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Abstract

A basic problem in the design of privacy-preserving algorithms is the private max-
imization problem: the goal is to pick an item from a universe that (approximately)
maximizes a data-dependent function, all under the constraint of differential pri-
vacy. This problem has been used as a sub-routine in many privacy-preserving
algorithms for statistics and machine learning.

Previous algorithms for this problem are either range-dependent—i.e., their utility
diminishes with the size of the universe—or only apply to very restricted function
classes. This work provides the first general purpose, range-independent algo-
rithm for private maximization that guarantees approximate differential privacy.
Its applicability is demonstrated on two fundamental tasks in data mining and ma-
chine learning.

1 Introduction

Differential privacy [17] is a cryptographically motivated definition of privacy that has recently
gained significant attention in the data mining and machine learning communities. An algorithm
for processing sensitive data enforces differential privacy by ensuring that the likelihood of any
outcome does not change by much when a single individual’s private data changes. Privacy is
typically guaranteed by adding noise either to the sensitive data, or to the output of an algorithm
that processes the sensitive data. For many machine learning tasks, this leads to a corresponding
degradation in accuracy or utility. Thus a central challenge in differentially private learning is to
design algorithms with better tradeoffs between privacy and utility for a wide variety of statistics
and machine learning tasks.

In this paper, we study the private maximization problem, a fundamental problem that arises while
designing privacy-preserving algorithms for a number of statistical and machine learning applica-
tions. We are given a sensitive dataset D ⊆ Xn comprised of records from n individuals. We are
also given a data-dependent objective function f : U × Xn → R, where U is a universe of K items
to choose from, and f(i, ·) is (1/n)-Lipschitz for all i ∈ U . That is, |f(i,D′)−f(i,D′′)| ≤ 1/n for
all i and for any D′, D′′ ∈ Xn differing in just one individual’s entry. Always selecting an item that
exactly maximizes f(·, D) is generally non-private, so the goal is to select, in a differentially private
manner, an item i ∈ U with as high an objective f(i,D) as possible. This is a very general algorith-
mic problem that arises in many applications, include private PAC learning [25] (choosing the most
accurate classifier), private decision tree induction [21] (choosing the most informative split), private
frequent itemset mining [5] (choosing the most frequent itemset), private validation [12] (choosing
the best tuning parameter), and private multiple hypothesis testing [32] (choosing the most likely
hypothesis).

The most common algorithms for this problem are the exponential mechanism [28], and a com-
putationally efficient alternative from [5], which we call the max-of-Laplaces mechanism. These
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algorithms are general—they do not require any additional conditions on f to succeed—and hence
have been widely applied. However, a major limitation of both algorithms is that their utility suf-
fers from an explicit range-dependence: the utility deteriorates with increasing universe size. The
range-dependence persists even when there is a single clear maximizer of f(·, D), or a few near
maximizers, and even when the maximizer remains the same after changing the entries of a large
number of individuals in the data. Getting around range-dependence has therefore been a goal for
designing algorithms for this problem.

This problem has also been addressed by recent algorithms of [31, 3], who provide algorithms that
are range-independent and satisfy approximate differential privacy, a relaxed version of differential
privacy. However, none of these algorithms is general; they explicitly fail unless additional special
conditions on f hold. For example, the algorithm from [31] provides a range-independent result only
when there is a single clear maximizer i∗ such that f(i∗, D) is greater than the second highest value
by some margin; the algorithm from [3] also has restrictive conditions that limit its applicability (see
Section 2.2). Thus, a challenge is to develop a private maximization algorithm that is both range-
independent and free of additional conditions; this is necessary to ensure that an algorithm is widely
applicable and provides good utility when the universe size is large.

In this work, we provide the first such general purpose range-independent private maximization
algorithm. Our algorithm is based on two key insights. The first is that private maximization is
easier when there is a small set of near maximizing items j ∈ U for which f(j,D) is close to the
maximum value maxi∈U f(i,D). A plausible algorithm based on this insight is to first find a set
of near maximizers, and then run the exponential mechanism on this set. However, finding this
set directly in a differentially private manner is very challenging. Our second insight is that only
the number ℓ of near maximizers needs to be found in a differentially private manner—a task that
is considerably easier. Provided there is a margin between the maximum value and the (ℓ + 1)-th
maximum value of f(i,D), running the exponential mechanism on the items with the top ℓ values
of f(i,D) results in approximate differential privacy as well as good utility.

