

## The Large Scale Data Facility


Data Intensive Computing for scientific Experiments

A. García<sup>1</sup>, S. Bourov<sup>1</sup>, A. Hammad<sup>1</sup>, V. Hartmann<sup>2</sup>, T. Jejkal<sup>2</sup>, P. Neuberger<sup>2</sup>, R. Stotzka<sup>2</sup>, J. van Wezel<sup>1</sup>, B. Neumair<sup>1</sup>, A. Streit<sup>1</sup>

<sup>1</sup> Steinbuch Centre for Computing, KIT

<sup>2</sup> Institute for Data Processing and Electronics, KIT

PDSEC/IPDPS 2011, Anchorage | May 20, 2011



KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu



- Many experiments have a data-management problem!
- This project aims at improving the situation, with adapted infrastructure and services
- Data Intensive Computing workflows are critical for the value of the data
- We present the Roadmap and Outlook

| 2 PDSEC 2011 |              |          |     | Ariel García – LSDF |
|--------------|--------------|----------|-----|---------------------|
| Introduction | The facility | Software | DIC | Outlook             |
| 0000         | 00           | 000      | 000 | 00                  |

# Science produces data! Experiments getting exponentially more data

 $\Leftarrow$  Moore's law (cheaper IT)!

What is the data challenge?

- remember the Large Hadron Collider @ CERN? it's "small" today!
- $\Rightarrow$  experiments need storage
- $\Rightarrow$  need computationally intensive services
- $\Rightarrow$  need sophisticated data analysis workflows

#### Old data is very valuable

- for reprocessing
- to analyse change in time
- for analysis by other scientists, in other contexts
- Invisible (not-found, no-metadata) data is lost data
  - $\Rightarrow$  administration and accessibility greatly increases data value
  - ⇒ single big DB with scientific data is more valuable than many small ones
- Data is used by large virtual communities!
  - $\Rightarrow$  communication and simple access to data is critical

#### 3 PDSEC 2011

| ntroduction |
|-------------|
| 0000        |

## The facility

Software



#### Ariel García - LSDF







# ⇒ need sophisticated data analysis workflows

#### Science produces data!

- Experiments getting exponentially more data
  - $\Leftarrow$  Moore's law (cheaper IT)!

What is the data challenge?

- remember the Large Hadron Collider @ CERN? it's "small" today!
- $\Rightarrow$  experiments need storage
- $\Rightarrow$  need computationally intensive services

#### Old data is very valuable

- for reprocessing
- to analyse change in time
- for analysis by other scientists, in other contexts
- Invisible (not-found, no-metadata) data is lost data
  - $\Rightarrow$  administration and accessibility greatly increases data value
  - ⇒ single big DB with scientific data is more valuable than many small ones
- Data is used by large virtual communities!
  - $\Rightarrow$  communication and simple access to data is critical

#### 3 PDSEC 2011

| Introduction |
|--------------|
| 0000         |

### The facility

Software



Ariel García - LSDF







#### **PDSEC 2011**

Introduction 0000

The facility

Software

DIC

Ariel García - LSDF Outlook

## Science produces data! Experiments getting exponentially more data

- ← Moore's law (cheaper IT)!
  - remember the Large Hadron Collider @ CERN? it's "small" today!
  - $\Rightarrow$  experiments need storage
  - $\Rightarrow$  need computationally intensive services
  - ⇒ need sophisticated data analysis workflows
- Old data is very valuable
  - for reprocessing
  - to analyse change in time
  - for analysis by other scientists, in other contexts
- Invisible (not-found, no-metadata) data is lost data
  - $\Rightarrow$  administration and accessibility greatly increases data value
  - $\Rightarrow$  single big DB with scientific data is more valuable than many small ones

## What is the data challenge?





#### Ariel García – LSDF Software DIC Outlook

#### **PDSEC 2011**

| Introduction |  |
|--------------|--|
| 0000         |  |

### many small ones Data is used by large virtual communities!

The facility

What is the data challenge?

