (t) �
sin(et2

).

Example 2.9. Let us compute L(sin2 ωt) and L(cos2 ωt) from (2.18).

For f (t) � sin2 ωt, we have f ′(t) � 2ω sin ωt cos ωt � ω sin 2ωt. From
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(2.18),

L(ω sin 2ωt) � s L(sin2 ωt) − sin2 0,

that is,

L(sin2 ωt) �
1

s
L(ω sin 2ωt)

�
ω

s

2ω

s2 + 4ω2

�
2ω2

s(s2 + 4ω2)
.

Similarly,

L(cos2 ωt) �
1

s
L(−ω sin 2ωt) +

1

s

� −
ω

s

2ω

s2 + 4ω2
+

1

s

�
s2 + 2ω2

s(s2 + 4ω2)
.

Note that if f (0) � 0, (2.18) can be expressed as

L
−1

(

sF(s)
)

� f ′(t),

where F(s) � L
(

f (t)
)

. Thus, for example

L
−1

(

s

s2 − a2

)

�
(

sinh at

a

)′
� cosh at.

It may be the case that f has a jump discontinuity other than at the

origin. This can be treated in the following way.

Theorem 2.10. Suppose that f is continuous on [0, ∞) except for a

jump discontinuity at t � t1 > 0, and f has exponential order α with f ′

piecewise continuous on [0, ∞). Then

L
(

f ′(t)
)

� s L
(

f (t)
)

− f (0) − e−t1s
(

f (t+1 ) − f (t−1 )
) (

Re(s) > α
)

.
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Proof.
∫ ∞

0

e−stf ′(t) dt

� lim
τ→∞

∫ τ

0

e−stf ′(t) dt

� lim
τ→∞

[

e−stf (t)
∣

∣

∣

t−1

0
+ e−stf (t)

∣

∣

∣

τ

t+1
+ s

∫ τ

0

e−stf (t) dt

]

� lim
τ→∞

[

e−st1 f (t−1 ) − f (0) + e−sτf (τ) − e−st1 f (t+1 ) + s

∫ τ

0

e−stf (t) dt

]

.

Hence

L
(

f ′(t)
)

� s L
(

f (t)
)

− f (0) − e−st1
(

f (t+1 ) − f (t−1 )
)

.

If 0 � t0 < t1 < · · · < tn are a finite number of jump

discontinuities, the formula becomes

L
(

f ′(t)
)

� s L
(

f (t)
)

− f (0+) −
n

∑

k�1

e−stk
(

f (t+k ) − f (t−k )
)

. (2.19)

✷

Remark 2.11. If we assume that f ′ is continuous [0, ∞) and also of

exponential order, then it follows that the same is true of f itself .

To see this, suppose that

|f ′(t)| ≤ M eαt, t ≥ t0, α �� 0.

Then

f (t) �
∫ t

t0

f ′(τ) dτ + f (t0)

by the fundamental theorem of calculus, and

|f (t)| ≤ M

∫ t

t0

eατdτ + |f (t0)|

≤
M

α
eαt + |f (t0)|

≤ C eαt, t ≥ t0.

Since f is continuous, the result holds for α �� 0, and the case α � 0

is subsumed under this one.
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To treat differential equations we will also need to know L(f ′′)
and so forth. Suppose that for the moment we can apply formula

(2.18) to f ′′. Then

L
(

f ′′(t)
)

� s L
(

f ′(t)
)

− f ′(0)

� s
(

s L
(

f (t)
)

− f (0)
)

− f ′(0)

� s2
L
(

f (t)
)

− s f (0) − f ′(0). (2.20)

Similarly,

L
(

f ′′′(t)
)

� s L
(

f ′′(t)
)

− f ′′(0)

� s3
L
(

f (t)
)

− s2f (0) − s f ′(0) − f ′′(0) (2.21)

under suitable conditions.

In the general case we have the following result.

Theorem 2.12. Suppose that f (t), f ′(t), · · · , f (n−1)(t) are continuous

on (0, ∞) and of exponential order, while f (n)(t) is piecewise continuous

on [0, ∞). Then

L
(

f (n)(t)
)

� sn
L
(

f (t)
)

− sn−1f (0+) − sn−2f ′(0+) − · · · − f (n−1)(0+).

(2.22)

Example 2.13. Determine the Laplace transform of the Laguerre

polynomials, defined by

Ln(t) �
et

n!

dn

dtn
(tne−t), n � 0, 1, 2, . . . .

Let y(t) � tne−t. Then

L
(

Ln(t)
)

� L

(

et 1

n!
y(n)

)

.

First, we find by Theorem 2.12, and subsequently the first translation

theorem (1.27) coupled with (1.9),

L(y(n)) � sn
L(y) �

snn!

(s + 1)n+1
.

It follows that

L
(

Ln(t)
)

� L

(

et 1

n!
y(n)

)

�
(s − 1)n

sn+1

(

Re(s) > 1
)

,

again by the first translation theorem.
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Exercises 2.3

1. In Theorem 2.7, prove that f (0+) exists?

(Hint: Consider for c sufficiently small,

∫ c

δ

f ′(t)dt � f (c) − f (δ),

and let δ → 0+.)

2. Using the derivative theorem (2.7), show by mathematical

induction that

L(tn) �
n!

sn+1

(

Re(s) > 0
)

, n � 1, 2, 3, . . . .

3. (a) Show that

L(sinh ωt) �
ω

s2 − ω2

by letting f (t) � sinh ωt and applying formula (2.20).

(b) Show that

L(t cosh ωt) �
s2 + ω2

(s2 − ω2)2
.

(c) Show that

L(t sinh ωt) �
2ωs

(s2 − ω2)2
.

4. Verify Theorem 2.10 for the function

f (t) �
{

t 0 ≤ t ≤ 1

2 t > 1.

5. Compute

(a) L(sin3 ωt) (b) L(cos3 ωt).

6. Write out the details of the proof of Theorem 2.12.

7. Give an example to show that in Remark 2.11 the condition of

continuity cannot be replaced by piecewise continuity.
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2.4 Ordinary Differential Equations

The derivative theorem in the form of Theorem 2.12 opens up the

possibility of utilizing the Laplace transform as a tool for solving or-

dinary differential equations. Numerous applications of the Laplace

transform to ODEs will be found in ensuing sections.

Example 2.14. Consider the initial-value problem

d2y

d t2
+ y � 1, y(0) � y′(0) � 0.

Let us assume for the moment that the solution y � y(t) satisfies

suitable conditions so that we may invoke (2.22). Taking the Laplace

transform of both sides of the differential equation gives

L(y′′) + L(y) � L(1).

An application of (2.22) yields

s2
L(y) − s y(0) − y′(0) + L(y) �

1

s
,

that is,

L(y) �
1

s(s2 + 1)
.

Writing

1

s(s2 + 1)
�

A

s
+

Bs + C

s2 + 1

as a partial fraction decomposition, we find

L(y) �
1

s
−

s

s2 + 1
.

Applying the inverse transform gives the solution

y � 1 − cos t.

One may readily check that this is indeed the solution to the initial-

value problem.

Note that the initial conditions of the problem are absorbed into

the method, unlike other approaches to problems of this type (i.e.,

the methods of variation of parameters or undetermined coefficients).
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General Procedure. The Laplace transform method for solving or-

dinary differential equations can be summarized by the following

steps.

(i) Take the Laplace transform of both sides of the equation. This

results in what is called the transformed equation.

(ii) Obtain an equation L(y) � F(s), where F(s) is an algebraic

expression in the variable s.

(iii) Apply the inverse transform to yield the solution y �
L−1

(

F(s)
)

.

The various techniques for determining the inverse trans-

form include partial fraction decomposition, translation, derivative

and integral theorems, convolutions, and integration in the com-

plex plane. All of these techniques except the latter are used in

conjunction with standard tables of Laplace transforms.

Example 2.15. Solve

y′′′ + y′′ � et + t + 1, y(0) � y′(0) � y′′(0) � 0.

Taking L of both sides gives

L(y′′′) + L(y′′) � L(et) + L(t) + L(1),

or

[s3
L(y) − s2y(0) − s y′(0) − y′′(0)]

+[s2
L(y) − s y(0) − y′(0)] �

1

s − 1
+

1

s2
+

1

s
.

Putting in the initial conditions gives

s3
L(y) + s2

L(y) �
2s2 − 1

s2(s − 1)
,

which is

L(y) �
2s2 − 1

s4(s + 1)(s − 1)
.

Applying a partial fraction decomposition to

L(y) �
2s2 − 1

s4(s + 1)(s − 1)
�

A

s
+

B

s2
+

C

s3
+

D

s4
+

E

s + 1
+

F

s − 1
,
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we find that

L(y) � −
1

s2
+

1

s4
−

1

2(s + 1)
+

1

2(s − 1)
,

and consequently

y � −L
−1

(

1

s2

)

+ L
−1

(

1

s4

)

−
1

2
L

−1

(

1

s + 1

)

+
1

2
L

−1

(

1

s − 1

)

� −t +
1

6
t3 −

1

2
e−t +

1

2
et.

In general, the Laplace transform method demonstrated above is

particularly applicable to initial-value problems of nth-order linear

ordinary differential equations with constant coefficients, that is,

an

dny

d tn
+ an−1

dn−1y

d tn−1
+ · · · + a0y � f (t),

y(0) � y0, y′(0) � y1, . . . , y(n−1)(0) � yn−1.

(2.23)

In engineering parlance, f (t) is known as the input, excitation, or

forcing function, and y � y(t) is the output or response. In the event

the input f (t) has exponential order and be continuous, the output

y � y(t) to (2.23) can also be shown to have exponential order and

be continuous (Theorem A.6). This fact helps to justify the applica-

tion of the Laplace transform method (see the remark subsequent to

Theorem A.6). More generally, when f ∈ L, the method can still be

applied by assuming that the hypotheses of Theorem 2.12 are sat-

isfied. While the solution y � y(t) to (2.23) is given by the Laplace

transform method for t ≥ 0, it is in general valid on the whole real

line, −∞ < t < ∞, if f (t) has this domain.

Another important virtue of the Laplace transform method is

that the input function f (t) can be discontinuous.

Example 2.16. Solve

y′′ + y � E ua(t), y(0) � 0, y′(0) � 1.

Here the system is receiving an input of zero for 0 ≤ t < a and E

(constant) for t ≥ a. Then

s2
L(y) − s y(0) − y′(0) + L(y) �

E e−as

s
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and

L(y) �
1

s2 + 1
+

E e−as

s(s2 + 1)

�
1

s2 + 1
+ E

(

1

s
−

s

s2 + 1

)

e−as.

Whence

y � L
−1

(

1

s2 + 1

)

+ E L
−1

[(

1

s
−

s

s2 + 1

)

e−as

]

� sin t + E ua(t)
(

1 − cos(t − a)
)

,

by the second translation theorem (1.27). We can also express y in

the form

y �

{

sin t 0 ≤ t < a

sin t + E
(

1 − cos(t − a)
)

t ≥ a.

Note that y(a−) � y(a+) � sin a, y′(a−) � y′(a+) � cos a, y′′(a−) �
− sin a, but y′′(a+) � − sin a + E a2. Hence y′′(t) is only piecewise

continuous.

Example 2.17. Solve

y′′ + y �

{

sin t 0 ≤ t ≤ π

0 t > π
y(0) � y′(0) � 0.

We have

s2
L(y) + L(y) �

∫ π

0

e−st sin t dt

�
−e−st

s2 + 1
(s · sin t + cos t)

∣

∣

∣

∣

π

0

�
e−πs

s2 + 1
+

1

s2 + 1
.

Therefore,

L(y) �
1

(s2 + 1)2
+

e−πs

(s2 + 1)2
,
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and by Example 2.42 (i) and the second translation theorem (1.31),

y �
1

2
(sin t − t cos t) + uπ(t)

[

1

2

(

sin(t − π) − (t − π) cos(t − π)
)

]

.

In other words,

y �

{

1
2
(sin t − t cos t) 0 ≤ t < π

− 1
2
π cos t t ≥ π.

Observe that denoting the input function by f (t),

f (t) � sin t
(

1 − uπ(t)
)

� sin t + uπ(t) sin(t − π),

from which

L
(

f (t)
)

�
1

s2 + 1
+

e−πs

s2 + 1
,

again by the second translation theorem.

General Solutions. If the initial-value data of (2.23) are unspeci-

fied, the Laplace transform can still be applied in order to determine

the general solution.

Example 2.18. Consider

y′′ + y � e−t,

and let y(0) � y0, y′(0) � y1 be unspecified. Then

s2
L(y) − s y(0) − y′(0) + L(y) � L(e−t),

that is,

L(y) �
1

(s + 1)(s2 + 1)
+

s y0

s2 + 1
+

y1

s2 + 1

�
1
2

s + 1
−

1
2
s − 1

2

s2 + 1
+

y0s

s2 + 1
+

y1

s2 + 1
,

by taking a partial fraction decomposition. Applying L−1,

y �
1

2
e−t +

(

y0 −
1

2

)

cos t +
(

y1 +
1

2

)

sin t.

Administrator
ferret
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Since y0, y1 can take on all possible values, the general solution to

the problem is given by

y � c0 cos t + c1 sin t + 1
2
e−t,

where c0, c1 are arbitrary real constants. Note that this solution is

valid for −∞ < t < ∞.

Boundary-Value Problems. This type of problem is also amenable

to solution by the Laplace transform method. As a typical example

consider

y′′ + λ2y � cos λt, y(0) � 1, y
( π

2λ

)

� 1.

Then

L(y′′) + λ2
L(y) � L(cos λt),

so that

(s2 + λ2)L(y) �
s

s2 + λ2
+ s y(0) + y′(0),

implying

L(y) �
s

(s2 + λ2)2
+

s y(0)

s2 + λ2
+

y′(0)

s2 + λ2
.

Therefore,

y �
1

2λ
t sin λt + cos λt +

y′(0)

λ
sin λt, (2.24)

where we have invoked Example 2.42 (ii) to determine the first term

and replaced y(0) with its value of 1. Finally, from (2.24)

1 � y
( π

2λ

)

�
π

4λ2
+

y′(0)

λ

gives

y′(0)

λ
� 1 −

π

4λ2
,

and thus

y �
1

2λ
t sin λt + cos λt +

(

1 −
π

4λ2

)

sin λt.
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Similarly, if the boundary data had been, say

y(0) � 1, y′
(π

λ

)

� 1,

then differentiating in (2.24)

y′ �
1

2λ
(sin λt + λt cos λt) − λ sin λt + y′(0) cos λt.

Thus,

1 � y′
(π

λ

)

�
−π

2λ
− y′(0)

and

y′(0) � −
(

1 +
π

2λ

)

,

to yield

y �
1

2λ
t sin λt + cos λt −

1

λ

(

1 +
π

2λ

)

sin λt.

Systems of Differential Equations. Systems of differential equa-

tions can also be readily handled by the Laplace transform method.

We illustrate with a few examples.

Example 2.19.

dy

dt
� −z;

dz

dt
� y, y(0) � 1, z(0) � 0.

Then

L(y′) � −L(z) i.e., s L(y) − 1 � −L(z)

and (2.25)

L(z′) � L(y) i.e., s L(z) � L(y).

Solving the simultaneous equation (2.25)

s2
L(y) − s � −s L(z) � −L(y),

or

L(y) �
s

s2 + 1
,
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so that

y � cos t, z � −y′ � sin t.

Example 2.20.

y′ + z′ + y + z � 1,

y′ + z � et, y(0) � −1, z(0) � 2.

From the first equation, we have

s L(y) + 1 + s L(z) − 2 + L(y) + L(z) �
1

s
. (2.26)

From the second equation, we have

s L(y) + 1 + L(z) �
1

s − 1
. (2.27)

Solving (2.26) and (2.27), we arrive at

L(y) �
−s2 + s + 1

s(s − 1)2

�
1

s
−

2

s − 1
+

1

(s − 1)2
.

Taking the inverse transform yields

y � 1 − 2et + t et, z � 2et − t et.

Integrals. In certain differential equations it is also necessary to

compute the Laplace transform of an integral.

Theorem 2.21. If f is piecewise continuous on [0, ∞) of exponential

order α(≥ 0), and

g(t) �
∫ t

0

f (u) du,

then

L
(

g(t)
)

�
1

s
L
(

f (t)
) (

Re(s) > α
)

.

Proof. Since g′(t) � f (t) except at points of discontinuity of f ,

integration by parts gives
∫ ∞

0

e−stg(t) dt � lim
τ→∞

[

g(t)e−st

−s

∣

∣

∣

∣

τ

0

+
1

s

∫ τ

0

e−stf (t) dt

]

.
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Since g(0) � 0, we need only compute

lim
τ→∞

g(τ)e−sτ

−s
.

To this end,

|g(τ)e−sτ | ≤ e−xτ

∫ τ

0

|f (u)| du

≤ M e−xτ

∫ τ

0

eαudu

�
M

α
(e−(x−α)τ − e−xτ)

→ 0 as τ → ∞ for x � Re(s) > α > 0.

Similarly, this holds for α � 0. Hence

L
(

g(t)
)

�
1

s
L
(

f (t)
) (

Re(s) > α
)

. ✷

Example 2.22.

L
(

Si(t)
)

� L

(∫ t

0

sin u

u
du

)

�
1

s
L

(

sin t

t

)

�
1

s
tan−1 1

s
,

by Example 1.34 (i). The function, Si(t), is called the sine integral.

The result of Theorem 2.22 can also be expressed in the form

L
−1

(

F(s)

s

)

�
∫ t

0

f (u) du,

where F(s) � L
(

f (t)
)

. Hence, for example,

L
−1

(

1

s(s2 − a2)

)

�
1

a

∫ t

0

sinh au du �
1

a2
(cosh at − 1).

Differential equations that involve integrals (known as integro-

differential equations) commonly arise in problems involving elec-

trical circuits.
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L: inductance (constant)

R: resistance (constant)

C: capacitance (constant)

I: current

E�t� C

L

R

FIGURE 2.6

Electrical Circuits. In the (RCL) circuit in Figure 2.6, the volt-

age drops across the inductor, resistor, and capacitor are given by

L(dI/dt), RI, and (1/C)
∫ t

0 I(τ) dτ, respectively, where Kirchoff’s volt-

age law states that the sum of the voltage drops across the individual

components equals the impressed voltage, E(t), that is,

L
dI

dt
+ RI +

1

C

∫ t

0

I(τ) dτ � E(t). (2.28)

Setting Q (t) �
∫ t

0 I(τ) dτ (the charge of the condenser), we can write

(2.28) as

L
d2Q

dt2
+ R

dQ

dt
+

Q

C
� E(t) (2.29)

since I � dQ/dt. This will be the basis of some of the electrical

circuit problems throughout the sequel.

Example 2.23. Suppose that the current I in an electrical circuit

satisfies

L
dI

dt
+ RI � E0 sin ωt,

where L, R, E0, and ω are constants. Find I � I(t) for t > 0 if I(0) � 0.

Taking the Laplace transform,

Ls L(I) + R L(I) �
E0ω

s2 + ω2
,

that is,

L(I) �
E0ω

(Ls + R)(s2 + ω2)
.
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Considering partial fractions

L(I) �
E0ω/L

(s + R/L)(s2 + ω2)
�

A

s + R/L
+

Bs + C

s2 + ω2
,

we find that

A �
E0Lω

L2ω2 + R2
, B �

−E0Lω

L2ω2 + R2
, C �

E0Rω

L2ω2 + R2
,

and so

I(t) �
E0Lω

L2ω2 + R2
e− R

L
t +

E0R

L2ω2 + R2
sin ωt −

E0Lω

L2ω2 + R2
cos ωt.

Example 2.24. Suppose that the current I in the electrical circuit

depicted in Figure 2.7 satisfies

L
dI

dt
+

1

C

∫ t

0

I(τ) dτ � E,

where L, C, and E are positive constants, I(0) � 0. Then

Ls L(I) +
L(I)

Cs
�

E

s
,

implying

L(I) �
E C

L C s2 + 1
�

E

L(s2 + 1/L C)
.

Thus,

I(t) � E

√

C

L
sin

1
√

L C
t.

E�t� C

L

FIGURE 2.7
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Differential Equations with Polynomial Coefficients. Recall

(Theorem 1.34) that for F(s) � L
(

y(t)
)

,

dn

dsn
F(s) � (−1)n

L
(

tny(t)
)

(s > α)

for y(t) piecewise continuous on [0, ∞) and of exponential order α.

Hence, for n � 1,

L
(

ty(t)
)

� −F ′(s).

Suppose further that y′(t) satisfies the hypotheses of the theorem.

Then

L
(

ty′(t)
)

� −
d

ds
L
(

y′(t)
)

� −
d

ds

(

sF(s) − y(0)
)

� −sF ′(s) − F(s).

Similarly, for y′′(t),

L(ty′′) � −
d

ds
L
(

y′′(t)
)

� −
d

ds

(

s2F(s) − sy(0) − y′(0)
)

� −s2F ′(s) − 2sF(s) + y(0).

In many cases these formulas for L
(

ty(t)
)

, L
(

ty′(t)
)

, and L
(

ty′′(t)
)

can be used to solve linear differential equations whose coefficients

are (first-degree) polynomials.

Example 2.25. Solve

y′′ + ty′ − 2y � 4, y(0) � −1, y′(0) � 0.

Taking the Laplace transform of both sides yields

s2F(s) + s −
(

sF ′(s) + F(s)
)

− 2F(s) �
4

s
,

or

F ′(s) +
(

3

s
− s

)

F(s) � −
4

s2
+ 1.
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The integrating factor is

µ(s) � e
∫

( 3
s
−s)ds � s3e−s2/2.

Therefore,
(

F(s)s3e−s2/2
)′

� −
4

s2
s3e−s2/2 + s3e−s2/2,

and

F(s)s3e−s2/2 � −4

∫

se−s2/2ds +
∫

s3e−s2/2ds.

Substituting u � −s2/2 into both integrals gives

F(s)s3e−s2/2 � 4

∫

eudu + 2

∫

ueudu

� 4e−s2/2 + 2

(

−s2

2
e−s2/2 − e−s2/2

)

+ C

� 2e−s2/2 − s2e−s2/2 + C.

Thus,

F(s) �
2

s3
−

1

s
+

C

s3
es2/2.

Since F(s) → 0 as s → ∞, we must have C � 0 and

y(t) � t2 − 1,

which can be verified to be the solution.

There are pitfalls, however, of which the reader should be aware.

A seemingly innocuous problem such as

y′ − 2ty � 0, y(0) � 1,

has y(t) � et2

as its solution, and this function, as we know, does

not possess a Laplace transform. (See what happens when you try

to apply the Laplace transform method to this problem.)

Another caveat is that if the differential equation has a regular

singular point, one of the solutions may behave like log t as t → 0+;

hence its derivative has no Laplace transform (see Exercises 1.2,

Question 3). In this case, the Laplace transform method can deliver

only the solution that is bounded at the origin.



2. Applications and Properties72

Example 2.26. Solve

ty′′ + y′ + 2y � 0.

The point t � 0 is a regular singular point of the equation. Let us

determine the solution that satisfies y(0) � 1. Taking the Laplace

transform,
(

− s2F ′(s) − 2sF(s) + 1
)

+
(

sF(s) − 1
)

+ 2F(s) � 0,

that is,

−s2F ′(s) − sF(s) + 2F(s) � 0,

or

F ′(s) +
(

1

s
−

2

s2

)

F(s) � 0, s > 0.

Then the integrating factor is

µ(s) � e

∫

(

1
s
− 2

s2

)

ds � se2/s.

Therefore,
(

F(s)se2/s
)′ � 0

and

F(s) �
Ce−2/s

s
.

Taking the series ex �
∑∞

n�0(xn/n!) with x � −2/s implies

F(s) � C

∞
∑

n�0

(−1)n2n

n!sn+1
.

In view of (2.8) we can take L−1 term by term so that

y(t) � C

∞
∑

n�0

(−1)n2ntn

(n!)2
.

The condition y(0) � 1 gives C � 1.

Note that y(t) � J0(2
√

at) with a � 2, from the table of Laplace

transforms (pp. 210–218), where J0 is the well-known Bessel function

(2.55). There is another solution to this differential equation which is

unbounded at the origin and cannot be determined by the preceding

method.



Exercises 2.4 73

Exercises 2.4

1. Solve the following initial-value problems by the Laplace trans-

form method.

(a)
dy

dt
− y � cos t, y(0) � −1

(b)
dy

dt
+ y � t2et, y(0) � 2

(c)
d2y

dt2
+ 4y � sin t, y(0) � 1, y′(0) � 0

(d)
d2y

dt2
− 2

dy

dt
− 3y � tet, y(0) � 2, y′(0) � 1

(e)
d3y

dt3
+ 5

d2y

dt2
+ 2

dy

dt
− 8y � sin t, y(0) � 0, y′(0) � 0,

y′′(0) � −1

(f)
d2y

dt2
+

dy

dt
� f (t), y(0) � 1, y′(0) � −1, where

f (t) �
{

1 0 < t < 1

0 t > 1

(g) y′′ + y �
{

cos t 0 ≤ t ≤ π

0 t > π, y(0) � 0, y′(0) � 0

(h) y(4) − y � 0, y(0) � 1, y′(0) � y′′(0) � y′′′(0) � 0.

2. Solve the boundary value problems.

(a) y′′ + λ2y � sin λt, y(0) � 1, y
(

π
2λ

)

� π.

(b) y′′ + λ2y � t, y(0) � 1, y′ (π
λ

)

� −1.

3. Suppose that the current I in an electrical circuit satisfies

L
dI

dt
+ RI � E0,

where L, R, E0 are positive constants.

(a) Find I(t) for t > 0 if I(0) � I0 > 0.

(b) Sketch a graph of the solution in (a) for the case I0 > E0/R.

(c) Show that I(t) tends to E0/R as t → ∞.

4. Suppose that the current I in an electrical circuit satisfies

L
d I

dt
+ RI � E0 + A cos ωt,
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where L, R, E0, A and ω are constants. Find I(t) for t > 0 if

I(0) � 0.

5. Find the current I(t), t > 0, if

L
d I

dt
+ RI +

1

C

∫ t

0

I(τ) dτ � sin t,

and L � 1, R � 3, C � 1
2
, I(0) � 1.

6. Solve the following systems of equations by the Laplace transform

method.

(a) 2
dx

dt
+ 3x + y � 0

2
dy

dt
+ x + 3y � 0

x(0) � 2, y(0) � 0

(b)
dx

dt
+ x − y � 1 + sin t

dy

dt
−

dx

dt
+ y � t − sin t

x(0) � 0, y(0) � 1

(c) x(t) − y′′(t) + y(t) � e−t − 1

x′(t) + y′(t) − y(t) � −3e−t + t

x(0) � 0, y(0) � 1, y′(0) � −2.

7. Solve the following differential equations by the Laplace trans-

form method.

(a) ty′ − y � 1

(b) ty′′ − y′ � −1, y(0) � 0

(c) ty′′ + y � 0, y(0) � 0

(d) ty′′ + (t + 1)y′ + 2y � e−t, y(0) � 0.

2.5 Dirac Operator

In order to model certain physical events mathematically, such as a

sudden power surge caused by a bolt of lightning, or the dynamical

effects of a hammer blow to a spring-mounted weight, it turns out

that ordinary functions are ill suited for these purposes. What is

required is an entirely new entity that is not really a function at all.
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Because of the status of this new entity, we also require a new tool

in order to discuss it, namely the Riemann–Stieltjes integral, which

is just a natural extension of the conventional Riemann integral.

Riemann–Stieltjes Integral. Consider a partition of the interval

[α, β] given by α � t0 < t1 < · · · < tn−1 < tn � β, choosing from

each subinterval [ti−1, ti] an arbitrary point xi with ti−1 ≤ xi ≤ ti.

Given functions f and ϕ defined on [α, β], we form the sum

n
∑

i�1

f (xi)[ϕ(ti) − ϕ(ti−1)]. (2.30)

If these sums converge to a finite limit L as � � maxi(ti − ti−1) → 0

as i → ∞, and for every choice of xi ∈ [ti−1, ti], then this limit is

called the Riemann–Stieltjes integral of f with respect to ϕ on [α, β],

and for the value of L we write
∫ β

α

f (t) dϕ(t).

If ϕ(t) � t, then all the sums in (2.30) are the usual Riemann

sums and we obtain the ordinary Riemann integral.

The basic properties of the Riemann–Stieltjes integral are listed

in the Appendix (Theorem A.9) and are very similar to those of the

Riemann integral, as one might expect. It is important to note that

the function ϕ need not be continuous. In fact, if f is continuous on

[α, β] and ϕ is a nondecreasing function on [α, β], then
∫ β

α
f (t) dϕ(t) exists

(see Protter and Morrey [10], Theorem 12.16).