Our algorithm, which we call the large margin mechanism, automatically exploits large margins
when they exist to simultaneously (i) satisfy approximate differential privacy (Theorem 2), as well as
(ii) provide a utility guarantee that depends (logarithmically) only on the number of near maximizers,
rather than the universe size (Theorem 3). We complement our algorithm with a lower bound,
showing that the utility of any approximate differentially private algorithm must deteriorate with
the number of near maximizers (Theorem 1). A consequence of our lower bound is that range-
independence cannot be achieved with pure differential privacy (Proposition 1), which justifies our
relaxation to approximate differential privacy.

Finally, we show the applicability of our algorithm to two problems from data mining and machine
learning: frequent itemset mining and private PAC learning. For the first problem, an application
of our method gives the first algorithm for frequent itemset mining that simultaneously guarantees
approximate differential privacy and utility independent of the itemset universe size. For the second
problem, our algorithm achieves tight sample complexity bounds for private PAC learning analogous
to the shell bounds of [26] for non-private learning.

2 Background

This section reviews differential privacy and introduces the private maximization problem.

2.1 Definitions of Differential Privacy and Private Maximization

For the rest of the paper, we consider randomized algorithms A : Xn → ∆(S) that take as input
datasets D ∈ Xn comprised of records from n individuals, and output values in a range S . Two
datasets D,D′ ∈ Xn are said to be neighbors if they differ in a single individual’s entry. A function
φ : Xn → R is L-Lipschitz if |φ(D)− φ(D′)| ≤ L for all neighbors D,D′ ∈ Xn.

The following definitions of (approximate) differential privacy are from [17] and [20].

Definition 1 (Differential Privacy). A randomized algorithm A : Xn → ∆(S) is said to be (α, δ)-
approximate differentially private if, for all neighbors D,D′ ∈ Xn and all S ⊆ S ,

Pr(A(D) ∈ S) ≤ eα Pr(A(D′) ∈ S) + δ.
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The algorithm A is α-differentially private if it is (α, 0)-approximate differentially private.

Smaller values of the privacy parameters α > 0 and δ ∈ [0, 1] imply stronger guarantees of privacy.

Definition 2 (Private Maximization). In the private maximization problem, a sensitive dataset
D ⊆ Xn comprised of records from n individuals is given as input; there is also a universe
U := {1, . . . ,K} of K items, and a function f : U × Xn → R such that f(i, ·) is (1/n)-Lipschitz
for all i ∈ U . The goal is to return an item i ∈ U such that f(i,D) is as large as possible while
satisfying (approximate) differential privacy.

Always returning the exact maximizer of f(·, D) is non-private, as changing a single individuals’
private values can potentially change the maximizer. Our goal is to design a randomized algorithm
that outputs an approximate maximizer with high probability. (We loosely refer to the expected
f(·, D) value of the chosen item as the utility of the algorithm.)

Note that this problem is different from private release of the maximum value of f(·, D); a solu-
tion for the latter is easily obtained by adding Laplace noise with standard deviation O(1/(αn)) to
maxi∈U f(i,D) [17]. Privately returning a nearly maximizing item itself is much more challenging.

Private maximization is a core problem in the design of differentially private algorithms, and arises
in numerous statistical and machine learning tasks. The examples of frequent itemset mining and
PAC learning are discussed in Sections 4.1 and 4.2.

2.2 Previous Algorithms for Private Maximization

The standard algorithm for private maximization is the exponential mechanism [28]. Given a privacy
parameter α > 0, the exponential mechanism randomly draws an item i ∈ U with probability

pi ∝ enαf(i,D)/2; this guarantees α-differential privacy. While the exponential mechanism is widely
used because of its generality, a major limitation is its range-dependence—i.e., its utility diminishes
with the universe size K. To be more precise, consider the following example where X := U = [K]
and

f(i,D) :=
1

n
|{j ∈ [n] : Dj ≥ i}| (1)

(where Dj is the j-th entry in the dataset D). When D = (1, 1, . . . , 1), there is a clear maximizer
i∗ = 1, which only changes when the entries of at least n/2 individuals in D change. It stands
to reason that any algorithm should report i = 1 in this case with high probability. However, the

exponential mechanism outputs i = 1 only with probability enα/2/(K − 1+ enα/2), which is small
unless n = Ω(log(K)/α). This implies that the utility of the exponential mechanism deteriorates
with K.

