
Despite the increasing affordability and

availability of large displays, most users

continue to have display space that represents less than

10 percent of their physical workspace area. Similarly,

many current interfaces assume that users have a rela-

tively small display to access the

much larger virtual world. Several

factors indicate that this is now

changing. The PC’s increasing graph-

ical-processing power is fueling a

demand for larger and more capable

display devices. Several operating

systems have supported work with

multiple displays for some time. This

fact, coupled with graphic-card

advancements over the past 10 years,

has led to an increase in multiple

monitor (multimon) use. Microsoft

commissioned a Harris poll of 1,197

Windows OS users, and found that

up to 20 percent of the information

worker users ran multimons from a PC or laptop. Many

other users are becoming aware that running multimons

is an option.

There are two basic approaches to providing a large-

display experience:

■ Wall-sized displays typically offer seamless display

surfaces that are created using multiple tiled projec-

tors. These systems commonly use touch or pen input.

■ Large desktop displays are typically multimon con-

figurations with seams between the monitors caused

by the monitor bezels. These systems commonly use

keyboard and mouse for input.

In our Harris poll, the two top reasons participants

cited for not running multimons were limited physical

desktop space and price concerns. However, display

manufacturers are widely predicting that the price of liq-

uid crystal displays (LCDs)—which have smaller desk-

top footprints—will drop dramatically over the next four

years. In fact, this price drop has already begun: Most

consumers can now get 25 percent more pixels by buy-

ing two 17-inch LCDs for about the same price as one 21-

inch LCD. Also, all laptop manufacturers now sell their

products with built-in multimon support, which could

further increase the momentum for multimon use.

To take advantage of this possibility, we must address

a fundamental question: How might users cope with

and benefit from display devices that occupy 25 to 35

percent of their physical desk area—or perhaps one day,

cover an entire office wall? As the “Related Work in

Large-Display Usability” sidebar describes, many

researchers have proposed answers. Our own approach

to the question was to first evaluate large-display usabil-

ity issues, then develop a series of research prototypes

to resolve them. Here, we describe those issues and our

proposed solutions.

Large-display usability issues
To adequately design for large displays and multimon

systems, we must understand both the differences and

similarities between multimon and single monitor use.

We therefore ran formal laboratory studies of large-dis-

play productivity.1 We also analyzed product support

calls. In addition, we observed a group of single and

multimon users over time by developing and deploying

a windowing system logging tool called VibeLog.2 Doing

so let us discern higher-level activity patterns—such as

the number of opened windows, and window activation

and movement frequency—for different-sized displays.

Our data analysis showed that:

■ as the number of monitors increase, the number of

visible windows increases, and

■ window visibility is a useful measure of display-space

management activity, especially for multimon users.

On the basis of our research, we identified six broad

categories of large-display usability issues:

■ Losing the cursor. As screen size increases, users accel-

erate mouse movement to compensate and it becomes

harder to keep track of the cursor.

■ Bezel problems. Bezels introduce visual distortion

when windows cross them and interaction distortion

when the cursor crosses them.

■ Distal information access problems. As screen size

increases, accessing icons, windows, and the start

menu across large distances is increasingly difficult

and time consuming.

■ Window management problems. Large displays lead

to notification and window-creation problems

because windows and dialog boxes pop up in unex-

Applications of Large Displays

Large displays offer users

significant benefits and

usability challenges. The

authors discuss those

challenges along with novel

techniques to address these

issues.

George Robertson, Mary Czerwinski,

Patrick Baudisch, Brian Meyers, Daniel Robbins,

Greg Smith, and Desney Tan

Microsoft Research

The Large-Display
User Experience

44 July/August 2005 Published by the IEEE Computer Society 0272-1716/05/$20.00 © 2005 IEEE

pected places. Window management is made more

complex on multimon displays, because many users

try to avoid having windows that cross bezels.