For example, let ϕ(t) � ua(t), the unit step function (Example

1.25):

ϕ(t) �

{

1 t ≥ a

0 t < a,

for a ≥ 0. If f is continuous on some interval [α, β] containing a, say

α < a < β, then for any particular partition, only for tj−1 < a ≤ tj
is there any contribution to the integral (all the other terms being

zero), and

n
∑

i�1

f (xi)[ϕ(ti) − ϕ(ti−1)] � f (xj)[ϕ(tj) − ϕ(tj−1)]
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t

��t�

�

O a� tj�� xj tj � FIGURE 2.8

� f (xj)(1 − 0)

� f (xj)

(Figure 2.8). Taking the limit as � → 0 (whereby xj → a) gives the

value of the Riemann–Stieltjes integral
∫ β

α

f (t) dua(t) � f (a) (2.31)

since f (xj) → f (a).

The property (2.31) is called the “sifting property” in that it sifts

out one particular value of the function f . Let us denote

δa � dua, a ≥ 0, (2.32)

and for a � 0, set δ � δ0. From the sifting property we see that the

action of δa on continuous functions is that of an operator, that is,

δa[f ] �
∫ ∞

−∞
f (t) δa(t) � f (a), (2.33)

and we see that this operator is linear:

δa[c1f1 + c2f2] � c1δa[f1] + c2δa[f2],

for constants c1, c2.

We shall call δa the Dirac operator, although it is also known as

the Dirac distribution, Dirac measure concentrated at a, Dirac delta

function, or impulse function. P.A.M. Dirac, one of the founders of

quantum mechanics, made extensive use of it in his work. However,
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the “delta function” was highly controversial until it was made rig-

orous by the French mathematician Laurent Schwartz, in his book

Théorie des distributions (cf. [13]). The class of linear operators of

which the Dirac operator is just one example is known as distribu-

tions or generalized functions (see Guest [5], Chapter 12; also Richards

and Youn [11]).

Let us use the Riemann integral to show that the sifting prop-

erty (2.33) for continuous functions could not possibly hold for any

“proper function” ϕa.

Let fn be continuous, fn(t) � 0 for |t| ≥ 1/n, fn(t) � 1 − n|t| for

|t| < 1/n, so that with a � 0, fn(0) � 1. If ϕ0 is Riemann integrable,

then it must be bounded by some constant M on, say, [−1, 1]. If ϕ0

satisfies the sifting property, it follows that

1 �
∫ ∞

−∞
fn(t) ϕ0(t) dt ≤

∫ 1
n

− 1
n

fn(t)|ϕ0(t)| dt

≤ M

∫ 1
n

− 1
n

dt �
2M

n
,

a contradiction for n sufficiently large (Figure 2.9).

However, there is an important relationship between the Rie-

mann–Stieltjes and Riemann integrals under suitable conditions.

Notably, if f , ϕ, ϕ′ are continuous on [α, β], then

∫ β

α

f (t) dϕ(t) �
∫ β

α

f (t) ϕ′(t) dt (2.34)

(see Theorem A.10).

t

�

fn

O�

�

n

�

n FIGURE 2.9
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One further property of the Dirac operator worth noting is
∫ ∞

−∞
δa(t) � 1, (2.35)

which can be expressed as the total point mass concentrated at a is

unity.

Laplace Transform. In terms of the Riemann–Stieltjes integral, the

Laplace transform with respect to a function ϕ defined on [0, ∞) is given

by [cf. Widder [15] for an explication using this approach]

F(s) � LR−S(dϕ) �
∫ ∞

−∞
e−stdϕ(t) � lim

b→∞

∫ b

−b

e−stdϕ(t) (2.36)

whenever this integral exists. Since we have taken the integral over

(−∞, ∞), we will always set ϕ(t) � 0 for t < 0. In particular, for

dϕ � dua � δa,

LR−S(δa) �
∫ ∞

−∞
e−stδa(t)

� e−as, a ≥ 0, (2.37)

by the sifting property. When a � 0, we have

LR−S(δ) � 1.

Here we have an instance of the basic property of the Laplace

transform, F(s) → 0 as s → ∞, being violated. But of course, δ is not

a function but a linear operator.

The application of the Riemann–Stieltjes Laplace transform (or

Laplace–Stieltjes transform as it is known) becomes more transparent

with the following result. We will take a slight liberty here with the

notation and write LR−S(ψ′) for LR−S(dψ) whenever ψ′ is continuous

on [0, ∞).

Theorem 2.27. Suppose that ϕ is a continuous function of exponential

order on [0, ∞). Then

LR−S(ϕ) � L(ϕ).

Proof. Let

ψ(t) �
∫ t

0

ϕ(τ) dτ,
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and set ϕ(t) � ψ(t) � 0 for t < 0. Then ψ′(t) � ϕ(t), except possibly

at t � 0, and in view of (2.34),

L(ϕ) �
∫ ∞

−∞
e−stϕ(t) dt �

∫ ∞

−∞
e−stψ′(t) dt �

∫ ∞

−∞
e−stdψ(t)

� LR−S(dψ) � LR−S(ψ′) � LR−S(ϕ),

as desired. ✷

Remark 2.28. In the preceding theorem, the continuous function

ϕ need not be of exponential order as long as the usual Laplace

transform exists.

Thus we have the following general principle:

When taking the Laplace–Stieltjes transform LR−S of functions in

a differential equation, we may instead take the ordinary Laplace

transform, L.

Example 2.29. Let us solve the differential equation

x′(t) � δ(t), x(0) � 0.

First note that this equation can be interpreted in the sense that

both sides are linear operators
[

i.e., x′[f ] �
∫ ∞
−∞ f (t) x′(t) dt for, say,

continuous f , which vanishes outside a finite interval
]

. Applying

LR−S to both sides,

s L(x) � LR−S(δ) � 1,

and

L(x) �
1

s
,

so that x(t) ≡ 1, t ≥ 0.

Note, however, that the initial condition x(0) � 0 is not satisfied,

but if we define x(t) � 0 for t < 0, then limt→0− x(t) � 0. Moreover,

x(t) � u(t),

the unit step function
(

compare with (2.32)
)

.

Applications. The manner in which the Dirac operator has come

to be used in modeling a sudden impulse comes from consideration
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O a b

�

b�a

FIGURE 2.10

of the step function (Example 1.26):

uab(t) �
1

b − a

(

ua(t) − ub(t)
)

, b > a ≥ 0

(Figure 2.10). Note that uab(t) has the property

∫ ∞

−∞
uab(t) dt � 1. (2.38)

In order to simulate a sudden “impulse,” we let b approach a and

define

�a(t) � lim
b→a

uab(t). (2.39)

Then �a(t) � 0 for all t �� a and is undefined (or ∞ if you like) at

t � a.

From another perspective, let f be continuous in some interval

[α, β] containing a, with α < a < b < β. Then

∫ ∞

−∞
f (t) uab(t) dt �

1

b − a

∫ b

a

f (t) dt

� f (c)

for some point c ∈ [a, b] by the mean-value theorem for integrals

(Figure 2.11). Taking the limit as b → a, we get f (c) → f (a), that is,

lim
b→a

∫ ∞

−∞
f (t) uab(t) dt � f (a). (2.40)

This suggests in a heuristic sense that if only we could take this

limit inside the integral (which is not possible), then coupled with
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(2.39) we would arrive at the expression
∫ ∞

−∞
f (t) �a(t) dt � f (a).

This formula has absolutely no meaning in the Riemann integral

sense
(

remember that �a(t) is zero except for the value ∞ at t � a),

but we have already given such an expression a rigorous meaning

in the Riemann–Stieltjes sense of (2.33).

Again, in (2.38), if only one could take the limit as b → a inside

the integral, we would have
∫ ∞

−∞
�a(t) dt � 1,

also achieved rigorously in (2.35).

As far as the Laplace transform goes, we have

L
(

uab(t)
)

�
e−as − e−bs

s(b − a)

as in Example 1.26. Letting b → a and applying l’Hôpital’s rule,

lim
b→a

L
(

uab(t)
)

� lim
b→a

e−as − e−bs

s(b − a)
� e−as. (2.41)

Since limb→a uab(t) � �a(t), it is tempting (but meaningless) to write

lim
b→a

L
(

uab(t)
)

� L
(

�a(t)
)

,
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and hence by (2.41), equating the two limits

L
(

�a(t)
)

� e−as.

This is just the expression obtained in (2.37).

The foregoing illustrates that the mathematical modeling of a

sudden impulse is achieved rigorously by the treatment given in

terms of the Riemann–Stieltjes integral.

Hereafter, for the sake of convenience, we will abuse the notation

further and simply write

L(δa) � e−as.

Example 2.30. A pellet of mass m is fired from a gun at time t � 0

with a muzzle velocity v0. If the pellet is fired into a viscous gas, the

equation of motion can be expressed as

m
d2x

dt2
+ k

dx

dt
� m vo δ(t), x(0) � 0, x′(0) � 0,

where x(t) is the displacement at time t ≥ 0, and k > 0 is a constant.

Here, x′(0) � 0 corresponds to the fact that the pellet is initially at

rest for t < 0.

Taking the transform of both sides of the equation, we have

m s2
L(x) + ks L(x) � m v0 L(δ) � m v0,

L(x) �
m v0

m s2 + ks
�

v0

s(s + k/m)
.

Writing

v0

s(s + k/m)
�

A

s
+

B

s + k/m
,

we find that

A �
m v0

k
, B � −

m v0

k
,

and

L(x) �
m v0/k

s
−

m v0/k

s + k/m
.

The solution given by the inverse transform is

x(t) �
m v0

k
(1 − e− k

m
t)
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(Figure 2.12). Computing the velocity,

x′(t) � v0 e− k
m

t,

and limt→0+ x′(t) � v0, whereas limt→0− x′(t) � 0, indicating the

instantaneous jump in velocity at t � 0, from a rest state to the

value v0 (Figure 2.13).

Another formulation of this problem would be

m
d2x

dt2
+ k

dx

dt
� 0, x(0) � 0, x′(0) � v0.

Solving this version yields the same results as above.

Example 2.31. Suppose that at time t � 0 an impulse of 1V is

applied to an RCL circuit (Figure 2.6), and for t < 0, I(t) � 0 and the

charge on the capacitor is zero. This can be modeled by the equation

L
dI

dt
+ RI +

1

C

∫ t

0

I(τ) dτ � δ(t),

where L, R, and C are positive constants, and

(i)
L

C
>

R2

4
, (ii)

L

C
<

R2

4
.
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Applying the Laplace transform gives

Ls L(I) + R L(I) +
1

Cs
L(I) � 1,

that is,

L(I) �
s

Ls2 + Rs + 1/C

�
s

L[(s + R/2L)2 + (1/LC − R2/4L2)]
.

Setting a � R/2L, b2 � 1/LC − R2/4L2 > 0, assuming (i), then,

L L(I) �
s

(s + a)2 + b2

�
s + a

(s + a)2 + b2
−

a

(s + a)2 + b2
, (2.42)

and so

I(t) �
e−at

L

(

cos bt −
a

b
sin bt

)

.

Assuming (ii), (2.42) becomes

LL(I) �
s

(s + a)2 − b2
�

s + a

(s + a)2 − b2
−

a

(s + a)2 − b2

with a � R/2L, b2 � R2/4L2 − 1/LC > 0. Consequently,

I(t) �
e−at

L

(

cosh bt −
a

b
sinh bt

)

.

A Mechanical System. We consider a mass m suspended on a

spring that is rigidly supported from one end (Figure 2.14). The rest

position is denoted by x � 0, downward displacement is represented

by x > 0, and upward displacement is shown by x < 0.

To analyze this situation let

i. k > 0 be the spring constant from Hooke’s law,

ii. a(dx/dt) be the damping force due to the medium (e.g., air),

where a > 0, that is, the damping force is proportional to the

velocity,

iii. F(t) represents all external impressed forces on m.
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Newton’s second law states that the sum of the forces acting on m

equals m d2x/dt2, that is,

m
d2x

dt2
� −kx − a

dx

dt
+ F(t),

or

m
d2x

dt2
+ a

dx

dt
+ kx � F(t). (2.43)

This equation is called the equation of motion.

Remark 2.32. If a � 0, the motion is called undamped. If a �� 0,

the motion is called damped. If F(t) ≡ 0 (i.e., no impressed forces),

the motion is called free; otherwise it is forced.

We can write (2.43) with F(t) ≡ 0 as

d2x

dt2
+

a

m

dx

dt
+

k

m
x � 0.

Setting a/m � 2b, k/m � λ2, we obtain

d2x

dt2
+ 2b

dx

dt
+ λ2x � 0. (2.44)

The characteristic equation is

r2 + 2br + λ2 � 0,

with roots

r � −b ±
√

b2 − λ2.
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The resulting behavior of the system depends on the relation be-

tween b and λ. One interesting case is when 0 < b < λ, where we

obtain

x(t) � e−bt(c1 sin
√

λ2 − b2t + c2 cos
√

λ2 − b2t),

which after some algebraic manipulations (setting c �
√

c2
1 + c2

2,

cos ϕ � c2/c) becomes

x(t) � c e−bt cos(
√

λ2 − b2t − ϕ).

This represents the behavior of damped oscillation (Figure 2.15).

Let us apply a unit impulse force to the above situation.

Example 2.33. For 0 < b < λ, suppose that

d2x

dt2
+ 2b

dx

dt
+ λ2x � δ(t), x(0) � 0, x′(0) � 0,

which models the response of the mechanical system to a unit

impulse.

Therefore,

L(x′′) + 2b L(x′) + λ2
L(x) � L(δ) � 1,

so that

L(x) �
1

s2 + 2bs + λ2

�
1

(s + b)2 + (λ2 − b2)
,
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and

x(t) �
1

√
λ2 − b2

e−bt sin(
√

λ2 − b2t),

which again is a case of damped oscillation.

Exercises 2.5

1. Solve

d2y

dt2
− 4

dy

dt
+ 2y � δ(t), y(0) � y′(0) � 0.

2. The response of a spring with no damping (a � 0) to a unit

impulse at t � 0 is given by

m
d2x

dt2
+ kx � δ(t), x(0) � 0, x′(0) � 0.

Determine x(t).

3. Suppose that the current in an RL circuit satisifies

L
d I

dt
+ RI � E(t),

where L, and R are constants, and E(t) is the impressed voltage.

Find the response to a unit impulse at t � 0, assuming E(t) � 0

for t ≤ 0.

4. Solve

m
d2x

dt2
+ a

dx

dt
+ kx � δ(t),

for m � 1, a � 2, k � 1, x(0) � x′(0) � 0.

5. Show that if f satisfies the conditions of the derivative theorem

(2.7), then

L
−1

(

sF(s)
)

� f ′(t) + f (0) δ(t).

6. Show that

L
−1

(

s − a

s + a

)

� δ(t) − 2ae−at.
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7. A certain function U(x) satisfies

a2U ′′ − b2U � −
1

2
δ, x > 0,

where a and b are positive constants. If U(x) → 0 as x → ∞, and

U(−x) � U(x), show that

U(x) �
1

2ab
e− b

a
|x|.

[Hint: Take U(0) � c, U ′(0) � 0, where c is to be determined.]

2.6 Asymptotic Values

Two properties of the Laplace transform are sometimes useful in

determining limiting values of a function f (t) as t → 0 or as t → ∞,

even though the function is not known explicitly. This is achieved

by examining the behavior of L
(

f (t)
)

.

Theorem 2.34 (Initial-Value Theorem). Suppose that f , f ′ satisfy

the conditions as in the derivative theorem (2.7), and F(s) � L
(

f (t)
)

.

Then

f (0+) � lim
t→0+

f (t) � lim
s→∞

s F(s) (s real).

Proof. By the general property of all Laplace transforms (of func-

tions), we know that L
(

f ′(t)
)

� G(s) → 0 as s → ∞ (Theorem 1.20).

By the derivative theorem,

G(s) � s F(s) − f (0+), s > α.

Taking the limit,

0 � lim
s→∞

G(s) � lim
s→∞

(

s F(s) − f (0+)
)

.

Therefore,

f (0+) � lim
s→∞

s F(s). ✷

Example 2.35. If

L
(

f (t)
)

�
s + 1

(s − 1)(s + 2)
,
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then

f (0+) � lim
s→∞

s

(

s + 1

(s − 1)(s + 2)

)

� 1.

Theorem 2.36 (Terminal-Value Theorem). Suppose that f satis-

fies the conditions of the derivative theorem (2.7) and furthermore that

limt→∞ f (t) exists. Then this limiting value is given by

lim
t→∞

f (t) � lim
s→0

s F(s) (s real),

where F(s) � L
(

f (t)
)

.

Proof. First note that f has exponential order α � 0 since it is

bounded in view of the hypothesis. By the derivative theorem,

G(s) � L
(

f ′(t)
)

� s F(s) − f (0+) (s > 0).

Taking the limit,

lim
s→0

G(s) � lim
s→0

s F(s) − f (0+). (2.45)

Furthermore,

lim
s→0

G(s) � lim
s→0

∫ ∞

0

e−stf ′(t) dt

�
∫ ∞

0

f ′(t) dt, (2.46)

since in this particular instance the limit can be passed inside the

integral (see Corollary A.4). The integral in (2.46) exists since it is

nothing but
∫ ∞

0

f ′(t) dt � lim
τ→∞

∫ τ

0

f ′(t) dt

� lim
τ→∞

[f (τ) − f (0+)]. (2.47)

Equating (2.45), (2.46), and (2.47),

lim
t→∞

f (t) � lim
s→0

s F(s). ✷

Example 2.37. Let f (t) � sin t. Then

lim
s→0

s F(s) � lim
s→0

s

s2 + 1
� 0,
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but limt→∞ f (t) does not exist! Thus we may deduce that if

lims→0 s F(s) � L, then either limt→∞ f (t) � L or this limit does

not exist. That is the best we can do without knowing a priori that

limt→∞ f (t) exists.

Exercises 2.6

1. Without determining f (t) and assuming f (t) satisfies the hy-

potheses of the initial-value theorem (2.34), compute f (0+)

if

(a) L
(

f (t)
)

�
s3 + 3a2s

(s2 − a2)3

(b) L
(

f (t)
)

�
√

s2 + a2 − s)n

√
s2 + a2

(n ≥ 0)

(c) log

(

s + a

s + b

)

(a �� b).

2. Without determining f (t), and assuming f (t) satisfies the hy-

potheses of the terminal-value theorem (2.36), compute lim
t→∞

f (t)

if

(a) L
(

f (t)
)

�
s + b

(s + b)2 + a2
(b > 0)

(b) L
(

f (t)
)

�
1

s
+ tan−1

(a

s

)

.

3. Show that

lim
s→0

s
s

(s2 + a2)2

exists, and

L

(

t

2a
sin at

)

�
s

(s2 + a2)2
,

yet

lim
t→∞

t

2a
sin at

does not exist.
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2.7 Convolution

The convolution of two functions, f (t) and g(t), defined for t >

0, plays an important role in a number of different physical

applications.

The convolution is given by the integral

(f ∗ g)(t) �
∫ t

0

f (τ)g(t − τ) dτ,

which of course exists if f and g are, say, piecewise continuous.

Substituting u � t − τ gives

(f ∗ g)(t) �
∫ t

0

g(u) f (t − u) du � (g ∗ f )(t),

that is, the convolution is commutative.

Other basic properties of the convolution are as follows:

(i) c(f ∗ g) � cf ∗ g � f ∗ cg, c constant;

(ii) f ∗ (g ∗ h) � (f ∗ g) ∗ h (associative property);

(iii) f ∗ (g + h) � (f ∗ g) + (f ∗ h) (distributive property).

Properties (i) and (iii) are routine to verify. As for (ii),

[f ∗ (g ∗ h)](t)

�
∫ t

0

f (τ)(g ∗ h)(t − τ) dτ

�
∫ t

0

f (τ)

(∫ t−τ

0

g(x)h(t − τ − x) dx

)

dτ

�
∫ t

0

(∫ t

τ

f (τ)g(u − τ)h(t − u) du

)

dτ (x � u − τ)

�
∫ t

0

(∫ u

0

f (τ)g(u − τ) dτ

)

h(t − u) du

� [(f ∗ g) ∗ h](t),

having reversed the order of integration.
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Example 2.38. If f (t) � et, g(t) � t, then

(f ∗ g)(t) �
∫ t

0

eτ(t − τ) dτ

� t eτ
∣

∣

∣

t

0
− (τ eτ − eτ)

∣

∣

∣

t

0

� et − t − 1.

One of the very significant properties possessed by the convolu-

tion in connection with the Laplace transform is that the Laplace

transform of the convolution of two functions is the product of their

Laplace transforms.

Theorem 2.39 (Convolution Theorem). If f and g are piecewise

continuous on [0, ∞) and of exponential order α, then

L[(f ∗ g)(t)] � L
(

f (t)
)

· L
(

g(t)
) (

Re(s) > α
)

.

Proof. Let us start with the product

L
(

f (t)
)

· L
(

g(t)
)

�
(∫ ∞

0

e−sτf (τ) dτ

)(∫ ∞

0

e−sug(u) du

)

�
∫ ∞

0

(∫ ∞

0

e−s(τ+u)f (τ) g(u) du

)

dτ.

Substituting t � τ + u, and noting that τ is fixed in the interior

integral, so that du � dt, we have

L
(

f (t)
)

· L
(

g(t)
)

�
∫ ∞

0

(∫ ∞

τ

e−stf (τ) g(t − τ) dt

)

dτ. (2.48)

If we define g(t) � 0 for t < 0, then g(t − τ) � 0 for t < τ and we

can write (2.48) as

L
(

f (t)
)

· L
(

g(t)
)

�
∫ ∞

0

∫ ∞

0

e−stf (τ)g(t − τ) dt dτ.

Due to the hypotheses on f and g, the Laplace integrals of f and g

converge absolutely and hence, in view of the preceding calculation,
∫ ∞

0

∫ ∞

0

∣

∣e−stf (τ)g(t − τ)
∣

∣ dt dτ
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converges. This fact allows us to reverse the order of integration,∗

so that

L
(

f (t)
)

· L
(

g(t)
)

�
∫ ∞

0

∫ ∞

0

e−stf (τ)g(t − τ) dτ dt

�
∫ ∞

0

(∫ t

0

e−stf (τ) g(t − τ) dτ

)

dt

�
∫ ∞

0

e−st

(∫ t

0

f (τ) g(t − τ) dτ

)

dt

� L[(f ∗ g)(t)]. ✷

Example 2.40.

L(eat ∗ ebt) �
1

(s − a)(s − b)
.

Moreover,

L
−1

(

1

(s − a)(s − b)

)

� eat ∗ ebt

�
∫ t

0

eaτ eb(t−τ)dτ

�
eat − ebt

a − b
a �� b.

∗Let

amn �
∫ n+1

n

∫ m+1

m

|h(t, τ)| dt dτ, bmn �
∫ n+1

n

∫ m+1

m

h(t, τ) dt dτ,

so that |bmn| ≤ amn. If
∫ ∞

0

∫ ∞

0

|h(t, τ)| dt dτ < ∞,

then
∑∞

n�0

∑∞
m�0 amn < ∞, implying

∑∞
n�0

∑∞
m�0 |bmn| < ∞. Hence, by a standard

result on double series, the order of summation can be interchanged:

∞
∑

n�0

∞
∑

m�0

bmn �
∞
∑

m�0

∞
∑

n�0

bmn,

i.e.,
∫ ∞

0

∫ ∞

0

h(t, τ) dt dτ �
∫ ∞

0

∫ ∞

0

h(t, τ) dτ dt.
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Example 2.41. Find

L
−1

(

1

s2(s − 1)

)

.

Previously we applied a partial fraction decomposition. But we can

also write

1

s2(s − 1)
�

1

s2
·

1

s − 1
,

where L(t) � 1/s2, L(et) � 1/(s − 1). By the convolution theorem,

1

s2
·

1

s − 1
� L(t ∗ et),

and thus

L
−1

(

1

s2(s − 1)

)

� t ∗ et

� et − t − 1

by Example 2.38.

Example 2.42.

(i)
ω2

(s2 + ω2)2
�

ω

s2 + ω2
·

ω

s2 + ω2

� L(sin ωt ∗ sin ωt),

so that

L
−1

(

ω2

(s2 + ω2)2

)

� sin ωt ∗ sin ωt

�
∫ t

0

sin wτ sin ω(t − τ) dτ

�
1

2w
(sin ωt − ωt cos ωt).
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Similarly,

(ii) L
−1

(

s

(s2 + ω2)2

)

�
1

ω
cos ωt ∗ sin ωt

�
1

ω

∫ t

0

cos ωτ sin ω(t − τ) dτ

�
1

2ω
t sin ωt.

Here we have used the fact that

sin(A − B) � sin A cos B − cos A sin B

to compute both integrals.

These examples illustrate the utility of the convolution theorem

in evaluating inverse transforms that are products.

Error Function. The error function from the theory of probability

is defined as

erf(t) �
2

√
π

∫ t

0

e−x2

dx.

Note that

lim
t→∞

erf(t) �
2

√
π

∫ ∞

0

e−x2

dx � 1 (2.49)

by Example 2.1 (Figure 2.16). The error function is related to Laplace

transforms through the problem (see also Chapters 4 and 5) of

finding

L
−1

(

1
√

s(s − 1)

)

.

t

erf�t�

�

��

O

FIGURE 2.16
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We know from (2.5) that

L

(

1
√

πt

)

�
1

√
s

and also that L(et) � 1/(s − 1). Then by the convolution theorem,

L
−1

(

1
√

s(s − 1)

)

�
1

√
πt

∗ et

�
∫ t

0

1
√

πx
et−xdx

�
et

√
π

∫ t

0

e−x

√
x

dx.

Substituting u �
√

x gives

L
−1

(

1
√

s(s − 1)

)

�
2et

√
π

∫

√
t

0

e−u2

du

� et erf(
√

t).

Applying the first translation theorem 1.27 with a � −1 yields

L
(

erf(
√

t)
)

�
1

s
√

s + 1
.

Beta Function. If f (t) � ta−1, g(t) � tb−1, a, b > 0, then

(f ∗ g)(t) �
∫ t

0

τa−1(t − τ)b−1dτ.

Substituting τ � ut,

(f ∗ g)(t) � ta+b−1

∫ 1

0

ua−1(1 − u)b−1du. (2.50)

The term

B(a, b) �
∫ 1

0

ua−1(1 − u)b−1du (2.51)

is known as the beta function. Then by the convolution theorem,

L
(

ta+b−1B(a, b)
)

� L(ta−1) L(tb−1)

�
Ŵ(a) Ŵ(b)

sa+b
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by (2.2). Therefore,

ta+b−1B(a, b) � L
−1

(

Ŵ(a) Ŵ(b)

sa+b

)

� Ŵ(a) Ŵ(b)
ta+b−1

Ŵ(a + b)
, (2.52)

and we obtain Euler’s formula for the beta function:

B(a, b) �
Ŵ(a) Ŵ(b)

Ŵ(a + b)
. (2.53)

Calculating B(1/2, 1/2) in (2.51) with u � sin2 θ, we find from

(2.53)

π � B
(

1
2
, 1

2

)

�
[

Ŵ
(

1
2

)]2
,

that is,

Ŵ
(

1
2

)

�
√

π (2.54)

since Ŵ(1/2) > 0. See also Example 2.1.

Bessel Function. This important function is the solution to the

Bessel equation of order ν,

t2 d2y

dt2
+ t

dy

dt
+ (t2 − ν2)y � 0, (2.55)

and is given by
(

the solution to (2.55) has a � 1
)

Jν(at) �
∞
∑

n�0

(−1)n(at)2n+ν

22n+νn!(n + ν)!
,

where (n + ν)! � Ŵ(n + ν + 1). For ν � 0,

J0(at) �
∞
∑

n�0

(−1)na2nt2n

22n(n!)2
�

∞
∑

n�0

a2nt
2n

(Figure 2.17). J0(at) is a bounded function and

|a2n| �
|a|2n

22n(n!)2
≤

|a|2n

(2n)!
.
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t

J��at�

�

O

FIGURE 2.17

The latter inequality for n � 0, 1, 2, · · · can be verified by induction.

Taking α � |a| in Theorem 1.18 means that we can take the Laplace

transform of J0(at) term by term.

Hence,

L
(

J0(at)
)

�
∞
∑

n�0

(−1)na2n

22n(n!)2
L(t2n)

�
∞
∑

n�0

(−1)na2n(2n)!

22n(n!)2s2n+1

�
1

s

∞
∑

n�0

(−1)n(2n)!

22n(n!)2

(

a2

s2

)n

�
1

s

(

s
√

s2 + a2

)

(

Re(s) > |a|
)

�
1

√
s2 + a2

.