Another general purpose algorithm is the max-of-Laplaces mechanism from [5]. Unfortunately, this
algorithm is also range-dependent. Indeed, our first observation is that all α-differentially private
algorithms that succeed on a wide class of private maximization problems share this same drawback.

Proposition 1 (Lower bound for differential privacy). Let A be any α-differentially private algo-
rithm for private maximization, α ∈ (0, 1), and n ≥ 2. There exists a domain X , a function
f : U ×Xn → R such that f(i, ·) is (1/n)-Lipschitz for all i ∈ U , and a dataset D ∈ Xn such that:

Pr

(
f(A(D), D) > max

i∈U
f(i,D)− log K−1

2

αn

)
<

1

2
.

We remark that results similar to Proposition 1 have appeared in [23, 2, 10, 11, 7]; we simply re-
frame those results here in the context of private maximization.

Proposition 1 implies that in order to remove range-dependence, we need to relax the privacy notion.
We consider a relaxation of the privacy constraint to (α, δ)-approximate differential privacy with
δ > 0.

The approximate differentially private algorithm from [31] applies in the case where there is a single
clear maximizer whose value is much larger than that of the rest. This algorithm adds Laplace noise
with standard deviation O(1/(αn)) to the difference between the largest and the second-largest val-
ues of f(·, D), and outputs the maximizer if this noisy difference is larger than O(log(1/δ)/(αn));
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otherwise, it outputs Fail. Although this solution has high utility for the example in (1) with
D = (1, 1, . . . , 1), it fails even when there is a single additional item j ∈ U with f(j,D) close to
the maximum value; for instance, D = (2, 2, . . . , 2).

[3] provides an approximate differentially private algorithm that applies when f satisfies a condition
called ℓ-bounded growth. This condition entails the following: first, for any i ∈ U , adding a single
individual to any dataset D can either keep f(i,D) constant, or increase it by 1/n; and second,
f(i,D) can only increase in this case for at most ℓ items i ∈ U . The utility of this algorithm depends
only on log ℓ, rather than logK. In contrast, our algorithm does not require the first condition.
Furthermore, to ensure that our algorithm only depends on log ℓ, it suffices that there only be ≤ℓ
near maximizers, which is substantially less restrictive than the ℓ-bounded growth condition.

As mentioned earlier, we avoid range-dependence with an algorithm that finds and optimizes over
near maximizers of f(·, D). We next specify what we mean by near maximizers using a notion of
margin.

3 The Large Margin Mechanism

We now our new algorithm for private maximization, called the large margin mechanism, along with
its privacy and utility guarantees.

3.1 Margins

We first introduce the notion of margin on which our algorithm is based. Given an instance of the

private maximization problem and a positive integer ℓ ∈ N, let f (ℓ)(D) denote the ℓ-th highest value

of f(·, D). We adopt the convention that f (K+1)(D) = −∞.

Condition 1 ((ℓ, γ)-margin condition). For any ℓ ∈ N and γ > 0, we say a dataset D ∈ Xn satisfies
the (ℓ, γ)-margin condition if

f (ℓ+1)(D) < f (1)(D)− γ

(i.e., there are at most ℓ items within γ of the top item according to f(·, D)).1

By convention, every dataset satisfies the (K, γ)-margin condition. Intuitively, a (ℓ, γ)-margin con-
dition with a relatively large γ implies that there are ≤ℓ near maximizers, so the private maximization
problem is easier when D satisfies an (ℓ, γ)-margin condition with small ℓ.

How large should γ be for a given ℓ? The following lower bound suggests that in order to have
n = O(log(ℓ)/α), we need γ to be roughly log(ℓ)/(αn).

Theorem 1 (Lower bound for approximate differential privacy). Fix any α ∈ (0, 1), ℓ > 1, and δ ∈
[0, (1 − exp(−α))/(2(ℓ − 1))]; and assume n ≥ 2. Let A be any (α, δ)-approximate differentially
private algorithm, and γ := min{1/2, log((ℓ− 1)/2)/(nα)}. There exists a domain X , a function
f : U ×Xn → R such that f(i, ·) is (1/n)-Lipschitz for all i ∈ U , and a dataset D ∈ Xn such that:

1. D satisfies the (ℓ, γ)-margin condition.

2. Pr
(
f(A(D), D) > f (1)(D)− γ

)
<

1

2
.