■ Task management problems. As screen size increas-

es, so too does the number of open windows. As a

result, users engage in more complex multitasking

behaviors and require better task management

mechanisms.

■ Configuration problems. The user interface for con-

figuring multimon displays is overly complex and dif-

ficult to use. When users remove a monitor from the

display configuration, they can lose windows as well.

Also, different monitors might have different pixel

densities; currently support is poor for dealing with

such heterogeneity.

Our analysis results have begun to fill a research gap in

real-world window management practices. The results

have also influenced design choices for many prototypes

and products in development. Our research prototypes

address the first five of the six categories. The configu-

ration problems are left for future research.

Losing the cursor
As screen size increases, people move their mouses

faster and select higher mouse acceleration settings to

quickly traverse the screen. The faster the mouse cursor

moves, however, the more likely users are to lose track

of it. In addition, as screen size increases, it becomes

increasingly difficult to locate a stationary cursor.

IEEE Computer Graphics and Applications 45

Related Work in Large-Display Usability
Many researchers have studied the benefits and usability

issues of large displays. Among the early observations were
those by Guimbretiere and his colleagues,1 and MacIntyre
and his colleagues.2

Grudin3 documents the usage patterns of CAD/CAM
programmers and designers running multimons. Despite
the limitations observed in current OS support, multimon
users clearly like the extra screen real estate, and they adapt
their windows and application layouts optimally for the
number, size, orientation, and resolution of their displays.
According to Grudin, most current multimon users claim
they would never go back to a single monitor.

Czerwinski and colleagues4 document a series of user
studies demonstrating productivity benefits from multimon
or large display use. One of their goals was to identify novel
software applications that might better support multitasking
between projects and applications. The studies showed a
12 percent significant performance benefit; that is, study
participants accomplished a mix of typical office productivity
tasks 12 percent faster with a large display. They also
showed that users were more satisfied with large displays
than small displays. In addition to productivity benefits, the
studies showed that larger displays improve users’
recognition memory and peripheral awareness.

Large-display use might also reduce or eliminate gender
bias, at least in some tasks related to 3D navigation of
virtual worlds. Desney Tan and colleagues5 report a series of
studies demonstrating the advantages of using large
displays in this domain. Many researchers have observed
that male users are significantly more effective than female
users at navigating 3D virtual spaces.6,7 The Tan studies
show that while large displays typically increase
performance for all users, females improved so much that
males and females performed equally well in virtual 3D
navigation on large displays. In these studies, the large
display’s wider field of view increased users’ ability to
process optical flow cues during navigation—cues that
females are more reliant upon than males. An example of
optical flow cues are the scene changes that occur as a
virtual camera moves from one location to another over
time. That movement causes continuous changes in the
images that fall on the eye. These optical flow cues are
more effective on larger displays. Tan and colleagues ran

their studies on DSharp, a seamless wide screen
multiprojector display (see Figure A). They found that the
optimal field of view for the tasks tested was about
100 degrees, the equivalent of a triple-monitor display.

References
1. F. Guimbretiere, M. Stone, and T. Winograd, “Fluid Interaction

with High-Resolution Wall-Size Displays,” Proc. Symp. User Inter-

face and Software Technology, ACM Press, 2001, pp. 21-30.

2. B. MacIntyre et al., “Support for Multitasking and Background

Awareness Using Interactive Peripheral Displays,” Proc. Symp. User

Interface and Software Technology, ACM Press, 2001, pp. 41-50.

3. J. Grudin, “Partitioning Digital Worlds: Focal and Peripheral

Awareness in Multiple Monitor Use,” Proc. Computer–Human Inter-

action, ACM Press, 2002, pp. 458-465.

4. M. Czerwinski et al., “Toward Characterizing the Productivity

Benefits of Very Large Displays,” Proc. Interact 2003, IOS Press,

pp. 9-16.

