
4

The physical significance of curvature

In this chapter we consider the effect of space-time curvature on
families of timelike and null curves. These could represent flow lines
of fluids or the histories of photons. In §4.1 and §4.2 we derive the
formulae for the rate of change of vorticity, shear and expansion of
such families of curves; the equation for the rate of change of expan-
sion (Raychaudhuri's equation) plays a central role in the proofs of
the singularity theorems of chapter 8. In § 4.3 we discuss the general
inequalities on the energy-momentum tensor which imply that the
gravitational effect of matter is always to tend to cause convergence of
timelike and of null curves. A consequence of these energy conditions
is, as is seen in § 4.4, that conjugate or focal points will occur in families
of non-rotating timelike or null geodesies in general space-times. In
§4.5 it is shown that the existence of conjugate points implies the
existence of variations of curves between two points which take a null
geodesic into a timelike curve, or a timelike geodesic into a longer
timelike curve.

4.1 Timelike curves

In chapter 3 we saw that if the metric was static there was a relation
between the magnitude of the timelike Killing vector and the
Newtonian potential. One was able to tell whether a body was in a
gravitational field by whether, if released from rest, it would accelerate
with respect to the static frame defined by the Killing vector. However,
in general, space-time will not have any Killing vectors. Thus one will
not have any special frame against which to measure acceleration; the
best one can do is to take two bodies close together and measure their
relative acceleration. This will enable one to measure the gradient of
the gravitational field. If one thinks of the metric as being analogous
to the Newtonian potential, the gradient of the Newtonian field would
correspond to the second derivatives of the metric. These are described
by the Riemann tensor. Thus one would expect that the relative

[78]
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4.1] TIMELIKE CURVES 79

acceleration of two neighbouring bodies would be related to some
components of the Riemann tensor.

In order to investigate this relation more precisely we shall examine
the behaviour of a congruence of timelike curves with timelike unit
tangent vector V (g(V, V) = — 1). These curves could represent the
histories of small test particles, in which case they would be geodesies,
or they might represent the flow lines of a fluid. If this were a perfect
fluid, then by (3.10) ^+p) fa _ _ ^ ^ ^

where T^ a=F a
; 6F& is the acceleration of the flow lines and

ha
b = Sa

b + VaVb is the tensor which projects a vector X e Tq into its
component in the subspace Hq of Tq orthogonal to V. One may also
think of hab as the metric in Hq (cf. §2.7).

Suppose A(t) is a curve with tangent vector Z = {djdt)x. Then one
may construct a family A(£, s) of curves by moving each point of the
curve \(t) a distance s along the integral curves of V. If one now defines
Z as (#/#£)A(t,s) it follows from the definition of the Lie derivative (see
§2.4) that i yZ = 0 or in other words that

ygZ° = V.bZ". (4.2)

One may interpret Z as representing the separation of points equal
distances from some arbitrary initial points along two neighbouring
curves. If one adds a multiple of V to Z then this vector will represent
the separation of points on the same two curves but at different
distances along the curves. It is really only the separation of neigh-
bouring curves that one is interested in, not the separation of particu-
lar points on these curves. One is thus concerned only with Z modulo
a component parallel to V, i.e. only with the projection of Z at each
point q into the space Qq consisting of equivalence classes of vectors
which differ only by addition of a multiple of V. This space can be
represented as the subspace HQ of Tq consisting of vectors orthogonal
to V. The projection of Z into Hq will be denoted by ±Za = ha

b Z
b. In

the case of a fluid one can regard ±Z as the distance between two
neighbouring particles of the fluid as measured in their rest frame.

From (4.2) it follows that

±%(±&)=V*ibJP. (4.3)

This gives the rate of change of the separation of two infinitesimally
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80 PHYSICAL SIGNIFICANCE OF CURVATURE [4.1

neighbouring curves as measured in Hq. Operating again with D/ds

and projecting into Hqi one finds

+ V».cV
cVe.dZeV

d + V.ch
c
eZ

e.dV
d).

Changing the order of the derivatives in the first term and using (4.2),
this reduces to

\7b Zc 4- Vaty 7fi (4- 4-\

This equation, known as the deviation or Jacobi equation, gives the
relative acceleration, i.e. the second time derivative of the separation,
of two infinitesimally neighbouring curves as measured in Hq. We
see that this depends only on the Riemann tensor if the curves are
geodesies.

In Newtonian theory, the acceleration of each particle is given by
the gradient of the potential O and therefore the relative acceleration
of two particles with separation Za is O ;a6Z6. Thus the Riemann
tensor term Rahcd VbVd is analogous to the Newtonian O. ac. The effect
of this 'tidal force' term can be seen, for example, by considering a
sphere of particles freely falling towards the earth. Each particle
moves on a straight line through the centre of the earth but those
nearer the earth fall faster than those further away. This means that
the sphere does not remain a sphere but is distorted into an ellipsoid
with the same volume.

In order to investigate the deviation equation further we shall
introduce dual orthonormal bases E1} E2, E3, E4 and E1, E2, E3, E4 of
Tq and T*q at some point q on an integral curve y(s) of V, with E4 = V.
One would like to propagate them along y(s) to obtain similar such
bases at each point of y(s). However, if one parallelly propagates them
along y(s) (i.e. so that D/ds of each vector is zero) E4 will not remain
equal to V, and E1? E2, E3 will not remain orthogonal to V, unless
y(s) is a geodesic. We therefore introduce a new derivative along
y(s) called the Fermi derivative DF/ds. This is defined for a vector
field X along y(s) by:

DFX
ds
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4.1] TIMELIKE CURVES 81

It has the properties:

(i) —^ = — if y(s) is a geodesic;
OS OS

< • • > ¥ = *
(iii) if X and Y are vector fields along y(s) such that

= 0 =
DFX n _ D F Y

then g(K, Y) is constant along y(s);

(iv) if X is a vector field along y(s) orthogonal to V then

/DX

ds ±\ds)'

(This last property shows that the Fermi derivative is a natural
generalization of the derivative D/ds.)

Thus, if one propagates an orthonormal basis of Tq along y(s) so that
the Fermi derivative of each basis vector is zero, one obtains an
orthonormal basis at each point of y(s), with E4 = V. The vectors
E1? E2, E3 may be interpreted as giving a non-rotating set of axes
along y(s). These could be realized physically by small gyroscopes
pointing in the direction of each vector.

The definition of the Fermi derivative along y(s) can be extended
from vector fields to arbitrary tensor fields by the usual rules:

(i) T>¥/ds is a linear mapping of tensor fields of type (/*, s) along y(s)

to tensor fields of type (r,s), which commutes with contractions;

ds '

(iii) — ^ = -J- , where fis a function.
os as

From these rules it follows that the dual basis E1, E2, E3, E4 of T*q is
also Fermi-propagated along y(s). Using Fermi derivatives, (4.3) and
(4.4) may be written as:

E 2 a = Va Zb (4 5)
ds ± ;b± > v • /

^£ t».el_Z°+ f"Vb±Z>>. (4.6)

One may express these equations in terms of the Fermi-propagated
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82 PHYSICAL SIGNIFICANCE OF CURVATURE [4.1

dual bases. As _LZ is orthogonal to V it will have components with
respect to Ev E2, E3 only. Thus it may be expressed as ZaEa where we
adopt the convention that Greek indices take the values 1, 2, 3 only.
Then (4.5) and (4.6) can be written in terms of ordinary derivatives:

±Z° = VlAZf, (4.7)

^ Z « = ( - J 8 V + ?«.,+ t»tf)& (4.8)

where Va
;/3 are the components of Va

;b for which a = a and b = ft. As

the components Za obey the first order linear ordinary differential

equation (4.7), they can be expressed in terms of their values at some

point* by: Z*(s) = Aa/I(s) Z% (4.9)

where Aap(s) is a 3 x 3 matrix which is the unit matrix at q and satisfies

± ValrArfi{a). (4.10)

In the case of a fluid the matrix Aafi can be regarded as representing the
shape and orientation of a small element of fluid which is spherical at q.
This matrix can be written as

Aafi^OaSSip (4.11)

where Oap is an orthogonal matrix with positive determinant and 8ap

is a symmetric matrix. These will both be chosen to be the unit matrix
at q. The matrix Oa^ maybe thought of as representing the rotation that
neighbouring curves have undergone with respect to the Fermi-
propagated basis while 8ap represents the separation of these curves
from y(s). The determinant of 8ap, which equals the determinant of
Aap, may be thought of as representing the three-volume of the
element of the surface orthogonal to y(s) marked out by the neigh-
bouring curves.