A consequence of Theorem 1 is that complete range-independence for all (1/n)-Lipschitz func-
tions f is not possible, even with approximate differential privacy. For instance, if D satisfies an
(ℓ,Ω(log(ℓ)/(αn)))-margin condition only when ℓ = Ω(K), then n must be Ω(log(K)/α) in order
for an approximate differentially private algorithm to be useful.

3.2 Algorithm

The lower bound in Theorem 1 suggests the following algorithm. First, privately determine a pair
(ℓ, γ), with ℓ is as small as possible and γ = Ω(log(ℓ)/(αn)), such that D satisfies the (ℓ, γ)-margin

1Our notion of margins here is different from the usual notion of margins from statistical learning that
underlies linear prediction methods like support vector machines and boosting. In fact, our notion is more
closely related to the shell decomposition bounds of [26], which we discuss in Section 4.2.
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Algorithm 1 The large margin mechanism LMM(α, δ,D)

input Privacy parameters α > 0 and δ ∈ (0, 1), database D ∈ Xn.
output Item I ∈ U .

1: For each r = 1, 2, . . . ,K, let

t(r) :=
6

n

(
1 +

ln(3r/δ)

α

)
= O

(
1

n
+

1

nα
log

r

δ

)
,

T (r) :=
3

nα
ln

3

2δ
+

6

nα
ln

3

δ
+

12

nα
ln

3r(r + 1)

δ
+ t(r) = O

(
1

n
+

1

nα
log

r

δ

)
.

2: Draw Z ∼ Lap(3/α).
3: Let m := f (1)(D) + Z/n. {Estimate of max value.}
4: Draw G ∼ Lap(6/α) and Z1, Z2, . . . , ZK−1

iid∼ Lap(12/α).
5: Let ℓ := 1. {Adaptively determine value ℓ such that D satisfies (ℓ, t(ℓ))-margin condition.}
6: while ℓ < K do
7: if m− f (ℓ+1)(D) > (Zℓ +G)/n+ T (ℓ) then
8: Break out of while-loop with current value of ℓ.
9: else

10: Let ℓ := ℓ+ 1.
11: end if
12: end while
13: Let Uℓ be the set of ℓ items in U with highest f(i,D) value (ties broken arbitrarily).
14: Draw I ∼ p where pi ∝ 1{i ∈ Uℓ} exp(nαf(i,D)/6). {Exponential mechanism on top ℓ

items.}
15: return I .

condition. Then, run the exponential mechanism on the set Uℓ ⊆ U of items with the ℓ highest
f(·, D) values. This sounds rather natural and simple, but a knee-jerk reaction to this approach is
that the set Uℓ itself depends on the sensitive dataset D, and it may have high sensitivity in the sense
that membership of many items in Uℓ can change when a single individual’s private value is changed.
Thus differentially private computation of Uℓ appears challenging.

It turns out we do not need to guarantee the privacy of the set Uℓ, but rather just of a valid (ℓ, γ)
pair. This is essentially because when D satisfies the (ℓ, γ)-margin condition, the probability that
the exponential mechanism picks an item i that occurs in Uℓ when the sensitive dataset is D but not
in Uℓ when the sensitive dataset is its neighbor D′ is very small.

Moreover, we can find such a valid (ℓ, γ) pair using a differentially private search procedure based
on the sparse vector technique [22]. Combining these ideas gives a general (and adaptive) algo-
rithm whose loss of utility due to privacy is only O(log(ℓ/δ)/αn) when the dataset satisfies a
(ℓ, O(log(ℓ/δ)/(αn))-margin condition. We call this general algorithm the large margin mecha-
nism (Algorithm 1), or LMM for short.

3.3 Privacy and Utility Guarantees

We first show that LMM satisfies approximate differential privacy.

Theorem 2 (Privacy guarantee). LMM(α, δ, ·) satisfies (α, δ)-approximate differential privacy.

The proof of Theorem 2 is in Appendix A.1. The following theorem, proved in Appendix A.2,
provides a guarantee on the utility of LMM.

Theorem 3 (Utility guarantee). Pick any η ∈ (0, 1). Suppose D ∈ Xn satisfies the (ℓ∗, γ∗)-margin
condition with

γ∗ =
21

nα
ln

3

η
+ T (ℓ∗).