5. D. Tan, M. Czerwinski, and G. Robertson, “Women Go with the

(Optical) Flow,” Proc. Computer–Human Interaction (CHI), 2003,

pp. 209-215.

6. D. Kimura, Sex and Cognition, MIT Press, 1999, pp. 1-66.

7. T.R.H. Cutmore et al., “Cognitive and Gender Factors Influenc-

ing Navigation in a Virtual Environment,” Int’l J. Human–Com-

puter Studies, vol. 53, no. 2, 2000, pp. 223-249.

A DSharp multiprojector display.

High-density cursor
One key reason that users lose cursors during move-

ment is that a cursor is rendered only once per frame,

which makes it visually jump from one rendering posi-

tion to the next, with the distance increasing with the

cursor’s speed. Our high-density cursor3 addresses this

using temporal supersampling. By filling the space

between the cursor’s current and previous position with

additional fill-in cursor images, the high-density cur-

sor bridges gaps between cursor positions. The effect is

similar to increasing the display frame rate. Since all

cursor images exist only for a single frame, the high-

density cursor has no lag. As Figure 1 shows, this fact

makes the high-density cursor different from similar

techniques such as the Microsoft Windows mouse trail.

Auto-locator cursor
To help users find stationary cursors, Windows pro-

vides a locator function as part of the standard mouse

properties. When enabled, this function shows the cur-

sor location whenever users press the control key. When

activated, an animated circle appears over the cursor,

growing smaller over the course of a one-second ani-

mation. This works well for a stationary cursor, but is

less effective when the user has simply moved the cur-

sor too fast and lost track of it. In that case, the user’s

hand is on the mouse rather than the keyboard, requir-

ing an extra action.

To solve this problem, we developed an auto-locator

cursor. Whenever the cursor quickly moves a long dis-

tance, it automatically invokes a similar, animated loca-

tion indicator. Because this happens automatically only

for fast, long-distance moves, it appears only when need-

ed and requires no additional user action.

Distal access
As display size grows, it becomes increasingly diffi-

cult for users to access distant information. Consider a

wall-sized display: If users stand near the lower right

corner, for example, they must physically move to access

a window or icon on the left, and might not be able to

reach the upper display sections. This is an extreme case,

but the problem also exists even with a more modest

three-monitor configuration (triplemon). Accessing an

icon or window at a distance requires moving the cursor

a long distance, which takes time and raises cursor-

tracking problems. Mixing monitor types exacerbates

the problem. Consider a large touch-sensitive display

like the SmartBoard, for example, combined with a

smaller display with no touch input. It would be diffi-

cult—if not impossible—to drag an object from the

touch surface onto the nontouch surface.

To solve these various problems, we developed four

prototypes. Missile Mouse and Target Chooser let users

move the cursor a long distance and select a distant

window, respectively, using only small hand motions.

Drag-and-Pop lets users drag-and-drop at a distance.

Finally, Tablecloth lets users temporarily move and

interact with desktop portions, then return them to

their previous location.

Missile Mouse
To move the mouse across a large display takes time,

much hand movement, and often requires users to clutch

the mouse. As mentioned previously, when users com-

pensate for distance using accelerated mouse settings,

they often lose the cursor. Using Missile Mouse, users

can “launch a missile” (the cursor) across the screen with

a small movement. The cursor continues moving in the

direction and at the speed of the original motion until

the user moves the mouse again, reacquiring control. To

activate Missile Mouse, users hold down the shift key

while initiating mouse movement. With a little practice,

users can probably move to any screen location with min-

imal hand motion (we have yet to formally test this).

A Missile Mouse variation is a wire-guided missile

mouse. Users launch it in the same way, but direct the

cursor’s flight with small mouse motions (analogous to

a wire-guided missile’s directional guidance).

Target Chooser
Because large-display users have more windows

opened and unminimized, it’s more difficult for them to

select a window for interaction. The desired window

might be obscured by other windows or residing at a dis-

tance (requiring time to acquire). Because of the num-

ber of windows involved, the standard Windows Alt-Tab

solution no longer works well.