At q where A^ is the unit matrix, dOa^jds is antisymmetric and
d8aplds is symmetric. Thus the rate of rotation of neighbouring curves
at q is given by the antisymmetric part of Va. ^ while the rate of change
of their separation from y(s) is given by the symmetric part of Va;iS

and the rate of change of volume is given by the trace of Va;^. We
therefore define the vorticity tensor as

;

the expansion tensor as
^ = W ^ ; < ? ) , (4-13)
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4.1] TIMELIKE CURVES 83

and the volume expansion as

0 = Qabh
ab = Va.bh"b= V*.a. (4.14)

We further define the shear tensor as the trace free part of dab,

and the vorticity vector as

o>a = \yabc%Ucd = iVabc% Vc; d. (4.16)

The covariant derivative of the vector V may be expressed in terms of
these quantities; T7

This decomposition of the gradient of the fluid velocity vector is
directly analogous to that in Newtonian hydrodynamics.

In the Fermi-propagated orthonormal basis the vorticity and
expansion can be expressed in terms of the matrix Aap and its inverse

^fi = -A-\{a-^Afih, (4.18)

6 = (detA)-x^-(detA). (4.20)
as

From the deviation equation (4.8) it follows that

. (4.21)

This equation enables one to calculate the propagation of the vorticity,
shear and expansion along the integral curves of V if one knows the
Riemann tensor.

Multiplying by A~x^y and taking the antisymmetric part, one
obtains ,

Thus the propagation of vorticity depends on the antisymmetric
gradient of the acceleration but not the 'tidal force'. Another form of
the above equation is

^Ayao>rtAtf) = AYat
r
lr.t]Atf. (4.23)
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84 PHYSICAL SIGNIFICANCE OF CURVATURE [4.1

Therefore AyaccoySAs/sis a constant matrix if the curves are geodesies;
in particular, if the curves are geodesies and the vorticity vanishes at
one point on a curve, it will vanish at all points on the curve. If the
curves are the flow lines of a perfect fluid it follows from (4.1) that

If the fluid is isentropic, this implies the conservation law:

WAyao)y8A8fi = constant, (4.24)

where log W = ——.

This conservation law is the relativistic form of the Newtonian
vorticity conservation law. In the geodesic or pressure-free case, this
takes the usual form that the magnitude of the vorticity vector is
inversely proportional to the area of a cross-section orthogonal to the
vorticity vector of an element of the fluid. When the pressure is non-
zero, there is an extra relativistic effect arising from the fact that
compression of the fluid does work on the fluid and therefore increases
the mass and so the inertia of an element of the fluid (cf. (3.9)). This
means that the vorticity of a fluid increases less under compression
than would otherwise be expected.

Multiplying (4.21) by A~x^y and taking the symmetric part, one
finds ,

(This equation and (4.23) can be expressed in terms of a general, non-
orthonormal, non-Fermi-propagated basis by replacing the ordinary
derivatives with Fermi derivatives and projecting everything into the
subspace orthogonal to V.)

The trace of (4.25) is

(4.26)

where 2co2 = (O^OJ^ ^ 0,

2a-2 = aaborab > 0.

This equation, which was discovered by Landau and independently by
Raychaudhuri, will be of great importance later. From it one sees that
vorticity induces expansion as might be expected by analogy with
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4.1] TIMELIKE CURVES 85

centrifugal force while shear induces contraction. By the field equa-

tions, the term RabV
aVb = 4n(/i + 3p) for a perfect fluid whose flow

lines have tangent vectors Va. Thus one would expect this term also

to induce contraction. We shall give a general discussion of the sign

of this term in §4.3.

The trace-free part of (4.25) is

(4.27)

where Cabcd is the Weyl tensor. Since this tensor is trace-free it does not

enter directly in the expansion equation (4.26). However since the

term — 2cr2 occurs on the right of the expansion equation, the Weyl

tensor produces convergence indirectly by inducing shear. The

Riemann tensor can be expressed in terms of the Weyl tensor and the

Ricci tensor:

^abcd ~ 9a{d™c]b ~9b[c^d] a~" S-^9a{c9dib'

The Ricci tensor is given by the Einstein equations:

Thus the Weyl tensor is that part of the curvature which is not deter-

mined locally by the matter distribution. However it cannot be

entirely arbitrary as the Riemann tensor must satisfy the Bianchi

identities: D

•"ablcdit] =
 U

These can be rewritten as
Cabcd.d = Jabc, (4.28)

where Jabc = R c [ a ; 61 + ^ R ; a ] . (4.29)

These equations are rather similar to Maxwell's equations in electro-

dynamics: Fab = Ja^

where Fab is the electromagnetic field tensor and Ja is the source

current. Thus in a sense one could regard the Bianchi identities (4.28)

as field equations for the Weyl tensor giving that part of the curvature

at a point that depends on the matter distribution at other points.

(This approach has been used to analyse the behaviour of gravitational

radiation in papers by Newman and Penrose (1962), Newman and

Unti (1962) and Hawking (1966a).)
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4.2 Null curves

The Riemann tensor will affect the rate of change of separation of null
curves as well as that of timelike curves. For simplicity, we shall con-
sider only null geodesies. These could represent the histories of
photons; the effect of the Riemann tensor will be to distort or focus
small bundles of light rays.

To investigate this, we consider the deviation equation for a congru-
ence of null geodesies with tangent vector K (g(K, K) = 0). There are
two important differences between this case and that of the timelike
curves considered in the previous section. First, one could normalize
the tangent vector V to the timelike curves by requiring g( V, V) = — 1.
In effect this means that one parametrized the curves by the arc-
length s. However this is clearly impossible with null curves as they
have zero arc-lengths. The best one can do is to choose an affine
parameter v; then the tangent vector K will obey

dv '°

However one could multiply v by a function / which was constant
along each curve. Thenfv would be another affine parameter and the
corresponding tangent vector would be/~1K. Thus, given the curves as
point sets in the manifold, the tangent vector is only really unique up
to a constant factor along each curve. The second difference is that
Qq, the quotient of Tq by K, is not now isomorphic to Hq, the subspace of
TQ orthogonal to K, since Hq includes the vector K itself as g(K, K) = 0.
In fact as will be shown below, one is not really interested in the whole
of Qq but only in the subspace Sq consisting of equivalence classes of
vectors in Hq which differ only by a multiple of K. In the case of light
rays, one can regard an element of Sq as representing the separation
between two neighbouring light rays which were emitted at the same
time by a source.

As before we introduce dual bases El9 E2, E3, E4, and E1, E2, E3, E4

of Tq and T* at some point q on a curve y{v). However we will not
choose them to be orthonormal. We take E4 equal to K, E3 to be some
other null vector L having unit negative scalar product with E4

(g(E3,E3,) = 0, #(E3, E4) = - 1 ) and Ex and E2 to be unit spacelike
vectors, orthogonal to each other and to E3 and E4

Ei) = flr(E2,Ea) = 1, g(El9E2) = g(EvEz) = g(EvEA) = 0,etc).
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Note that because of the non-orthonormal character of the basis, the

form E3 is in fact equal to the form — Kagah and E4 is — Lagah. It can

be seen that El5 E2 and E4 constitute a basis for Hq while the projec-

tions into Qq of E1} E2 and E3 form a basis of Qq, and the projections of

Ex and E2 form a basis of Sq. We shall normally not distinguish between

a vector Z and its projection into Qq or Sq. We shall call a basis having

the properties of Ex, E2, E3, E4, above, pseudo-orthonormal. By

parallelly transporting them along the geodesic y(v) one obtains a

pseudo-orthonormal basis at each point of y(v).

We use this basis to analyse the deviation equation for null geo-

desies. If Z is the vector representing the separation of corresponding

points on neighbouring curves, one has, as before:

LKZ = 0,

so ^Za = Ka.bZ
b (4.30)

and | J z « = -R\cdZ<KbK*. (4.31)

In the pseudo-orthonormal basis Ka.± will be zero as K is geodesic.