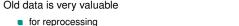
← Moore's law (cheaper IT)!

 $\Rightarrow$  experiments need storage

to analyse change in time

Experiments getting exponentially more data

 $\Rightarrow$  need computationally intensive services ⇒ need sophisticated data analysis workflows

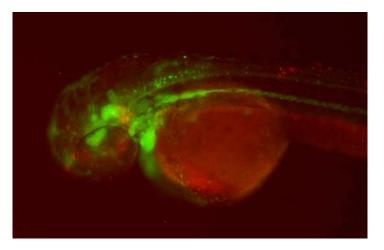

Science produces data!

## $\Rightarrow$ single big DB with scientific data is more valuable than

Invisible (not-found, no-metadata) data is lost data

 $\Rightarrow$  communication and simple access to data is critical

- $\Rightarrow$  administration and accessibility greatly increases data value
- for analysis by other scientists, in other contexts




remember the Large Hadron Collider @ CERN? it's "small" today!



## Why do experiments produce so much data?





#### Zebrafish embryo, raw picture, 4MB (24 per fish)

| 4 PDSEC 201 | 1 |
|-------------|---|
|-------------|---|

Introduction

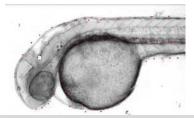
The facility

Software

DIC 000 Ariel García - LSDF

## Why do experiments produce so much data?




- Institute of Toxicology and Genetics @ KIT
  - $\Rightarrow$  Zebra fishes' embryonal development reconstruction
  - $\Rightarrow$  Toxicological studies of drugs
    - High Throughput Microscopy
      - fully automated microscopes
      - robot moves object to microscope
      - can potentially run 24\*7
      - produce high resolution images (4 MB each)
      - over varying parameters (focus point, wavelength, ...)
    - ho
      ightarrow pprox200k images per day, 2 TB/day
    - Estimated: 1+ PB/year in 2012,
      6 PB/year in 2014
    - Raw data must be heavily analysed

| 5 PDSEC 2011 |              |          |     | Ariel García – LSDF |
|--------------|--------------|----------|-----|---------------------|
| Introduction | The facility | Software | DIC | Outlook             |
| 0000         | 00           | 000      | 000 | 00                  |

## Why do experiments produce so much data?



- Institute of Toxicology and Genetics @ KIT
  - $\Rightarrow$  Zebra fishes' embryonal development reconstruction
  - $\Rightarrow$  Toxicological studies of drugs
    - High Throughput Microscopy
      - fully automated microscopes
      - robot moves object to microscope
      - can potentially run 24\*7
      - produce high resolution images (4 MB each)
      - over varying parameters (focus point, wavelength, ...)
    - $\sim$  200k images per day, 2 TB/day
    - Estimated: 1+ PB/year in 2012, 6 PB/year in 2014
    - Raw data must be heavily analysed



#### Ariel García - LSDF

Introduction

PDSEC 2011

The facility

Software

DIC 000

## The Large Scale Data Facility Project



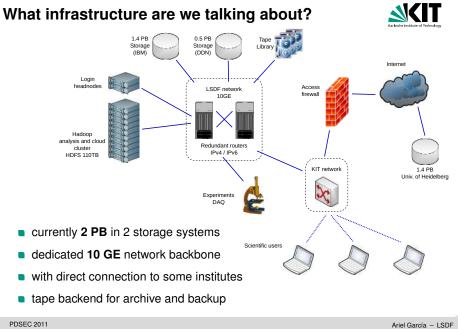
#### aka: LSDF

### Started end of 2009 at KIT

- involving several institutes
- tight cooperation with BioQuant of Univ. Heidelberg
- to address the needs of Data Intensive Science
  - providing large scale storage
  - open protocols and APIs for access to data and metadata
  - transparent access over background storage and technology changes
  - added value services and tools for processing data
  - development and deployment of community specific services

| 6 PC      | DSEC 2011 |              |          | Ariel García | - LSDF  |
|-----------|-----------|--------------|----------|--------------|---------|
| Introduct | tion -    | The facility | Software | DIC          | Outlook |
| 0000      |           | •0           | 000      | 000          | 00      |