Target Chooser addresses this problem. Like Missile

Mouse, it’s initiated by holding down a modifier key

(such as the shift key) while holding down the left mouse

button and moving the mouse. In this case, the user’s

mouse movement casts a ray across the screen and ten-

tatively selects the window centered closest to the ray.

To highlight the target, Target Chooser draws visual cues

on top of the window, even if it’s obscured behind other

windows. It also highlights the window’s title. The user

can then alter the selection using small mouse move-

ments. Moving the mouse up or down selects other win-

dows above or below the initial selection. Moving the

mouse right or left will select windows to the right or left

Applications of Large Displays

46 July/August 2005

(a)

(b)

1 High-density cursor versus mouse trail. Unlike the (a) similar mouse trail

technology, the (b) high-density cursor uses temporal supersampling to

bridge gaps in the cursor’s position without lag.

of the initial selection. Once the desired window is ten-

tatively selected, the user releases the mouse button; this

selects the window and places the cursor in it.

Drag-and-Pop
We designed Drag-and-Pop4 to accelerate large-

screen drag-and-drop interactions. By animating poten-

tial targets and bringing them to the dragged object,

Drag-and-Pop reduces the user effort required to drag

an object across the screen. Rather than moving target

objects from their original location and inhibiting users’

spatial memory, Drag-and-Pop stretches the object to

the target location using a rubber band–like visualiza-

tion (see Figure 2).

Tablecloth
Tablecloth gives users access to distant screen con-

tent by adapting the window scrolling notion to the

entire desktop (see Figure 3). Users interact only with

the area directly in front of them, which is convenient-

ly accessible. To interact with all other content, users

drag the desktop until the target content appears in the

focus area—similar to pulling a tablecloth to move a salt

shaker across a table. To pan the screen, Tablecloth

offers various incremental methods (dragging the

screen, scrollbar, and hyperpanning) and absolute

methods (target buttons with corresponding shortcuts).

It also lets users drag objects between screen areas by

invoking panning methods during drag interactions.

Bezel problems
Multimon display bezels present both opportunities

and problems. The bezels’ primary benefit is in letting

users organize their work into different activities parti-

tioned onto different monitors.5 In fact, bezels can actu-

ally help users differentiate between different activities.

Problems occur when users need to cross bezels. If a

window is too big to fit on a single monitor or is not care-

fully placed, it might span one or more bezels, creating

a visual discontinuity at the bezel that makes reading

text and perceiving image patterns difficult. In addition,

when the cursor moves across a bezel, its path often

appears deflected because there is no virtual space cor-

responding to the physical space that the bezel occupies.

To address these problems, we developed snapping

and bumping, Mouse Ether, and OneSpace.

Snapping and bumping
Larger displays offer opportunities for more complex

window layout arrangements. With multimon displays,

users try to avoid placing windows across bezels, but

this effort is both time consuming and error prone. In

addition, users can easily waste screen real estate in win-

dow layout. Two techniques—snapping and bumping—

make these tasks easier.

Snapping lets users easily snap windows to bezels,

other windows, or any display edge. Snapping is enabled

whenever users move a window. As they drag a window

edge near a bezel, window, or display edge, it snaps to

that target. To unsnap it, users drag the window beyond

the target. With snapping, users are much less likely to

leave a window across a bezel.

Bumping lets users move windows to other displays or

to nearby empty spaces. Users first indicate the direc-

tion and type of bump, then the system finds the appro-

priate place to move the window. Because the user is not

manually moving the window, it’s easy to avoid leaving

a window across a bezel.

Mouse Ether
When acquiring a target located on a different screen,

multimon users face a challenge: Differences in screen

resolution, vertical offsets, and horizontal offsets warp

the mouse pointer, making target acquisition difficult.