Therefore one can express the 1, 2 and 3 components of (4.30) as a

system of ordinary differential equations:

where as before Greek indices take the values 1, 2, 3. This shows that

the projection of Z into the space Qq obeys a propagation equation

which involves only this projection, and not the component of Z

parallel to K. Further Ks.c = 0 since (KagabK
b).c = 0. This implies

that Zz = —ZaKa is constant along the geodesic y(v). This can be

interpreted as saying that light rays emitted from the same source at

different times maintain a constant separation in time. As this is the

case, one is more interested in the behaviour of neighbouring null

geodesies which have purely spatial separations, i.e. one is interested

in vectors Z for which Z3 = 0. The projections of such vectors will

then lie in the subspace Sq and will obey the equation

where ra, n take the values 1, 2 only. This is similar to (4.7) for the

timelike case, except that now one is dealing only with a two-

dimensional space of connecting vectors Z.
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As in the previous section, one can express Zm in terms of their
values at some point q:

\

where Amn(v) is a 2 x 2 matrix which satisfies

±Imn(v) = Km;pApn(v), (4.32)

(4.33)

As before we call the antisymmetric part of Km;n the vorticity Qmn,

the symmetric part the rate of separation 8mn and the trace the
expansion B. We also define the shear amn as the trace-free part of Qmn.

They obey similar equations to the analogous quantities in the
previous section: i

(4.34)

(4.35)

{a2-to2). (4.36)

Equation (4.35) is the analogue of the Raychaudhuri equation for
timelike geodesies. One sees again that vorticity causes expansion
while shear causes contraction. We shall show in the next section that
the Ricci tensor term —RahK

aKb will normally be negative, and so
cause focussing. As before the Weyl tensor does not affect the expan-
sion directly but causes distortion which in turn causes contraction
(cf. Penrose (1966)).

4.3 Energy conditions

In the actual universe the energy-momentum tensor will be made up
of contributions from a large number of different matter fields. It
would therefore be impossibly complicated to describe the exact
energy-momentum tensor even if one knew the precise form of the
contribution of each field and the equations of motion governing it.
In fact, one has little idea of the behaviour of matter under extreme
conditions of density and pressure. Thus it might seem that one has
little hope of predicting the occurrence of singularities in the universe
from the Einstein equations as one does not know the right-hand side
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4.3] ENERGY CONDITIONS 89

of the equations. However there are certain inequalities which it is
physically reasonable to assume for the energy-momentum tensor.
These will be discussed in this section. It turns out that in many
circumstances these are sufficient to prove the occurrence of singu-
larities, independent of the exact form of the energy-momentum
tensor.

The first of these inequalities is:

The weak energy condition

The energy-momentum tensor at each peJK obeys the inequality
Tah W

aWb ^ 0 for any timelike vector WeTp. By continuity this will
then also be true for any null vector WeTp.

To an observer whose world-line at p has unit tangent vector V, the
local energy density appears to be Tab V

aVb. Thus this assumption is
equivalent to saying that the energy density as measured by any
observer is non-negative. This would seem very reasonable physically.
To investigate further the significance of this assumption we use the
fact that one may express the components Tab of the energy-
momentum tensor at p with respect to an orthonormal basis Ex, E2,
E3, E4, (E4 timelike) in one of four canonical forms.

Type I. fpx

0
P2

Pz
0

\
This is the general case in which the energy-momentum tensor has a
timelike eigenvector E4. This eigenvector is unique unless ju,= —pa

(a =1,2,3). The eigenvalue fi represents the energy-density as
measured by an observer whose world-line at p has unit tangent
vector E4 and the eigenvalues pa (a = 1,2, 3) represent the principal
pressures in the three spacelike directions Ea. This is the form of the
energy-momentum for all observed fields with non-zero rest mass and
also for all zero rest mass fields except in special cases when it is type II.

Type II. lpx 0

Tab —

0

0
V — K

V= + 1 .

V + K/
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This is the special case in which the energy-momentum tensor has
a double null eigenvector (E3 + E4). The only observed occurrence of
this form is for zero rest-mass fields when they represent radiation all
of which is travelling in the direction E3 + E4. In this case^, p2 and K

are zero.

Type III.

This is the special case in which the energy-momentum tensor has
a triple null eigenvector (E3 + E4). There are no observed fields which
have energy-momentum tensors of this form.

Type IV.

Tab=

v 0/

This is the general case in which the energy-momentum tensor has no
timelike or null eigenvector. There are no observed fields which have
energy-momentum tensors of this form.

For type I, the weak energy condition will hold if /i ^ 0, /i+pa ^ 0
(a = 1, 2,3). For type II it will hold ifp1 S* 0, p2 ^ 0, K ^ 0, v = + 1.
These inequalities are very reasonable requirements and are satisfied
by all experimentally detected fields. The condition will not hold for
the physically unrealized types III and IV.

The condition will also hold for the scalar field (j> postulated by Brans
and Dicke and by Dicke (see Dicke (1964)). This field is required to be
positive everywhere. It has an energy-momentum tensor of the form
(3.6) where now m = 0. The energy-tensor of the other fields is <fi times
what it would have been had the scalar field not existed.

The condition will not hold for the 'C '-field proposed by Hoyle and
Narlikar (1963). This again is a scalar field with m zero, only this time
the energy-momentum tensor has the opposite sign and so the energy
density is negative. This allows the simultaneous creation of quanta of
positive energy fields and of the negative energy C-field. This process
occurs in the steady-state model of the universe suggested by Hoyle
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and Narlikar in which, as particles move apart due to the general
expansion of the universe, new matter is continually being created to
keep the average density constant. There is, however, a quantum
mechanical difficulty associated with such a process. For even if the
cross-section for the process were very small, the infinite phase space
available to the positive and negative energy quanta would seem to
result in an infinite number of such pairs being produced in a finite
region of space-time.

Such a catastrophe could not occur if the weak energy condition
held. If a slightly stronger condition holds then creation is impossible
in the sense that space-time must remain empty if it is empty at one
time and no matter comes in from infinity. Conversely, matter present
at one time cannot disappear and so must be present at another time.
The condition is

The dominant energy condition

For every timelike Wa9 T
abWaWb ^ 0, and TabWa is a non-spacelike

vector.
This may be interpreted as saying that to any observer the local

energy density appears non-negative and the local energy flow vector
is non-spacelike. An equivalent statement is that in any orthonormal
basis the energy dominates the other components of Tab, i.e.

T00 ^ \Tab\ for each a, b.

This holds for type I if fi ̂  0, — /i ^ pa ^ ju, (a = 1,2, 3) and for
type II if v = +1 , K ^ 0, 0 ̂  pi ^ K (i = 1,2). In other words, the
dominant energy condition is the weak energy condition with the
additional requirement that the pressure should not exceed the energy
density. This holds for all known forms of matter and there is in fact
good reason for believing that this should be the case in all situations.
For the speed of sound waves travelling in the Ea direction is dpjd/i

(adiabatic) times the speed of light. Thus dpjd/i must be less than or
equal to one, as by postulate (a) in § 3.2 no signal can propagate faster
than light. It follows that pa < ju,, since, for every known form of
matter, the pressures are small when the density is small. (Bludman
and Ruderman (1968, 1970) have shown that there might be fields for
which mass renormalization could lead to pressure being greater than
the density. We feel, however, that this probably indicates a failure of
renormalization theory rather than that such a situation would occur.)
Now consider the situation depicted in figure 9 in which there is a C2
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Surfaces {t = constant}

{t increases

t = t'

FIGURE 9. A compact region % of space—time with past and future non-timelike
boundaries (dtf/)^ (dtf/)2 and timelike boundary (dtft)z. The part of °ll lying to
the past of the surface J f (f) (denned by t = t') is qt{t').

function t whose gradient is everywhere timelike. (It will be shown in
§ 6.4 that such a function will exist provided space-time is not on the
verge of violating causality.) The boundary d°U of the compact region
°ll consists of a part (dW)v whose normal form n is non-spacelike and
such that nat;bg

ab is positive, a part (d°U\ whose normal form n is non-
spacelike and such that nat;bg

ab is negative, and a remaining part
(d<%)3 (which may be empty). The sign of the normal form n is given by
the requirement that <n, X) be positive for all vectors X which point
out of °U (cf. §2.8), Jt?(t') denotes the surface t = t' and <tt(t') denotes
the region of % for which t < t'. For later use in § 7.4 we shall establish
an inequality which holds not only for the energy-momentum tensor
Tab but also for any symmetric tensor Sab which satisfies the dominant
energy condition. Applied to the energy-momentum tensor this
inequality will show that Tab vanishes everywhere on °tt if it vanishes
on (d&)3 and on the initial surface

Lemma 4.3.1

There is some positive constant P such that for any tensor Sab which
satisfies the dominant energy condition and vanishes on (d<%)3,

f S«H.adorb^-[ Sabt.ad<rb
J jr(t) *<% J (Mr)!