## The Large Scale Data Facility Project




#### aka: LSDF

### Started end of 2009 at KIT

- involving several institutes
- tight cooperation with BioQuant of Univ. Heidelberg
- to address the needs of Data Intensive Science
  - providing large scale storage
  - open protocols and APIs for access to data and metadata
  - transparent access over background storage and technology changes
  - added value services and tools for processing data
  - development and deployment of community specific services

| 6 PDSEC 2011 |              |          |     | Ariel García - LSDF |
|--------------|--------------|----------|-----|---------------------|
| Introduction | The facility | Software | DIC | Outlook             |
| 0000         | •0           | 000      | 000 | 00                  |



7

The facility 0.

Software

DIC

## How to deal with so much data?

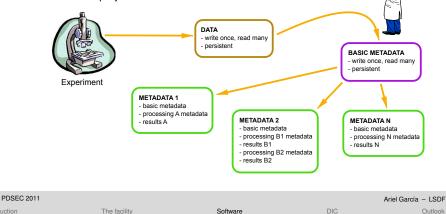


### Metadata is essential

- Needs to be stored and kept up to date with data
- Metadata schema is highly project-dependent
- $\Rightarrow$  we use a project metadata DB

| 8 PDSEC 2011 |              |          |     | Ariel García - LSDF |
|--------------|--------------|----------|-----|---------------------|
| Introduction | The facility | Software | DIC | Outlook             |
| 0000         | 00           | 000      | 000 | 00                  |

## How to deal with so much data?




### Metadata is essential

8

Introduction

- Needs to be stored and kept up to date with data
- Metadata schema is highly project-dependent
- $\Rightarrow$  we use a project metadata DB



....

## Which access APIs and tools?



• Hardware and software choices limit the access protocols and APIs

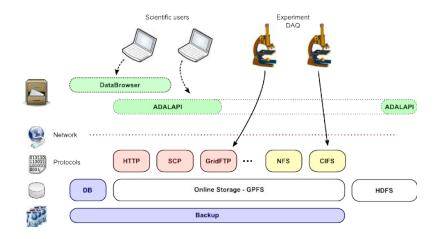
- $\Rightarrow$  not all components accessible through all methods
- $\Rightarrow$  need a unified access layer
  - Abstract Data Access Layer, low-level interface to LSDF
  - $\Rightarrow$  extensible to support new backends, authentication mechanisms
- For end-users: DataBrowser
  - graphical tool for exploring and managing the LSDF data
  - based on ADAL-API
  - connects to the meta-data repository
  - will be available as web GUI

| 9     | PDSEC 2011 |              |          | Ariel García | - LSDF  |
|-------|------------|--------------|----------|--------------|---------|
| Intro | duction    | The facility | Software | DIC          | Outlook |
| 00    | 00         | 00           | 000      | 000          | 00      |

## Which access APIs and tools?



Hardware and software choices limit the access protocols and APIs


- $\Rightarrow$  not all components accessible through all methods
- $\Rightarrow$  need a unified access layer
  - Abstract Data Access Layer, low-level interface to LSDF
  - $\Rightarrow$  extensible to support new backends, authentication mechanisms
- For end-users: DataBrowser
  - graphical tool for exploring and managing the LSDF data
  - based on ADAL-API
  - connects to the meta-data repository
  - will be available as web GUI



| 9 PDSEC 2011 |              |          |     | Ariel García – LSDF |
|--------------|--------------|----------|-----|---------------------|
| Introduction | The facility | Software | DIC | Outlook             |
| 0000         | 00           | 000      | 000 | 00                  |

## The current architecture





| 10 PDSEC 2011 |              |          |     | Ariel García – LSDF |
|---------------|--------------|----------|-----|---------------------|
| Introduction  | The facility | Software | DIC | Outlook             |
| 0000          | 00           | 000      | 000 | 00                  |

## Can we process the data?



- Data has to be processed!
- Exascale ⇒ bring computing to the data!!