Mouse Ether eliminates warping effects by applying

appropriate transformations to all mouse move events.

That is, as the cursor crosses a bezel, Mouse Ether moves

IEEE Computer Graphics and Applications 47

2 Drag-and-Pop interaction. To preserve users’ spatial memory, the tech-

nique stretches the potential targets toward the object being dragged.

3 Tablecloth on a wall-sized display. The user accesses the display’s left side

while standing in the center.

the cursor so that it follows the perceived trajectory it

was on in the first monitor (see Figure 4). In a user study,

Mouse Ether improved participants’ performance by up

to 28 percent on a target acquisition task across two

screens running at different resolutions. Seven of the

eight participants also strongly preferred using Mouse

Ether to the standard mouse.

OneSpace
Because a computer’s geometric model of the moni-

tor setup doesn’t account for monitor bezels, images dis-

played across multimons look distorted. OneSpace

adjusts the computer’s geometric model to reflect the

actual physical distance between monitors on the user’s

desk. While this approach requires hiding image mate-

rial located behind the bezels, it lets users view distor-

tion-free images, as Figure 5 shows. We developed

OneSpace for application on the content windows of

image viewers, image-processing tools, background

images, CAD tools, map viewers, or 3D games; control

elements and other desktop applications would contin-

ue to run in the traditional clipping-free space.

Both Mouse Ether and OneSpace require a geomet-

ric calibration step to inform the system of the exact

bezel placement. To do this, users adjust the red arrow

in Figure 5 so that it appears aligned across the bezels.

They need do this only once for a given multimon

configuration.

Window management
Large displays pose various window management

issues. When the user invokes an action that creates a

dialog box or a new window, where should that window

appear? If it’s placed in an unexpected location far afield

of the user’s current focus, the user might not notice it

and might assume that the system is broken. However,

if the window appears directly in front of the current

window or cursor position, it might obscure content that

the user needs to see. While research continues on bet-

ter context awareness for initial window placement,

tools such as snapping and bumping, and GroupBar and

Scalable Fabric (described later) can help users more

efficiently manipulate windows and more easily repo-

sition incorrectly placed windows.

Another problem multimon displays pose is the

ambiguous nature of the maximize window operation.

Does it mean maximize to fill the full screen or just the

monitor where the window currently appears? If the user

maximizes a window on the current monitor, it’s difficult

to move that window to another monitor. Currently, users

must unmaximize the window, move it, and then remax-

imize it. Techniques like bumping or GroupBar maximize

can also help here, as can our tristate maximize button:

It first maximizes to the current monitor, then to the

whole screen, and finally returns to the original size.

Start Anywhere
Task bar and start menu location also poses a large-

display window-management problem, particularly on

multimon displays. If there is a single task bar, the start

menu might be far away from the user, making it diffi-

cult to invoke the menu’s various actions.

To deal with this, we developed Start Anywhere,

which lets users invoke the start menu from wherever

the cursor is currently located. To invoke it, they can use

the Windows key or a designated mouse or keyboard

key; no mouse movement is required.

WinCuts
Each window on a computer desktop provides a view

into some information. Although users can now manip-

ulate multiple windows, being able to spatially arrange

smaller window regions might help them perform cer-

tain tasks more efficiently. This is particularly impor-

tant on large displays, where the target windows might

be far apart. WinCuts6 is a novel interaction technique

that lets users replicate arbitrary regions of existing

windows into independent windows. Each WinCut is a

live view of a source window region that users can inter-

act with. As Figure 6 shows, users can also share Win-

Cuts across multiple devices.

To create a new WinCut, users hold down a keyboard

modifier combination that brings up a semitransparent

tint over the entire desktop. They then specify a rectan-

gular region of interest (ROI) by clicking and dragging

the mouse over the target window area. When they are

Applications of Large Displays

48 July/August 2005

Start

Target

Path actually taken

Apparent shortest path

4 Mouse Ether showing the desired apparent shortest path.

5 OneSpace adjusts the computer’s geometric model to reflect the actual

distance between monitors, eliminating image distortion across bezels.

satisfied with the ROI, they release the keyboard keys.