+ P [([ S«bt;ad<rb)dt'+ H f 8°».adorb)dt'.
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Consider the volume integral

lit) = [ (Sabt;a).tbdv = f 8"t;abdv+ f S"b.bt.adv.

By Gauss' theorem this can be transformed into an integral over the
boundary of <%(t): ~

= 8°»t;a&<rb.
J d

t;a

The boundary of <%(t) will consist of W(t) n dW and fy n Jt?(t). Since
8ab is zero on

+f +f

By the dominant energy condition, 8abt;a is a non-spacelike vector
such that Sabt.at;b ^ 0. As the normal form to (dW)2 is non-spacelike
and such that nat. bg

ab < 0, the second term on the right will be non-
negative. Thus

f
Since °ll is compact there will be some upper bound to the components
of t. ab in any orthonormal basis whose timelike vector is in the direc-
tion of t. a. Thus there will be some P > 0 such that on °U,

S«bt;ab ^ PS«bt;at;b

for any Sab which obeys the dominant energy condition. The volume
integral over °U{$) can be decomposed into a surface integral over
Jf \t') n °U followed by an integral with respect to t'\

(PSabt.J.b + Sab.bt.a)dv = (PSabt.b + Sab.b)d(ra \dt'f
Jm) ' ' ' ' J lJjr(nn« ' ' i

where dcra is the surface element of 34?(tf). Thus

J Sabt.ad(rb^-j Sabt.ad(rb

8abt.ad<rh\dt'+ I Sab.ad<rh)dt'. D
,CL Of 1 1 1 »

a
 O l

As an immediate consequence of this result one has:
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The conservation theorem

If the energy-momentum tensor obeys the dominant energy condition
and is zero on {d°tt)z and on the initial surface (d^)v then it is zero
everywhere on °U.

Let x(t) = I Tabt.at.bdvt.at.b

3T(V)

Then the above lemma gives d#/d£ < Px. But for sufficiently early
values of t, J^(t) will not intersect °U and so x will vanish. Thus x will
vanish for all t which implies that Tab is zero on °ll. •

From the conservation theorem it follows that if the energy-
momentum tensor vanishes on a set Sf \ then it also vanishes on the

FIGURE 10. The future Cauchy development D+(£f) of a spacelike set £f.

future Cauchy development D+(£f), which is defined as the set of all
points through which every past-directed non-spacelike curve inter-
sects £f (figure 10) (cf. § 6.5). For if q is any point of D+(^), the region
of D+(£f) to the past of q is compact (proposition 6.6.6) and may be
taken as °U. This result may be interpreted as saying that the
dominant energy condition implies that matter cannot travel faster
than light.

For our consideration of singularities, the importance of the weak
energy condition is that it implies that matter always has a converging
(or more strictly nondiverging) effect on congruences of null geodesies.
If the vorticity vanishes, the expansion 6 obeys the equation:

jjjU = - BabK"Kb - 2£2 . 102.
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Thus in this case 0 will monotonically decrease along the null geodesic
if Rab W

aWb ^ 0 for any null vector W. We shall call this the null

convergence condition. From the Einstein equations,

it follows that this condition is implied by the weak energy condition,
independent of the value of A.

From (4.26) it can be seen that the expansion 6 of a timelike geodesic
congruence with zero vorticity will monotonically decrease along a
geodesic if Rab Wa Wb ^ 0 for any timelike vector W. We shall call this
the timelike convergence condition. By the Einstein equation, this condi-
tion will be satisfied if the energy-momentum tensor obeys the
inequality, , ,

TabW
aWb> W"WaUT- — A\.

This will hold for type I if

V+Pa>0, fi + ̂ pa- — A^O,

and for type II if

v = +l, K^O, p±̂ 0, p2^0 and p1+p2-—A'^0.

We shall say that the energy-momentum tensor satisfies the strong

energy condition if it obeys the above inequality for A = 0. This is a
stricter requirement than the weak energy condition but it is still
physically reasonable for the total energy-momentum tensor. For the
general case, type I, it would be violated only by a negative energy
density or a large negative pressure (e.g. for a perfect fluid with density
1 gm cm"3 it can only be violated if p < — 1015 atmospheres). I t holds
for the electromagnetic field and for the scalar field with m zero (in
particular, it holds for the scalar field of Brans and Dicke). For
m non-zero, the energy-momentum tensor of a scalar field has the
form (§3.3): ^ = ^ ^

Thus if Wa is a unit timelike vector

TabW
aWb-\WaW"T=(<l>.aW"Y--1jp(l>9' (4.37)

which may be negative. However by the equation of the scalar field
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Inserting this in (4.37) and integrating over a region °U, one obtains

The first term will be non-negative since gab + 2WaWb is a positive
definite metric and the second term will be small compared to the first
if the region °U is large compared to the wavelength hjm. For n mesons,
which may be described classically by a scalar field with
m = 6 x 10~25gm, this wavelength is 3 x 10~13cm. Thus although the
energy-momentum tensor of n mesons may not satisfy the strong
energy condition at every point, this should not affect the convergence
of timelike geodesies over distances greater than 10~12cm. This might
possibly lead to a breakdown of the singularity theorems in chapter 8
when the radius of curvature of space-time becomes less than 10~12 cm
but such a curvature would be so extreme that it might well count as
a singularity (§10.2).

4.4 Conjugate points

In §4.1 we saw that the components of the vector which represented
the separation between a curve y(s) and a neighbouring curve in a
congruence of timelike geodesies, satisfied the Jacobi equation:

d
2

^Z' = -Ba4fiiZf (a,/? =1,2,3). (4.38)

A solution of this equation will be called a Jacobi field along y(s). Since
a solution may be specified by giving the values of Za and dZa/ds at
some point on y(s) there will be six independent Jacobi fields along
y(s). There will be three independent Jacobi fields which vanish at
some point q ofy(s). They may be expressed as:

d2

where J^Aafi(s) = ~ R*wA
yfi{s)> <4 '39)

and A^{s) is a 3 x 3 matrix which vanishes at q. These Jacobi fields
may be thought of as representing the separation of neighbouring
geodesies through q. As before one may define the vorticity, shear and
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expansion of the Jacobi fields along y(s) which vanish at q:

I ^ , (4.40)

\8afid, (4.41)

6 = (det A)-1^- (det A). (4.42)

These will obey the equations derived in § 4.1, with Va = 0. In particular

AyaG)y8A8fi = -\Aya-rj-Ay/3-Ay/s-rj-

will be constant along y(s). But it vanishes at q where Aap is zero.
Thus a)ap will be zero wherever Aap is non-singular.

We shall say that a pointy on y(s) is conjugate to q along y(s) if there
is a Jacobi field along y(s), not identically zero, which vanishes at
q and p. One may think of p as a point where infinitesimally neigh-
bouring geodesies through q intersect. (Note, however, that it may be
only infinitesimally neighbouring geodesies which intersect a t^ ; there
need not be two distinct geodesies from q passing through p.) The
Jacobi fields along y(s) which vanish at q are described by the matrix
Aap. Thus a point p is conjugate to q along y(s) if and only if Aap is singu-
lar at p. The expansion 6 is defined as (det A)"1 d (det A)/ds. Since Aap

obeys (4.39) where i2a4y4is finite, d (det A)/ds will be finite. Thus a point
p will be conjugate to q along y(s) if 6 becomes infinite there. The con-
verse will also be true since 6 = d log (det A)jds and Aap can be singular
only at isolated points or else it would be singular everywhere.