Here we have used the Taylor series expansion

1
√

1 + x2
�

∞
∑

n�0

(−1)n(2n)!

22n(n!)2
x2n (|x| < 1)

with x � a/s.

Integral Equations. Equations of the form

f (t) � g(t) +
∫ t

0

k(t, τ) f (τ) dτ
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and

g(t) �
∫ t

0

k(t, τ) f (τ) dτ

are known as integral equations, where f (t) is the unknown function.

When the kernel k(t, τ) is of the particular form

k(t, τ) � k(t − τ),

the integrals represent convolutions. In this case, the Laplace

transform lends itself to their solution.

Considering the first type, if g and k are known, then formally

L(f ) � L(g) + L(f ) L(k)

by the convolution theorem. Then

L(f ) �
L(g)

1 − L(k)
,

and from this expression f (t) often can be found since the right-hand

side is just a function of the variable s.

Example 2.43. Solve the integral equation

x(t) � e−t +
∫ t

0

sin(t − τ) x(τ) dτ.

We apply the Laplace transform to both sides of the equation so that

L
(

x(t)
)

� L(e−t) + L(sin t) L
(

x(t)
)

and

L
(

x(t)
)

�
L(e−t)

1 − L(sin t)

�
s2 + 1

s2(s + 1)

�
2

s + 1
+

1

s2
−

1

s
.

Hence

x(t) � 2e−t + t − 1.
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x

y

u

y

y � y�x�

O FIGURE 2.18

As an example of an integral equation of the second type, let

us consider a classical problem from the 19th century. A particle

is to slide down a frictionless curve with the requirement that the

duration of descent (due to gravity) is independent of the starting

point (Figure 2.18). Such a curve is called a tautochrone.

An analysis of the physics of the situation leads to the (Abel)

integral equation

T0 �
1

√
2g

∫ y

0

f (u) du
√

y − u
, (2.56)

where T0 is a constant (time), g is the gravitational constant, and f (u)

represents ds/dy at y � u, where s � s(y) is arc length. The integral

(2.56) then is the convolution of the functions f (y) and 1/
√

y.

Taking the transform gives

L(T0) �
1

√
2g

L
(

f (y)
)

L

(

1
√

y

)

,

and so by (2.4)

L
(

f (y)
)

�
√

2g T0/s
√

π/s
.

Therefore,

L
(

f (y)
)

�
√

2g/π

s
1
2

T0 �
c0

s
1
2

.

The inverse transform gives

f (y) �
c

√
y
. (2.57)
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Since

f (y) �
ds

dy
�

√

1 +
(

dx

dy

)2

,

we arrive at the differential equation

1 +
(

dx

dy

)2

�
c2

y
,

invoking (2.57). Then

x �
∫

√

c2 − y

y
dy.

Setting y � c2 sin2(ϕ/2) leads to

x �
c2

2
(ϕ + sin ϕ), y �

c2

2
(1 − cos ϕ),

which are the parametric equations of a cycloid.

Exercises 2.7

1. Use the convolution theorem to find the following:

(a) L
−1

(

1

(s − 1)(s + 2)

)

(b) L
−1

(

1

s(s2 + 1)

)

(c) L
−1

(

1

s2(s2 + 1)

)

(d) L
−1

(

1

s2(s + 4)2

)

(e) L
−1

(

s

(s2 + 1)3

)

.

2. Prove the distributive property for convolutions:

f ∗ (g + h) � f ∗ g + f ∗ h.

3. Show that if f and g are piecewise continuous and of exponential

order on [0, ∞), then (f ∗ g)(t) is of exponential order on [0, ∞).
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4. Use the convolution theorem to show that
∫ t

0

cos τ sin(t − τ) dτ � 1
2
t sin t.

5. Show that

y(t) �
1

ω

∫ t

0

f (τ) sinh ω(t − τ) dτ

is a solution to the differential equation

y′′ − ω2y � f (t), y(0) � y′(0) � 0,

for f continuous of exponential order on [0, ∞).

6. Determine

(a) L
−1

(

1

s
√

s + a

)

(b) L(eaterf
√

at)

(c) L(t erf
√

at).

7. Find

(a) L
−1

(

e−s

√
s2 + 1

)

(b) L
−1

(

1

s
√

s2 + a2

)

.

8. Evaluate

∫ 1

0

u− 1
2 (1 − u)

1
2 du.

9. The modified Bessel function of order ν is given by Iν(t) �
i−νJν(it) �

∑∞
n�0 t2n+ν/22n+νn!(n + ν)!. Show that

L
(

I0(at)) �
1

√
s2 − a2

(

Re(s) > |a|).

10. Solve the following integral equations:

(a) x(t) � 1 +
∫ t

0

cos(t − τ) x(τ) dτ

(b) x(t) � sin t +
∫ t

0

eτx(t − τ) dτ

(c) x(t) �
∫ t

0

(sin τ) x(t − τ) dτ

(d) te−at �
∫ t

0

x(τ) x(t − τ) dτ.

11. Solve the integro-differential equations
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(a) x′(t) +
∫ t

0

x(t − τ) dτ � cos t, x(0) � 0

(b) sin t �
∫ t

0

x′′(τ) x(t − τ) dτ, x(0) � x′(0) � 0.

12. Solve the initial-value problem

y′′ − 2y′ − 3y � f (t), y(0) � y′(0) � 0.

2.8 Steady-State Solutions

Let us consider the general nth-order, linear, nonhomogeneous

differential equation with constant coefficients

y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y � f (t) (2.58)

for f ∈ L, and with initial conditions

y(0) � y′(0) � · · · � y(n−1)(0) � 0. (2.59)

To be more precise, we should really say

y(0+) � y′(0+) � · · · � y(n−1)(0+) � 0,

but we shall continue to employ the conventional notation of (2.59).

A solution of (2.58) satisfying (2.59) is called a steady-state

solution. By (2.22), proceeding formally,

L
(

y(k)(t)
)

� sk
L
(

y(t)
)

, k � 0, 1, 2, . . . .

Thus, the Laplace transform of (2.58) is

(sn + an−1s
n−1 + · · · + a1s + a0)L

(

y(t)
)

� L
(

f (t)
)

,

or

L
(

y(t)
)

�
L
(

f (t)
)

Q (s)
, (2.60)

where Q (s) � sn + an−1s
n−1 + · · · + a1s + a0.

Suppose that

1

Q (s)
� L

(

g(t)
)
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for some function g(t). Then

L
(

y(t)
)

� L
(

f (t)
)

L
(

g(t)
)

� L[(f ∗ g)(t)]

and

y(t) �
∫ t

0

f (τ) g(t − τ) dτ �
∫ t

0

g(τ) f (t − τ) dτ. (2.61)

Since

Q (s) L
(

g(t)
)

� 1,

in other words,

(sn + an−1s
n−1 + · · · + a1s + a0) L

(

g(t)
)

� L
(

δ(t)
)

,

we may consider g � g(t) to be the steady-state solution of

g(n) + an−1g
(n−1) + · · · + a1g

′ + a0g � δ(t). (2.62)

This means that we can determine the solution y � y(t) via (2.61)

by first determining g � g(t) as a steady-state solution of (2.62).

In this case, g(t) is known as the impulsive response since we are

determining the response of the system (2.58) for f (t) � δ(t).

Example 2.44. Find the steady-state solution to

y′′ − y � f (t) � e2t

by first determining the response of the system to the Dirac delta

function.

For g′′ − g � δ(t),

s2
L(g) − L(g) � 1,

namely,

L(g) �
1

s2 − 1
�

1/2

s − 1
−

1/2

s + 1
,

so that

g(t) �
1

2
et −

1

2
e−t.
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By (2.61),

y(t) �
∫ t

0

(

1

2
eτ −

1

2
e−τ

)

e2(t−τ)dτ

�
1

2
e2t

∫ t

0

(e−τ − e−3τ) dτ

�
1

3
e2t −

1

2
et +

1

6
e−t.

This approach, while seemingly cumbersome, comes into its own

when the impulse response g(t) is not known explicitly, but only

indirectly by experimental means.

By the same token, it is also worthwhile to determine the re-

sponse of the steady-state system (2.58)/(2.59) to the unit step

function, u(t).

To this end, if f (t) � u(t), the (indicial) response h � h(t) satisfies

h(n) + an−1h
(n−1) + · · · + a1h

′ + a0h � u(t),

h(0) � h′(0) � · · · � h(n−1)(0) � 0.

(2.63)

Moreover,

L
(

h(t)
)

�
L
(

u(t)
)

Q (s)
�

1

s Q (s)
.

Revisiting (2.60) with 1/Q (s) � s L
(

h(t)
)

,

L
(

y(t)
)

� s L
(

h(t)
)

L
(

f (t)
)

� L
(

h′(t)
)

L
(

f (t)
) (

h(0) � 0
)

� L[(h′ ∗ f )(t)].

Therefore,

y(t) �
∫ t

0

h′(τ) f (t − τ) dτ �
∫ t

0

f (τ) h′(t − τ) dτ. (2.64)

Once again we find that the steady-state solution of (2.58)/(2.59)

can be determined by a convolution of a particular function with the

input, f (t), in this case the steady-state solution h(t) of (2.63).

Note that in the preceding we could have witten

L
(

y(t)
)

� s L
(

f (t)
)

L
(

h(t)
)
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�
[

L
(

f ′(t)
)

+ f (0)
]

L
(

h(t)
)

,

and consequently

y(t) �
∫ t

0

f ′(τ) h(t − τ) dτ + f (0) h(t). (2.65)

This approach involving the convolution with the indicial response

is known as the superposition principle.

Example 2.45. For the steady-state problem in Example 2.44 and

f (t) � u(t),

s2
L
(

h(t)
)

− L
(

h(t)
)

� L
(

u(t)
)

�
1

s
,

that is,

L
(

h(t)
)

�
1

s(s − 1)(s + 1)
� −

1

s
+

1/2

s − 1
+

1/2

s + 1
,

and

h(t) � −1 +
1

2
et +

1

2
e−t,

h′(t) �
1

2
et −

1

2
e−t,

the latter quantity being exactly the expression obtained for g(t) in

the previous example. Then

y(t) �
∫ t

0

h′(τ) f (t − τ) dτ

�
1

3
e2t −

1

2
et +

1

6
e−t,

as before.

Let us go back to the polynomial Q (s) of (2.60) and suppose that

all of its roots α1, α2, · · · , αn are simple, so that we have the partial

fraction decomposition

1

Q (s)
�

n
∑

k�1

Ak

s − αk

� L

(

n
∑

k�1

Ake
αk t

)

.
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Putting this expression into (2.60) gives

L
(

y(t)
)

� L
(

f (t)
)

L

(

n
∑

k�1

Ake
αk t

)

,

and so

y(t) �
∫ t

0

f (τ)
n

∑

k�1

Ake
αk(t−τ)dτ

�
n

∑

k�1

Ak

∫ t

0

f (τ)eαk(t−τ)dτ. (2.66)

Since

Ak � lim
s→αk

s − αk

Q (s)
,

we can write

Ak � lim
s→αk

s − αk

Q (s) − Q (αk)

�
1

Q ′(αk)
, k � 1, 2, . . . , n,

invoking l’Hôpital’s rule [Q ′(αk) �� 0 from Section 3.4 since the αks

are simple].

A fortiori (2.66) becomes

y(t) �
n

∑

k�1

1

Q ′(αk)

∫ t

0

f (τ) eαk(t−τ)dτ, (2.67)

the Heaviside expansion theorem.

Exercises 2.8

1. Solve the following steady-state problems by first determining

the response of the system to the Dirac delta function and then

using equation (2.61):

(a) y′′ + y′ − 2y � 4e−t
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(b) y′′ − y � sin t

(c) y′′′ − 2y′′ − 5y′ + 6y � 2t.

2. Solve parts (a), (b), and (c) of Question 1 by first determining the

response of the system to the unit step function and then using

equation (2.64) or (2.65).

3. Solve parts (a), (b), and (c) of Question 1 directly by using the

Heaviside expansion theorem (2.67).

4. A mass attached to a vertical spring undergoes forced vibration

with damping so that the motion is given by

d2x

dt2
+

dx

dt
+ 2x � sin t,

where x(t) is the displacement at time t. Determine the

displacement at time t of the steady-state solution.

2.9 Difference Equations

A difference equation expresses the relationship between the values of

a function y(t) and the values of the function at different arguments,

y(t + h), h constant. For example,

y(t − 1) − 3y(t) + 2y(t − 2) � et,

y(t + 1) y(t) � cos t

are difference equations, linear and nonlinear, respectively.

Equations that express the relationship between the terms of a

sequence a0, a1, a2, . . . are also difference equations, as, for example,

an+2 − 3an+1 + 2an � 5n (linear),

an+1 � 2a2
n (nonlinear).

As we will see, the function and sequence forms are not as unrelated

as they may appear, with the latter easily expressed in terms of the

former. Both of the above linear forms are amenable to solution by

the Laplace transform method.

For further reading on difference equations, see Mickens [8].
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Example 2.46. Solve

y(t) − y
(

t −
π

ω

)

� sin ωt, y(t) � 0, t ≤ 0.

We compute

L

(

y
(

t −
π

ω

))

�
∫ ∞

0

e−sty
(

t −
π

ω

)

dt

�
∫ ∞

− π
ω

e−s(τ+ π
ω
)y(τ) dτ

(

τ � t −
π

ω

)

� e− πs
ω

∫ ∞

0

e−sτy(τ) dτ

� e− πs
ω L

(

y(t)
)

.

Therefore, taking the Laplace transform of both sides of the

difference equation,

L
(

y(t)
)

− e− πs
ω L

(

y(t)
)

�
ω

s2 + ω2
,

or

L
(

y(t)
)

�
ω

(s2 + ω2)
(

1 − e− πs
ω

) ,

and

y(t) �

{

sin ωt 2nπ
ω

< t <
(2n+1)π

ω

0
(2n+1)π

ω
< t <

(2n+2)π
ω

n � 0, 1, 2, . . . ,

the half–wave-rectified sine function given in Example 2.6.

In order to solve difference equations that are in sequence form,

the following result proves instrumental.

Example 2.47. f (t) � a[t], where [t] is the greatest integer ≤ t,

a > 0 (Figure 2.19). Then f (t) has exponential order (Exercises 2.9,

Question 1) and

L
(

f (t)
)

�
∫ ∞

0

e−stf (t) dt

�
∫ 1

0

e−sta0dt +
∫ 2

1

e−sta1dt +
∫ 3

2

e−sta2dt + · · ·
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t

�
�t�

�
�
� �

�

�
�
� �

�

�
�
� �

�O FIGURE 2.19

�
1 − e−s

s
+

a(e−s − e−2s)

s
+

a2(a−2s − e−3s)

s
+ · · ·

�
1 − e−s

s
(1 + ae−s + a2e−2s + · · ·)

�
1 − e−s

s(1 − ae−s)

(

Re(s) > max(0, log a)
)

.

Let us then turn to the following type of difference equation.

Example 2.48. Solve

an+2 − 3an+1 + 2an � 0, a0 � 0, a1 � 1.

To treat this sort of problem, let us define

y(t) � an, n ≤ t < n + 1, n � 0, 1, 2, . . . .

Then our difference equation becomes

y(t + 2) − 3y(t + 1) + 2y(t) � 0. (2.68)

Taking the Laplace transform, we first have

L
(

y(t + 2)
)

�
∫ ∞

0

e−sty(t + 2) dt

�
∫ ∞

2

e−s(τ−2)y(τ) dτ (τ � t + 2)

� e2s

∫ ∞

0

e−sτy(τ) dτ − e2s

∫ 2

0

e−sτy(τ) dτ
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� e2s
L
(

y(t)
)

− e2s

∫ 1

0

e−sτa0dτ − e2s

∫ 2

1

e−sτa1dτ

� e2s
L
(

y(t)
)

− e2s

(

e−s − e−2s

s

)

� e2s
L
(

y(t)
)

−
es

s
(1 − e−s),

since a0 � 0, a1 � 1.

Similarly,

L
(

y(t + 1)
)

� es
L
(

y(t)
)

.

Thus the transform of (2.68) becomes

e2s
L
(

y(t)
)

−
es

s
(1 − e−s) − 3es

L
(

y(t)
)

+ 2L
(

y(t)
)

� 0,

or

L
(

y(t)
)

�
es(1 − e−s)

s(e2s − 3es + 2)

�
es(1 − e−s)

s

(

1

es − 2
−

1

es − 1

)

�
1 − e−s

s

(

1

1 − 2e−s
−

1

1 − e−s

)

�
1 − e−s

s(1 − 2e−s)
−

1 − e−s

s(1 − e−s)

� L(2[t]) − L(1)

by Example 2.47. The solution is then given by
(

equating the

expressions for y(t)
)

an � 2n − 1, n � 0, 1, 2, . . . .

Checking this result: an+2 � 2n+2 − 1, an+1 � 2n+1 − 1, and so

(2n+2 − 1) − 3(2n+1 − 1) + 2(2n − 1) � 2n+2 − 3 · 2n+1 + 2 · 2n

� 2 · 2n+1 − 3 · 2n+1 + 2n+1

� 0,

as desired.
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If in the preceding example the right-hand side had been

something other than 0, say

an+2 − 3an+1 + 2an � 3n, a0 � 0, a1 � 1,

it would have transpired that

L
(

y(t)
)

� L(2[t]) − L(1) +
L(3[t])

e2s − 3es + 2

and

L(3[t])

e2s − 3es + 2
�

1 − e−s

s(1 − 3e−s)

1

e3s − 3es + 2

�
es − 1

s(es − 3)(es − 2)(es − 1)

�
es − 1

s

(

1
2

es − 1
−

1

es − 2
+

1
2

es − 3

)

�
1 − e−s

s

(

1
2

1 − e−s
−

1

1 − 2e−s
+

1
2

1 − 3e−s

)

�
1

2
L(1) − L(2[t]) +

1

2
L(3[t]).

Whence

an �
1

2
3n −

1

2
, n � 0, 1, 2, . . . .

Linear difference equations involving derivatives of the function

y(t) can also be treated by the Laplace transform method.

Example 2.49. Solve the differential-difference equation

y′′(t) − y(t − 1) � δ(t), y(t) � y′(t) � 0, t ≤ 0.

Similarly, as we saw in Example 2.46,

L
(

y(t − 1)
)

� e−s
L
(

y(t)
)

.

Then transforming the original equation,

s2
L
(

y(t)
)

− e−s
L
(

y(t)
)

� 1,
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so that

L
(

y(t)
)

�
1

s2 − e−s
�

1

s2
(

1 − e−s

s2

)

(

Re(s) > 0
)

�
∞
∑

n�0

e−ns

s2n+2

(

Re(s) > 1
)

. (2.69)

Observe that by (1.9) and (1.14)

L
−1

(

e−ns

s2n+2

)

� un(t)
(t − n)2n+1

(2n + 1)!

�

{

(t−n)2n+1

(2n+1)!
t ≥ n

0 t < n.
(2.70)

Hence by (2.69) and (2.70) and the linearity of L,

L
(

y(t)
)

� L

(

[t]
∑

n�0

(t − n)2n+1

(2n + 1)!

)

and

y(t) �
[t]
∑

n�0

(t − n)2n+1

(2n + 1)!
.

Exercises 2.9

1. Show that the function

f (t) � a[t], t > 0,

has exponential order on [0, ∞).

2. (a) Show that the function

f (t) � [t], t > 0,

has Laplace transform

L
(

f (t)
)

�
1

s(es − 1)
�

e−s

s(1 − e−s)
.
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(b) Show that the solution to

y(t + 1) − y(t) � 1, y(t) � 0, t < 1,

is given by the function in part (a).

3. From the expression

e−s

s(1 − ae−s)
�

e−s

s
(1 + ae−s + a2e−2s + · · ·),

deduce that

f (t) � L
−1

(

e−s

s(1 − ae−s)

)

�











[t]
∑

n�1

an−1 t ≥ 1

0 0 < t < 1,

and for a �� 1,

f (t) � L
−1

(

e−s

s(1 − ae−s)

)

�
a[t] − 1

a − 1
.

4. Solve for an:

(a) an+2 − 7an+1 + 12an � 0 a0 � 0, a1 � −1

(b) an+2 − 7an+1 + 12an � 2n a0 � 0, a1 � −1

(c) an+1 + an � 1, a0 � 0, a1 � 1

(d) an+2 − 2an+1 + an � 0, a0 � 0, a1 � 1.

5. The Fibonacci difference equation is given by

an+2 � an+1 + an, a0 � 0, a1 � 1.

Deduce that

an �
1

√
5

[(

1 +
√

5

2

)n

−

(

1 −
√

5

2

)n]

, n � 0, 1, 2, . . . .

6. Solve

(a) y(t) + y(t − 1) � et, y(t) � 0, t ≤ 0

(b) y′(t) − y(t − 1) � t, y(t) � 0, t ≤ 0.

7. Find an if

an+2 − 5an+1 + 6an � 4n + 2, a0 � 0, a1 � 1.



3
C H A P T E R

...........................................

Complex
Variable
Theory

In this chapter we present an overview of the theory of complex

variables, which is required for an understanding of the complex in-

version formula discussed in Chapter 4. Along the way, we establish

the analyticity of the Laplace transform (Theorem 3.1) and verify the

differentiation formula (1.15) of Chapter 1 for a complex parameter

(Theorem 3.3).

3.1 Complex Numbers

Complex numbers are ordered pairs of real numbers for which the

rules of addition and multiplication are defined as follows: If z �
(x, y), w � (u, v), then

z + w � (x + u, y + v),

zw � (xu − yv, xv + yu).

With these operations the complex numbers satisfy the same arith-

metic properties as do the real numbers. The set of all complex

numbers is denoted by C.

115



3. Complex Variable Theory116

We identify (real) a with (a, 0) and denote i � (0, 1), which is

called the imaginary number. However, it is anything but imaginary

in the common sense of the word. Observe that

z � (x, y) � (x, 0) + (0, y) � (x, 0) + (y, 0)(0, 1) � x + yi � x + iy.

It is these latter two forms that are typically employed in the theory

of complex numbers, rather than the ordered-pair expression. But

it is worth remembering that the complex number x + iy is just the

ordered-pair (x, y) and that i � (0, 1). Moreover,

i2 � (0, 1)(0, 1) � (−1, 0) � −1,

which can also be expressed as i �
√

−1.

The real part of z � x+iy, written Re(z), is the real number x, and

the imaginary part, Im(z), is the real number y. The two complex

numbers z � x + iy, w � u + iv are equal if and only if x � u and

y � v, that is, their real and imaginary parts are the same.

The modulus (or absolute value) of z is |z| � r �
√

x2 + y2, and

|zw| � |z| |w|. As with real numbers, the triangle inequality holds:

|z + w| ≤ |z| + |w|.

The conjugate of z � x + iy is given by z � x − iy (Figure 3.1). Thus,

z z � |z|2 and z + w � z + w, zw � z w.

x

y

O

�

z � x� iy � �x� y�

�z � x� iy

jzj � r

FIGURE 3.1
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Complex numbers can be depicted in a plane known as the com-

plex plane (Figure 3.1), also denoted by C. The x-axis is called the

real axis and the y-axis the imaginary axis. The complex number z

can also be thought of as a vector that makes an angle θ with the real

axis, and θ is called the argument of z, denoted by arg(z). Clearly,

x � r cos θ, y � r sin θ,

and

tan θ �
y

x
.

Thus, we have

z � x + iy � r(cos θ + i sin θ),

the polar form of z.

If z � r(cos θ + i sin θ) and w � R(cos ϕ + i sin ϕ), then

zw � rR
[

(cos θ cos ϕ − sin θ sin ϕ) + i(sin θ cos ϕ + cos θ sin ϕ)
]

� rR
[

cos(θ + ϕ) + i sin(θ + ϕ)
]

.

In other words, the arguments are additive under multiplication.

Thus,

z2 � r2(cos 2θ + i sin 2θ),

and in general,

zn � [r(cos θ + i sin θ)]n � rn(cos nθ + i sin nθ),

which is known as De Moivre’s theorem.

The function ez is defined by

ez � ex+iy � ex(cos y + i sin y).

Setting x � 0 gives eiy � cos y + i sin y, and the expression (Euler’s

formula)

eiθ � cos θ + i sin θ, 0 ≤ θ < 2π,

represents any point on the unit circle |z| � 1 and leads to the
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x

y

O

�

�

z � ei�

FIGURE 3.2

remarkable expression eiπ � −1 (Figure 3.2).

In general, therefore, any complex number z � x+ iy � r(cos θ+
i sin θ) can be written as

z � r eiθ.

De Moivre’s theorem now reads

zn � (r eiθ)n � rneinθ.

If r eiθ � z � wn � Rneinϕ, then w � z1/n and

R � r
1
n , ϕ �

θ + 2kπ

n
, k � 0, ±1, ±2, · · · .

Due to periodicity we need take only the values k � 0, 1, · · · , n − 1

to obtain the n distinct roots of z:

z
1
n � r

1
n ei( θ+2kπ

n
).

For example, the four fourth roots of unity (z � 1) are given by

z
1
4 � ei( 0+2kπ

4
), k � 0, 1, 2, 3,
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that is,

z1 � 1, z2 � ei π
2 � i, z3 � eiπ � −1, z4 � ei 3π

2 � −i.

Exercises 3.1

1. If z � 1 + 2i, w � 2 − i, compute

(a) 2z + 3w (b) (3z)(2w)

(c)
3

z
+

2

w
.

2. Find the modulus, argument, real and imaginary parts of

(a) (1 + i)3 (b)
1 − i

1 + i

(c)
1

(1 − i)2
(d)

4 + 3i

2 − i

(e) (1 + i)30.

3. Write the complex numbers in Question 2, parts (a) and (d), in

polar form.

4. Show that if z is a complex number, then

(a) z + z � 2 Re(z)

(b) z − z � 2i Im(z)

(c) |Re(z)| ≤ |z|, |Im(z)| ≤ |z|.

5. Prove by mathematical induction that

|z1 + z2 + · · · + zn| ≤ |z1| + |z2| + · · · + |zn|, n ≥ 2.

You may assume it is already valid for n � 2.

6. Show that
∣

∣

∣

∣

z − a

1 − a z

∣

∣

∣

∣

< 1

if |z| < 1 and |a| < 1. (Hint: |w|2 � w w.)
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7. Determine the region in the z-plane denoted by

(a) |z − i| < 1 (b) 1 ≤ |z| ≤ 2

(c)
π

2
< arg(z) <

3π

2
, |z| < 1.

8. Write in the form x + iy

(a) ei π
4 (b) e2nπi, n � 0, ±1, ±2, . . .

(c) e(2n−1)πi, n � 0, ±1, ±2, . . . (d) ei 5π
3 .

9. Compute all the values of

(a) 4
√

−1 (b) 3
√

i

(c) 5
√

1 + i.

3.2 Functions

A complex-valued function w � f (z) of a complex variable assigns

to each independent variable z one or more dependent variables w.

If there is only one such value w, then the function f (z) is termed

single-valued; otherwise f (z) is multiple-valued. Complex-valued func-

tions are in general assumed to be single-valued unless otherwise

stated. For z � x + iy and w � u + iv, one can write

w � f (z) � u(x, y) + iv(x, y),

where u � u(x, y), v � v(x, y) are real-valued functions—the real and

imaginary parts of f (z).

For example,

f (z) � z2 � (x2 − y2) + 2ixy,

g(z) � ez � ex cos y + i ex sin y,

h(z) � c � a + ib (a, b, c constants)

are all (single-valued) complex functions.
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xO

y

���i

���i
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��i

a b

z�plane

uO

v

�� �

ea eb

w�plane

FIGURE 3.3

Complex functions are mappings from a domain in the z-plane

to the range in the w-plane. For example, the exponential function

w � ez � exeiy maps the z-plane in such a way that each horizontal

strip of width 2π is mapped onto the entire w-plane minus the origin

(Figure 3.3). A vertical line at x in one of these strips maps to a circle

of radius ex in the w-plane. Note that when x � 0, then e2nπi � 1,

n � 0, ±1, ±2, . . ., and zn � 2nπi, n � 0, ±1, ±2, . . . are the only

points that map to w � 1. Likewise zn � (2n − 1)πi are the only

points that map to w � −1.

Functions related to the exponential function are as follows:

sin z �
eiz − e−iz

2i
; cos z �

eiz + e−iz

2
;

tan z �
sin z

cos z
; cot z �

cos z

sin z
;

sinh z �
ez − e−z

2
; cosh z �

ez + e−z

2
;

tanh z �
sinh z

cosh z

(

z �� (n − 1
2
)πi

)

; coth z �
cosh z

sinh z
(z �� nπi);

sech z �
1

cosh z

(

z �� (n − 1
2
)πi

)

; csch z �
1

sinh z
(z �� nπi);

for n � 0, ±1, ±2, . . . .
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Some useful identities include

sinh(z ± w) � sinh z cosh w ± cosh z sinh w,

cosh(z ± w) � cosh z cosh w ± sinh z sinh w,

and, for z � x + iy,

sinh z � cos y sinh x + i sin y cosh x,

cosh z � cos y cosh x + i sin y sinh x.