The tint then disappears and a new WinCut appears over

the source window, slightly offset from the ROI’s loca-

tion. The source window itself is unaffected. The Win-

Cut is differentiated from regular windows by a green

dotted line around its content region.

Users can create as many WinCuts as they wish,

from one or more source windows. Each WinCut is a

separate window and is managed much like a regular

window. Unlike other windows, however, maximizing

or resizing a WinCut preserves the relevant informa-

tion, rescaling it within the WinCut. Users can thus

make the information fill as much or as little space as

they like.

WinCuts contain live representations of the source

window’s ROI content. Users can therefore view con-

tent updates through the WinCut and directly inter-

act with WinCut content, just as they would in the

original window. Also, because the WinCut view is

tethered to the source window and is not an indepen-

dent screen region, users can move and even hide the

source window without affecting the WinCut. This

flexibility lets users arrange ROIs near each other,

regardless of the distance between the source win-

dows in the larger display.

WinCuts bears some similarity to Virtual Network

Computing.7 VNC lets users share whole windows or the

entire desktop using frame buffer contents, which makes

sharing overlapped windows problematic. Because Win-

Cuts lets users share window regions using off-screen

rendering, it works correctly for overlapped windows.

Task management
While working on high-level tasks, users need easy

access to particular sets of windows and applications.

An effective task management system should therefore

provide convenient mechanisms that let users

■ group relevant sets of windows,

■ organize the groups and windows within the groups,

■ switch between groups, and

■ lay out the groups and windows on the screen.

On large displays, effective multiwindow task manage-

ment is critical to a successful user experience.

Apple Exposé (http://www.apple.com/macosx/

features/expose) is a window management system that

assists users in dealing with multiple open windows.

However, because Exposé is window- and application-

based, rather than task-based, it fails to address the

deeper question of how users can organize and manage

tasks on large displays.

We have developed two systems that explore differ-

ent facets of task management for large displays:

GroupBar and Scalable Fabric. GroupBar adds new

semantics for task organization and management to the

existing Microsoft Windows task bar. Scalable Fabric

uses scaling and a focus-in-context metaphor to visu-

alize groups of related windows. In this system, all tasks

are scaled and located in the periphery so they are

simultaneously visible.

GroupBar
We designed GroupBar8 to pro-

vide task management features by

extending the current Windows

task bar metaphor. GroupBar pre-

serves basic task bar tile functional-

ity, presenting one tile for each open

window in the system, and showing

the currently active window tile in

a darker, depressed-button state.

Users can click on any tile to acti-

vate the corresponding window or

minimize an active window. Fur-

ther, GroupBar offers task manage-

ment support by letting users drag

and drop tiles representing open

windows into high-level tasks called

groups (see the green group tab in

the lower right of Figure 7). The group control lets users

switch between tasks with a single mouse click and per-

form window operations (minimize, maximize, close)

on the entire group at once.

We designed GroupBar to let users group and regroup

windows easily and quickly, and then operate on task

or window groups as if they were a single unit. Our goal

was to build on the existing task bar metaphor to

improve the window management experience. To do

this, we offer users a wider array of spatial arrangement

preferences and a higher-level organizational structure

(the group); we also extend existing window manipu-

lation functions to the group level.

Scalable Fabric
Scalable Fabric9 manages multiwindow tasks on the

Windows desktop using a focus-plus-context display

to allocate screen real estate in accordance with users’

attention. Scalable Fabric lets users leave windows

and window clusters open and visible at all times using

a process that scales down windows and moves them

IEEE Computer Graphics and Applications 49

6 WinCuts at work. The technology sends portions of two personal laptops

to a shared wall display.