Proposition 4.4.1

If at some point y(5x) (sx > 0), the expansion 6 has a negative value
6X < 0 and if RahV

aVb ^ 0 everywhere then there will be a point
conjugate to q along y(s) between y(sx) and y(s1 + (3/ — 6X))9 provided
that y(s) can be extended to this parameter value. (This may not be
possible if space-time is geodesically incomplete. In chapter 8 we
shall interpret such incompleteness as evidence of the existence of a
singularity.)

The expansion 6 of the matrix Aap obeys the Raychaudhuri equation
(4.26):
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98 PHYSICAL SIGNIFICANCE OF CURVATURE [4.4

where we have used the fact that the vorticity is zero. All the terms on
the right-hand side are negative. Thus for s > sx

So 6 will become infinite and there will be a point conjugate to q for
some value of s between s± and s± + (3/ — 6J. •

In other words, if the timelike convergence condition holds and if the
neighbouring geodesies from q start converging on y(s), then some
infinitesimally neighbouring geodesic will intersect y(s) providing that
y(s) can be extended to large enough values of the parameter s.

Proposition 4.4.2

If RahV
aVb ^ 0 and if at some pointy = y{sx) the tidal force RabcdV

bVd

is non zero, there will be values s0 and s2 such that q = y(s0) and
r = y(s2) will be conjugate along y(s), providing that y(s) can be
extended to these values.

A solution of (4.39) along y(s) is uniquely determined by the values of
AaJ5 and dA^/ds &tp. Consider the set P consisting of all such solutions
for which Aa/5\p = Sa/3, (dAaplds)\p is symmetric with trace 6\p < 0.
For each solution in P there will be some s3 > sx for which A^s^) is
singular, since either 6\p < 0, in which case this follows from the
previous result, or 6\p = 0, in which case (d<xayff/ds)|p is non-zero which
will then cause a2 to be positive and so cause 6 to become negative for
s > sv The members of the set P are in one-one correspondence with
the space 8 of all symmetric 3 x 3 matrices with non-positive trace
(i.e. with the values of dAa^ds)\p). There is thus a map rj from S

to y (s) which assigns to each initial value (dA^/ds) \p the point on y(s)

where Aap first becomes singular. The map 7} is continuous. Further if
any component of (d^4ayff/ds)|p is very large, the corresponding point
on y(s) will lie near#, since in the limit the term i?a4y4 in (4.39) becomes
irrelevant and the solution resembles the flat space case. Thus there is
some C > 0 and some $4 > sx such that if any component of (dA^/ds) \p

is greater than C, the corresponding point on y(s) will be before y(s4).
However the subspace of S consisting of all matrices all of whose com-
ponents are less than or equal to C, is compact. This shows that there
is some s5 > st such that 7j(S) is contained in the segment from y ^ ) to
y(s5). Consider now a point r = y(s2) where s2 > s5. If there is no point
conjugate to r between r and p, the Jacobi fields which are zero at r
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must have an expansion 6 which is positive &tp (otherwise they would

be in the set P which represents all families of Jacobi fields with zero

vorticity which have non-positive expansion at^). It follows from the

previous result that there is then a point q = y(s0) (s0 < sx) which is

conjugate to r along y(s). D

In a physically realistic solution (though not necessarily in an exact

one with a high degree of symmetry), one would expect every timelike

geodesic to encounter some matter or some gravitational radiation and

so to contain some point where Eabcd V
b Vd was non-zero. Thus it would

be reasonable to assume that in such a solution every timelike geodesic

would contain pairs of conjugate points, provided that it could be

extended sufficiently far in both directions.

We shall also consider the congruence of timelike geodesies normal

to a spacelike three-surface, 3f. By a spacelike three-surface, Jti?, we

mean an imbedded three-dimensional submanifold defined locally by

/ = 0 where/is a C2 function and gabf;af;b < 0 when/ = 0. We define

N, the unit normal vector to Jf, by Na = (-gbcf;bf;P)'^gadf;d and the

second fundamental tensor x of ef by Xab 3 hcfhh
dNc.d, where

hab = gab + Na Nb is called the first fundamental tensor (or induced

metric tensor) of £F (cf. §2.7). It follows from the definition that x is

symmetric. The congruence of timelike geodesies orthogonal to Jf will

consist of the timelike geodesies whose unit tangent vector V equals

the unit normal N at £f. Then one has:

Va;b = Xab a t JT. (4.43)

The vector Z which represents the separation of a neighbouring

geodesic normal to 3f from a geodesic y(s) normal to JT, will obey the

Jacobi equation (4.38). At a point q on y(s) at JT it will satisfy the

initial condition: ,

TsZ« = XafiZf- (4-44)

We shall express the Jacobi fields along y(s) which satisfy the above

condition as Z«{s) = Aafi{s) Z%

d2

where -^Aajj = - RaiyiAyP (4.45)

and at q, Aap is the unit matrix and

(4-46)
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100 PHYSICAL SIGNIFICANCE OF CURVATURE [4.4

We shall say that a point p on y (s) is conjugate to Jri? along y(s) if there
is a Jacobi field along y(s) not identically zero, which satisfies the
initial conditions (4.44) at q and vanishes at p. In other words, p is
conjugate to 3f along y(s) if and only if Aap is singular at p. One may
think of p as being a point where neighbouring geodesies normal to 3f

intersect. As before Aa/5 will be singular where and only where the
expansion 6 becomes infinite. At q, the initial value of Ayao)y$As^ will
be zero, therefore o)a/s will be zero on y(s). The initial value of 6 will
be Xab9

ab-

Proposition 4.4.3

If Rab V
aVb ^ 0 and Xab9ab < ° > t h e r e w i l 1 b e a P o i n t conjugate to Jf?

along y(s) within a distance 3l( — Xab9ab) from Jtf, provided that y(s)
can be extended that far.

This may be proved using the Raychaudhuri equation (4.26) as in
proposition 4.4.1. D

We shall call a solution of the equation:

^ » (m,n=l,2)

along a null geodesic y(v), a Jacobi field along y(v). The components
Zm could be thought of as the components, with respect to the basis Ex

and E2, of a vector in the space Sq at each point q. We shall say that
p is conjugate to q along the null geodesic y(v) if there is a Jacobi field
along y(v), not identically zero, which vanishes at q and p. If Z is
a vector connecting neighbouring null geodesies which pass through q,

the component Z3 will be zero everywhere. Thus p can be thought of
as a point where infinitesimally neighbouring geodesies through q

intersect. Representing the Jacobi fields along y(y) which vanish at q
by the 2x2 matrix Amn,

One has as before: Alm(olkAkn = 0, so the vorticity of the Jacobi fields
which are zero at p vanishes. Also p will be conjugate to q along y(v)

if and only if ,
^ ( d t A ) 1

becomes infinite at p. Analogous to proposition 4.4.1, we have:
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Proposition 4AA

If RahK
aKb ^ 0 everywhere and if at some point y{vx) the expansion #

has the negative value $1 < 0, then there will be a point conjugate
to q along y(v) between y(vx) and y{vx + (2/ — @i)) provided that y(v)

can be extended that far.

The expansion $ of the matrix Amn obeys (4.35):

±6 = -R&bK*K>

and so the proof proceeds as before. •

Proposition 4.4.5

If RahK
aKb ^ 0 everywhere and if at p = y(vx), KcKdK[aRb]cd[eKf] is

non-zero, there will be v0 and v2 such that q = y(v0) and r = y(v2) will
be conjugate along y(v) provided y(v) can be extended to these values.

If KcKdK[aRb]cd[eKf] is non zero then so is i?m4n4. The proof is then
similar to that of proposition 4.4.2. •

As in the timelike case, this condition will be satisfied for a null
geodesic which passes through some matter provided that the matter
is not pure radiation (energy-momentum tensor type II of §4.3) and
moving in the direction of the geodesic tangent vector K. It will be
satisfied in empty space if the null geodesic contains some point where
the Weyl tensor is non-zero and where K does not lie in one of the
directions (there are at most four such directions) at that point for
which KcKdK[aCb]cd[eKf] = 0. It therefore seems reasonable to assume
that in a physically realistic solution every timelike or null geodesic
will contain a point at which KaKbK[cRd]ab[eKf] is not zero. We shall
say that a space-time satisfying this condition satisfies the generic

condition.