An example of a multiple-valued complex function is the inverse

of the exponential function, namely the logarithm function

log z � log |z| + i arg(z) + 2nπi, n � 0, ±1, ±2, . . . , 0 ≤ arg(z) < 2π

which maps for each value of n the complex plane minus the origin

onto the horizontal strips as in Figure 3.3 with the roles of the z- and

w-planes reversed.

We call

w � Log z � log |z| + i arg(z), 0 ≤ arg(z) < 2π,

the principal logarithm. By removing the nonnegative real axis (a

branch cut) from the domain, Log z, as well as each of the branches,

log z � log |z| + i arg(z) + 2nπi, n � 0, ±1, ±2, . . . ,

for each fixed n, becomes single-valued and analytic.

Another multiple-valued function is

w � z
1
n � r

1
n ei( θ+2kπ

n
), k � 0, 1, . . . , n − 1,

which has n branches (one for each value of k) that are single-valued

analytic for 0 < θ < 2π, r > 0, having again removed the non-

negative real axis. In particular, when n � 2, w �
√

z has two

branches:

w1 � r
1
2 eiθ/2;

w2 � r
1
2 ei(θ/2)+π � −w1.

We can even take a branch cut removing the nonpositive real axis so

that w1 and w2 are (single-valued) analytic on −π < θ < π, r > 0.

For the preceding multiple-valued functions, after one complete

circuit of the origin in the z-plane, we find that the value of w shifts to
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another branch. Because of this property, z � 0 is termed a branch

point. The branch point can be a point other than the origin; the

function w �
√

z − 1 has a branch point at z � 1.

Analytic Functions. The notions of limit and continuity are es-

sentially the same for complex functions as for real functions. The

only difference is that whenever z → z0 in a limit, the value of the

limit should be independent of the direction of approach of z to z0.

Regarding the derivative, we say that a complex function f (z) de-

fined on a domain (connected open set) D is differentiable at a point

z0 ∈ D if the limit

df

dz
(z0) � f ′(z0) � lim

z→z0

f (z) − f (z0)

z − z0

exists.

If f (z) is differentiable at all points of some neighborhood |z −
z0| < r, then f (z) is said to be analytic (holomorphic) at z0. If f (z) is

analytic at each point of a domain D, then f (z) is analytic in D. Since

analytic functions are differentiable, they are continuous.

Differentiation of sums, products, and quotients of complex func-

tions follow the same rules as for real functions. Moreover, there are

the familiar formulas from real variables,

d

dz
zn � n zn−1,

d

dz
ez � ez,

d

dz
Logz �

1

z

(

0 < arg(z) < 2π
)

,

and so forth.

Cauchy–Riemann Equations. For an analytic function f (z) �
u(x, y) + iv(x, y), the real and imaginary parts u and v cannot be

arbitrary functions but must satisfy a special relationship known as

the Cauchy–Riemann equations:

ux � vy; uy � −vx. (3.1)

These arise from the fact that

f ′(z0) � ux(z0) + ivx(z0), (3.2)
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letting z → z0 along a line parallel to the real axis in computing the

derivative, and

f ′(z0) � vy(z0) − i uy(z0), (3.3)

letting z → z0 along a line parallel to the imaginary axis. Equating

the real and imaginary parts of (3.2) and (3.3) gives (3.1).

One consequence of (3.1) is that a nonconstant analytic function

f � u + iv cannot have v ≡ 0 (that is, f is a real-valued function),

for the Cauchy–Riemann equations would imply u ≡ constant, a

contradiction.

Equally important is the partial converse:

If f (z) � u(x, y) + iv(x, y) is defined in a domain D and the partial

derivatives ux, uy, vx, vy are continuous and satisfy the Cauchy–Riemann

equations, then f (z) is analytic in D.

Let us make use of this result to show that the Laplace transform

is an analytic function.

Theorem 3.1. Let f (t) be piecewise continuous on [0, ∞) and of

exponential order α. Then

F(s) � L
(

f (t)
)

is an analytic function in the domain Re(s) > α.

Proof. For s � x + iy,

F(s) �
∫ ∞

0

e−stf (t) dt �
∫ ∞

0

e−(x+iy)tf (t) dt

�
∫ ∞

0

e−xt(cos yt − i sin yt) f (t) dt

�
∫ ∞

0

(e−xt cos yt) f (t) dt + i

∫ ∞

0

(−e−xt sin yt) f (t) dt

� u(x, y) + iv(x, y).

Now consider
∣

∣

∣

∣

∫ ∞

t0

∂

∂x
(e−xt cos yt) f (t) dt

∣

∣

∣

∣

�
∣

∣

∣

∣

∫ ∞

t0

(−te−xt cos yt) f (t) dt

∣

∣

∣

∣

≤
∫ ∞

t0

te−xt|f (t)| dt



3.2. Functions 125

≤ M

∫ ∞

t0

e−(x−α−δ)tdt (δ > 0)

≤
M

x − α − δ
e−(x−α−δ)t0 ,

where δ > 0 can be chosen arbitrarily small. Then for x ≥ x0 >

α (and hence x ≥ x0 > α + δ), the right-hand side can be made

arbitrarily small by taking t0 sufficiently large, implying that the

integral
∫ ∞

0 (∂/∂x) (e−xt cos yt) f (t) dt converges uniformly in Re(s) ≥
x0 > α.

Likewise, the integral
∫ ∞

0 (∂/∂y)(−e−xt sin yt) f (t) dt converges

uniformly in Re(s) ≥ x0 > α.

Because of this uniform convergence, and the absolute conver-

gence of L(f ), by Theorem A.12 we can differentiate under the

integral sign, that is to say,

ux �
∫ ∞

0

∂

∂x
(e−xt cos yt) f (t) dt

�
∫ ∞

0

(−t e−xt cos yt) f (t) dt,

vy �
∫ ∞

0

∂

∂y
(−e−xt sin yt) f (t) dt

�
∫ ∞

0

(−t e−xt cos yt) f (t) dt,

and so ux � vy. In a similar fashion the reader is invited to show that

uy � −vx. The continuity of these partial derivatives follows from

Theorem A.2 applied to the function g(t) � −t f (t) and taking the

real and imaginary parts.

Thus, the Cauchy–Riemann conditions are satisfied and F(s) �
u(x, y) + iv(x, y) is an analytic function in the domain Re(s) > α,

since any such point s will lie to the right of a vertical line at some

x0 > α. ✷

Remark 3.2. In general, if f ∈ L, then F(s) is analytic in some

half-plane, Re(s) > x0 (cf. Doetsch [2], Theorem 6.1).

In view of the foregoing discussion, let us verify the following

formula proved in Chapter 1 for a real parameter s (Theorem 1.34).
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Theorem 3.3. If f is piecewise continuous on [0, ∞) of order α and

has Laplace transform F(s), then

dn

dsn
F(s) � L

(

(−1)ntnf (t)
)

, n � 1, 2, 3, . . . (Re(s) > α).

Proof. Writing F(s) � u(x, y) + iv(x, y), where u, v are as in the

preceding theorem, we have by (3.2)

F ′(s) � ux + ivx

�
∫ ∞

0

(−t e−xt cos yt) f (t) dt + i

∫ ∞

0

(t e−xt sin yt) f (t) dt

�
∫ ∞

0

−t(e−xt cos yt − i e−xt sin yt) f (t) dt

�
∫ ∞

0

−t e−stf (t) dt

� L
(

− t f (t)
)

.

Repeated application of this procedure gives the formula. ✷

The real and imaginary parts of an analytic function f � u+iv not

only satisfy the Cauchy–Riemann equations, but taking the second

partial derivatives [which we can do since f (z) has derivatives of all

orders; see formula (3.7)], we find that

�u � uxx + uyy � 0, (3.4)

and likewise for v. Since the second partial derivatives are also con-

tinuous, both u and v are harmonic functions, satisfying the Laplace

equation (3.4), and � is the Laplace operator. Here v is called the

harmonic conjugate of u and vice versa.

Exercises 3.2

1. Show that

(a) ez � 1 if and only if z � 2nπi, n � 0, ±1, ±2, . . .

(b) ez � −1 if and only if z � (2n + 1)πi, n � 0, ±1, ±2, . . ..
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2. Compute

(a) Log(−1) (b) Log(−ei)

(c) Log

(

1 + i

1 − i

)

.

3. We define the principal value of zw by

zw � ewLog z � e
w

(

log|z|+i arg(z)
)

.

Find the principal value of

(a) (i)i (b) (−1)
1
π

(c) (1 + i)(1+i).

4. Show that

(a)
d

dz
cos z � − sin z

(b)
d

dz
cosh z � sinh z

(c)
d

dz
tanh z � sech2z

(

z �� (n − 1
2
)πi

)

.

5. Show that

(a) sinh(z ± w) � sinh z cosh w ± cosh z sinh w

(b) cosh(z ± w) � cosh z cosh w ± sinh z sinh w.

6. Show that for z � x + iy

(a) sinh z � cos y sinh x + i sin y cosh x

(b) cosh z � cos y cosh x + i sin y sinh x.

7. Prove that the functions f (z) � z and g(z) � |z| are nowhere

analytic.

8. (a) Show that the function

u(x, y) � x3 − 3xy2 + xy

is harmonic in C .

(b) Show that the function

v(x, y) � 3x2y − y3 −
x2

2
+

y2

2
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is harmonic in C and that f � u + iv is analytic in C ,

where u is given in part (a).

9. If f (z) is analytic, show that

∂2

∂x2
|f (z)|2 +

∂2

∂y2
|f (z)|2 � 4|f ′(z)|2.

10. Show that if f � u + iv is an analytic function and v ≡ constant,

then f ≡ constant.

3.3 Integration

Integrals of complex-valued functions are calculated over certain

types of curves in the complex plane. A parametric representation

of a continuous curve C: z(t) � x(t) + iy(t), α ≤ t ≤ β, is smooth if

z′(t) is continuous for α ≤ t ≤ β and z′(t) �� 0 for α < t < β.

A contour C is just a continuous curve that is piecewise smooth,

that is, there is a subdivision α � t0 < t1 < · · · < tn � β and z � z(t)

is smooth on each subinterval [tk−1, tk], k � 1, · · · , n. The point z(α)

is the initial point, z(β) is the terminal point, and, if z(α) � z(β), C is

closed. (See Figure 3.4.) If C does not cross itself, it is called sim-

ple. Simple, closed contours (see Figure 3.5) enjoy both properties

and form an important class of curves. The positive direction along a

simple, closed contour C keeps the interior of C to the left, that is,

the curve is traversed counterclockwise. If ∞ is an interior point,

however, the positive direction is clockwise, with ∞ on the left.

x

y

z���

z���O

FIGURE 3.4
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O

C�simple� closed�

FIGURE 3.5

The reason for being so particular about the choice of curves

is that for a continuous, complex-valued function f (z) defined on a

contour C, the (Riemann) integral of f (z) over C can be defined as
∫

C

f (z) dz �
∫ β

α

f
(

z(t)
)

z′(t) dt (3.5)

since the right-hand integral exists. This is so because the integrand

is piecewise continuous. In view of (3.5), many of the standard

rules for integration carry over to the complex setting. One rule

in particular is worth singling out:

−
∫

C

f (z) dz �
∫

−C

f (z) dz,

where −C represents the contour C traversed in the opposite

direction to that of C.

Furthermore, if C1, C2, . . . , Cn are disjoint contours, we define
∫

C1+C2+···+Cn

f (z) dz �
∫

C1

f (z) dz +
∫

C2

f (z) dz + · · · +
∫

Cn

f (z) dz.

If f (z) is continuous on contour C, then we can write
∣

∣

∣

∣

∫

C

f (z) dz

∣

∣

∣

∣

�
∣

∣

∣

∣

∫ β

α

f
(

z(t)
)

z′(t) dt

∣

∣

∣

∣

≤
∫ β

α

∣

∣f
(

z(t)
)
∣

∣ |z′(t)| dt

�
∫

C

|f (z)| |dz|,

where
∫

C

|dz| �
∫ β

α

|z′(t)| dt �
∫ β

α

√

[x′(t)]2 + [y′(t)]2 dt
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� length of C � LC.

Thus, if |f (z)| ≤ M on C,
∣

∣

∣

∣

∫

C

f (z) dz

∣

∣

∣

∣

≤
∫

C

|f (z)| |dz| ≤ M LC.

This type of estimate will be useful in the sequel.

Example 3.4. Let C: z � a + r eit, 0 ≤ t < 2π (Figure 3.6). Then

dz � ir eitdt and
∫

C

dz

z − a
�

∫ 2π

0

ir eitdt

r eit
� 2πi.

Note that the function being integrated, f (z) � 1/(z − a), is analytic

in C − {a}, but not at the point z � a.

In what follows, it is advantageous to consider our underlying do-

main in which we shall be integrating over closed contours, to “not

contain any holes,” unlike in the preceding example. To be more

precise, we say that a domain D is simply connected if for any two

continuous curves in D having the same initial and terminal points,

either curve can be deformed in a continuous manner into the other

while remaining entirely in D. The notion of a continuous deforma-

tion of one curve into another can be made mathematically precise,

but that need not concern us here (cf. Ahlfors [1]).
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For example, the complex plane C is simply connected, as is

any disk, and so is the domain C − {nonnegative real axis}. On the

other hand, C − {a} is not simply connected, nor is the annulus

A � {z : 1 < |z| < 2}, nor the domain D in Figure 3.7.

This brings us to the cornerstone of complex variable theory:

Cauchy’s Theorem. Let f (z) be analytic in a simply connected domain

D. Then for any closed contour C in D,
∫

C

f (z) dz � 0.

One important consequence is that for any two points z1, z2 ∈ D

(simply connected) and f (z) analytic,
∫ z2

z1

f (z) dz

does not depend on the contour path of integration from z1 to z2,

since the integral from z1 to z2 over contour C1, followed by the

integral from z2 to z1 over another contour C2, gives by Cauchy’s
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z�
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FIGURE 3.8

theorem
∫

C1+C2

f (z) dz � 0

(Figure 3.8). Consequently,
∫

C1

f (z) dz �
∫

−C2

f (z) dz,

and we say that the integral of f (z) is independent of path.

This means that the integral
∫ z2

z1

f (z) dz

can be evaluated in the manner of a real integral, that is, the integral

has the value g(z2) − g(z1), where g(z) is any antiderivative of f (z),

namely, g′(z) � f (z).

Example 3.5. The integral
∫ iπ

−iπ

dz

z

can be computed by taking any contour C lying in the left half-plane

that connects the points −iπ and iπ (Figure 3.9). Therefore,

∫ iπ

−iπ

dz

z
� Log z

∣

∣

∣

iπ

−iπ
� Log(iπ) − Log(−iπ)

� log |iπ| + i arg(iπ) − log | − iπ| − i arg(−iπ)

� −iπ.
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Cauchy Integral Formula. Let f (z) be analytic within and on a

simple, closed contour C. If z0 is any point interior to C, then

f (z0) �
1

2πi

∫

C

f (z) dz

z − z0

, (3.6)

taking the integration along C in the positive direction.

The hypothesis means that f (z) is analytic on a slightly larger

region containing C and its interior.

Furthermore, the nth derivative of f (z) at z � z0 is given by

f (n)(z0) �
n!

2πi

∫

C

f (z) dz

(z − z0)n+1
, n � 0, 1, 2, . . . . (3.7)

For n � 0 we have the Cauchy integral formula.

Example 3.6. Evaluate
∫

C

ezdz

z2 + 1
,

where C : |z| � 2 is taken in the positive direction.

Taking a partial fraction decomposition and the Cauchy integral

formula, we find
∫

C

ez

z2 + 1
dz �

1

2i

∫

C

ez

z − i
dz −

1

2i

∫

C

ez

z + i
dz
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�
1

2i
2πi ei −

1

2i
2πie−i

� π(ei − e−i).

If f (z) is analytic within and on a circle C : |z − z0| � R, and

M � max|z|�R |f (z)|, then from (3.7) we have for n � 0, 1, 2, . . .

|f (n)(z0)| ≤
n!

2π

∫

C

|f (z)| |dz|
|z − z0|n+1

≤
n!

2π
·

M

Rn+1
· 2πR

�
Mn!

Rn
.

The condition |f (n)(z0)| ≤ Mn!/Rn is known as Cauchy’s inequality.

If M bounds all values of |f (z)|, z ∈ C, namely f (z) is bounded,

as well as analytic in C, then letting R → ∞ in Cauchy’s inequality

with n � 1 gives f ′(z0) � 0. Since in this case z0 is arbitrary, f ′(z) � 0

for all z ∈ C, implying f ≡ constant in C by the Cauchy–Riemann

equations. We have established the following result.

Liouville’s Theorem. Any bounded analytic function in C is

constant.

As an application, suppose that f (z) � u(z) + iv(z) is analytic in

C with u(z) > 0, z ∈ C. Then the analytic function

F(z) � e−f (z)

satisfies |F(z)| � e−u(z) < 1 in C, and Liouville’s theorem implies

F(z) ≡ constant. Whence f (z) ≡ constant.

Exercises 3.3

1. Compute the value of the following integrals over the given

contour C traversed in the positive direction:

(a)

∫

C

dz

z + 1
, C : |z − 1| � 3

(b)

∫

C

zdz, C : |z| � 1
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(c)

∫

C

zdz, C :

x

y

i

O �

FIGURE E.8

(d)

∫

C

z

z2 + 1
dz, C : |z + i| � 1

(e)

∫

C

ezdz, C is the perimeter of the square with vertices at

z � 1 + i, z � −1 + i, z � −1 − i, z � 1 − i

(f)

∫

dz

z4 + 1
, C : |z| � 2

(g)

∫

C

(cosh z + z2)

z(z2 + 1)
dz, C : |z| � 2

(h)

∫

C

2z4 + 3z2 + 1

(z − πi)3
dz, C : |z| � 4.

2. Compute the value of the following integrals:

(a)

∫ iπ/2

−iπ/2

dz

z
(b)

∫ iπ

iπ/2

zezdz.

3. Let C be the arc of the circle from z � R to z � −R that lies in

the upper half-plane. Without evaluating the integral, show that

∣

∣

∣

∣

∫

C

eimz

z2 + a2
dz

∣

∣

∣

∣

≤
πR

R2 − a2
(m > 0).

4. (a) Using the Cauchy integral formula, show that

f (a) − f (b) �
a − b

2πi

∫

|z|�R

f (z)

(z − a)(z − b)
dz,

for f (z) analytic in C , |a| < R, |b| < R.

(b) Use the result of part (a) to give another proof of Liouville’s

theorem.
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5. Let f (z) be analytic in the disk |z| ≤ 3 and suppose that |f (z)| ≤ 5

for all values of z on the circle |z − 1| � 2. Find an upper bound

for |f (4)(0)|.
6. Suppose that f (z) is analytic in C and satisfies

|f (z)| ≥
1

10
, z ∈ C .

Prove that f (z) ≡ constant.

7. Suppose that f (z) is analytic in C and satisfies

|f (z)| ≤ |ez|, z ∈ C .

Show that f (z) � cez for some constant c.

3.4 Power Series

A power series is an infinite series of the form

∞
∑

n�0

an(z − z0)n � a0 + a1(z − z0) + a2(z − z0)2 + · · · , (3.8)

where z is a complex variable and z0, a0, a1, . . . are fixed complex

numbers.

Every power series (3.8) has a radius of convergence R, with

0 ≤ R ≤ ∞. If R � 0, then the series converges only for z � z0. When

0 < R < ∞, the series converges absolutely for |z − z0| < R and

uniformly for |z − z0| ≤ R0 < R. The series diverges for |z − z0| > R.

When R � ∞, the series converges for all z ∈ C. The value of R is

given by

R �
1

lim
n→∞

n
√

|an|

or by

R � lim
n→∞

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

whenever this limit exists.
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Example 3.7.

(a)
∞
∑

n�0

nzn R � lim
n→∞

n

n + 1
� 1.

(b)
∞
∑

n�0

zn

n!
R � lim

n→∞

(n + 1)!

n!
� ∞.

(c)
∞
∑

n�0

n!zn R � lim
n→∞

n!

(n + 1)!
� 0.

The circle |z − z0| � R, when 0 < R < ∞, is called the circle of

convergence.

Two power series,

f (z) �
∞
∑

n�0

an(z − z0)n, g(z) �
∞
∑

n�0

bn(z − z0)n,

that converge in a common disk |z−z0| < R can be added, subtracted,

multiplied, and divided according to these rules:

• f (z) ± g(z) �
∞
∑

n�0

(an ± bn)(z − z0)n, |z − z0| < R;

• f (z) g(z) �
∞
∑

n�0

cn(z − z0)n, |z − z0| < R,

where

cn �
n

∑

k�0

akbn−k, n � 0, 1, 2, . . . ;

•
f (z)

g(z)
�

∞
∑

n�0

cn(z − z0)n, |z − z0| < r ≤ R,

for g(z) �� 0 in |z − z0| < r, and cn satisfies the recursive relation

cn �
an − c0bn − c1bn−1 − · · · − cn−1b1

b0

(

g(z0) � b0 �� 0
)

.

A most significant feature of power series is that:

A power series represents an analytic function inside its circle of

convergence.

Moreover, the converse is true:
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If f (z) is analytic in a disk |z − z0| < R, then f (z) has the Taylor

series representation

f (z) �
∞
∑

n�0

f (n)(z0)

n!
(z − z0)n (3.9)

at each point z in the disk.

The coefficients

an �
f (n)(z0)

n!

are known as Taylor coefficients.

For example, the function f (z) � cosh z has the representation

cosh z �
∞
∑

n�0

z2n

(2n)!
(z0 � 0),

where an � f (n)(0)/n! � 1/n! (n even), an � 0 (n odd).

Suppose that f (z) is not analytic in a complete disk but only in an

annular region A bounded by two concentric circles C1 : |z−z0| � R1

and C2 : |z − z0| � R2, 0 < R1 < R2 (Figure 3.10). We will assume

that f (z) is analytic on C1 and C2 as well, hence on a slightly larger

x

y

z�

R�

R�

C�

C�

A

O

FIGURE 3.10
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region. Then for each z ∈ A, we have the Laurent series representa-

tion

f (z) �
∞
∑

n�0

an(z − z0)n +
∞
∑

n�1

bn

(z − z0)n
, (3.10)

where

an �
1

2πi

∫

C2

f (ζ) dζ

(ζ − z0)n+1
, n � 0, 1, 2, . . . , (3.11)

bn �
1

2πi

∫

C1

f (ζ) dζ

(ζ − z0)−n+1
, n � 1, 2, 3, . . . , (3.12)

and integration over C1 and C2 is in the positive direction.

This representation is a generalization of the Taylor series, for

if f (z) were analytic within and on C2, then all the bns are zero by

Cauchy’s theorem since the integrands are analytic within and on

C1. Furthermore,

an �
f (n)(z0)

n!
, n � 0, 1, 2, . . .

by (3.7).

Example 3.8. Let us determine the Laurent series representation

of the function

f (z) �
1

(z − 1)(z + 2)

in the annulus 1 < |z| < 2.

First, by partial fractions we have

1

(z − 1)(z + 2)
�

1

3(z − 1)
−

1

3(z + 2)
.

Since the geometric series

∞
∑

n�0

βn � 1 + β + β2 + · · ·

converges for |β| < 1 to the value 1/(1 − β), and as we have in fact,

|1/z| < 1 and |z/2| < 1, it follows that

1

z − 1
�

1

z
(

1 − 1
z

) �
1

z

∞
∑

n�0

1

zn
,
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1

z + 2
�

1

2
(

1 + z
2

) �
1

2

∞
∑

n�0

(−1)n zn

2n
.

Hence

1

(z − 1)(z + 2)
�

1

3

∞
∑

n�0

1

zn+1
−

1

3

∞
∑

n�0

(−1)nzn

2n+1
, 1 < |z| < 2.

This is the form of a Laurent series representation, and since the

Laurent expansion is unique, we are done.

Singularities. A singularity (singular point) z0 of a function f (z) is

a point at which f (z) is not analytic, but any open disk about z0,

|z − z0| < R, contains some point at which f (z) is analytic. We say

that z0 is an isolated singularity (isolated singular point) if f (z) is not

analytic at z0 but is analytic in a punctured disk, 0 < |z − z0| < R,

of z0.

For example,

f (z) �
1

(z − 1)2(z + 2)

has isolated singularities at z � 1, z � −2. On the other hand,

g(z) �
1

sin
(

1
z

)

has isolated singularities at zn � 1/nπ, n � ±1, ±2, . . . . The origin is

also a singularity of g(z) but not an isolated one since no punctured

disk about z � 0 is free of singular points.

In this text we are concerned only with isolated singularities, of

which there are three types.

If z0 is an isolated singularity of f (z), then we have the Laurent

series representation (3.10)

f (z) �
∞
∑

n�1

bn

(z − z0)n
+

∞
∑

n�0

an(z − z0)n (3.13)

valid in some punctured disk 0 < |z − z0| < R.

(i) If bn � 0 for all n, then for z �� z0 (3.13) becomes

f (z) �
∞
∑

n�0

an(z − z0)n.
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Setting f (z0) � a0 makes f (z) analytic at z0, and z0 is termed

a removable singularity.

For example, the function

f (z) � sin z/z �
∞
∑

n�0

(−1)nz2n/(2n + 1)! (z �� 0)

has a removable singularity at z � 0 if we set f (0) � 1.

(ii) If all but finitely many bns are zero, say bn � 0 for all

n > m ≥ 1 and bm �� 0, then

f (z) �
b1

z − z0

+
b2

(z − z0)2
+ · · · +

bm

(z − z0)m
+

∞
∑

n�0

an(z − z0)n.

(3.14)

In this case, we say that z0 is a pole of order m of f (z). If m � 1,

then z0 is a simple pole of f (z).

As an illustration,

f (z) �
ez

z3
�

1

z3
+

1

z2
+

1

2!z
+

1

3!
+ · · · (|z| > 0)

has a pole of order 3 at z � 0. From the Laurent representation

(3.13), it is readily deduced that

f (z) has a pole of order m at z0 if and only if

f (z) �
h(z)

(z − z0)m
,

where h(z) is analytic at z0, h(z0) �� 0.

Thus, the function

f (z) �
1

z2 + 1
�

1

(z − i)(z + i)

is seen to have simple poles at z � ±i.

A function that is analytic except for having poles is called

meromorphic.

(iii) If an infinite number of bns are not zero in (3.13), then z0 is

an essential singularity of f (z).
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The function

f (z) � e
1
z � 1 +

1

z
+

1

2!z2
+

1

3!z3
+ · · · +

1

n!zn
+ · · · (|z| > 0)

has an essential singularity at z � 0.

Residues. For a function f (z) with an isolated singularity at z0 and

Laurent series representation

f (z) �
∞
∑

n�1

bn

(z − z0)n
+

∞
∑

n�0

an(z − z0)n

in 0 < |z − z0| < R, the coefficient b1, according to (3.12), is given

by

b1 �
1

2πi

∫

C

f (ζ) dζ

for C : |z − z0| � r < R. This coefficient is very special because

of its integral representation and is termed the residue of f (z) at z0,

abbreviated by Res(z0).

In the event f (z) has a pole of order m at z0, the algorithm

Res(z0) � b1 �
1

(m − 1)!
lim
z→z0

dm−1

dzm−1
[(z − z0)mf (z)] (3.15)

permits the easy determination of the residue. When z0 is a simple

pole (i.e., m � 1), we have

Res(z0) � lim
z→z0

(z − z0) f (z). (3.16)

This latter case can often be treated as follows. Suppose that

f (z) �
p(z)

q(z)
,

where p(z) and q(z) are analytic at z0, p(z0) �� 0, and q(z) has a

simple zero at z0, whence f (z) has a simple pole at z0. Then q(z) �
(z − z0) Q (z), Q (z0) �� 0, and q′(z0) � Q (z0), implying

Res(z0) � lim
z→z0

(z − z0)
p(z)

q(z)
� lim

z→z0

p(z)
q(z)−q(z0)

z−z0

�
p(z0)

q′(z0)
. (3.17)
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On the other hand, if q(z0) � 0 and q′(z0) �� 0, then

q(z) � q′(z0)(z − z0) +
q′′(z0)

2!
(z − z0)2 + · · ·

� (z − z0) Q (z),

where Q (z0) � q′(z0) �� 0. That is, we have shown that z0 is a simple

zero of q(z), hence a simple pole of f (z).