7 GroupBar technology. Dragging

a window tile onto another tile

combines both into a group.

to the periphery. Scalable Fabric is a focus-plus-con-

text display because it gives users who are focused on

a primary task the context of other work (that is, com-

peting or potentially related tasks). It places this other

work in the periphery, which leverages both the user’s

spatial memory and his or her visual-recognition

memory for images to facilitate task recognition and

location.

To use Scalable Fabric, the user defines a central focus

area on the display surface by moving periphery bound-

ary markers to desired locations (see Figure 8). The

user’s choice of focus-area location and size is influenced

by the physical displays’ configuration and capabilities.

On a triplemon display, for example, users might define

the central monitor as the focus area and use only the

side monitors as the peripheral regions, with no upper

or lower peripheral regions.

The focus-area windows behave like normal desktop

windows. The periphery windows or tasks can be acti-

vated at any time. These windows are smaller, which

lets users hold many tasks to the side while they are

working on other things. Using this metaphor, users

should rarely need to close or minimize windows and

can take advantage of the extra screen real estate to keep

peripheral windows visible.

When a user moves a window into the periphery, it

shrinks monotonically with the distance from the focus-

periphery boundary, getting smaller as it nears the

screen’s edge. When the user clicks on a peripheral win-

dow, it returns to its last focus position; this restore

behavior appears as an animation of the window mov-

ing from one location to the other. When the user mini-

mizes a focus-area window, it returns to its last peripheral

position. These behaviors are similar to the management

of ZoomScapes sheets,10 but have been generalized to

deal with windows and task management.

Designing applications for large displays
Some existing applications—such as power plant

control, weather monitoring, financial systems, and

software development environments—use large dis-

plays effectively. Each involves complex information

presentations that are difficult to manage on small dis-

plays. The question we pose is whether everyday-use

applications could effectively use and benefit from

large displays.

One example is SimulBrowser, an extension to

Microsoft Internet Explorer that we designed specifi-

cally for large displays. SimulBrowser can be config-

ured for any large or multimon display; users simply

indicate how the space should be divided. Figure 9

shows a SimulBrowser running on a nine-monitor dis-

play, with Web search results for the query “digital cam-

eras.” The top eight results appear in eight of the

monitors; the ninth holds snapshots of a page the user

is interested in. That is, when the user marks a currently

displayed page as interesting, a snapshot of it moves to

the ninth monitor. The user can then advance to the

next eight results, and so on. When the user wants to

compare the selected pages, another operation replaces

the search-result displays with the selected pages.

SimulBrowser offers an example of how large displays

might benefit users in everyday activities, but much

work remains to explore the design space of such large-

display-aware applications.

Conclusions
There is both a clear trend toward larger displays and

mounting evidence that they increase user productivi-

ty and aid user recognition memory. However, as our

user studies show, numerous usability problems inhib-

it the potential for even greater user productivity. Our

research prototype techniques solve these usability

problems, but we have not yet integrated them all into

a single system. Nonetheless, solving these individual

problems goes a long way toward improving the user

experience on large displays. ■

Applications of Large Displays

50 July/August 2005

8 This Scalable Fabric example shows three task clusters in the periphery.

By using the periphery, Scalable Fabric leverages the user’s spatial memory

and visual-recognition memory to aid task recognition.

9 SimulBrowser. The technology shows how large displays enhance every-

day activities, such as Web searching. Here, SimulBrowser shows search

results in eight monitors, and selected pages in the ninth (lower left).

References
1. M. Czerwinski, “Toward Characterizing the Productivity

Benefits of Very Large Displays,” Proc. Interact 2003, IOS

Press, 2003, pp. 9-16.

2. D. Hutchings et al., “Display Space Usage and Window

Management Operation Comparisons between Single

Monitor and Multiple Monitor Users,” Proc. Working Conf.

Advanced Visual Interfaces, ACM Press, 2004, pp. 32-39.