Similarly we may also consider the null geodesies orthogonal to
a spacelike two-surface Sf. By a spacelike two-surface £f, we mean an
imbedded two-dimensional submanifold defined locally by /x = 0,
f2 = 0 where f1 and f2 are C2 functions such that when /x = 0, f2 = 0
then/1 ; a and/2 ; o are non-vanishing and not parallel and

for two distinct real values JLC1 and /i2 of/i. Then any vector lying in the
two-surface is necessarily spacelike. We shall define Nx

a and N2
a, the
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two null vectors normal to ^ , as proportional to gab(fi;b-\-^1f2:b) a n (*

9ab(fi-,b+JLt2f2;b) respectively, and normalize them so that

One can complete the pseudo-orthonormal basis by introducing two

spacelike unit vectors Y-f and Y2
a orthogonal to each other and to Nf

and N2
a. We define the two null second fundamental tensors of Sf as:

where n takes the values 1,2. The tensors -^Xab and 2Xab a r e symmetric.

There will be two families of null geodesies normal to £f corre-

sponding to the two null normals Nx
a and N2

a. Consider the family

whose tangent vector K equals N2 at &\ We may fix our pseudo-

orthogonal basis E1? E2, E3, E4 by taking Ex = Yl9 E2 = Y2, E3 = Nx,

E4 = N2 at Sf and parallelly propagating along the null geodesies.

The projection into the space 8q of the vector Z representing the

separation of neighbouring null geodesies from the null geodesic y(v)

will satisfy (4.30) and the initial conditions

^vZ™ = 2XmnZ" (4.47)

at q on y(v) at Sf. As before the vorticity of these fields will be zero.

The initial value of the expansion 6 will be 2Xab9ab' Analogous to

proposition 4.4.3 we have:

Proposition 4.4.6

If RahK
aKb ^ 0 everywhere and 2Xab9ab *s negative there will be a

point conjugate to S? along y(v) within an affine distance 2/( — 2Xab9ab)

from &. •

From their definition, the existence of conjugate points implies the

existence of self-intersections or caustics in families of geodesies. A

further significance of conjugate points will be discussed in the next

section.

4.5 Variation of arc-length

In this section we consider timelike and non-spacelike curves which

are piecewise O3 but which may have points at which their tangent
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4.5] VARIATION OF ARC-LENGTH 103

vector is discontinuous. We shall require that at such points the two
tangent vectors

a n d it
satisfy g{j

that is, they point into the same half of the null cone.

Proposition 4.5.1

Let °il be a convex normal coordinate neighbourhood about q. Then the
points which can be reached from q by timelike (respectively non-
spacelike) curves in °li are those of the form expg(X), XeTq where
g(X, X) < 0 (respectively ^ 0). (Here, and for the rest of this section,
we consider the map exp to be restricted to the neighbourhood of the
origin in Tq which is diffeomorphic to °U under expq.)

In other words, the null geodesies from q form the boundary of the
region in °tt which can be reached from q by timelike or non-spacelike
curves in tf/. This is fairly obvious intuitively but because it is funda-
mental to the concejDt of causality we shall prove it rigorously. We
first establish the following lemma:

Lemma 4.5.2

In °f/ the timelike geodesies through q are orthogonal to the three-
surfaces of constant a (cr < 0) where the value of cr at p e °U is defined
to be ^(exp^-1^, exp^p).

The proof is based on the fact that the vector representing the separa-
tion of points equal distances along neighbouring geodesies remains
orthogonal to the geodesies if it is so initially. More precisely, let X(t)

denote a curve in TQ, where g(X(t), X(£)) = — 1. One must show that
the corresponding curves A(t) = expg(s0X(t)) (s0 constant) in °U, where
defined, are orthogonal to the timelike geodesies y(s) = expg(sX(t0))

(t0 constant). Thus in terms of the two-surface a defined by
oc(s,t) = expry(sX(/)), one must prove that

(see figure 11). Now

b
 r (d d\ - / D 8 d\ (d D d\

dsg\8s9 it) ~g\d~sds' di)+g\Fsy dsdi)'
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Geodesic

Surface a = constant

Null cone

FIGURE 11. In a normal neighbourhood, surfaces at constant distance from q
are orthogonal to the geodesies through q.

The first term on the right is zero as d/ds is the unit tangent vector to
the timelike geodesies from q. In the second term one has from the
definition of the Lie derivative that

OS 01 Ot OS

a id 8\ id D e\ i d id d\ .
oSg{8s' It) = g[o-S>8ic-S)

 = 2o-tg (si' 8s) = °'

Therefore g(d/ds, djdt) is independent of s. But at s = 0, (d/dt)a = 0.
Thus g(d/ds, d/dt) is identically zero. •

Proof of proposition 4.5.1. Let Cq denote the set of all timelike vectors
at q. These constitute the interior of a solid cone in Tq with vertex at
the origin. Let y(t) be a timelike curve in °li from q to p and let y(t) be
the piecewise C2 curve in Tq defined by y(t) = expg~

1(y(^)). Then
identifying the tangent space to Tq with Tq itself, one has
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Therefore at q, (d/dt)- will be timelike. This shows that the curve y(t)

will enter the region Cq. But expq (Cq) is the region of °tt on which cr is
negative and in which by the previous lemma the surfaces of constant
or are spacelike. Thus cr must monotonically decrease along y(t) since
(d/dt)y being timelike can never be tangent to the surfaces of constant cr

and since at any non-differentiable point of y(t) the two tangent
vectors point into the same half of the null cone. Therefore p e expq(Cq)

which completes the proof for timelike curves. To prove that a non-
spacelike curve y(t) remains in expa (Cq), one performs a small varia-
tion of y(t) which makes it into a timelike curve. Let Y be a vector
field on Tq such that in <% the induced vector field expgHs(Y) is every-
where timelike and such that <7(Y, (dldt)y\q) < 0. For each e ^ 0 let
fi{r,e) be the curve Tq starting at the origin such that the tangent
vector (d/dr)fi equals (dldt)y\t=r + eY\^r>ey

 T h e n A**>e) depends differ-
entiably on r and e. For each e > 0, expg(/?(r,e)) is a timelike curve
in °ll and so is contained in exipq(Cq). Thus the non-spacelike curve
expq (fi(r, 0)) = y(r) is contained in expg (Cq) = expg (Cq). •

Corollary

\ipe°tt can be reached from q by a non-spacelike curve but not by a
timelike curve, then p lies on a null geodesic from q. D

The length of a non-spacelike curve y(t) from q to p is

where the integral is taken over the differentiate sections of the curve.
In a positive definite metric one may seek the shortest curve between

two points but in a Lorentz metric there will not be any shortest curve
as any curve can be deformed into a null curve which has zero length.
However, in certain cases there will be a longest non-spacelike curve
between two points or between a point and a spacelike three-surface.
We deal first with the situation when the two points are close together.
We shall then derive necessary conditions in the general case when the
two points are not close. The sufficient condition in this case will be
dealt with in §6.7.

Proposition 4.5.3

Let q and p lie in a convex normal neighbourhood °ll. Then, ifq&ndp

can be joined by a non-spacelike curve in ^ , the longest such curve
is the unique non-spacelike geodesic curve in °U from q top. Moreover,
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106 PHYSICAL SIGNIFICANCE OF CURVATURE [4.5

defining p(q,p) as the length of this curve if it exists, and as zero
otherwise, p{q,p) is a continuous function on °ll x ̂ .

By the definition of convex normal neighbourhoods (§2.5), there is
a unique geodesic y(t) in °ll with y(0) = q, y(l) = p. Since this geodesic
depends differentiably on its endpoints, the function

fy,

will be differentiate on °ll x °ll. (This function <r is the same as that
in lemma 4.5.2.) Thus p(q,p) will be continuous on tf/x<% since it
equals [ — o"(q}p)]i if cr < 0 and is zero otherwise. It now remains to
show that if q and p can be joined by a timelike curve in °ll then the
timelike geodesic y between them is the longest such curve. Let a(s, t)

be exps($X(£)) as before where #(X(£),X(£)) = — 1. If A(t) is a time-
like curve in °tt from q to p, it can be represented as X(t) = a(f(t)9t).