Example 3.9. The function

f (z) �
e(z2)

(z − i)3

has a pole of order 3 at z � i. Therefore,

Res(i) �
1

2!
lim
z→i

d2

dz2
[(z − i)3f (z)] �

1

2
lim
z→i

d2

dz2
e(z2)

� lim
z→i

[2z2e(z2) + e(z2)] � −
1

e
.

Example 3.10. For

f (z) �
eaz

sinh z
�

2eaz

ez − e−z
�

p(z)

q(z)
,

the poles of f (z) are the zeros of sinh z, that is, where ez � e−z, and

so e2z � 1, implying z � zn � nπi, n � 0, ±1, ±2, . . .. Since p(zn) �� 0

and

q′(zn) � enπi + e−nπi � (−1)n · 2 �� 0,

the poles zn of f (z) are simple. Thus,

Res(zn) �
p(zn)

q′(zn)
� (−1)neanπi, n � 0, ±1, ±2, . . . .

The reason for computing residues is the following:

Cauchy Residue Theorem. Let f (z) be analytic within and on a

simple, closed contour C except at finitely many points z1, z2, . . . , zn lying

in the interior of C (Figure 3.11). Then

∫

C

f (z) dz � 2πi

n
∑

i�1

Res(zi),

where the integral is taken in the positive direction.
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x

y

O

C

z�

zn

z�

FIGURE 3.11

Example 3.11. Evaluate
∫

C

eaz

cosh z
dz

for C : |z| � 2 in the positive direction.

Write

f (z) �
eaz

cosh z
�

p(z)

q(z)
.

Then cosh z � (ez + e−z)/2 � 0 when ez � −e−z (i.e., e2z � −1), so

that

z � zn �
(

n − 1
2

)

πi, n � 0, ±1, ±2, . . . .

Now, p(zn) �� 0 with

q′(zn) �
e(n− 1

2
)πi − e−(n− 1

2
)πi

2
� (−1)n+1i �� 0,

so that all the poles zn of f (z) are simple. Furthermore, only z1 �
(π/2)i and z0 � (−π/2)i lie interior to C. Hence,

Res(z1) �
p(z1)

q′(z1)
�

ea π
2

i

i
,

Res(z0) �
p(z0)

q′(z0)
�

e−a π
2

i

−i
.

Therefore,
∫

C

eaz

cosh z
dz � 2π

[

ea π
2

i − e−a π
2

i
]

� 4πi sin
(aπ

2

)

.
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Exercises 3.4

1. Determine the radius of convergence of the following series:

(a)
∞
∑

n�0

(−1)nzn

n2 + 1
(b)

∞
∑

n�0

3nzn

(2n + 1)!

(c)
∞
∑

n�1

n(z − i)n

n + 1
(d)

∞
∑

n�0

(−1)nzn

22n(n!)2
.

2. Compute the Taylor series about z0 � 0 for the following

functions and determine the radius of convergence:

(a) e(z2) (b) sinh z

(c)
1

1 − z
(d) log(1 + z).

3. Let f (z) be analytic in C with Taylor series

f (z) �
∞
∑

n�0

anz
n.

If |f (z)| ≤ M(r) on |z| � r, show that

|an| ≤
M(r)

rn
, n � 0, 1, 2, . . . .

(Note: This is another version of Cauchy’s inequality.)

4. Determine the nature of the singularities of the following

functions:

(a)
1

z(z2 + 1)2
(b)

e(z2)

z3

(c) sin
1

z
(d)

1 + cos πz

1 − z
.

5. Write down the first three terms of the (Taylor/Laurent) series

representation for each function:

(a)
z

sin z
(b)

1

z sinh z
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(c)
sinh

√
z

√
z cosh

√
z

.

6. Find the Laurent series expansion (in powers of z) of

f (z) �
1

z(z + 1)(z − 3)

in the, regions:

(a) 0 < |z| < 1 (b) 1 < |z| < 3

(c) |z| > 3.

7. Find all the poles of the following functions and compute their

residues:

(a)
z

z2 + a2
(b)

1

z(1 + eaz)

(c)
sin z

z3
.

8. Evaluate the following integrals over the contour C taken in the

positive direction:

(a)

∫

C

1 − ez

z2
dz, C : |z| � 1

(b)

∫

C

cos z

z2 + 1
dz, C : |z| � 2

(c)

∫

C

cot z dz, C : |z| � 4

(d)

∫

C

1 + ez

1 − ez
dz, C : |z| � 1

(e)

∫

C

dz

z2(z + 2)(z − 1)
, C : |z| � 3.

9. Evaluate the integral
∫

C

eiπz

2z2 − 5z − 3
, C : |z| � 2

(taken in the positive direction) by using the

(i) Cauchy integral formula

(ii) method of residues.



3.5. Integrals of the Type
∫ ∞

−∞ f (x) dx 147

3.5 Integrals of the Type
∫∞
−∞ f (x) dx

Much of the complex variable theory presented thus far has been to

enable us to evaluate real integrals of the form
∫ ∞

−∞
f (x) dx.

To this end, we transform the problem to a contour integral of

the form
∫

ŴR

f (z) dz,

where ŴR is the contour consisting of the segment [−R, R] of the real

axis together with the semicircle CR : z � R eiθ, 0 ≤ θ ≤ π (Figure

3.12).

Suppose that f (z) is analytic in the complex place C except at

finitely many poles, and designate by z1, z2, . . . , zn the poles of f (z)

lying in the upper half-plane. By choosing R sufficiently large, z1,

z2, . . . , zn will all lie in the interior of ŴR. Then by the Cauchy residue

theorem,

2πi

n
∑

i�1

Res(zi) �
∫

ŴR

f (z) dz

�
∫ R

−R

f (x) dx +
∫

CR

f (z) dz.

If we can demonstrate that

lim
R→∞

∫

CR

f (z) dz � 0,

x

y

R

�R RO

CR

z � Rei�

zn
z�

z�

FIGURE 3.12



3. Complex Variable Theory148

then we can deduce that the solution to our problem is given by

∫ ∞

−∞
f (x) dx � lim

R→∞

∫ R

−R

f (x) dx � 2πi

n
∑

i�1

Res(zi). (3.18)

Example 3.12. Evaluate
∫ ∞

−∞

dx

(x2 + a2)(x2 + b2)
, b > a > 0.

Let

f (z) �
1

(z2 + a2)(z2 + b2)
,

and consider
∫

ŴR

f (z) dz,

where ŴR is the contour in Figure 3.12. For R sufficiently large, the

simple poles of f (z) at the points ai and bi will be interior to ŴR.

Then by (3.16)

Res(ai) � lim
z→ai

z − ai

(z − ai)(z + ai)(z2 + b2)

�
1

(2ai)(b2 − a2)
,

Res(bi) � lim
z→bi

z − bi

(z2 + a2)(z − bi)(z + bi)

�
1

(a2 − b2)(2bi)
,

and

2πi
(

Res(ai) + Res(bi)
)

�
π

ab(a + b)
.

Moreover, on CR, z � R eiθ, |dz| � |iR eiθdθ| � Rdθ, with |z2+a2| ≥
|z|2 − |a|2 � R2 − a2, |z2 + b2| ≥ R2 − b2, and so

∣

∣

∣

∣

∫

CR

dz

(z2 + a2)(z2 + b2)

∣

∣

∣

∣

≤
∫ |dz|

|z2 + a2| |z2 + b2|
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≤
∫ π

0

Rdθ

(R2 − a2)(R2 − b2)

�
πR

(R2 − a2)(R2 − b2)
→ 0

as R → 0.

Consequently, by the Cauchy residue theorem,

π

ab(a + b)
�

∫ R

−R

dx

(x2 + a2)(x2 + b2)
+

∫

CR

dz

(z2 + a2)(z2 + b2)
,

and letting R → ∞,
∫ ∞

−∞

dx

(x2 + a2)(x2 + b2)
�

π

ab(a + b)
.

This example illustrates all the salient details, which will be

exploited further in the next chapter.

Exercises 3.5

Use the methods of this section to verify the following integrals.

1.

∫ ∞

−∞

dx

x2 + x + 1
�

2π
√

3
.

2.

∫ ∞

0

dx

x4 + x2 + 1
�

π
√

3

6
.

3.

∫ ∞

0

x2dx

1 + x4
�

π
√

2

4
.

4.

∫ ∞

0

dx

(x2 + 1)(x2 + 4)2
�

5π

288
.

5.

∫ ∞

0

cos x

x2 + a2
dx �

πe−a

2a
.

[Hint: For this type of problem, consider the function

f (z) �
eiz

z2 + a2
,
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and observe that on the x-axis

Ref (z) � Re

(

eix

x2 + a2

)

�
cos x

x2 + a2
.

Now proceed as before.]

6.

∫ ∞

0

x sin mx

x2 + a2
dx �

π

2
e−am, a > 0.

[Hint: Consider the function

f (z) �
zeimz

z2 + a2
,

so that on the x-axis,

Imf (z) �
x sin mx

x2 + a2
.

Also, you will need the inequality sin θ ≥ 2θ/π, for 0 ≤ θ ≤ π/2.]

7.

∫ ∞

0

dx

xn + 1
�

π
n

sin
(

π
n

) , n ≥ 2.

[Hint: Consider
∫

C

(

dz/(zn + 1)
)

where C is the contour in Figure

E.9.]

x

y

O R

Re��i�n

FIGURE E.9
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C H A P T E R

...........................................

Complex
Inversion
Formula

The complex inversion formula is a very powerful technique for

computing the inverse of a Laplace transform, f (t) � L−1
(

F(s)
)

. The

technique is based on the methods of contour integration discussed

in Chapter 3 and requires that we consider our parameter s to be a

complex variable.

For a continuous function f possessing a Laplace transform, let us

extend f to (−∞, ∞) by taking f (t) � 0 for t < 0. Then for s � x+ iy,

L
(

f (t)
)

� F(s) �
∫ ∞

0

e−stf (t) dt

�
∫ ∞

−∞
e−iyt

(

e−xtf (t)
)

dt

� F(x, y).

In this form F(x, y) represents the Fourier transform of the func-

tion g(t) � e−xtf (t). The Fourier transform is one of the most useful

tools in mathematical analysis; its principal virtue is that it is readily

inverted.

Towards this end, we assume that f is continuous on [0, ∞), f (t) �
0 for t < 0, f has exponential order α, and f ′ is piecewise continuous

on [0, ∞). Then by Theorem 1.11, L
(

f (t)
)

converges absolutely for

151
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Re(s) � x > α, that is,
∫ ∞

0

|e−stf (t)| dt �
∫ ∞

−∞
e−xt|f (t)| dt < ∞, x > α. (4.1)

This condition means that g(t) � e−xtf (t) is absolutely integrable, and

we may thus invoke the Fourier inversion theorem (Theorem A.14),

which asserts that g(t) is given by the integral

g(t) �
1

2π

∫ ∞

−∞
eiytF(x, y) dy, t > 0.

This leads to the representation for f ,

f (t) �
1

2π

∫ ∞

−∞
exteiytF(x, y) dy, t > 0. (4.2)

Transforming (4.2) back to the variable s � x + iy, since x > α is

fixed, we have dy � (1/i) ds and so f is given by

f (t) �
1

2πi

∫ x+i∞

x−i∞
etsF(s) ds � lim

y→∞

1

2πi

∫ x+iy

x−iy

etsF(s) ds. (4.3)

Here the integration is to be performed along a vertical line at x > α

(Figure 4.1). The expression (4.3) is known as the complex (or

Fourier–Mellin) inversion formula, and the vertical line at x is known

as the Bromwich line. In order to calculate the integral in (4.3) and

so determine the inverse of the Laplace transform F(s), we employ

the standard methods of contour integration discussed in Chapter 3.

To wit, take a semicircle CR of radius R and center at the origin.

Then for s on the Bromwich contour ŴR � ABCDEA of Figure 4.2,

1

2πi

∫

ŴR

etsF(s) ds �
1

2πi

∫

CR

etsF(s) ds +
1

2πi

∫

EA

etsF(s) ds. (4.4)

O � x

FIGURE 4.1
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O � x

A�x � iy�

E�x� iy�

��

��

RCR

C

B

D

FIGURE 4.2

Since F(s) is analytic for Re(s) � x > α, all the singularities of F(s),

such as they are, must lie to the left of the Bromwich line. For a pre-

liminary investigation, let us assume that F(s) is analytic in Re(s) < α

except for having finitely many poles z1, z2, . . . , zn there. This is typical

of the situation when, say

F(s) �
P(s)

Q (s)
,

where P(s) and Q (s) are polynomials.

By taking R sufficiently large, we can guarantee that all the

poles of F(s) lie inside the contour ŴR. Then by the Cauchy residue

theorem,

1

2πi

∫

ŴR

etsF(s) ds �
n

∑

k�1

Res(zk), (4.5)

where Res(zk) is the residue of the function etsF(s) at the pole s � zk.

Note that multiplying F(s) by ets does not in any way affect the status

of the poles zk of F(s) since ets �� 0. Therefore, by (4.4) and (4.5),

n
∑

k�1

Res(zk) �
1

2πi

∫ x+iy

x−iy

etsF(s) ds +
1

2πi

∫

CR

etsF(s) ds. (4.6)
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In what follows, we prove that when

lim
R→∞

∫

CR

etsF(s) ds � 0,

and then by letting R → ∞ in (4.6), we obtain our desired

conclusion:

f (t) � lim
y→∞

1

2πi

∫ x+iy

x−iy

etsF(s) ds �
n

∑

k�1

Res(zk). (4.7)

This formula permits the easy determination of the inverse function

f . Let us then attend to the contour integral estimation.

∫

CR
e
ts
F(s) ds → Ŵ as R → ∞. An examination of the table of

Laplace transforms (pp. 210–218) shows that most satisfy the growth

restriction

|F(s)| ≤
M

|s|p
, (4.8)

for all sufficiently large values of |s|, and some p > 0.

For example, consider

F(s) �
s

s2 − a2
� L

−1(cosh at).

Then

|F(s)| ≤
|s|

|s2 − a2|
≤

|s|
|s|2 − |a|2

,

and for |s| ≥ 2|a|, we have |a|2 ≤ |s|2/4, so that |s|2 − |a|2 ≥ 3|s|2/4,

giving

|F(s)| ≤
4/3

|s|
(|s| ≥ 2|a|).

Observe that under the condition (4.8), F(s) → 0 as |s| → ∞.

Consider again the contour ŴR as given in Figure 4.2. Any point

s on the semicircle CR is given by s � R eiθ, θ1 ≤ θ ≤ θ2. Thus,

ds � iR eiθdθ and |ds| � Rdθ.

Lemma 4.1. For s on CR, suppose that F(s) satisfies

|F(s)| ≤
M

|s|p
, some p > 0, all R > R0.
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Then

lim
R→∞

∫

CR

etsF(s) ds � 0 (t > 0).

Proof. For points s � R eiθ on CR, |ets| � etR cos θ. Therefore, for R

sufficiently large so that all the poles of F(s) are interior to ŴR, F(s)

will be continuous on CR with |F(s)| ≤ M/Rp for all large R. Hence

on the circular arc BCD,
∣

∣

∣

∣

∫

BCD

estF(s) ds

∣

∣

∣

∣

≤
∫

BCD

|ets| |F(s)| |ds|

≤
M

Rp−1

∫ 3π
2

π
2

eRt cos θdθ. (4.9)

At this stage substitute θ � ϕ + (π/2), which results in
∣

∣

∣

∣

∫

BCD

estF(s) ds

∣

∣

∣

∣

≤
M

Rp−1

∫ π

0

e−Rt sin ϕdϕ

�
2M

Rp−1

∫ π
2

0

e−Rt sin ϕdϕ, (4.10)

the latter equality being a consequence of sin ϕ’s being symmetric

about ϕ � π/2, for 0 ≤ ϕ ≤ π.

In order to obtain a bound for the last integral, consider the graph

of y � sin ϕ, 0 ≤ ϕ ≤ π/2 (Figure 4.3). The line from the origin to the

point (π/2, 1) has slope m � 2/π < 1, and thus the line y � (2/π)ϕ

lies under the curve y � sin ϕ, that is,

sin ϕ ≥ 2
π

ϕ, 0 ≤ ϕ ≤ π
2
.

�

y

O

��
�
� ��

y �sin�

y � ��

�

FIGURE 4.3
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Consequently, (4.10) yields
∣

∣

∣

∣

∫

BCD

etsF(s) ds

∣

∣

∣

∣

≤
2M

Rp−1

∫ π
2

0

e− 2Rtϕ

π dϕ

�
2M

Rp−1

π

−2Rt

[

e− 2Rtϕ

π

]
π
2

0

�
Mπ

Rpt
(1 − e−Rt)

→ 0 as R → ∞.

Over the arc AB, we have |ets| ≤ etx � c for fixed t > 0, and the

length of AB, ℓ(AB), remains bounded as R → ∞, so that
∣

∣

∣

∣

∫

AB

etsF(s) ds

∣

∣

∣

∣

≤
cMℓ(AB)

Rp
→ 0

as R → ∞. Here we have taken x to be the value through which the

Bromwich line passes, as in Figure 4.2.

Likewise,
∣

∣

∣

∣

∫

DE

etsF(s) ds

∣

∣

∣

∣

→ 0 as R → ∞.

As a consequence, we have our desired conclusion:

lim
R→∞

∫

CR

etsF(s) ds � 0. ✷

Remarks 4.2.

i. We could have replaced the growth condition (4.8) with

|F(s)| ≤ εR,

where εR → 0 as R → ∞, uniformly for s on CR. For example,

F(s) �
log s

s

does satisfy this latter condition but not (4.8).

ii. If cR is any subarc of CR, say given by π/2 ≤ θ′
1 ≤ θ ≤ θ′

2 ≤
3π/2, then

∫ θ′
2

θ′
1

eRt cos θdθ ≤
∫ 3π

2

π
2

eRt cos θdθ
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as the integrand is positive. Since the right-hand integral fea-

tures in (4.9) and is ultimately bounded above by a quantity

that tends to zero as R → 0, we deduce that

lim
R→∞

∫

cR

etsF(s) ds � 0.

iii. Sometimes it is advantageous to use parabolas or other

contours instead of semicircles (see Example 4.9).

Summarizing the result claimed in (4.7):

Theorem 4.3. Suppose that f is continuous and f ′ piecewise continu-

ous on [0, ∞), with f of exponential order α on [0, ∞). If F(s) � L
(

f (t)
)

,

for Re(s) � x > α, also satisfies the growth condition

|F(s)| ≤
M

|s|p
, p > 0,

for all |s| sufficiently large and some p
(

or condition (i) above
)

, and if

F(s) is analytic in C except for finitely many poles at z1, z2, . . . , zn, then

f (t) �
1

2πi

∫ x+i∞

x−i∞
etsF(s) ds �

n
∑

k�1

Res(zk), (4.11)

where Res(zk) is the residue of the function etsF(s) at s � zk.

In view of the properties of the inverse Fourier transform

(Theorem A.14), we have the next result.

Corollary 4.4. If f is only piecewise continuous on [0, ∞), then the

value returned by the complex inversion formula (4.11) is

f (t+) + f (t−)

2

at any jump discontinuity t > 0.

Remark. The preceding theorem and corollary can be shown to

hold under less restrictive conditions on f (see Doetsch [2], Theorem

24.4), so that functions such as f (t) � 1/
√

t are not excluded by the

inversion process. Essentially, the Laplace transform of f should

converge absolutely and f should be of “bounded variation” in a

neighborhood of the point t > 0 in question.
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Example 4.5.

F(s) �
1

s(s − a)
.

Then F(s) has a simple pole at s � 0 and s � a, and |F(s)| ≤ M/|s|2
for all |s| sufficiently large, say |F(s)| ≤ 2/|s|2 if |s| ≥ 2|a|. Moreover,

Res(0) � lim
s→0

s etsF(s)

� lim
s→0

ets

s − a
� −

1

a
,

Res(a) � lim
s→a

(s − a) etsF(s)

� lim
s→a

ets

s
�

eat

a
.

Whence

f (t) �
1

a
(eat − 1).

Of course, F(s) could have been inverted in this case using partial

fractions or a convolution.

Example 4.6.

F(s) �
1

s(s2 + a2)2
�

1

s(s − ai)2(s + ai)2
.

Then F(s) has a simple pole at s � 0 and a pole of order 2 at s � ±ai.

Clearly, |F(s)| ≤ M/|s|5 for all |s| suitably large.

Res(0) � lim
s→0

s etsF(s) � lim
s→0

ets

(s2 + a2)2
�

1

a4
.

Res(ai) � lim
s→ai

d

ds

(

(s − ai)2etsF(s)
)

� lim
s→ai

d

ds

(

ets

s(s + ai)2

)

�
it

4a3
eiat −

eiat

2a4
.
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Res(−ai) � lim
s→−ai

d

ds

(

(s + ai)2etsF(s)
)

� lim
s→−ai

d

ds

(

ets

s(s − ai)2

)

�
−it e−iat

4a3
−

e−iat

2a4
.

Therefore,

Res(0) + Res(ai) + Res(−ai) �
1

a4
+

it

4a3
(eiat − e−iat)

−
1

2a4
(eiat + e−iat)

�
1

a4

(

1 −
a

2
t sin at − cos at

)

� f (t).

Example 4.7.

F(s) �
P(s)

Q (s)
,

where P(s) and Q (s) are polynomials (having no common roots) of

degree n and m, respectively, m > n, and Q (s) has simple roots at

z1, z2, . . . , zm. Then F(s) has a simple pole at each s � zk, and writing

F(s) �
ans

n + an−1s
n−1 + · · · + a0

bmsm + bm−1sm−1 + · · · + b0

(an, bm �� 0)

�
an + an−1

s
+ · · · + a0

sn

sm−n

(

bm + bm−1

s
+ · · · + b0

sm

) ,

it is enough to observe that for |s| suitably large,
∣

∣

∣
an +

an−1

s
+ · · · +

a0

sn

∣

∣

∣
≤ |an| + |an−1| + · · · + |a0| � c1,

∣

∣

∣

∣

bm +
bm−1

s
+ · · · +

b0

sm

∣

∣

∣

∣

≥ |bm| −
|bm−1|

|s|
− · · · −

|b0|
|s|m

≥
|bm|

2
� c2,

and thus

|F(s)| ≤
c1/c2

|s|m−n
.
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Hence by (3.17),

Res(zk) �
ezk tP(zk)

Q ′(zk)
, k � 1, 2, . . . , m,

and

f (t) �
m
∑

k�1

P(zk)

Q ′(zk)
ezk t.

This is equivalent to the formulation given by (1.20).

Infinitely Many Poles. Suppose that F(s) has infinitely many poles

at
{

zk

}∞
k�1

all to the left of the line Re(s) � x0 > 0, and that

|z1| ≤ |z2| ≤ · · · ,

where |zk| → ∞ as k → ∞. Choose a sequence of contours Ŵn �
Cn ∪ [x0 − iyn, x0 + iyn] enclosing the first n poles z1, z2, . . . , zn as in

Figure 4.4. Then by the Cauchy residue theorem,

1

2πi

∫

Ŵn

etsF(s) ds �
n

∑

k�1

Res(zk),

where as before, Res(zk) is the residue of etsF(s) at the pole s � zk.

Hence
n

∑

k�1

Res(zk) �
1

2πi

∫ x0+iyn

x0−iyn

etsF(s) ds +
1

2πi

∫

Cn

etsF(s) ds.

x

y

O

x� � iyn

x��iyn

x�

z�
z�

zn

Cn

FIGURE 4.4
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Once again, if it can be demonstrated that

lim
n→∞

∫

Cn

etsF(s) ds � 0, (4.12)

whereby |yn| → ∞, then we achieve the representation

f (t) �
1

2πi

∫ x0+i∞

x0−i∞
etsF(s) ds �

∞
∑

k�1

Res(zk). (4.13)

Example 4.8. Find

L
−1

(

1

s(1 + eas)

)

, a > 0.

The function

F(s) �
1

s(1 + eas)

has a simple pole at s � 0. Moreover, 1 + eas � 0 gives

eas � −1 � e(2n−1)πi, n � 0, ±1, ±2, . . . ,

implying that

sn �
(

2n−1
a

)

πi, n � 0, ±1, ±2, . . . ,

are poles of F(s).

For G(s) � 1 + eas, G′(sn) � −a �� 0, which means that the poles

sn are simple. Furthermore,

Res(0) � lim
s→0

s etsF(s) �
1

2
,

Res(sn) �
etsn

[s(1 + eas)]′
∣

∣

∣

s�sn

�
etsn

a sneasn

� −
et( 2n−1

a
)πi

(2n − 1) πi
.



4. Complex Inversion Formula162

x

y

O x�

�n�i

��n�i

Rn
Cn

s�plane

O � �

��plane

�

FIGURE 4.5

Consequently,

sum of residues �
1

2
−

∞
∑

n�−∞

1

(2n − 1)πi
et( 2n−1

a
)πi

�
1

2
−

2

π

∞
∑

n�1

1

(2n − 1)
sin

(

2n−1
a

)

πt.

(4.14)

Finally, let Cn be the semicircle given by s � Rn eiθ, with Rn � 2nπ/a.

To make the subsequent reasoning simpler, let us take a � 1. Then

the circles Cn cross the y-axis at the points s � ±2nπi. (See Figure

4.5.) We wish to consider what happens to the points s on Cn under

the mapping H(s) � 1 + es.

(i) In the region 0 < x ≤ x0 and s on Cn, the image points ζ �
H(s) � 1+exeiy all lie to the right and slightly below the point

ζ � 2, for y sufficiently close to 2nπ, that is, for n sufficiently

large. (Notice that as n increases, the circles Cn flatten out so

that y � Im(s) approaches 2nπ from below.) Hence

|1 + es| ≥ 2

for 0 ≤ x ≤ x0.

(ii) For s on Cn with Re(s) � x < 0, the values of the function

H(s) � 1 + exeiy lie inside the circle |ζ − 1| � 1. As the value

of y � Im(s) goes from 2nπ down to (2n − 1)π, the images
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spiral half a revolution with modulus

|1 + es| ≥ 1 + e2nπ cos ϕ cos(2nπ sin ϕ) > b > 0,

for x � 2nπ cos ϕ, y � 2nπ sin ϕ.

As y � Im(s) goes from (2n − 1)π down to (2n − 2)π, the

images H(s) spiral away from the origin half a revolution. For

y < 0, it is the same story but spiraling outward.

Summarizing, the preceding shows that

|H(s)| � |1 + es| ≥ c > 0

for some c, for all s on Cn, and likewise for |1 + eas|. Consequently,

|F(s)| ≤
c−1

|s|
,

s on Cn, n sufficiently large. It follows that

lim
n→∞

∫

Cn

etsF(s) ds � 0

in view of Lemma 4.1. The key here is that the contours Cn should

straddle the poles.

We conclude that

f (t) � L
−1

(

1

s(1 + eas)

)

�
1

2
−

2

π

∞
∑

n�1

1

(2n − 1)
sin

(

2n − 1

a

)

πt,

as given by (4.14), at the points of continuity of f .

Remark. It should be observed that (4.14) is the Fourier series

representation of the periodic square-wave function considered in

Example 2.5. There we deduced that this function had Laplace trans-

form F(s) � 1/s(1 + eas). Note also that at the points of discontinuity,

t � na, the series (4.14) gives the value 1/2 (Figure 4.6).

Other useful inverses done in a similar fashion are (0 < x < a)

L
−1

(

sinh x
√

s

s sinh a
√

s

)

�
x

a
+

2

π

∞
∑

n�1

(−1)n

n
e−n2π2t/a2

sin
nπx

a
, (4.15)

L
−1

(

cosh x
√

s

s cosh a
√

s

)

�1+
4

π

∞
∑

n�1

(−1)n

2n − 1
e−(2n−1)2π2t/4a2

cos

(

2n − 1

2a

)

πx.

(4.16)
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t

f�t�

O

�

�

�

a �a �a �a FIGURE 4.6

In the following example it is more appropriate to use parabolas

instead of semicircles for the contours.

Example 4.9.

F(s) �
coth

√
s

√
s

�
e
√

s + e−
√

s

√
s(e

√
s − e−

√
s)

.

Setting

e
√

s − e−
√

s � 0

leads to

e2
√

s � 1,

implying

2
√

s � 2nπi, n � ±1, ±2, . . . ,

and so

sn � −n2π2, n � 1, 2, 3, . . .

are simple poles of F(s) since (e
√

s − e−
√

s)′
∣

∣

s�sn
� (−1)n/nπi �� 0.

When n � 0, F(s) also has a simple pole at s0 � 0 because

e
√

s + e−
√

s

√
s(e

√
s − e−

√
s)

�
(

1 +
√

s + s
2!