3. P. Baudisch, E. Cutrell, and G. Robertson, “High-Density

Cursor: A Visualization Technique that Helps Users Keep

Track of Fast-Moving Mouse Cursors,” Proc. Interact 2003,

IOS Press, 2003, pp. 236-243.

4. P. Baudisch et al., “Drag-and-Pop and Drag-and-Pick: Tech-

niques for Accessing Remote Screen Content on Touch- and

Pen-Operated Systems,” Proc. Interact 2003, IOS Press,

2003, pp. 57-64.

5. J. Grudin, “Partitioning Digital Worlds: Focal and Periph-

eral Awareness in Multiple Monitor Use,” Proc. Comput-

er–Human Interaction, ACM Press, 2002, pp. 458-465.

6. D.S. Tan, B. Meyers, and M. Czerwinski, “WinCuts: Manip-

ulating Arbitrary Window Regions for More Effective Use

of Screen Space,” Proc. Computer–Human Interaction, ACM

Press, 2004, pp. 1525-1528.

7. T. Richardson et al., “Virtual Network Computing,” IEEE

Internet Computing, vol. 2, no. 1, 1998, pp. 33-38.

8. G. Smith et al., “GroupBar: The TaskBar Evolved,” Proc.

Australian Conf. Human–Computer Interaction, University

of Queensland, 2003, pp. 34-43.

9. G. Robertson et al., “Scalable Fabric: Flexible Task Man-

agement,” Proc. Working Conf. Advanced Visual Interfaces,

ACM Press, 2004, pp. 85-89.

10. F. Guimbretiere, M. Stone, and T. Winograd, “Fluid Inter-

action with High-Resolution Wall-Size Displays,” Proc.

Symp. User Interface and Software Technology, ACM Press,

2001, pp. 21-30.

George Robertson is a senior

researcher in the Visualization and

Interaction Research group at

Microsoft Research. His research

interests include information visu-

alization, 3D user interfaces, and

interaction techniques. Robertson

has an MS in computer science from Carnegie Mellon Uni-

versity. He is a Fellow of the ACM. Contact him at

ggr@microsoft.com.

Mary Czerwinski is a senior

researcher in the Visualization and

Interaction Research group at

Microsoft Research. Her research

interests include attention and task

switching, information visualiza-

tion, and adaptive user interface

design. Czerwinski has a PhD in cognitive psychology from

Indiana University in Bloomington. Contact her at

marycz@microsoft.com.

Patrick Baudisch is a researcher

in the Visualization and Interaction

Research group at Microsoft

Research. His research interests

include interaction techniques for

very large displays and visualization

techniques for large documents on

small screen devices. Baudisch has a PhD in computer sci-

ence from Darmstadt University of Technology, Germany.

Contact him at baudisch@microsoft.com.

Brian Meyers is a software design

engineer in the Visualization and

Interaction Research group at

Microsoft Research. His research

interests include interactions for ubiq-

uitous computing. Meyers has a BS in

computer science from the University

of Puget Sound. Contact him at brianme@microsoft.com.

Daniel Robbins is a 3D user inter-

face designer in the Visualization

and Interaction Research group at

Microsoft Research. His research

interests include visual presentation

of large information spaces and scal-

able interfaces. Robbins has a BA in

visual arts from Brown University. Contact him at

dcr@microsoft.com.

Greg Smith is a software design

engineer in the Visualization and

Interaction Research group at

Microsoft Research. His research

interests include human–computer

interaction and data-driven visual-

ization. Smith received an MS in

computer science from Stanford University. Contact him

at gregsmi@microsoft.com.

Desney Tan is a researcher in the

Visualization and Interaction Re-

search group at Microsoft Research.

His research interests include build-

ing interfaces for large displays and

computing environments with mul-

tiple devices. Tan has a PhD in com-

puter science from Carnegie Mellon University. Contact

him at desney@microsoft.com.

IEEE Computer Graphics and Applications 51