Then with probability at least 1− η, I := LMM(α, δ,D) satisfies

f(I,D) ≥ f (1)(D)− 6 ln(2ℓ∗/η)

nα
.
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(Above, T (ℓ∗) is as defined in Algorithm 1.)

Remark 1. Fix some α, δ ∈ (0, 1). Theorem 3 states that if the dataset D satisfies the (ℓ∗, γ∗)-
margin condition, for some positive integer ℓ∗ and γ∗ = C log(ℓ∗/δ)/(nα) for some universal
constant C > 0, then the value f(I,D) of the item I returned by LMM is within O(log(ℓ∗)/(nα))
of the maximum, with high probability. There is no explicit dependence on the cardinality K of the
universe U .

4 Illustrative Applications

We now describe applications of LMM to problems from data mining and machine learning.

4.1 Private Frequent Itemset Mining

Frequent Itemset Mining (FIM) is the following popular data mining problem: given the purchase
lists of users (say, for an online grocery store), the goal is to find the sets of items that are pur-
chased together most often. The work of [5] provides the first differentially private algorithms
for FIM. However, as these algorithms rely on the exponential mechanism and the max-of-Laplaces
mechanism, their utilities degrade with the total number of possible itemsets. Subsequent algorithms
exploit other properties of itemsets or avoid directly finding the most frequent itemset [34, 27, 15, 8].

Let I be the set of items that can be purchased, and let B be the maximum length of an user’s

purchase list. Let U ⊆ 2I be the family of itemsets of interest. For simplicity, we let U :=
(
I

r

)
—

i.e., all itemsets of size r—and consider the problem of picking the itemset with the (approximately)
highest frequency. This is a private maximization problem where D is the users’ lists of purchased
items, and f(i,D) is the fraction of users who purchase an itemset i ∈ U . Let fmax be the highest
frequency of an itemset in D. Let L be the total number of itemsets with non-zero frequency, so

L ≤ n
(
B
r

)
, which is ≪ |I|r whenever B ≪ |I|. Applying LMM gives the following guarantee.

Corollary 1. Suppose we use LMM(α, δ, ·) on the FIM problem above. Then there exists a constant
C > 0 such that the following holds. If fmax ≥ C · log(L/δ)/(nα), then with probability ≥ 1− δ,
the frequency of the itemset ILMM output by LMM is

f(ILMM, D) ≥ fmax −O

(
log(L/δ)

nα

)
.

In contrast, the itemset IEM returned by the exponential mechanism is only guaranteed to satisfy

f(IEM, D) ≥ fmax −O

(
r log(|I|/δ)

nα

)
,

which is significantly worse than Corollary 1 whenever L ≪ |I|r (as is typically the case). Second,
to ensure differential privacy by running the exponential mechanism, one needs a priori knowledge
of the set U (and thus the universe of items I) independently of the observed data; otherwise the
process will not be end-to-end differentially private. In contrast, our algorithm does not need to
know I in order to provide end-to-end differential privacy. Finally, unlike [31], our algorithm does
not require a gap between the top two itemset frequencies.

4.2 Private PAC Learning

We now consider private PAC learning with a finite hypothesis class H with bounded VC dimension
d [25]. Here, the dataset D consists of n labeled training examples drawn iid from a fixed distri-
bution. The error err(h) of a hypothesis h ∈ H is the probability that it misclassifies a random
example drawn from the same distribution. The goal is to return a hypothesis h ∈ H with error
as low as possible. A standard procedure that has been well-studied in the literature simply returns

the minimizer ĥ ∈ H of the empirical error êrr(h,D) computed on the training data D, but this
does not guarantee (approximate) differential privacy. The work of [25] instead uses the exponential
mechanism to select a hypothesis hEM ∈ H. With probability ≥ 1− δ0,

err(hEM) ≤ min
h∈H

err(h) +O

(√
d log(n/δ0)

n
+

log |H|+ log(1/δ0)

αn

)
. (2)
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The dependence on log |H| is improved to d log |Σ| by [7] when the data entries come from a fi-
nite set Σ. The subsequent work of [4] introduces the notion of representation dimension, and
shows how it relates to differentially private learning in the discrete and finite case, and [3] pro-
vides improved convergence bounds with approximate differential privacy that exploit the structure
of some specific hypothesis classes. For the case of infinite hypothesis classes and continuous data
distributions, [10] shows that distribution-free private PAC learning is not generally possible, but
distribution-dependent learning can be achieved under certain conditions.