+ · · ·
)

+
(

1 −
√

s + s
2!

− · · ·
)

√
s
[(

1 +
√

s + s
2!

+ · · ·
)

−
(

1 −
√

s + s
2!

− · · ·
)]
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x

y

��n� ��
�
�� �n��� O x�

s

Pn

FIGURE 4.7

�
1 + s

2!
+ · · ·

s + s2

3!
+ · · ·

�
1

s
+

1

3
+ positive powers of s terms.

Let us consider the curve Pn in Figure 4.7 given by that part of

the parabola

s �
(

τ + i
(

n + 1
2

)

π
)2

�
(

τ2 −
(

n + 1
2

)2
π2

)

+ i2τ
(

n + 1
2

)

π

� x + iy,

for x � Re(s) < x0 (x0 > 0) and τ a real parameter. Note that when

τ � 0,

x � −
(

n + 1
2

)2
π2, y � 0.

The advantage in taking this particular curve is that for s on Pn,

coth
√

s �
eτ+i(n+ 1

2
)π + e−τ−i(n+ 1

2
)π

eτ+i(n+ 1
2
)π − e−τ−i(n+ 1

2
)π

�
eτ − e−τ

eτ + e−τ
� tanh τ.

Hence,

|F(s)| �
| tanh τ|

∣

∣τ + i
(

n + 1
2

)

π
∣

∣
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≤
1

(

n + 1
2

)

π

� εn → 0

as n → ∞ (uniformly) for s on Pn. By Exercises 4, Question 4, we

conclude that

lim
n→∞

∫

Pn

etsF(s) ds � 0 (t > 0).

Regarding the residues, we have

Res(0) � 1,

Res(−n2π2) � lim
s→−n2π2

(s + n2π2)ets coth
√

s
√

s

� lim
s→−n2π2

ets

√
s

· lim
s→−n2π2

s + n2π2

tanh
√

s

� lim
s→−n2π2

ets

√
s

· lim
s→−n2π2

1
1

2
√

s
sech2√s

� 2e−n2π2t.

Finally,

f (t) � L
−1

(

F(s)
)

�
∞
∑

n�0

Res(−n2π2)

� 1 + 2
∞
∑

n�1

e−n2π2t (t > 0).

What facilitated the preceding calculation of the inverse trans-

form was the judicious choice of the parabolas Pn. Herein lies the

difficulty in determining the inverse of a meromorphic function

F(s) that has infinitely many poles. The curves Cn must straddle

the poles, yet one must be able to demonstrate that F(s) → 0 (uni-

formly) for s on Cn as n → ∞. This task can be exceedingly difficult

and may sometimes be impossible. It is tempting for practitioners

of this technique, when F(s) has infinitely many poles, not to ver-
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ify (4.12) for suitable Cn. This leaves open the possibility that the

resulting “inverse” function, f (t), is incorrect.

Remark 4.10. There are many other variations where F(s) involves

the quotient of hyperbolic sines and hyperbolic cosines. See Doetsch

[2], pp. 174–176, for further machinations involved with showing
∫

Cn
etsF(s) ds → 0 as n → ∞ via Lemma 4.1. Notwithstanding our

preceding caveat, we will assume in Chapter 5 that
∫

Cn
etsF(s) ds → 0

as n → ∞ where required.

Branch Point. Consider the function

F(s) �
1

√
s
,

which has a branch point at s � 0. Although the inverse Laplace

transform of F(s) has already been considered in (2.5), it is instruc-

tive to apply the methods of the complex inversion formula in this

case.

Consider the contour CR � ABCDEFA, where AB and EF are arcs

of a circle of radius R centered at O and CD is an arc γr of a circle of

radius r also with center O (Figure 4.8).

O x�

A�x� � iy�

F �x� � iy�

R

rB C

DE

CR

�r

FIGURE 4.8
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For w �
√

s we take a branch cut along the nonpositive real axis

with −π < θ < π and consider a (single-valued) analytic branch

of w. Then F(s) � 1/
√

s is analytic within and on CR so that by

Cauchy’s theorem

∫

CR

ets

√
s

ds � 0.

Whence

0 �
1

2πi

∫ x0+iy

x0−iy

ets

√
s

ds +
1

2πi

∫

AB

ets

√
s

ds +
1

2πi

∫

BC

ets

√
s

ds

+
1

2πi

∫

γr

ets

√
s

ds +
1

2πi

∫

DE

ets

√
s
ds +

1

2πi

∫

EF

ets

√
s

ds. (4.17)

For s � R eiθ lying on the two arcs AB and EF , we have

|F(s)| �
1

|s| 1
2

,

so that by Remark 4.2, part (ii), coupled with the argument used in

the proof of Lemma 4.1 to treat the portions of these arcs from A to

x � 0 and from x � 0 to F , we conclude that

lim
R→∞

∫

AB

ets

√
s

ds � lim
R→∞

∫

EF

ets

√
s

ds � 0.

For s � r eiθ on γr ,

∣

∣

∣

∣

∫

γr

ets

√
s

ds

∣

∣

∣

∣

≤
∫ −π

π

etr cos θ

r
1
2

rdθ

� r
1
2

∫ −π

π

etr cos θdθ → 0

as r → 0 since the integrand is bounded.

Finally, we need to consider the integrals along BC and DE. The

values of these integrals converge to the values of the corresponding

integrals when BC and DE are the upper and lower edges, respec-

tively, of the cut along the negative x-axis. So it suffices to compute

the latter. For s on BC, s � x eiπ,
√

s �
√

x eiπ/2 � i
√

x, and when s
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goes from −R to −r, x goes from R to r. Hence
∫

BC

ets

√
s

ds �
∫ −r

−R

ets

√
s

ds � −
∫ r

R

e−tx

i
√

x
dx

�
1

i

∫ R

r

e−tx

√
x

dx. (4.18)

Along DE, s � x e−iπ,
√

s �
√

x e− iπ
2 � −i

√
x, and

∫

DE

ets

√
s

ds �
∫ −R

−r

ets

√
s

ds � −
∫ R

r

e−tx

−i
√

x
dx

�
1

i

∫ R

r

e−tx

√
x

dx. (4.19)

Combining (4.18) and (4.19) after multiplying each by 1/2πi gives

1

2πi

∫

BC

ets

√
s

ds +
1

2πi

∫

DE

ets

√
s

ds � −
1

π

∫ R

r

e−tx

√
x

dx.

Letting R → ∞ and r → 0 in (4.17) yields

0 �
1

2πi

∫ x0+i∞

x0−i∞

ets

√
s

ds −
1

π

∫ ∞

0

e−tx

√
x

dx;

in other words,

f (t) � L
−1

(

1
√

s

)

�
1

2πi

∫ x0+i∞

x0−i∞

ets

√
s

ds

�
1

π

∫ ∞

0

e−tx

√
x

dx.

To compute this latter integral, observe that by Example 2.1

Ŵ
(

1
2

)

�
∫ ∞

0

e−u

√
u

du �
√

π.

Setting u � tx, du � tdx and

√
π �

∫ ∞

0

e−tx

√
t
√

x
tdx �

√
t

∫ ∞

0

e−tx

√
x

dx.

Therefore,

f (t) �
1

π

(√
π

√
t

)

�
1

√
πt

,
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in accordance with (2.5).

Another useful example involving a branch point that arises in

the solution of certain partial differential equations (see Section 5.1)

is the determination of

L
−1

(

e−a
√

s

s

)

, a > 0.

As in the preceding example, s � 0 is a branch point. Thus we can

use the same contour (Figure 4.8) and approach in applying the

complex inversion formula.

For w �
√

s we take a branch cut along the nonpositive real axis

and consider the (single-valued) analytic branch w1 �
√

|s|eiθ/2 with

positive real part.

Again, F(s) � e−a
√

s/s is analytic within and on CR so that
∫

CR

etse−a
√

s

s
ds �

∫

CR

ets−a
√

s

s
ds � 0.

Thus,

0 �
1

2πi

∫ x0+iy

x0−iy

ets−a
√

s

s
ds +

1

2πi

∫

AB

ets−a
√

s

s
ds

+
1

2πi

∫

BC

ets−a
√

s

s
ds +

1

2πi

∫

γr

ets−a
√

s

s
ds

+
1

2πi

∫

DE

ets−a
√

s

s
ds +

1

2πi

∫

EF

ets−a
√

s

s
ds. (4.20)

For s � R eiθ on the two circular arcs AB and EF , w1 �
√

s �√
Reiθ/2 and

|F(s)| �

∣

∣

∣

∣

∣

e−a
√

s

s

∣

∣

∣

∣

∣

�
e−a

√
R cos θ/2

|s|
<

1

|s|
,

and so as in the preceding example,

lim
R→∞

∫

AB

ets−a
√

s

s
ds � lim

R→∞

∫

EF

ets−a
√

s

s
ds � 0.

For s on the line segments BC and DE, again we take them to be

the respective upper and lower edges of the cut along the negative
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axis. If s lies on BC, then s � xeiπ,
√

s � i
√

x, and when s goes from

−R to −r, x goes from R to r. Therefore,

∫

BC

ets−a
√

s

s
ds �

∫ −r

−R

ets−a
√

s

s
ds �

∫ r

R

e−tx−ai
√

x

x
dx. (4.21)

Along DE, similarly s � xe−iπ,
√

s � −i
√

x implying

∫

DE

ets−a
√

s

s
ds �

∫ R

r

e−tx+ai
√

x

x
dx. (4.22)

Combining (4.21) and (4.22) after multiplying each by 1/2πi yields

1

2πi

∫ R

r

e−tx(eai
√

x − e−ai
√

x)

x
dx �

1

π

∫ R

r

e−tx sin a
√

x

x
dx. (4.23)

Letting r → 0 and R → ∞ in (4.23), we obtain the integral

1

π

∫ ∞

0

e−tx sin a
√

x

x
dx. (4.24)

In Section 2.7 we introduced the error function

erf(t) �
2

√
π

∫ t

0

e−x2

dx.

It can be shown that the integral in (4.24) can be written in terms of

the error function (see Theorem A.13), that is,

1

π

∫ ∞

0

e−tx sin a
√

x

x
dx � erf

(

a

2
√

t

)

;

we shall use use latter expression.

Finally, for s � r eiθ on γr , we can take the integration from π to

−π,

1

2πi

∫

γr

ets−a
√

s

s
ds �

1

2πi

∫ −π

π

etreiθ−a
√

reiθ/2

ireiθdθ

reiθ

� −
1

2π

∫ π

−π

etreiθ−a
√

reiθ/2

dθ → −
1

2π

∫ π

−π

dθ

� −1
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for r → 0. We have used here the uniform continuity of the integrand

to pass the limit inside the integral.∗

Whence, letting r → 0, R → ∞ in (4.20) gives

0 �
1

2πi

∫ x0+i∞

x0−i∞

ets−a
√

s

s
ds + erf

(

a

2
√

t

)

− 1; (4.25)

in other words,

f (t) � L
−1

(

e−a
√

s

s

)

�
1

2πi

∫ x0+i∞

x0−i∞

ets−a
√

s

s
ds

� 1 − erf

(

a

2
√

t

)

. (4.26)

The function

erfc(t) � 1 − erf(t)

is called the complementary error function, and so we have by (4.26)

L
−1

(

e−a
√

s

s

)

� erfc

(

a

2
√

t

)

. (4.27)

∗Since for fixed a, t,

f (r, θ) � etretθ−a
√

reiθ/2

is continuous on the closed rectangle 0 ≤ r ≤ r0, −π ≤ θ ≤ π, it is uniformly

continuous there. Hence for ε > 0, there exists δ � δ(ε) > 0 such that

|f (r, θ) − f (r ′, θ′)| < ε whenever |(r, θ) − (r ′, θ′)| < δ.

In particular,

|f (r, θ) − f (0, θ)| < ε whenever 0 < r < δ.

Then
∣

∣

∣

∣

∫ π

−π

f (r, θ) dθ −
∫ π

−π

f (0, θ) dθ

∣

∣

∣

∣

≤
∫ π

−π

|f (r, θ) − f (0, θ)| dθ < 2πε,

that is,

lim
r→0

∫ π

−π

f (r, θ) dθ �
∫ π

−π

lim
r→0

f (r, θ) dθ �
∫ π

−π

f (0, θ) dθ.
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Exercises

1. Using the method of residues (Theorem 4.3), determine the

function f (t) if the Laplace transform F(s) is given by

(a)
s

(s − a)(s − b)
(a �� b) (b)

s

(s − a)3

(c)
s

(s2 + a2)2
(d)

s2 + a2

(s2 − a2)2

(e)
s3

(s2 + a2)3
.

2. Show that

L
−1

(

1

s2 cosh s

)

� t +
8

π2

∞
∑

n�1

(−1)n

(2n − 1)2
sin

(

2n − 1

2

)

πt.

3. Verify formulas (4.15) and (4.16). [You do not have to verify that

lim
n→∞

∫

Cn

etsF(s) ds � 0.]

4. Show that if Pn is the parabola given in Example 4.9 and |F(s)| ≤
1/

(

n + 1
2

)

π → 0 uniformly on Pn as n → ∞, then

lim
n→∞

∫

Pn

etsF(s) ds � 0 (t > 0).

[Hint: For x > 0, i.e., τ2 >
(

n + 1
2

)2
π2, show that

|ds| �
√

(dx)2 + (dy)2 ≤
√

2 dx,

and hence,
∫

Pn(x>0)

|ets| |F(s)| |ds| → 0 as n → ∞.

For x < 0, i.e., τ2 <
(

n + 1
2

)2
π2, show that

|ds| ≤ 2
√

2

(

n +
1

2

)

π dτ,
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and hence
∫

Pn(x<0)

|ets| |F(s)| |ds| → 0 as n → ∞.

In this case, one also requires the fact that
∫ m

0

eτ2−m2

dτ → 0 as m → ∞.]

5. Using the complex inversion formula, show that

L
−1

(

1

sν

)

�
sin νπ

π

Ŵ(1 − ν)

t1−ν
, ν > 0

Hence by (2.2) deduce the formula

Ŵ(ν) Ŵ(1 − ν) � π csc νπ.

(Note: For ν � 1/2, this is the branch point example.)

6. Determine L
(

erfc(
√

t)
)

.



5
C H A P T E R

...........................................

Partial
Differential
Equations

Partial differential equations, like their one-variable counterpart,

ordinary differential equations, are ubiquitous throughout the sci-

entific spectrum. However, they are, in general, more difficult to

solve. Yet here again, we may apply the Laplace transform method

to solve PDEs by reducing the initial problem to a simpler ODE.

Partial differential equations come in three types. For a function

of two variables u � u(x, y), the general second-order linear PDE has

the form

a
∂2u

∂x2
+ 2b

∂2u

∂x ∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu � g, (5.1)

where a, b, c, d, e, f , g may depend on x and y only. We call (5.1)

elliptic if b2 − ac < 0,

hyperbolic if b2 − ac > 0,

parabolic if b2 − ac � 0.

Example 5.1.

(i) The heat equation

∂u

∂t
� c

∂2u

∂x2

is parabolic.

175
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(ii) The wave equation

∂2u

∂t2
� a2 ∂2u

∂x2

is hyperbolic.

(iii) The Laplace equation

∂2u

∂x2
+

∂2u

∂y2
� 0

is elliptic.

Laplace Transform Method. We consider the function u � u(x, t),

where t ≥ 0 is a time variable. Denote by U(x, s) the Laplace transform

of u with respect to t, that is to say

U(x, s) � L
(

u(x, t)
)

�
∫ ∞

0

e−stu(x, t) dt.

Here x is the “untransformed variable.”

Example 5.2.

L(ea(x+t)) �
eax

s − a
.

We will assume that derivatives and limits pass through the

transform.

Assumption (1).

L

(

∂u

∂x

)

�
∫ ∞

0

e−st ∂

∂x
u(x, t) dt

�
∂

∂x

∫ ∞

0

e−stu(x, t) dt

�
∂

∂x
U(x, s). (5.2)

In other words, “the transform of the derivative is the derivative of

the transform.”

Assumption (2).

lim
x→x0

∫ ∞

0

e−stu(x, t) dt �
∫ ∞

0

e−stu(x0, t) dt, (5.3)
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that is,

lim
x→x0

U(x, s) � U(x0, s).

In (5.2) it is convenient to write

∂

∂x
U(x, s) �

d

dx
U(x, s) �

dU

dx
,

since our parameter s can be treated like a constant with respect

to the differentiation involved. A second derivative version of (5.2)

results in the expression

L

(

∂2u

∂x2

)

�
d2U

dx2
.

Note that in the present context the derivative theorem (2.7)

reads

L

(

∂u

∂t

)

� s L
(

u(x, t)
)

− u(x, 0+)

� s U(x, s) − u(x, 0+).

The Laplace transform method applied to the solution of PDEs

consists of first applying the Laplace transform to both sides of

the equation as we have done before. This will result in an ODE

involving U as a function of the single variable x.

For example, if

∂u

∂x
�

∂u

∂t
, (5.4)

then

L

(

∂u

∂x

)

� L

(

∂u

∂t

)

,

implying

d

dx
U(x, s) � s U(x, s) − u(x, 0+). (5.5)

The ODE obtained is then solved by whatever means avail them-

selves. If, say, u(x, 0+) � x for equation (5.4), we find that the general

solution is given by

U(x, s) � c esx +
x

s
+

1

s2
. (5.6)
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PDE problems in physical settings come with one or more boundary

conditions, say for (5.4) that

u(0, t) � t. (5.7)

Since the boundary conditions also express u as a function of t, we

take the rather unusual step of taking the Laplace transform of the

boundary conditions as well. So for (5.7)

U(0, s) � L
(

u(0, t)
)

�
1

s2
.

Feeding this into (5.6) gives c � 0 so that

U(x, s) �
x

s
+

1

s2
.

Since this is the transform of the desired function u(x, t), inverting

gives the solution to (5.4) and (5.7) [(and u(x, 0+) � x]:

u(x, t) � x + t.

This simple example illustrates the basic techniques involved in

solving partial differential equations.

In what follows we will demonstrate the utility of the Laplace

transform method when applied to a variety of PDEs. However, be-

fore proceeding further, we require two more inverses based upon

(4.27):

L
−1

(

e−a
√

s

s

)

� erfc

(

a

2
√

t

)

, a > 0.

Theorem 5.3.

(i) L
−1(e−a

√
s) �

a

2
√

π t3
e−a2/4t (a > 0).

(ii) L
−1

(

e−a
√

s

√
s

)

�
1

√
π t

e−a2/4t (a > 0).

Proof. (i) Applying the derivative theorem to (4.27) and noting

that erfc
(

a/2
√

t
)

→ 0 as t → 0+, we have

L

(

d

dt
erfc

(

a

2
√

t

))

� e−a
√

s,
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that is,

L

(

a

2
√

π t3
e−a2/4t

)

� e−a
√

s, (5.8)

as desired.

For (ii), we differentiate (5.8) with respect to s,

d

ds
L

(

a

2
√

π t3
e−a2/4t

)

� −
a e−a

√
s

2
√

s
,

and by Theorem 1.34,

L

(

−
at

2
√

π t3
e−a2/4t

)

� −
a e−a

√
s

2
√

s
,

which after cancellation gives (ii). ✷

Example 5.4. Solve the boundary-value problem

x
∂y

∂x
+

∂y

∂t
+ ay � bx2, x > 0, t > 0, a, b constants, (5.9)

y(0, t) � 0, y(x, 0+) � 0.

Setting L
(

y(x, t)
)

� Y(x, s) and taking the Laplace transform of both

sides of (5.9) give

xYx(x, s) + s Y(x, s) − y(x, 0+) + a Y(x, s) �
bx2

s
,

that is,

x
dY

dx
+ (s + a)Y �

bx2

s
,

or

dY

dx
+

(s + a)

x
Y �

bx

s
(s > 0).

Solving this first-order ODE using an integrating factor gives

Y(x, s) �
bx2

s(s + a + 2)
+ cx−(s+a) (x > 0, s > −a).

Taking the Laplace transform of the boundary condition y(0, t) � 0

gives

Y(0, s) � L
(

y(0, t)
)

� 0,
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and thus c � 0. Therefore,

Y(x, s) �
bx2

s(s + a + 2)
,

and inverting,

y(x, t) �
bx2

a + 2
(1 − e−(a+2)t)

by Example 2.40.

One-Dimensional Heat Equation. The heat flow in a finite or

semi-infinite thin rod is governed by the PDE

∂u

∂t
� c

∂2u

∂x2
,

where c is a constant (called the diffusivity), and u(x, t) is the temper-

ature at position x and time t. The temperature over a cross-section

at x is taken to be uniform. (See Figure 5.1.) Many different scenar-

ios can arise in the solution of the heat equation; we will consider

several to illustrate the various techniques involved.

Example 5.5. Solve

∂2u

∂x2
�

∂u

∂t
, x > 0, t > 0, (5.10)

for

(i) u(x, 0+) � 1, x > 0,

O x

FIGURE 5.1
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(ii) u(0, t) � 0, t > 0,

(iii) lim
x→∞

u(x, t) � 1.

Taking the Laplace transform of (5.10) yields

d2U

dx2
� s U − u(x, 0+) � s U − 1. (5.11)

Transforming the boundary conditions (ii) and (iii) gives

U(0, s) � L
(

u(0, t)
)

� 0,

lim
x→∞

U(x, s) � lim
x→∞

L
(

u(x, t)
)

� L
(

lim
x→∞

u(x, t)
)

�
1

s
.

Now (5.11) is an ODE whose solution is given by

U(x, s) � c1 e
√

sx + c2 e−
√

s x +
1

s
.

The boundary condition limx→∞ U(x, s) � 1/s implies c1 � 0, and

U(0, s) � 0 implies

U(x, s) �
1

s
−

e
√

s x

s
.

By (4.26),

u(x, t) � erf

(

x

2
√

t

)

�
2

√
π

∫ x/2
√

t

0

e−u2

du.

Direct calculation shows that u(x, t) indeed satisfies (5.10) and that

the initial and boundary conditions are satisfied [cf. (2.49)].

Example 5.6. Solve

∂2u

∂x2
�

∂u

∂t
, x > 0, t > 0,

for

(i) u(x, 0+) � 0,

(ii) u(0, t) � f (t), t > 0,

(iii) lim
x→∞

u(x, t) � 0.

The transformed equation is

d2U

dx2
− s U � 0,
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whose solution is given by

U(x, s) � c2 e−
√

s x

in view of condition (iii). By (ii),

U(0, s) � L
(

f (t)
)

� F(s),

so that c2 � F(s) and

U(x, s) � F(s)e−
√

sx.

Invoking Theorem 5.3 (i) and the convolution theorem 2.39, we have

u(x, t) �
∫ t

0

x

2
√

π τ3
e−x2/4τf (t − τ) dτ.

Making the substitution σ2 � x2/4τ, we find that

u(x, t) �
2

√
π

∫ ∞

x/2
√

t

e−σ2

f

(

t −
x2

4σ2

)

dσ,

which is the desired solution.

Example 5.7. Solve

∂2u

∂x2
�

∂u

∂t
, 0 < x < ℓ, t > 0,

for

(i) u(x, 0+) � u0,

(ii)
∂

∂x
u(0, t) � 0 (i.e., left end insulated),

(iii) u(ℓ, t) � u1.

Taking the Laplace transform gives

d2U

dx2
� s U − u0.

Then

U(x, s) � c1 cosh
√

sx + c2 sinh
√

s x +
u0

s
,

and by (ii), c2 � 0, so that

U(x, s) � c1 cosh
√

s x +
u0

s
.
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We find by (iii) that

U(ℓ, s) �
u1

s
� c1 cosh

√
s ℓ +

u0

s
,

and so

c1 �
u1 − u0

s cosh
√

s ℓ
.

Therefore,

U(x, s) �
(u1 − u0) cosh

√
s x

s cosh
√

s ℓ
+

u0

s
.

Taking the inverse by (4.16) gives

u(x, t) � u0 + (u1 − u0)L−1

(

cosh
√

s x

s cosh
√

s ℓ

)

� u1 +
4(u1 − u0)

π

∞
∑

n�1

(−1)n

(2n − 1)
e−(2n−1)2π2 t/4ℓ2

× cos

(

2n − 1

2ℓ

)

πx.

Example 5.8. Solve

∂2u

∂x2
�

∂u

∂t
, 0 < x < 1, t > 0,

for

(i) u(x, 0+) � f (x),

(ii) u(0, t) � 0, t > 0,

(iii) u(1, t) � 0, t > 0.

Therefore,

d2U

dx2
− s U � −f (x).

Here we solve this ODE by the Laplace transform method as well.

To this end, let Y(x) � U(x, s). Then Y(0) � U(0, s) � 0, Y(1) �
U(1, s) � 0. Setting a2 � s, we obtain

σ2
L(Y) − σY(0) − Y ′(0) − a2

L(Y) � −L(f ) � −F(σ),
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that is,

L(Y) �
Y ′(0)

σ2 − a2
−

F(σ)

σ2 − a2
.

Inverting gives

Y(x) � U(x, s) �
Y ′(0) sinh ax

a
−

1

a

∫ x

0

f (u) sinh a(x − u) du

�
Y ′(0) sinh

√
s x

√
s

−
1

√
s

∫ x

0

f (u) sinh
√

s(x − u) du.

Now, Y(1) � 0, implying

Y ′(0) �
1

sinh
√

s

∫ 1

0

f (u) sinh
√

s(1 − u) du.

Thus,

U(x, s) �
∫ 1

0

f (u)
sinh

√
s x sinh

√
s(1 − u)

√
s sinh

√
s

du

−
∫ x

0

f (u)
sinh

√
s(x − u)

√
s

du.

We can write
∫ 1

0 �
∫ x

0 +
∫ 1

x
and use the fact from Section 3.2 that

sinh(z ± w) � sinh z cosh w ± cosh z sinh w.

Then

U(x, s) �
∫ x

0

f (u)

[

sinh
√

s x sinh
√

s(1 − u)
√

s sinh
√

s
−

sinh
√

s(x − u)
√

s

]

du

+
∫ 1

x

f (u)
sinh

√
s x sinh

√
s(1 − u)

√
s sinh

√
s

du

�
∫ x

0

f (u)
sinh

√
s(1 − x) sinh

√
s u

√
s sinh

√
s

du

+
∫ 1

x

f (u)
sinh

√
s x sinh

√
s(1 − u)

√
s sinh

√
s

du.
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To determine the inverse we use the complex inversion formula.

When it is applied to the first integral we have

1

2πi

∫ x0+i∞

x0−i∞
ets

{∫ x

0

f (u)
sinh

√
s(1 − x) sinh

√
s u

√
s sinh

√
s

du

}

ds � � Res.

There are simple poles in this case at s0 � 0 and sn � −n2 π2,

n � 1, 2, 3, . . . (see Example 4.9).

Res(0) � lim
s→0

s

∫ x

0

f (u)
sinh

√
s(1 − x) sinh

√
s u

√
s sinh

√
s

du � 0.

Res(−n2π2)

� lim
s→−n2π2

(s + n2π2)ets

∫ x

0

f (u)
sinh

√
s(1 − x) sinh

√
s u

√
s sinh

√
s

du

� lim
s→−n2π2

s + n2π2

sinh
√

s
· lim

s→−n2π2
ets

∫ x

0

f (u)
sinh

√
s(1 − x) sinh

√
s u

√
s

du

� 2e−n2π2t

∫ x

0

f (u)
sinh[(nπi)(1 − x)] sinh(nπi)u

cosh(nπi)
du

� 2e−n2π2t

∫ x

0

f (u)
sin[nπ(1 − x)] sin nπu

− cos nπ
du,

where we have used the properties from Section 3.2 (for z � x + iy)

sinh z � cos y sinh x + i sin y cosh x,

cosh z � cos y cosh x + i sin y sinh x

to obtain the last equality.

Therefore,

∑

Res � 2
∞
∑

n�1

e−n2π2t

(∫ x

0

f (u) sin nπu du

)

sin nπx.

Similarly, the inverse of the second integral is given by

2
∞
∑

n�1

e−n2π2t

(∫ 1

x

f (u) sin nπu du

)

sin nπx.
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Finally,

u(x, t) � 2
∞
∑

n�1

e−n2π2t

(∫ 1

0

f (u) sin nπu du

)

sin nπx.

The same result is obtained when we solve this problem by the

separation-of-variables method.

One-Dimensional Wave Equation. The wave motion of a string

initially lying on the x-axis with one end at the origin can be

described by the equation

∂2y

∂t2
� a2 ∂2y

∂x2
, x > 0, t > 0

(Figure 5.2). The displacement is only in the vertical direction and

is given by y(x, t) at position x and time t. The constant a is given

by a �
√

T/ρ, where T is the tension on the string and ρ its mass

per unit length. The same equation happens to describe the longi-

tudinal vibrations in a horizontal beam, where y(x, t) represents the

longitudinal displacement of a cross section at x and time t.