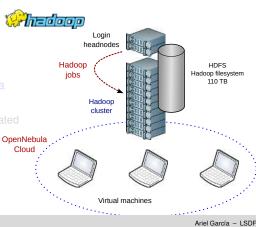
(15 days to transfer 1 PB over ideal 10Gb/s link)

- $\Rightarrow$  dedicated 60 nodes cluster
- Hadoop environment
  - + 110 TB Hadoop filesystem
    - extreme scalability
      - on commodity hardware
- Cloud environment OpenNebula
  - users can deploy own dedicated data-processing VMs (customized environment!)
  - reliable, highly flexible, and very fast to deploy

| 11 | PDSEC 2011 |
|----|------------|
|----|------------|

| Introduction |  |
|--------------|--|
| 0000         |  |

The facility


Software

DIC ●○○ Ariel García - LSDF

## Can we process the data?



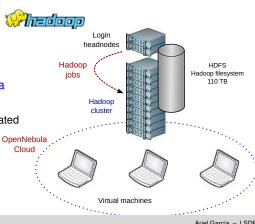
- Data has to be processed!
- Exascale ⇒ bring computing to the data!!
  - (15 days to transfer 1 PB over ideal 10Gb/s link)
- $\Rightarrow$  dedicated 60 nodes cluster
- Hadoop environment
  - + 110 TB Hadoop filesystem
    - extreme scalability on commodity hardware
- Cloud environment OpenNebula
  - users can deploy own dedicate data-processing VMs (customized environment!)
  - reliable, highly flexible, and very fast to deploy



#### 11 PDSEC 2011

| Introduction |  |
|--------------|--|
| 0000         |  |

The facility


Software

DIC • 0 0

## Can we process the data?



- Data has to be processed!
- Exascale  $\Rightarrow$  bring computing to the data!!
  - (15 days to transfer 1 PB over ideal 10Gb/s link)
- $\Rightarrow$  dedicated 60 nodes cluster
- Hadoop environment
  - + 110 TB Hadoop filesystem
    - extreme scalability on commodity hardware
- Cloud environment OpenNebula
  - OpenNebula.org
  - users can deploy own dedicated data-processing VMs (customized environment!)
  - reliable, highly flexible, and very fast to deploy



#### 11 **PDSEC 2011**

| Introduction |  |
|--------------|--|
| 0000         |  |

The facility

Software

DIC

....

Ariel García - LSDF

## Data processing at LSDF



■ Experiments should be able to process data locally ⇒ help the users automate the workflows

- Allow tagging data and triggering execution via DataBrowser
- Data from finished workflows stored and tagged in DB

used for zebrafish microscopy data

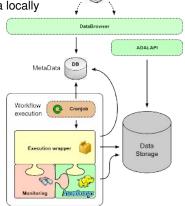
| 12 PDSEC 2011 |  |
|---------------|--|
|---------------|--|

| Introduction |  |
|--------------|--|
| 0000         |  |

The facility

Software

DIC 000 Ariel García - LSDF


## Data processing at LSDF





- Allow tagging data and triggering execution via DataBrowser
- Data from finished workflows stored and tagged in DB

used for zebrafish microscopy data



| 12 PDSEC 2011 |              |          |     | Ariel García – LSDF |
|---------------|--------------|----------|-----|---------------------|
| Introduction  | The facility | Software | DIC | Outlook             |
| 0000          | 00           | 000      | 000 | 00                  |