We provide a sample complexity bound of a rather different character compared to previous work.
Our bound only relies on uniform convergence properties of H, and can be significantly tighter
than the bounds from [25] when the number of hypotheses with error close to minh∈H err(h) is
small. Indeed, the bounds are a private analogue of the shell bounds of [26], which characterize
the structure of the hypothesis class as a function of the properties of a decomposition based on
hypotheses’ error rates. In many situation, these bounds are significantly tighter than those that do
not involve the error distributions.

Following [26], we divide the hypothesis class H into R = O(
√
n/(d log n)) shells; the t-th shell

H(t) is defined by

H(t) :=

{
h ∈ H : err(h) ≤ min

h′∈H
err(h′) + C0t

√
d log(n/δ0)

n

}
.

Above, C0 > 0 is the constant from uniform convergence bounds—i.e., C0 is the smallest c > 0 such

that for all h ∈ H, with probability ≥ 1 − δ0, we have |êrr(h,D) − err(h)| ≤ c
√
d log(n/δ0)/n.

Observe that H(t + 1) ⊆ H(t); and moreover, with probability ≥ 1 − δ0, all h ∈ H(t) have

êrr(h,D) ≤ minh′∈H err(h′) + C0 · (t+ 1)
√
d log(n/δ0)/n.

Let t∗(n) as the smallest integer t ∈ N such that

log(|H(t+ 1)|) + log(1/δ)

t
≤ C0α

√
dn log n

C

where C > 0 is the constant from Remark 1. Then, with probability ≥ 1 − δ0, the dataset D with
f = 1−êrr satisfies the (ℓ, γ)-margin condition, with ℓ = |H(t∗(n)+1)| and γ = C log(|H(t∗(n)+
1)|/δ)/(αn). Therefore, we have the following guarantee for applying LMM to this problem.

Corollary 2. Suppose we use LMM(α, δ, ·) on the learning problem above (with U = H and f =
1− êrr). Then, with probability ≥ 1− δ0 − δ, the hypothesis hLMM returned by LMM satisfies

err(hLMM) ≤ min
h∈H

err(h) +O

(√
d log(n/δ0)

n
+

log(|H(t∗(n) + 1)|/δ)
αn

)
.

The dependence on log |H| from (2) is replaced here by log(|H(t∗(n)+ 1)|/δ), which can be vastly
smaller, as discussed in [26].

5 Additional Related Work

There has been a large amount of work on differential privacy for a wide range of statistical and ma-
chine learning tasks over the last decade [6, 30, 13, 21, 33, 24, 1]; for overviews, see [18] and [29]. In
particular, algorithms for the private maximization problem (and variants) have been used as subrou-
tines in many applications; examples include PAC learning [25], principle component analysis [14],
performance validation [12], and multiple hypothesis testing [32].

A separation between pure and approximate differential privacy has been shown in several previous
works [19, 31, 3]. The first approximate differentially private algorithm that achieves a separation is
the Propose-Test-Release (PTR) framework [19]. Given a function, PTR determines an upper bound
on its local sensitivity at the input dataset through a search procedure; noise proportional to this
upper bound is then added to the actual function value. We note that the PTR framework does not
directly apply to our setting as the sensitivity is not generally defined for a discrete universe.

In the context of private PAC learning, the work of [3] gives the first separation between pure and
approximate differential privacy. In addition to using the algorithm from [31], they devise two
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additional algorithmic techniques: a concave maximization procedure for learning intervals, and an
algorithm for the private maximization problem under the ℓ-bounded growth condition discussed
in Section 2.2. The first algorithm is specific to their problem and does not appear to apply to
general private maximization problems. The second algorithm has a sample complexity bound of
n = O(log(ℓ)/α) when the function f satisfies the ℓ-bounded growth condition.

Lower bounds for approximate differential privacy have been shown by [7, 16, 11, 9], and the proof
of our Theorem 1 borrows some techniques from [11].

6 Conclusion and Future Work

In this paper, we have presented the first general and range-independent algorithm for approximate
differentially private maximization. The algorithm automatically adapts to the available large margin
properties of the sensitive dataset, and reverts to worst-case guarantees when such properties are
lacking. We have illustrated the applicability of the algorithm in two fundamental problems from
data mining and machine learning; in future work, we plan to study other applications where range-
independence is a substantial boon.
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