Example 5.9. Solve

∂2y

∂t2
� a2 ∂2y

∂x2
, x > 0, t > 0,

for

(i) y(x, 0+) � 0, x > 0,

x

y

O

y�x� t�

FIGURE 5.2
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(ii) yt(x, 0+) � 0, x > 0,

(iii) y(0, t) � f (t)
(

f (0) � 0
)

,

(iv) lim
x→∞

y(x, t) � 0.

The transformed equation becomes

s2Y(x, s) − s y(x, 0+) −
∂

∂t
y(x, 0+) � a2 d2Y

dx2
,

that is,

d2Y

dx2
−

s2

a2
Y � 0.

Solving,

Y(x, s) � c1e
(s/a)x + c2e

−(s/a)x.

Since y(x, t) → 0 as x → ∞, then c1 � 0 and

Y(x, s) � c2e
−(s/a)x.

By condition (iii), Y(0, s) � L
(

f (t)
)

� F(s), so that c2 � F(s), and

Y(x, s) � F(s) e−(s/a)x.

Inverting via the second translation theorem (1.31) gives

y(x, t) � u x
a
(t)f

(

t −
x

a

)

,

or

y(x, t) �

{

f
(

t − x
a

)

t ≥ x
a

0 t < x
a
.

Thus, the string remains at rest until the time t � x/a, after which

it exhibits the same motion as the end at x � 0, with a time delay of

x/a.

Example 5.10. Solve

∂2y

∂t2
�

∂2y

∂x2
, 0 < x < ℓ, t > 0,

for

(i) y(0, t) � 0, t > 0,

(ii) y(ℓ, t) � a, t > 0,
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(iii) y(x, 0+) � 0, 0 < x < ℓ,

(iv) yt(x, 0+) � 0, 0 < x < ℓ.

By transforming the equation we obtain

d2Y

dx2
− s2Y � 0,

whose solution is given by

Y(x, s) � c1 cosh sx + c2 sinh sx.

Then 0 � Y(0, s) � c1 and Y(x, s) � c2 sinh sx. Moreover,

Y(ℓ, s) �
a

s
� c2 sinh sℓ

and c2 � a/s sinh sℓ. Thus,

Y(x, s) �
a sinh sx

s sinh sℓ
.

This function has simple poles at sn � nπi/ℓ, n � 0, ±1, ±2, . . ..

Res(0) � lim
s→0

s ets a sinh sx

s sinh sℓ

� a lim
s→0

x cosh sx

ℓ cosh sℓ

�
ax

ℓ
.

For n � ±1, ±2, · · ·,

Res

(

nπi

ℓ

)

� a lim
s→ nπi

ℓ

(

s −
nπi

ℓ

)

ets sinh sx

s sinh sℓ

� a lim
s→ nπi

ℓ

(

s − nπi
ℓ

)

sinh sℓ
· lim

s→ nπi
ℓ

ets sinh sx

s

�
a

ℓ cosh nπi

enπi t/ℓ sinh nπix
ℓ

nπi/ℓ

�
a

nπ
(−1)nenπi t/ℓ sin

nπx

ℓ
.



Exercises 189

Therefore,

y(x, t) �
∑

Res �
ax

ℓ
+

∞
∑

n�−∞
n ��0

(−1)n a

nπ
enπi t/ℓ sin

nπx

ℓ

�
ax

ℓ
+

2a

π

∞
∑

n�1

(−1)n

n
sin

nπx

ℓ
cos

nπt

ℓ
,

by the complex inversion formula.

Exercises

1. Solve the boundary-value problem

∂y

∂x
+

1

x

∂y

∂t
� t, x > 0, t > 0,

y(x, 0+) � x, y(0, t) � 0.

2. Solve the following heat equations.

(a)
∂2u

∂x2
�

∂u

∂t
, x > 0, t > 0,

(i) u(x, 0+) � 0, x > 0,

(ii) u(0, t) � δ(t), t > 0,

(iii) lim
x→∞

u(x, t) � 0.

(b)
∂2u

∂x2
�

∂u

∂t
, x > 0, t > 0,

(i) u(x, 0+) � u0, x > 0,

(ii) u(0, t) � u1, t > 0,

(iii) lim
x→∞

u(x, t) � u0.

(c)
∂2u

∂x2
�

∂u

∂t
, 0 < x < 1, t > 0,

(i) u(x, 0+) � 0, 0 < x < 1,

(ii) u(0, t) � 0, t > 0,

(iii) u(1, t) � 1, t > 0.
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(d)
∂2u

∂x2
�

∂u

∂t
, 0 < x < ℓ, t > 0,

(i) u(x, 0+) � ax, 0 < x < ℓ (a constant),

(ii) u(0, t) � 0, t > 0,

(iii) u(ℓ, t) � 0, t > 0.

3. Solve the following wave equations.

(a)
∂2y

∂t2
�

∂2y

∂x2
, 0 < x < 1, t > 0,

(i) y(x, 0+) � sin πx, 0 < x < 1,

(ii) y(0, t) � 0, t > 0,

(iii) y(1, t) � 0, t > 0,

(iv) yt(x, 0) � 0, 0 < x < 1.

(b)
∂2y

∂t2
�

∂2y

∂x2
, 0 < x < 1, t > 0,

(i) y(x, 0+) � 0, 0 < x < 1,

(ii) y(1, t) � 1, t > 0,

(iii) yx(0, t) � 0, t > 0,

(iv) yt(x, 0+) � 0, 0 < x < 1.

(c)
∂2y

∂t2
�

∂2y

∂x2
, 0 < x < 1, t > 0,

(i) y(x, 0+) � 0, 0 < x < 1,

(ii) y(0, t) � 0, t > 0,

(iii) y(1, t) � 0, t > 0,

(iv) yt(x, 0+) � x, 0 < x < 1.

(d)
∂2y

∂t2
�

∂2y

∂x2
, 0 < x < 1, t > 0, for

(i) y(x, 0+) � f (x), x > 0,

(ii) y(0, t) � 0, t > 0,

(iii) y(1, t) � 0, t > 0,

(iv) yt(x, 0+) � 0, 0 < x < 1.

(Note: This problem is similar to Example 5.8.)
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4. Solve the boundary-value problem

∂2y

∂t2
�

∂2y

∂x2
− sin πx, 0 < x < 1, t > 0,

for

(i) y(x, 0+) � 0, 0 < x < 1,

(ii) y(0, t) � 0, t > 0,

(iii) y(1, t) � 0, t > 0,

(iv) yt(x, 0+) � 0, 0 < x < 1.

5. A “fundamental solution” to the heat equation satisfies

∂u

∂t
� a2 ∂2u

∂x2
, x > 0, t > 0, a > 0,

for

(i) u(x, 0+) � δ(x), x > 0,

(iv)
∂

∂x
u(0, t) � 0, t > 0,

(iii) lim
x→∞

u(x, t) � 0.

Solve for u(x, t). (See Exercises 2.5, Question 7.)



Appendix

The sole integral used in this text is the Riemann integral defined

as follows.

Let

� � {a � t0 < t1 < · · · < tn � b}

be a partition of the interval [a, b]. Let f be a function defined on

[a, b] and choose any point xi ∈ [ti−1, ti], i � 1, · · · , n. The sum

n
∑

i�1

f (xi)(ti − ti−1)

is called a Riemann sum. Denote by ‖�‖ � max1≤i≤n(ti − ti−1).

The function f is said to be Riemann integrable if there is a number

Iab such that for any ε > 0, there exists a δ > 0 such that for each

partition � of [a, b] with ‖�‖ < δ, we have

∣

∣

∣

∣

∣

n
∑

i�1

f (xi)(ti − ti−1) − Iab

∣

∣

∣

∣

∣

< ε,

193
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for all choices of xi ∈ [ti−1, ti], i � 1, · · · , n. The value Iab is the

Riemann integral of f over [a, b] and is written as

Iab �
∫ b

a

f (t) dt.

It is worth noting that if f is Riemann integrable on [a, b], it is

bounded on [a, b]. Moreover, every continuous function on [a, b] is

Riemann integrable there.

In order to see just how dangerous it can be to pass a limit inside

an integral without sound justification, consider the following.

Example A.1. Let {fn} be a sequence of functions defined on [0, 1]

by

fn(t) �































4n2t 0 ≤ t ≤
1

2n

−4n2t + 4n
1

2n
< t <

1

n

0
1

n
≤ t ≤ 1

(Figure A.1). Since fn(0) � 0, limn→0 fn(0) � 0. Moreover, for t > 0

and n > 1/t, fn(t) � 0, implying

lim
n→0

fn(t) � 0, t ∈ [0, 1].

t

�

�n

�
�

n

f�

fn

O �

�n FIGURE A.1
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By construction,
∫ 1

0

fn(t) dt � 1,

so that limn→∞
∫ 1

0 fn(t) dt � 1. On the other hand,
∫ 1

0

lim
n→∞

fn(t) dt �
∫ 1

0

0 dt � 0.

In Theorem 3.1 it was shown that the Laplace transform of a

piecewise continuous function of exponential order is an analytic

function. A necessary ingredient in that proof was that the Laplace

transform be continuous.

Theorem A.2. If f is a piecewise continuous function, and
∫ ∞

0

e−stf (t) dt � F(s)

converges uniformly for all s ∈ E ⊆ C, then F(s) is a continuous function

on E, that is, for s → s0 ∈ E,

lim
s→s0

∫ ∞

0

e−stf (t) dt �
∫ ∞

0

lim
s→s0

e−stf (t) dt � F(s0).

Proof. By the uniform convergence of the integral, given ε > 0

there exists some t0 such that for all τ ≥ t0,
∣

∣

∣

∣

∫ ∞

τ

e−stf (t) dt

∣

∣

∣

∣

< ε, (A.1)

for all s ∈ E.

Now consider
∣

∣

∣

∣

∫ ∞

0

e−stf (t) dt −
∫ ∞

0

e−s0tf (t) dt

∣

∣

∣

∣

�
∣

∣

∣

∣

∫ ∞

0

(e−st − e−s0t)f (t) dt

∣

∣

∣

∣

≤
∫ t0

0

|e−st − e−s0t| |f (t)| dt +
∣

∣

∣

∣

∫ ∞

t0

(e−st − e−s0t)f (t) dt

∣

∣

∣

∣

.

In view of (A.1), the second integral satisfies
∣

∣

∣

∣

∫ ∞

t0

(e−st − e−s0t)f (t) dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∞

t0

e−stf (t) dt

∣

∣

∣

∣

+
∣

∣

∣

∣

∫ ∞

t0

e−s0tf (t) dt

∣

∣

∣

∣

< ε + ε � 2ε.
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For the first integral,
∫ t0

0

|e−st − e−s0t| |f (t)| dt ≤ M

∫ t0

0

|e−st − e−s0t| dt

since f is piecewise continuous, hence bounded on [0, t0]. Finally,

|e−st − e−s0t| can be made uniformly small for 0 ≤ t ≤ t0 and s

sufficiently close to s0,∗ say

|e−st − e−s0t| <
1

M t0
ε.

Hence
∫ t0

0

|e−st − e−s0t| |f (t)| dt < ε,

and so

lim
s→s0

∫ ∞

0

e−stf (t) dt �
∫ ∞

0

e−s0tf (t) dt. ✷

A more subtle version of the preceding result which was used in

the proof of the terminal-value theorem (2.36) is the following.

Theorem A.3. Suppose that f is piecewise continuous on [0, ∞) and

L
(

f (t)
)

� F(s) exists for all s > 0, and
∫ ∞

0 f (t) dt converges. Then

lim
s→0+

∫ ∞

0

e−stf (t) dt �
∫ ∞

0

f (t) dt.

Proof. Since
∫ ∞

0 f (t) dt converges, given ε > 0, fix τ0 sufficiently

large so that
∣

∣

∣

∣

∫ ∞

τ0

f (t) dt

∣

∣

∣

∣

<
ε

2
. (A.2)

Next consider
∣

∣

∣

∣

∫ ∞

0

f (t) dt −
∫ ∞

0

e−stf (t) dt

∣

∣

∣

∣

�
∣

∣

∣

∣

∫ ∞

0

(1 − e−st)f (t) dt

∣

∣

∣

∣

≤
∫ τ0

0

(1 − e−st)|f (t)| dt +
∫ ∞

τ0

(1 − e−st)|f (t)| dt.

∗We are using the fact that the function g(s, t) � e−st is uniformly continuous on a

closed rectangle.
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For the first integral, since f is piecewise continuous it is bounded

on [0, τ0], say |f (t)| ≤ M. Then
∫ τ0

0

(1 − e−st)|f (t)| dt ≤ M

∫ τ0

0

(1 − e−st) dt

�
M(sτ0 + e−sτ0 − 1)

s
→ 0

as s → 0+ by an application of l’Hôpital’s rule. Thus the first integral

can be made smaller than ε/2 for s sufficiently small.

For the second integral
∫ ∞

τ0

(1 − e−st)|f (t)| dt ≤
∫ ∞

τ0

|f (t)| dt <
ε

2

by (A.2). Therefore,
∣

∣

∣

∣

∫ ∞

0

f (t) dt −
∫ ∞

0

e−stf (t) dt

∣

∣

∣

∣

< ε

for all s sufficiently small, proving the result. ✷

Corollary A.4. Suppose that f satisfies the conditions of the derivative

theorem (2.7), L
(

f ′(t)
)

� F(s) exists for all s > 0, and limt→∞ f (t)

exists. Then

lim
s→0+

∫ ∞

0

e−stf ′(t) dt �
∫ ∞

0

f ′(t) dt.

Proof. Note that f ′ is piecewise continuous on [0, ∞) and as we

have shown in the proof of Theorem 2.36 [namely, equation (2.47)],

the existence of limt→∞ f (t) implies that
∫ ∞

0 f ′(t) dt converges. The

result now follows from the theorem. ✷

Even though a function is only piecewise continuous, its integral

is continuous.

Theorem A.5. If f is piecewise continuous on [0, ∞), then the function

g(t) �
∫ t

0

f (u) du

is continuous on [0, ∞).
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t

f�t�

O t� t� � h

f

FIGURE A.2

Proof. Assume that t0 is a point of discontinuity of f (Figure

A.2). Then for h > 0,

g(t0 + h) − g(t0) �
∫ t0+h

t0

f (u) du. (A.3)

Since f is piecewise continuous, f is bounded on (t0, t0 + h), say

|f | < M there. Thus we find that
∣

∣

∣

∣

∫ t0+h

t0

f (u) du

∣

∣

∣

∣

< M

∫ t0+h

t0

du � Mh → 0 (A.4)

as h → 0. In view of (A.3), we obtain

lim
h→0+

g(t0 + h) � g(t0).

Similarly,

lim
h→0−

g(t0 + h) � g(t0)

for t0 > 0.

If t0 is a point of continuity of f , the proof is the same. ✷

The justification of applying the Laplace transform method to

solving ODEs is aided by the fact that the solution will be continuous

of exponential order and thus possess a Laplace transform.

Theorem A.6. For the nth-order, linear, nonhomogeneous ordinary

differential equation

any
(n) + an−1y

(n−1) + · · · + a0y � f (t), (A.5)

a0, a1, . . . , an constants, if f (t) is continuous on [0, ∞) and of exponential

order, then any solution is also continuous on [0, ∞) of exponential order.
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Proof. We give the proof for n � 2 as the proof for higher-order

equations follows similarly.

For

ay′′ + by′ + cy � f (t),

the general solution yh to the corresponding homogeneous equation

ay′′ + by′ + cy � 0 is given by

yh � c1y1 + c2y2,

where y1, y2 are two linearly independent solutions (of the

homogeneous equation) of the prescribed form (cf., e.g.,Zill [16])

(i) em1t, em2t,

(ii) emt, t emt,

(iii) eat cos bt, eat sin bt.

Since each of these terms has exponential order, yh does also and

is continuous on [0, ∞).

A particular solution yp of (A.5) can be found by the method of

variation of parameters (Zill [16]). Here yp takes the form

yp � u1y1 + u2y2,

where

u′
1 �

−y2f (t)

aW(y1, y2)
, u′

2 �
y1f (t)

aW(y1, y2)
,

and W(y1, y2) is the Wronskian

W(y1, y2) �

∣

∣

∣

∣

∣

y1 y2

y′
1 y′

2

∣

∣

∣

∣

∣

� y1y
′
2 − y′

1y2 �� 0.

In cases (i), (ii), (iii), W(y1, y2) can be determined and seen to be of

the form Meβt and hence so is W−1(y1, y2). Since the product of func-

tions of exponential order also have exponential order [Exercises

1.4, Question 1(ii)], we conclude that u′
1 and u′

2 have exponential

order and are continuous on [0, ∞). The same holds for u1 and u2 by

Remark 2.11 and likewise for yp.

Finally, the general solution of (A.5), given by

y � yh + yp,

is continuous and has exponential order, as desired. ✷
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Remark. Let us show that for n � 2, the Laplace transform method

is indeed justified in solving (A.5) under the conditions stipulated.

In fact, not only is y � yh + yp continuous and of exponential order

on [0, ∞), but so is

y′ � y′
h + y′

p � y′
h + (u′

1y1 + u1y
′
1 + u′

2y2 + u2y
′
2),

and hence also y′′ � (1/a)
(

f (t) − by′ − cy
)

. The hypotheses of The-

orem 2.12 are clearly satisfied, and the Laplace transform method

can be applied.

In general, the continuity of

y(t), y′(t), . . . , y(n−1)(t)

for t > 0 is a basic a priori requirement of a unique solution to (A.5)

(see Doetsch [3], p. 78).

A useful result in dealing with partial fraction decompositions is

the following

Theorem A.7 (Fundamental Theorem of Algebra). Every polyno-

mial of degree n,

p(z) � anz
n + an−1z

n−1 + · · · + a1z + a0, an �� 0,

with complex coefficients, has exactly n roots in C, with the roots counted

according to multiplicity.

Corollary A.8. Any two polynomials of degree n that are equal at

n + 1 points are identically equal.

This is so because the difference of the two polynomials is itself

a polynomial of degree n and therefore can vanish at n points only

unless it is identically the zero polynomial, in which case all the

coefficients must be zero. Thus the two polynomials have identical

coefficients.

The Riemann–Stieltjes integral was introduced in Section 2.5 in

order to deal with the Laplace transform of the Dirac distribution.

It enjoys properties similar to those of the conventional Riemann

integral.
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Theorem A.9.

(i) If
∫ b

a
fdϕ1 and

∫ b

a
fdϕ2 both exist, and ϕ � ϕ1 + ϕ2, then f is

(Riemann–Stieltjes) integrable with respect to ϕ and
∫ b

a

fdϕ �
∫ b

a

fdϕ1 +
∫ b

a

fdϕ2.

(ii) If
∫ b

a
f1dϕ and

∫ b

a
f2dϕ both exist and f � f1 + f2, then f is

integrable with respect to ϕ and
∫ b

a

fdϕ �
∫ b

a

f1dϕ +
∫ b

a

f2dϕ.

(iii) If
∫ b

a
fdϕ exists, then for any constant c,

∫ b

a

(cf )dϕ � c

∫ b

a

fdϕ.

(iv) If
∫ c

a
fdϕ and

∫ b

c
fdϕ exist, a < c < b, then

∫ b

a
fdϕ exists and

∫ b

a

fdϕ �
∫ c

a

fdϕ +
∫ b

c

fdϕ.

The proofs are a natural consequence of the definition of the

Riemann–Stieltjes integral.

Theorem A.10. If f, ϕ, ϕ′ are continuous on [a, b], then
∫ b

a
fdϕ exists

and
∫ b

a

f (t) d ϕ(t) �
∫ b

a

f (t) ϕ′(t) dt.

Proof. Given ε > 0, we need to show that
∣

∣

∣

∣

∣

n
∑

j�1

f (xj)[ϕ(tj) − ϕ(tj−1)] −
∫ b

a

f (t) ϕ′(t) dt

∣

∣

∣

∣

∣

< ε (A.6)

for � � maxj(tj−tj−1) sufficiently small. By the mean-value theorem,

we can express the left-hand side as

n
∑

j�1

f (xj)[ϕ(tj) − ϕ(tj−1)] �
n

∑

j�1

f (xj) ϕ′(ξj)(tj − tj−1) (A.7)

for some ξj ∈ [tj−1, tj]. The right-hand side is nearly what we require.
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Since f is continuous on [a, b], let |f (t)| ≤ M, t ∈ [a, b]. Now ϕ′ is

continuous on [a, b] and hence uniformly continuous there. Conse-

quently, there exists some δ > 0 such that whenever |ξj − xj| < δ, it

follows that

|ϕ′(ξj) − ϕ′(xj)| <
ε

2M(b − a)
. (A.8)

Since fϕ′ is Riemann integrable, for any suitably fine subdivision of

[a, b], with � < δ, we have

∣

∣

∣

∣

∣

n
∑

j�1

f (xj) ϕ′(xj)(tj − tj−1) −
∫ b

a

f (t) ϕ′(t) dt

∣

∣

∣

∣

∣

<
ε

2
. (A.9)

From (A.8) we get
∣

∣

∣

∣

∣

n
∑

j�1

f (xj)[ϕ
′(ξj) − ϕ′(xj)](tj − tj−1)

∣

∣

∣

∣

∣

<

n
∑

j�1

M

∣

∣

∣

∣

ε

2M(b − a)
(tj − tj−1)

∣

∣

∣

∣

�
ε

2
. (A.10)

Finally, taking (A.9) and (A.10) together, with ξj, xj ∈ [tj−1, tj], and

with the triangle inequality, gives
∣

∣

∣

∣

∣

n
∑

j�1

f (xj) ϕ′(ξj)(tj − tj−1) −
∫ b

a

f (t) ϕ′(t) dt

∣

∣

∣

∣

∣

< ε.

In view of (A.7), we have established (A.6). ✷

In order to reverse the order of integration, as in Theorem 1.37,

we use the next result.

Theorem A.11. If f (x, t) is continuous on each rectangle a ≤ x ≤ b,

0 ≤ t ≤ T, T > 0, except for possibly a finite number of jump disconti-

nuities across the lines t � ti, i � 1, . . . , n, and if
∫ ∞

0 f (x, t) dt converges

uniformly for all x in [a, b], then

∫ b

a

∫ ∞

0

f (x, t) dt dx �
∫ ∞

0

∫ b

a

f (x, t) dx dt.
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Proof. From the theory of ordinary integrals we have

∫ τ

0

∫ b

a

f (x, t) dx dt �
∫ b

a

∫ τ

0

f (x, t) dt dx,

implying

∫ ∞

0

∫ b

a

f (x, t) dx dt � lim
τ→∞

∫ b

a

∫ τ

0

f (x, t) dt dx. (A.11)

For the other integral

∫ b

a

∫ ∞

0

f (x, t) dt dx �
∫ b

a

∫ τ

0

f (x, t) dt dx +
∫ b

a

∫ ∞

τ

f (x, t) dt dx.

(A.12)

Since
∫ ∞

0 f (x, t) dt converges uniformly, given any ε > 0, there exists

T > 0 such that for all τ ≥ T
∣

∣

∣

∣

∫ ∞

τ

f (x, t) dt

∣

∣

∣

∣

<
ε

b − a
,

for all x in [a, b]. Hence for τ ≥ T,
∣

∣

∣

∣

∫ b

a

∫ ∞

τ

f (x, t) dt dx

∣

∣

∣

∣

< ε,

that is,

lim
τ→∞

∫ b

a

∫ ∞

τ

f (x, t) dt dx � 0.

Letting τ → ∞ in (A.12),

∫ b

a

∫ ∞

0

f (x, t) dt dx �
∫ ∞

0

∫ b

a

f (x, t) dx dt

via (A.11). ✷

Note that the hypotheses are satisfied by our typical integrand

e−xtf (t), where f is piecewise continuous of exponential order.

The following general theorem tells when taking the derivative

inside an integral such as the Laplace integral, is justified.

Theorem A.12. Suppose that f (x, t) and ∂/∂x f (x, t) are continuous

on each rectangle a ≤ x ≤ b, 0 ≤ t ≤ T, T > 0, except possibly for a
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finite number of jump discontinuities across the lines t � ti, i � 1, . . . , n,

and of the two integrals

F(x) �
∫ ∞

0

f (x, t) dt and

∫ ∞

0

∂

∂x
f (x, t) dt;

the first one converges and the second one converges uniformly. Then

d

dx
F(x) �

∫ ∞

0

∂

∂x
f (x, t) dt (a < x < b).

Proof. Let

G(u) �
∫ ∞

0

∂

∂u
f (u, t) dt.

Then G is continuous as in the proof of Theorem A.2 and employing

Theorem A.11 gives
∫ x

a

G(u) du �
∫ x

a

∫ ∞

0

∂

∂u
f (u, t) dt du

�
∫ ∞

0

∫ x

a

∂

∂u
f (u, t) du dt

�
∫ ∞

0

[f (x, t) − f (a, t)] dt

� F(x) − F(a).

Therefore,

d

dx
F(x) � G(x) �

∫ ∞

0

∂

∂x
f (x, t) dt. ✷

A consequence of the preceding theorem which was useful in

Chapter 4 follows.

Theorem A.13.

1

π

∫ ∞

0

e−tx sin a
√

x

x
dx � erf

(

a

2
√

t

)

, t > 0.

Proof. Denote the left-hand side by y(a, t), so that by setting x � u2,

y(a, t) �
2

π

∫ ∞

0

e−tu2

sin au

u
du.
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In view of Theorem A.12 we can differentiate under the integral sign

so that

∂y

∂a
�

2

π

∫ ∞

0

e−tu2

cos(au) du �
2

π
Y(a, t). (A.13)

Now,

Y(a, t) �
∫ ∞

0

e−tu2

cos(au) du �
e−tu2

sin au

a

∣

∣

∣

∣

∣

∞

0

+
2t

a

∫ ∞

0

e−tu2

u sin(au) du

� −
2t

a

∂Y

∂a
,

or

∂Y

∂a
� −

a

2t
Y,

where Y(0, t) �
√

π/2
√

t by (2.49). Solving gives

Y(a, t) �
√

π

2
√

t
e− a2

4t .

Therefore, by (A.13),

∂y

∂a
�

1
√

πt
e− a2

4t ,

and since y(0, t) � 0,

y(a, t) �
1

√
πt

∫ a

0

e− w2

4t dw

�
2

√
π

∫ a/2
√

t

0

e−u2

du

� erf

(

a

2
√

t

)

,

since we substituted u2 � w2/4t. ✷

Theorem A.14 (Fourier Inversion Theorem). Suppose that f and

f ′ are piecewise continuous on (−∞, ∞), that is, both are continu-

ous in any finite interval except possibly for a finite number of jump
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discontinuities. Suppose further that f is absolutely integrable, namely,
∫ ∞

−∞
|f (t)| dt < ∞.

Then at each point t where f is continuous,

f (t) �
1

2π

∫ ∞

−∞
eiλtF(λ) dλ, (A.14)

where

F(λ) �
∫ ∞

−∞
e−iλtf (t) dt

is the Fourier transform of f . At a jump discontinuity t, the integral in

(A.14) gives the value

f (t+) + f (t−)

2
.

For a proof of this exceptionally important result, see for example,

Jerri [6], Theorem 2.14.
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Tables

Laplace Transform Operations

F(s) f (t)

c1F1(s) + c2F2(s) c1f1(t) + c2f2(t)

F(as) (a > 0)
1

a
f

(

t

a

)

F(s − a) eatf (t)

e−asF(s) (a ≥ 0) ua(t)f (t − a)

s F(s) − f (0+) f ′(t)

s2F(s) − s f (0+) − f ′(0+) f ′′(t)

snF(s) − sn−1f (0+) − sn−2f ′(0+) f (n)(t)

− · · · − f (n−1)(0+)

F(s)

s

∫ t

0

f (τ) dτ

F ′(s) −t f (t)

F (n)(s) (−1)ntnf (t)

∫ ∞

s

F(x) dx
1

t
f (t)

F(s) G(s)

∫ t

0

f (τ) g(t − τ) dτ

lim
s→∞

s F(s) lim
t→0+

f (t) � f (0+)

lim
s→0

s F(s) lim
t→∞

f (t)

209
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Table of Laplace Transforms

F(s) f (t)

1 δ(t)

1

s
1

1

s2
t

1

sn
(n � 1, 2, 3, . . .)

tn−1

(n − 1)!