## How to deal with data?




- With dedicated Hadoop applications
  - DNA sequencing and reconstruction using Hadoop tools
  - 3D Biomedical data visualization processing 1 TB dataset in 20min
- With Cloud instances, *if customized SW environment is required* 
  - Integrated with the Kepler workflow orquestrator
  - user-friendly interface

| 13 PDSEC 2011 |              |          |     | Ariel García - LSDF |
|---------------|--------------|----------|-----|---------------------|
| Introduction  | The facility | Software | DIC | Outlook             |
| 0000          | 00           | 000      | 000 | 00                  |

## How to deal with data?



- With dedicated Hadoop applications
  - DNA sequencing and reconstruction using Hadoop tools
  - 3D Biomedical data visualization processing 1 TB dataset in 20min
- With Cloud instances, if customized SW environment is required
  - Integrated with the Kepler workflow orquestrator
  - user-friendly interface



| 13 PDSEC 2011 |              |          |     | Ariel García – LSDF |
|---------------|--------------|----------|-----|---------------------|
| Introduction  | The facility | Software | DIC | Outlook             |
| 0000          | 00           | 000      | 000 | 00                  |

## What's ahead?



Improved storage, network capacity: 6 PB in 2012

#### Investigate and deploy new technologies

- Data management system iRODS (ongoing)
- Object Storage
- Additional communities integrated in 2011
  - KATRIN experiment, neutrino mass
  - Meteorology and climate research ("archival" quality)
  - Geophysics
- Expanding project to offer more community tailored support

#### Added-value services

- working with experiments towards integrated data-management workflow
  - KATRIN experiment
  - ANKA synchrotron radiation source

| 14 PDSEC 2011 |              |          |     | Ariel García – LSDF |
|---------------|--------------|----------|-----|---------------------|
| Introduction  | The facility | Software | DIC | Outlook             |
| 0000          | 00           | 000      | 000 | •0                  |

## What's ahead?



Improved storage, network capacity: 6 PB in 2012

#### Investigate and deploy new technologies

- Data management system iRODS (ongoing)
- Object Storage
- Additional communities integrated in 2011
  - KATRIN experiment, neutrino mass
  - Meteorology and climate research ("archival" quality)
  - Geophysics
- Expanding project to offer more community tailored support

#### Added-value services

- working with experiments towards integrated data-management workflow
  - KATRIN experiment
  - ANKA synchrotron radiation source

#### 14 PDSEC 2011

| ntroduction |  |  |
|-------------|--|--|
| 0000        |  |  |

## The facility

Software 000 DIC 000 Ariel García – LSDF Outlook

## What's ahead?



Improved storage, network capacity: 6 PB in 2012

#### Investigate and deploy new technologies

- Data management system iRODS (ongoing)
- Object Storage
- Additional communities integrated in 2011
  - KATRIN experiment, neutrino mass
  - Meteorology and climate research ("archival" quality)
  - Geophysics
- Expanding project to offer more community tailored support

#### Added-value services

- working with experiments towards integrated data-management workflow
  - KATRIN experiment
  - ANKA synchrotron radiation source

#### 14 PDSEC 2011

| Introduction |  |
|--------------|--|
| 0000         |  |

The facility

Software

Ariel García – LSDF Outlook ●◯

DIC

## **Concluding remarks**



LSDF Jutlook

- Infrastructure and storage services up and running
- First software tools available
- Experimental data being stored and processed
- Many scientific communities interested and getting involved

### Focus on users, added value services

- Can't just "store files"
- Training for new tools, data management workflows
- Same problem at most (all?) research institutions
  - $\Rightarrow$  Open for new partnerships, international collaborations

| 15 PDSEC 2011 |              |          |     | Ariel García - I |
|---------------|--------------|----------|-----|------------------|
| Introduction  | The facility | Software | DIC | Ou               |
| 0000          | 00           | 000      | 000 | 0                |

Thanks for listening!



# **Questions?**

Ariel García - LSDF