Then

Since the two vectors on the right are mutually orthogonal by lemma
4.5.2. and since g((djds)ai (d/ds)a) = — 1, this gives

the equality holding if and only if {d/8t)a = 0 and hence if and only if
A is a geodesic curve. Thus

J Q

the equality holding if and only if A is the unique geodesic curve in °tt
from q to p. •

We shall now consider the case where q and p are not necessarily
contained in a convex normal neighbourhood °U. By considering small
variations we shall derive necessary conditions for a timelike curve
y(t) from q top to be the longest such curve from q to p. A variation a
of y(t) is a C1" map a: ( - e, e) x [0, tp]-> Jt such that

(2) there is a subdivision 0 = tx < t2... < tn = tp of [0, tp] such that
a is C3 on each (— e,e) x [tit ti+1];

(3) ot(u,O) = q,oc(u,tp) =p;

(4) for each constant u, a(u, t) is a timelike curve.
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4.5] VARIATION OF ARC-LENGTH 107

The vector (dldu)a\u==0 will be called the variation vector Z. Con-
versely, given a continuous, piecewise C2 vector field Z along y(t)

vanishing at q and p, we may define a variation a for which Z will
be the variation vector by:

a(u,t) = expr (wZ|r),
where u e (— e, e) for some e > 0 and r = y(t).

Lemma 4.5.4

The variation of the length from # to p under a is

du u=0 d

where f2 = g(d/dty djdt) is the magnitude of the tangent vector and
[f^d/dt] is the discontinuity at one of the singular points of y(t).

We have:
dL

d [ D0 , jdf\ a

Integrating the first term by parts one has the required formula. •

One may simplify the formula by choosing the parameter t to be the
arc-length s. Then g(d\dt,d\dt) = - 1 . We shall denote by V the unit
tangent vector djds. One has:

QL n-\ rti+1 . n - l

du u==0 i=ija ' 1=2

where V = ~DY/ds is the acceleration. From this one sees again that a
necessary condition for y(t) to be the longest curve from q to p is that
it should be an unbroken geodesic curve as otherwise one could choose
a variation which would yield a longer curve.

One may also consider a timelike curve y(t) from a spacelike three-
surface J f to a point p. A variation a of this curve is defined as before
except that condition (3) is replaced by:

(3) a(u, 0) lies on Jf7, a(u, tp) = p.

Thus at Jf7 the variation vector Z = djdu lies in ^ .
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Lemma 4.5.5

dL n~1 Cti+1 • n~l

TT = 2 g(V,Z)ds + ^ g(Z9[Y]) + g(Z,Y)\s=0.
CU u=0 i = \Jti i=2

The proof is as for lemma 4.5.4. •

From this one sees that a necessary condition for y(t) to be the longest

curve from 3f to p is that it is an unbroken geodesic curve orthogonal

We have seen that, under a variation a, the first derivative of the

length of a timelike geodesic curve is zero. To proceed further we shall

calculate the second derivative. We define a two-parameter variation

a of a geodesic curve y(t) from q to p as a C1 map:

such that

(2) there is a subdivision 0 = t± < t2 < ... < tn = tp of [0,^] such

that a is C3 on each

(3) oc(ul9 u29 0) = q, ot{uv u2, tp) = p;

(4) for all constant ul9 u2, a(uly u2i t) is a timelike curve.

We define

as the two variation vectors. Conversely given two continuous, piece-

wise C2 vector fields Zx and Z2 along y(t) one may define a variation

for which they will be the variation vectors, by:

a(uvu2,t) = expr(w1Z1 + tt2Za),

r = y(t).

Lemma 4.5.6

Under the two-parameter variation of the geodesic curve y(t)t the

second derivative of the length will be:

du2
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By lemma 4.5.4, one has:

Therefore

8*L

du2 dU)

8uj8t8t J 8u28t8t

_ 2f-3 (M\ (dl\ l + f-*{Jl.\l + f-* (dl\ 2. iJ \8uJ\8tj8t J \8u28tj8t J \dtjduidt

The first and third terms vanish as y(t) is an unbroken geodesic curve.
In the second term one can write:

8u2 dt dt ~ \dt' duj dt+ dt du2 dt

dt'duj dt dt2 3u2

d2f d/ / D e d
a n d d^di~~Jty 9\&rdi>di

dt\J dt\y\du2'dt)J J y\du2'dtdt

In the fourth term:

3u2[
J dt] L dtdu2

 J y \3t du2
9 dt)dt\'

Then taking t to be the arc-length s, one obtains the required result. D

Although it is not immediately obvious from the appearance of the
expression, one knows from its definition that it is symmetric in the
two variation vector fields Zx and Z2. One sees that it only depends on
the projections of Zx and Z2 into the space orthogonal to V. Thus we
can confine our attention to variations a whose variation vectors are
orthogonal to V. We shall define Ty to be the (infinite-dimensional)
vector space consisting of all continuous, piecewise C2 vector fields
along y(t) orthogonal to V and vanishing at q and p. Then d2Ljdu2dux
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will be a symmetric map of Ty x Ty to E1. One may think of it as
a symmetric tensor on Ty and write it as:

8*L
L(Z1,Z2) =

8u2

One may also calculate the second derivative of the length from Jf
to p of a geodesic curve y(t) normal to Jf?. One proceeds as before
except that one endpoint of y(t) is allowed to vary over 34? instead of
being fixed.

Lemma 4.5.7

The second derivative of the length of y(t) from J f to p is:

82L

8u2

n-l

where Zx and Z2 have been taken orthogonal to V and #(Zl9 Z2) is the
second fundamental tensor of Jf.

The first two terms are as for lemma 4.5.6. The extra terms are:

B_ 18_ d\\ = / D _a_ j9
du2

g\dux'
J 8t)\jf J ° \du2 du^ 8t

/ D a 8\ Id 3 \ | / a D 9

The second term vanishes as djdux is orthogonal to 8/dt. If one takes
^ to be the arc-length s, then 8\8t will be equal to the unit normal N
at &\ Since the endpoint of y(t) is restricted to varying over Jf7, djdux

will always be orthogonal to N. Thus

D 8 XT\ 8 / a _ _\ / a D . _\ / 8 8 \ m

We shall say that a timelike geodesic curve y(t) from q to pis maximal

if i(Z1? Z2) is negative semi-definite. In other words, if y(t) is not
maximal there is a small variation a which yields a longer curve from
p to q. Similarly we shall say that a timelike geodesic curve from J^

to p normal to Jf? is maximal if L(Zl9 Z2) is negative semi-definite,
so if y(t) is not maximal there is a small variation which yields a longer
curve from J^ to p.
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Proposition 4.5.8

A timelike geodesic curve y(t) from q to p is maximal if and only if
there is no point conjugate to q along y(t) in (q, p).

Suppose there is no conjugate point in (q,p). Then introduce a Fermi-
propagated orthonormal basis along y(t). The Jacobi fields along y(t)

which vanish at q will be represented by a matrix Aap(t) which will be
non-singular in (q,p), but which will be singular at q and possibly a,tp.

Since conjugate points are isolated, d(log det A)/ds will be infinite
where Aafi is singular. Thus a C°, piecewise C2 vector field ZGTY

can be expressed in [q,p] as

Z* ^A^ W,

where W^ is C°, piecewise C1 on [q,p]. Then,

L(Z,Z) =

(We take the limit because the second derivative of Wd may not be
defined at q.) But

A^AOL8--AOL^S
AOL8J = - ZAafiUayA^ = 0.

Therefore i (Z, Z) ^ 0.
Conversely, suppose there is a point re(q,p) conjugate to q along

y(t). Let W be the Jacobi field along y which vanishes at q and r.

Let KeTy be such that

jW> = -\ at r.
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Extend W to p by putting it zero in [r,p]. Let Z be eK + e~1W, where
e is some constant. Then

i(Z, Z) = e2L(K, K) + 2L(K, W) + 2e"2i(W, W) = e2i(K, K) + 2.