1

sν
(ν > 0)

tν−1

Ŵ(ν)

(s − 1)n

sn+1
(n � 0, 1, 2, . . .) Ln(t) �

et

n!

dn

dtn
(tne−t)

Laguerre polynomials

1

s − a
eat

1

s(s − a)

1

a
(eat − 1)

1

(s − a)(s − b)
(a �� b)

eat − ebt

a − b

s

(s − a)(s − b)
(a �� b)

a eat − b ebt

a − b

s

(s − a)2
(1 + at) eat

a

s2 + a2
sin at

s

s2 + a2
cos at

a

(s − b)2 + a2
ebt sin at

s − b

(s − b)2 + a2
ebt cos at



Table of Laplace Transforms 211

F(s) f (t)

a

s2 − a2
sinh at

s

s2 − a2
cosh at

a

(s − b)2 − a2
ebt sinh at

s − b

(s − b)2 − a2
ebt cosh at

1

(s2 + a2)2

1

2a3
(sin at − at cos at)

s

(s2 + a2)2

1

2a
(t sin at)

s2

(s2 + a2)2

1

2a
(sin at + at cos at)

s3

(s2 + a2)2
cos at − 1

2
at sin at

s2 − a2

(s2 + a2)2
t cos at

1

(s2 − a2)2

1

2a3
(at cosh at − sinh at)

s

(s2 − a2)2

1

2a
(t sinh at)
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F(s) f (t)

s2

(s2 − a2)2

1

2a
(sinh at + at cosh at)

s3

(s2 − a2)2
cosh at + 1

2
at sinh at

s2 + a2

(s2 − a2)2
t cosh at

ab

(s2 + a2)(s2 + b2)
(a2 �� b2)

a sin bt − b sin at

a2 − b2

s

(s2 + a2)(s2 + b2)
(a2 �� b2)

cos bt − cos at

a2 − b2

s2

(s2 + a2)(s2 + b2)
(a2 �� b2)

a sin at − b sin bt

a2 − b2

s3

(s2 + a2)(s2 + b2)
(a2 �� b2)

a2 cos at − b2 cos bt

a2 − b2

ab

(s2 − a2)(s2 − b2)
(a2 �� b2)

b sinh at − a sinh bt

a2 − b2

s

(s2 − a2)(s2 − b2)
(a2 �� b2)

cosh at − cosh bt

a2 − b2

s2

(s2 − a2)(s2 − b2)
(a2 �� b2)

a sinh at − b sinh bt

a2 − b2

s3

(s2 − a2)(s2 − b2)
(a2 �� b2)

a2 cosh at − b2 cosh bt

a2 − b2
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F(s) f (t)

a2

s2(s2 + a2)
t −

1

a
sin at

a2

s2(s2 − a2)

1

a
sinh at − t

1
√

s

1
√

π t

1
√

s + a

e−at

√
π t

1

s
√

s + a

1
√

a
erf(

√
at)

1
√

s + a +
√

s + b

e−bt − e−at

2(b − a)
√

π t3

1

s
√

s
2

√

t

π

1

(s − a)
√

s

1
√

a
eat erf

√
at

1
√

s − a + b
eat

(

1
√

π t
− b eb2t erfc(b

√
t)

)

1
√

s2 + a2
J0(at)

1
√

s2 − a2
I0(at)

(
√

s2 + a2 − s)ν

√
s2 + a2

(ν > −1) aνJν(at)

(s −
√

s2 − a2)ν

√
s2 − a2

(ν > −1) aνIν(at)

1

(s2 + a2)ν
(ν > 0)

√
π

Ŵ(ν)

(

t

2a

)ν− 1
2

Jν− 1
2
(at)

1

(s2 − a2)ν
(ν > 0)

√
π

Ŵ(ν)

(

t

2a

)ν− 1
2

Iν− 1
2
(at)
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F(s) f (t)

(
√

s2 + a2 − s)ν (ν > 0)
νaν

t
Jν(at)

(s −
√

s2 − a2)ν (ν > 0)
νaν

t
Iν(at)

√
s − a −

√
s − b

1

2t
√

π t
(ebt − eat)

e−a/s

√
s

cos 2
√

at
√

π t

e−a/s

s
√

s

sin 2
√

at
√

π a

e−a/s

sν+1
(ν > −1)

(

t

a

)ν/2

Jν(2
√

at)

e−a
√

s

√
s

(a > 0)
e−a2/4t

√
π t

e−a
√

s (a > 0)
a

2
√

π t3
e−a2/4t

e−a
√

s

s
(a > 0) erfc

(

a

2
√

t

)

e−k
√

s2+a2

√
s2 + a2















0 0 < t < k

J0(a
√

t2 − k2) t > k

e−k
√

s2−a2

√
s2 − a2















0 0 < t < k

I0(a
√

t2 − k2) t > k
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F(s) f (t)

e−as (a > 0) δa(t)

e−as

s
(a > 0) ua(t)

es2/4 erfc
s

2

2
√

π
e−t2

1

s(eas − 1)
�

e−as

s(1 − e−as)

[

t

a

]

([t] : greatest integer ≤ t)

1

s(es − a)
�

e−s

s(1 − ae−s)
(a �� 1)

a[t] − 1

a − 1

es − 1

s(es − a)
�

1 − e−s

s(1 − ae−s)
a[t]

1

s(1 − e−as)
t

f�t�

�

�

�

�

a �a �a �aO

1

s(1 + e−as)
t

f�t�

�

a �a �a �aO

1

s(1 + eas)
t

f�t�

a �a �a �a �aO

�

1 − e−as

s(eas + e−as)

t

f�t�

a �a

�a �a

�aO

�

��
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F(s) f (t)

(1 − e−as)

s(1 + e−as)
�

1

s
tanh

as

2

t

f�t�

�

a �a �a �aO

��

1 − e−as

as2(1 + e−as)
�

1

as2
tanh

as

2
t

f�t�

�

a �a �a �aO

1 − (1 + as)e−as

as2(1 − e−2as)
t

f�t�

�

a �a �a �aO

ω

(s2 + ω2)(1 − e−π s/ω)
t

f�t�

O �
�

��
�

��
�

�

ω

s2 + ω2

(

1 + e−π s/ω

1 − e−π s/ω

)

�
ω

s2 + ω2
coth

π s

2ω
t

f�t�

O ��
�

��
�

�
�

�

log

(

s + a

s + b

)

e−bt − e−at

t

−(log s + γ)

s
(γ: Euler constant) log t
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F(s) f (t)

log s

s
−(log t + γ)

log

(

s2 + a2

s2 + b2

)

2

t
(cos bt − cos at)

tan−1
(a

s

) 1

t
sin at

sinh xs

s sinh as

x

a
+

2

π

∞
∑

n�1

(−1)n

n
sin

nπx

a
cos

nπt

a

sinh xs

s cosh as

4

π

∞
∑

n�1

(−1)n−1

2n − 1
sin

(

2n − 1

2a

)

πx sin

(

2n − 1

2a

)

πt

cosh xs

s sinh as

t

a
+

2

π

∞
∑

n�1

(−1)n

n
cos

nπx

a
sin

nπt

a

cosh xs

s cosh as
1 +

4

π

∞
∑

n�1

(−1)n

2n − 1
cos

(

2n − 1

2a

)

πx cos

(

2n − 1

2a

)

πt

sinh xs

s2 sinh as

xt

a
+

2a

π2

∞
∑

n�1

(−1)n

n2
sin

nπx

a
sin

nπt

a

sinh xs

s2 cosh as
x +

8a

π2

∞
∑

n�1

(−1)n

(2n − 1)2
sin

(

2n − 1

2a

)

πx cos

(

2n − 1

2a

)

πt

cosh xs

s2 sinh as

1

2a

(

x2 + t2 −
a2

3

)

−
2a

π2

∞
∑

n�1

(−1)n

n2
cos

nπx

a
cos

nπt

a

cosh xs

s2 cosh as
t +

8a

π2

∞
∑

n�1

(−1)n

(2n − 1)2
cos

(

2n − 1

2a

)

πx sin

(

2n − 1

2a

)

πt

sinh x
√

s

sinh a
√

s

2π

a2

∞
∑

n�1

(−1)nne−n2π2t/a2

sin
nπx

a
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F(s) f (t)

cosh x
√

s

cosh a
√

s

π

a2

∞
∑

n�1

(−1)n−1(2n − 1)e−(2n−1)2π2t/4a2

cos

(

2n − 1

2a

)

πx

sinh x
√

s
√

s cosh a
√

s

2

a

∞
∑

n�1

(−1)n−1e−(2n−1)2π2t/4a2

sin

(

2n − 1

2a

)

πx

cosh x
√

s
√

s sinh a
√

s

1

a
+

2

a

∞
∑

n�1

(−1)ne−n2π2t/a2

cos
nπx

a

sinh x
√

s

s sinh a
√

s

x

a
+

2

π

∞
∑

n�1

(−1)n

n
e−n2π2t/a2

sin
nπx

a

cosh x
√

s

s cosh a
√

s
1 +

4

π

∞
∑

n�1

(−1)n

2n − 1
e−(2n−1)2π2t/4a2

cos

(

2n − 1

2a

)

πx

sinh x
√

s

s2 sinh a
√

s

xt

a
+

2a2

π3

∞
∑

n�1

(−1)n

n3
(1 − e−n2π2t/a2

) sin
nπx

a

cosh x
√

s

s2 cosh a
√

s

x2 − a2

2
+ t −

16a2

π3

∞
∑

n�1

(−1)n

(2n − 1)3
e−(2n−1)2π2t/4a2

cos

(

2n − 1

2a

)

πx



Answers to Exercises

Exercises 1.1.

1. (a)
4

s2
(b)

1

s − 2

(c)
2s

s2 + 9
(d)

1

s
−

s

s2 + ω2

(e) −
1

(s − 2)2
(f)

1

s2 − 2s + 2

(g)
e−as

s
(h)

ω(1 + e−πs/ω)

s2 + ω2

(i)
2

s
−

2e−s

s
+

e−(s−1)

s − 1

2. (a)
1

s

(

e−s

s
−

1

s
+ 1

)

(b)
1

s2
(1 − e−s)2

Exercises 1.3.

1. f (t) is continuous except at t � −1.

2. g(t) is continuous on R\{0}, and also at 0 if we define g(0) � 0.

219
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3. h(t) is continuous on R\{1}, with a jump discontinuity at t � 1.

4. i(t) is continuous on R.

5. j(t) is continuous on R\{0}.

6. k(t) is continuous on R\{0}, with a jump discontinuity at t � 0.

7. l(t) is continuous except at the points t � a, 2a, 3a, . . ., where it

has a jump discontinuity.

8. m(t) is continuous except at the points t � a, 2a, 3a, . . ., where it

has a jump discontinuity.

Exercises 1.4.

1. (i) c1f1 + c2f2 is piecewise continuous, of order max(α, β).

(ii) f · g is piecewise continuous, of order α + β.

Exercises 1.5.

1. (a) Yes. No.

Exercises 1.6.

1.
2

s2
+

3

(s − 2)
+

12

s2 + 9

3. (a)
s2 − 2ω2

s(s2 − 4ω2)
(b)

2ω2

s(s2 − 4ω2)

4.
3s − 4

s2 − 4

5.
∞
∑

n�0

(−1)nω2n

s2n+1
�

s

s2 + ω2
,

∞
∑

n�0

(−1)nω2n+1

s2n+2
�

ω

s2 + ω2

6.
2ω2

s(s2 + 4ω2)
,

s2 + 2ω2

s(s2 + 4ω2)

7. log

(

1 +
1

s

)

8.
∞
∑

n�1

(−1)n+1

2n

(ω

s

)2n

�
1

2
log

(

1 +
ω2

s2

)
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9. No.

Exercises 1.7.

2. (a) N(t) �
{

1 t � 0

0 t �� 0

(There are many other examples.)

(d) f (t) ≡ 0 is the only continuous null function.

3. (b) f (t) �
∞
∑

n�0

una(t).

Exercises 1.8.

1. (a)
3

(s − 2)2 + 9
(b)

2

(s + ω)3

(c) 2t2e4t (d)

√
2

(s − 7)2 − 2

(e) 1
2
e−t sin 2t

(f) e−3t

(

cosh(2
√

2 t) −
3

2
√

2
sinh(2

√
2 t)

)

(g)
(cos θ)(s + a) − (sin θ)ω

(s + a)2 + ω2

(h) e−t(1 − t)

2. (a)
e−2(s−a)

s − a
(b)

s

(s2 + 1)
e−πs/2 (c)

s

s2 + 1
e−πs

3. (a) 1
2
u2(t)(t − 2)2 (b) E − ua(t) cos(t − a)

(c)
1

√
2

uπ(t) sinh
(
√

2(t − π)
)

Exercises 1.9.

1. (a)
s2 + ω2

(s2 − ω2)2
(b)

2ωs

(s2 − ω2)2

(c)
2s(s2 − 3ω2)

(s2 + ω2)3
(d)

2ω(2s2 − ω2)

(s2 + ω2)3
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3. (a)
2

t
(cos bt − cos at) (b)

sin t

t

4.
a e−a2/4t

2t
√

πt

Exercises 1.10.

1. (a)
eat − ebt

a − b
(b) 1

3
e−t + 1

6
et/2

(c) −1 + et + t2et (d)
1

b2 − a2
(cos at − cos bt)

(e)
1

a2 + b2
(cosh bt − cos at) (f) 5

2
+ 2t + t2

2
− 3et + 1

2
e2t

(g) 3
2
e−t + 5

4
t e−t − 3

2
cos t + 1

4
sin t − 1

4
t sin t

(h) 1
4

− 5
4
e3t + 23

20
e4t − 3

20
e−t

2. The answer for both parts (a) and (b) is

a sinh at

(a2 − b2)(a2 − c2)
+

b sinh bt

(b2 − a2)(b2 − c2)
+

c sinh ct

(c2 − a2)(c2 − b2)
.

Exercises 2.1.

2. (a)

√
π

2
(b) 2 (c) −2

√
π (d)

4
√

π

3

3. (a)

√
π

√
s − 3

(b)
u2(t)

√
π(t − 2)

(c)
2

√
π

t1/2eat (d) e−t

(e)
∞
∑

n�1

(−1)n+1t2n−1

n(2n − 1)!
� 2

(

1 − cos t

t

)

(f)

√
π

2s3/2

Exercises 2.2.

1. (a)
1

s(1 + e−as)
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(b)
1

s

(

1 − e−as

1 + e−as

)

�
1

s
tanh

as

2

(c)
1 − e−as − as e−as

a s2(1 − e−2as)

(d)
1

as2

(

1 − e−as

1 + e−as

)

�
1

as2
tanh

as

2

2.
1

s(1 + e−as)

3. f (t) � u(t) + 2
∑∞

n�1(−1)nuna(t)

F(s) �
1

s
tanh

as

2

4. F(s) �
1

s

∞
∑

n�0

(−1)n(e−as(2n+1) − e−2as(n+1))

f (t) �
∞
∑

n�0

(−1)n
(

u(2n+1)a(t) − u2a(n+1)(t)
)

Graph of f (t) :
t

f�t�

a �a

�a �a

�aO

�

��

Exercises 2.3.

5. (a)
6ω3

(s2 + 9ω2)(s2 + ω2)

(b)
s(s2 + 7ω2)

(s2 + 9ω2)(s2 + ω2)

6. Use induction.

7. f (t) � e[t+1]2 , where [t] � greatest integer ≤ t.

Exercises 2.4.

1. (a) y � − 1
2
(et + cos t − sin t)

(b) y � et
(

1
2
t2 − 1

2
t + 1

4

)

+ 7
4
e−t
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(c) y � 1
3

sin t − 1
6

sin 2t + cos 2t

(d) y � − 1
4
t et + 13

16
e3t + 19

16
e−t

(e) y � − 1
170

cos t − 13
170

sin t − 1
30

et − 8
85

e−4t + 2
15

e−2t

(f) y � t − 1 + 2e−t − u1(t)[t − 2 + e−t+1]

(g) y � 1
2
[t sin t + uπ(t)(t − π) sin(t − π)]

(h) y � 1
2

cos t + 1
4
e−t + 1

4
et

2. (a) y � (−1/2λ)t cos λt + cos λt + π sin λt

(b) y � t/λ2 + cos λt +
(

1/λ + 1/λ3
)

sin λt.

3. (a) I(t) � (E0/R) + (I0 − E0/R) e−Rt/L

(b) t

I�t�

O

I�

E��R

4. I(t) � (E0/R) −
(

(E0/R) + AR/(L2ω2 + R2)
)

e−Rt/L

+
(

AR/(L2ω2 + R2)
)

cos ωt +
(

ALω/(L2ω2 + R2)
)

sin ωt

5. I(t) � 3
10

sin t + 1
10

cos t − 3
2
e−t + 12

5
e−2t

6. (a) x(t) � e−2t + e−t

y(t) � e−2t − e−t

(b) x(t) � t + sin t

y(t) � t + cos t

(c) x(t) � t + e−t − 1

y(t) � e−t − t

7. (a) y(t) � −1 + Ct

(b) y(t) � t + C t2

(c) y(t) � C

∞
∑

n�0

(−1)ntn+1

(n + 1)! n!

(d) y(t) � t e−t

Exercises 2.5.

1. y(t) � e2t
√

2
sinh

√
2 t

2. x(t) � (1/
√

km) sin
(√

k/m t
)
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3. I(t) � (1/L)e−Rt/L

4. x(t) � t e−t

Exercises 2.6.

1. (a) 0 (b) f (0+) �
{

1 if n � 0

0 if n > 0

(c) a − b

2. (a) 0 (b) 1

Exercises 2.7.

1. (a) 1
3
(et − e−2t) (b) 1 − cos t (c) t − sin t

(d) 1
32

(2t − 1) + e−4t

32
(2t + 1)

(e) 1
8
(t sin t − t2 cos t)

6. (a) (1/
√

a) erf(
√

at) (b)

√
a

(s − a)
√

s

(c)

√
a(3s + 2a)

2s2(s + a)3/2

7. (a) u1(t) J0(t − 1) (b)
∞
∑

n�0

(−1)na2nt2n+1

22n(2n + 1)(n!)2

8. π/2

10. (a) 1 + 2√
3

sin
(√

3
2

t
)

et/2

(b) − 1
5

cos t + 3
5

sin t + 1
5
e2t

(c) 0

(d) e−at

11. (a) 1
2
(sin t + t cos t)

(b) Same as for 7(b) with a � 1

12. 1
4

∫ t

0 (e3τ − e−τ) f (t − τ) dτ

Exercises 2.8.

1. (a) 2
3
et + 4

3
e−2t − 2e−t (b) 1

4
et − 1

4
e−t − 1

2
sin t

(c) − 1
3
et + 1

30
e−2t + 1

45
e3t + 1

3
t + 5

18
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4. 1
2
e−t/2

(

cos

√
7

2
t −

1
√

7
sin

√
7

2
t

)

+ 1
2
(sin t − cos t)

Exercises 2.9.

4. (a) an � 3n − 4n (b) an � 1
2
(2n − 4n)

(c) an � 1
2

[1 − (−1)n] (d) an � n

6. (a) y(t) �
∑[t]

n�0(−1)net−n (b) y(t) �
∑[t]

n�0 (t − n)n+2/(n + 2)!

7. an � 4 + 2n − 7 · 2n + 3n+1

Exercises 3.1.

1. (a) 8 + i (b) 24 + 18i (c) 7
5

− 4
5
i

2. (a) |(1 + i)3| � 2
√

2, arg
(

(1 + i)3
)

� 3π/4

Re
(

(1 + i)3
)

� −2, Im
(

(1 + i)3
)

� 2

(b)

∣

∣

∣

∣

1 − i

1 + i

∣

∣

∣

∣

� 1, arg

(

1 − i

1 + i

)

�
3π

2

Re

(

1 − i

1 + i

)

� 0, Im

(

1 − i

1 + i

)

� −1

(c)

∣

∣

∣

∣

1

(1 − i)2

∣

∣

∣

∣

�
1

2
, arg

(

1

(1 − i)2

)

�
π

2

Re

(

1

(1 − i)2

)

� 0, Im

(

1

(1 − i)2

)

�
1

2

(d)

∣

∣

∣

∣

4 + 3i

2 − i

∣

∣

∣

∣

�
√

5, arg

(

4 + 3i

2 − i

)

� tan−1(2)

Re

(

4 + 3i

2 − i

)

� 1, Im

(

4 + 3i

2 − i

)

� 2

(e) |(1 + i)30| � 215, arg
(

(1 + i)30
)

�
3π

2

Re
(

(1 + i)30
)

� 0, Im
(

(1 + i)30
)

� 215.

3. (a) (1 + i)3 � 2
√

2 ei 3π
4 (d) (4 + 3i)/(2 − i) �

√
5 ei tan−1(2)
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7. (a) |z − i| < 1

x

y

i

O

(b) 1 ≤ |z| ≤ 2

x

y

O

(c)
π

2
< arg(z) <

3π

2
, |z| < 1

x

y

O

8. (a) ei π
4 � 1/

√
2 + i/

√
2 (b) 1 (n � 0, ±1, ±2, . . .)

(c) −1 (n � 0, ±1, ±2, . . .) (d) (1/2) − (
√

3/2) i

9. (a) 4
√

−1 � ei π
4 , ei 3π

4 , ei 5π
4 , ei 7π

4

(b) 3
√

i � ei π
/

6, ei 5π
6 , ei 9π

6 � −i

(c) 5
√

1 + i � 10
√

2 ei π
20 , 10

√
2 ei 9π

20 , 10
√

2 ei 17π
20 , 10

√
2 ei 25π

20 , 10
√

2 ei 33π
20

Exercises 3.2.

2. (a) iπ (b) 1 + i (3π/2)

(c) iπ/2

3. (a) e−π/2 (b) ei

(c) (1 + i)e−π/4ei log
√

2

Exercises 3.3.

1. (a) 2πi (b) 2πi (c) 0
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(d) iπ (e) 0 (f) 0

(g) 2πi(2 − cos 1) (h) πi(−24π2 + 6)

2. (a) −iπ (b)
(

1 + (π/2)
)

+ i(1 − π)

5. |f (4)(0)| ≤ 120

6. Look at 1/f (z).

7. Look at f (z)/ez.

Exercises 3.4.

1. (a) R � 1 (b) R � ∞

(c) R � 1 (d) R � ∞

2. (a) ez2 �
∑∞

n�0 z2n/n!, R � ∞
(b) sinh z �

∑∞
n�0 z2n+1/(2n + 1)!, R � ∞

(c) 1/(1 − z) �
∑∞

n�0 zn, R � 1

(d) log(1 + z) �
∑∞

n�0 (−1)nzn+1/(n + 1), R � 1

4. (a) z � 0 (simple pole)

z � ±i (poles of order 2)

(b) z � 0 (pole of order 3)

(c) z � 0 (essential singularity)

(d) z � 1 (removable singularity)

5. (a) 1 + z2

6
+ 7z4

360
(b) 1

z2 − 1
6

+ 7z2

360

(c) 1 − z
3

+ 2z2

15

6. (a) − 1
3z

+ 1
4

∑∞
n�0(−1)nzn − 1

4

∑∞
n�0 zn/3n+2

(b) − 1
3z

+ 1
4

∑∞
n�0 (−1)n/zn+1 − 1

4

∑∞
n�0 zn/3n+2

(c) − 1
3z

+ 1
4

∑∞
n�0 (−1)n/zn+1 + 1

12

∑∞
n�0 3n/zn+1

7. (a) Res(±ia) � 1/2

(b) Res(0) � 1/2

Res

(

(2n − 1)

a
πi

)

�
i

(2n − 1)π
n � 0, ±1, ±2, . . .

(c) Res(0) � 0

8. (a) −2πi (b) 0 (c) 6πi
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(d) −4πi (e) 0

9. −
2π

7

Exercises 4.

1. (a)
(

1/(a − b)
)

(a eat − b ebt) (b) eat
(

1
2
at2 + t

)

(c) 1
2a

t sin at (d) t cosh at

(e) 1
8a

(3t sin at + at2 cos at)

6. 1/
√

s + 1(
√

s + 1 + 1)

Exercises 5.

1. y(x, t) � x(t − 1 + 2e−t)

2. (a) u(x, t) � (x/2
√

πt3) e−x2/4t

(b) u(x, t) � u0 + (u1 − u0) erfc
(

x/2
√

t
)

(c) u(x, t) � x + (2/π)
∑∞

n�1

(

(−1)n/n
)

e−n2π2t sin nπx

(d) u(x, t) � (2aℓ/π)
∑∞

n�1

(

(−1)n+1/n
)

e−n2π2t/ℓ2

sin(nπx/ℓ)

3. (a) y(x, t) � sin πx cos πt

(b) y(x, t) � 1 + (4/π)
∑∞

n�1
(−1)n

2n−1
cos

(

2n−1
2

)

πx cos
(

2n−1
2

)

πt

(c) y(x, t) � (2/π2)
∑∞

n�1

(

(−1)n+1/n2
)

sin nπx sin nπt

(d) y(x, t) � 2
∑∞

n�1

(

∫ 1

0 f (u) sin nπu du
)

sin nπx cos nπt

4. y(x, t) �
(

(sin πx)/π2
)

(cos πt − 1)

5. u(x, t) � (1/a
√

πt)e−x2/4a2t
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Analytic functions, 123

Argument, 117

Asymptotic values, 88

Bessel function, 72, 97, 213, 214

Beta function, 96

Boundary-value problems, 64

Branch

cut, 122

point, 123, 167

Bromwich

line, 152

contour, 152

Cauchy

inequality, 134, 145

integral formula, 133

residue theorem, 143

–Riemann equations, 123

theorem, 131

Circle of convergence, 137

Closed (contour), 128

Complex

inversion formula, 151

numbers, 115

plane, 117

Complementary error function,

172

Conjugate, 116

Continuity, 8

piecewise, 10

Contour, 128

Convergence, 2, 6

absolute, 6

uniform, 7, 20

Cycloid, 101

De Moivre’s theorem, 117

Derivative theorem, 54

Difference equations, 108

Differential equations, 59

Differentiation

of Laplace transform, 31

under the integral sign, 203

231
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Diffusivity, 180

Divergence, 2

Dirac operator, 74, 210, 215

Electrical circuits, 68, 83

Elliptic equations, 175

Equation of motion, 85

Error function, 95

Euler

constant, 44, 47

formula, 3, 117

Excitation, 61

Exponential order, 12

Fibonacci equation, 114

First translation theorem, 27

Forcing function, 61

Fourier

inversion formula, 205

series, 163

transform, 151

Full–wave–rectified sine, 51, 216

Fundamental theorem of

algebra, 200

Functions (complex-valued),

120

Gamma function, 41

General solutions, 63

Greatest integer ≤ t, 109, 113,

215

Half–wave–rectified sine, 50,

216

Harmonic

function, 126

conjugate, 126

Heat equation, 175, 180

Heaviside

expansion theorem, 107

function, 25, 79, 215

Hyperbolic

equations, 175

functions, 121

Impulsive response, 104

Imaginary

axis, 117

number, 116

part, 116

Independence of path, 132

Indicial response, 105

Infinite series, 17, 44

Initial

point, 128

-value theorem, 88

Input, 61

Integral equations, 98

Integrals, 66

Integration, 33, 128

Integro-differential equations,

67

Jump discontinuity, 8

Kirchoff’s voltage law, 68

Laplace

operator, 126

transform (definition), 1, 78

transform method, 60, 176

transform tables, 210

–Stieltjes transform, 78

Laurent series, 139

Lerch’s theorem, 24

Linearity, 16

Liouville’s theorem, 134

Logarithm, 122, 216, 217

Mechanical system, 84
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Meromorphic function, 141

Modified bessel function, 102,

213, 214

Modulus, 116

Multiple-valued function, 120

Null function, 26

One-dimensional

heat equation, 180

wave equation, 186

Order (of a pole), 141

Ordinary differential equations,

59

with polynomial coefficients,

70

Output, 61

Parabolic equations, 175

Partial

differential equations, 175

fractions, 35

Partition, 75, 193

Periodic functions, 47

Positive direction, 128

Polar Form, 117

Pole, 141

Power series, 136

Principal logarithm, 122

Radius of convergence, 136

Real part, 116

Residue, 38, 142

Response, 61

Riemann

integrable, 193

integral, 194

–Stieltjes integral, 75, 201

Roots

of unity, 118

of a complex number, 118

Second translation theorem, 29

Simple

contour, 128

pole, 38, 141

Simply connected, 130

Sine integral, 67

Single-valued functions, 120

Singularities

essential, 141

pole, 141

removable, 141

Smooth (contour), 128

Square–wave, 49, 215

Steady-state solutions, 103

Systems of differential

equations, 65

Superposition principle, 106

Tautochrone, 100

Taylor

coefficients, 138

series, 138

Terminal

point, 128

-value theorem, 89

Translation theorems, 27

Uniqueness of inverse, 23

Unit step function, 24, 79, 215

Wave equation, 176, 186