Thus by taking e small enough, L(Z, Z) may be made positive. D

One may obtain similar results for the case of a timelike geodesic
curve y{t) orthogonal to ^f, from 3f to p.

Proposition 4.5.9

A timelike geodesic curve y{t) from JF to p is maximal if and only if
there is no point in {Jtf, q) conjugate to 3f along y. D

We shall also consider variations of a non-spacelike curve y{t) from q

to p. We shall be interested in the circumstances under which it is
possible to find a variation a of y(t) which makes g{d/dt, djdt) negative
everywhere, or in other words, yields a timelike curve from q to p.

Under a variation a:

aw V U ' » / / ff \8u W dt) 9 \dt du9 dt

In order to obtain a timelike curve from q to #, one requires this to be
less than or equal to zero everywhere on y(t).

Proposition 4.5.10

If p and q are joined by a non-spacelike curve y(t) which is not a null
geodesic they can also be joined by a timelike curve.

If y(t) is not a null geodesic curve from p to q, there must be some point
at which the tangent vector is discontinuous, or there must be some
open interval on which the acceleration vector (D/dt) {djdt) is non-zero
and not parallel to d/dt. Consider first the case where there are no
discontinuities. One has

9 [didi9 It) ~ 2 di \9 \di9 It)) ~

This shows that (Djdt) {djdt) is a spacelike vector where it is non-zero
and not parallel to djdt. Let W b e a C 2 timelike vector field along y{t)

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511524646.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511524646.005


4.5] VARIATION OF ARC-LENGTH 113

such that g(W, djdt) < 0. Then one will obtain a timelike curve from
p to q under the variation whose variation vector is

with x = c-1eb\ e~6(l-
Jtq

, 2 (Dd T> d\
where a2 = g l--9--\9

and i/ is a C2 non-negative function on [p, g] such that yp = yq = 0 and

Suppose now there is some subdivision tq < tx < t2 < ... < tp such that
the tangent vector djdt is continuous on each segment [ti9ti+1]. If
a segment [ti9 ti+1] is not a null geodesic curve, it can be varied to give
a timelike curve between its endpoints. Thus one has only to show
that one can obtain a timelike curve from a non-spacelike curve y(t)

made up of null geodesic segments whose tangent vectors are not
parallel at points of discontinuity y(^). The parameter t can be taken
to be an affine parameter on each segment [ti9 ti+1]. The discontinuity
[djdt]\ti will be a spacelike vector, as it is the difference between two
non-parallel null vectors in the same half of the null cone. Thus one
can find a O2 vector field W along [tt_l9 ti+1] such that </(W, djdt) < 0 on
Vi-i>h] an(* ^(W,3/30 > 0 on [tiyti+1]. Then a timelike curve between
y(^_x) and y(ti+1) will be obtained from the variation with variation
vector field Z =xW, where x = c-1(ti+1 — ti)(t'-ti_1) for t{_t ^ t ^ tif

and a; = c"1^ - .̂_1) ( .̂+1 -1) for tt ^ t ^ tM, where c = -g(W,d/dt). D

Thus if y(t) is not a geodesic curve, it can be varied to give a timelike
curve. If it is a geodesic curve, the parameter t may be taken to be an
affine parameter. One then sees that a necessary, but not sufficient,
condition for a variation to yield a timelike curve is that the variation
vector djdu should be orthogonal to the tangent vector d/dt everywhere
on y(t), since otherwise (d/dt) g{djdu, djdt) would be positive somewhere
on y(t). For such a variation the first derivative (d/du)g(dldt, djdt) will
be zero and so one will have to examine the second derivative.
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We shall therefore consider a two-parameter variation a of a null
geodesic y(t) from q to p. The variation a will be defined as before
except that, for the reason given above, we shall restrict ourselves to
variations whose variation vectors

=o and

are orthogonal to the tangent vector djdt on y(t).

It is not convenient to study the behaviour of L under such a varia-
tion since (-g(d/dt,dldt))i is not differentiable when q(d\dt,d\dt) = 0.
Instead we shall consider the variation in:

n-l ptt+i

A = - 1

Clearly a necessary but not sufficient condition that a variation a of
y(t) should yield a timelike curve from q to p is that A should become
positive.

One has

xdu^dt)) du^xdu^dt dtj)

xdUi9 dtj) g\du1
i [dt* du2

\dVduJdt
and so

This formula is very similar to that for the variation of the length of
a timelike curve. It can be seen that the variation of A is zero for a
variation vector proportional to the tangent vector djdt since d/dt is
null and R(d/8t9 d\dt) (djdt) = 0 as the Riemann tensor is anti-
symmetric. Such a variation would be equivalent to simply repara-
metrizing y(t). Thus if one wants a variation which will give a timelike
curve one need consider only the projection of the variation vector into
the space 8q at each point q of y(t). In other words, introducing a
pseudo-orthonormal basis Ex, E2, E3, E4 along y(t) with E4 = d/dt, the
variation of A will depend only on the components Zm of the variation
vector (m = 1,2).

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511524646.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511524646.005


4.5] VARIATION OF ARC-LENGTH 115

Proposition 4.5.11

If there is no point in [q,p] conjugate to q along y(t) then d2A/du2\u=0

will be negative for any variation a of y(t) whose variation vector
8/8u\u=0 is orthogonal to the tangent vector 8j8t on y(t) and is not every-
where zero or proportional to 8\8t. In other words, if there is no point
in [q,p] conjugate to q then there is no small variation of y(t) which
gives a timelike curve from q to p.

The proof is similar to that for proposition 4.5.8, using instead the
2x2 matrix Amn of §4.2. D

Proposition 4.5.12

If there is a point r in (q,p) conjugate to q along y(t) then there will be
a variation of y(t) which will give a timelike curve from q to p.

The proof is a bit finicky since one has to show that the tangent vector
becomes timelike everywhere. Let Wm be the components in the space
S (see §4.2) of the Jacobi field which vanishes at q and r. It obeys

Wm _ _ ft p

d*2 " M™*n*VV '

where for convenience t has been taken to be an affine parametei.
Since Wm will be at least C3 and since dWmldt is not zero at q and r,
one can write Wm = fWm where Wm is a unit vector and / and Ware C2.
Then d 2

where h = W w-r-2 Wm + i2m4n4 W
mWn.

Let x e [r, p] be such that Wm is not zero in [r, x]. Let hx be the minimum
value of h in [r,x]. Let a > 0 be such that a2 + Ax > 0 and let
b = {_/(e«*- l)"1}^. Then the field

Zm = {b(eat-l)+f}Wm

will vanish at q and x and will satisfy

0 in (q,x).

W e s h a l l c h o o s e a v a r i a t i o n a(u, t) o f y(£) f r o m qtox s u c h t h a t t h e
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components in S of its variation vector d/du\u=0 equals Zm and such

/D d d\\ Id D d\\
\ou cu dt] \u=o \ou dt on] \u=§

g\dudu'dt)\u=o

satisfies

' — et for 0 ̂  t ^ \txi

e(t - \tx) for \tx ^ t ^ \tx,

e(tx — t) for %tx ^ t ̂  tx,

where tx is the value of t at x, and e > 0 but less than the least value of

Zm (d2Zm/dt2+Rm^Zn) in the range \tx < * ^ | ^ . Then by (4.49)
(d2jdu2)g(djdt,djdt) will be negative everywhere in [#,#] and so for
sufficiently small u, oc will give a timelike curve from q to x. If one joins
this curve to the section of y from x to p, one will obtain a non-spacelike
curve from q to p which is not a null geodesic curve. Thus there will
be a variation of this curve which gives a timelike curve from q to p. •

By similar methods one can prove:

Proposition 4.5.13

If y(t) is a null geodesic curve orthogonal to a spacelike two-surface SP
from <S? top and if there is no point in [SP,p'\ conjugate to SP along y,
then no small variation of y can give a timelike curve from SP to p . •

Proposition 4.5.14

If there is a point in (Sf,p) conjugate to SP along p, then there is a
variation of y which gives a timelike curve from «$̂  to p. •

These results on variations of timelike and non-spacelike curves will
be used in chapter 8 to show the non-existence of longest geodesies.
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