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The large soybean (Glycine max) WRKY TF family
expanded by segmental duplication events and
subsequent divergent selection among subgroups
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Abstract

Background: WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and

its members regulate important biological process such as growth, development, and responses to biotic and

abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes

still lag behind those of other species.

Results: We identified a total of 133 WRKY members in the soybean genome. According to structural features of

their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three

groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5%

(18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The

transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns

under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some

critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have

contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model

analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the

evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e,

and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene

family in soybean.

Conclusions: In this work, all the WRKY genes, which were generated mainly through segmental duplication, were

identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated

WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis

revealed that the different groups have different evolutionary rates. Together, these results contribute to a detailed

understanding of the molecular evolution of the WRKY gene family in soybean.

Background
The WRKY family is one of the largest transcription fac-

tor families in higher plants, but is absent in animals,

extending throughout the entire green lineage. Recently,

several WRKY genes were identified from non-plant eu-

karyotes, including Dictyostelium discoideum, a slime

mold closely related to the animal and fungi lineages,

and the green alga Chlamydomonas reinhardtii, an early

branch of plants. This suggests that WRKY genes may

have had an early origin in lower eukaryotes, which have

since greatly expanded in plant species [1]. Since the

first WRKY protein, SPF1, was cloned from sweet potato

[2], more and more WRKY genes have been experimentally

identified in various plant species [3-19]. Each WRKY pro-

tein in this family contains at least one WRKY domain of

approximately 60 amino acids with the conserved amino

acid sequence WRKYGQK at its N-terminus and a novel

zinc finger motif, C2H2 (C–X4–5–C–X22–23–H–X–H) or

C2HC (C–X7–C–X23–H–X–C), at the C-terminal region

[20]. The WRKYGQK amino acid sequence forms a

β-strand that facilitates binding to the promoters of target

genes. Usually, the binding site is the W box, which is an
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element commonly found in the promoters of many

stress-related plant genes [21]. WRKY proteins can be

categorized into three groups based on their number

of WRKY domains and the pattern of their zinc finger

motif [22]. The first group contains two WRKY domains

(N-terminal and C-terminal), including a C2H2 motif,

whereas the other two groups have only one domain.

Group III has a distinct zinc finger motif, C2HC ra-

ther than the C2H2 found in other groups. Group II pro-

teins can be further subdivided into groups II a, II b, II c,

II d, and II e based on the amino acid motifs contained

outside the WRKY domain.

As transcription factors, plant WRKY proteins have

been shown to be involved in responses to biotic and

abiotic stresses, and in developmental processes [23]. It

has been well documented that WRKY proteins play an

important role in plant defense against biotic stresses,

such as bacterial, fungal, and viral pathogens [24-27].

They are also key components in developmental pro-

cesses, including embryogenesis [28], senescence [29],

dormancy [30], trichome development [31], seed devel-

opment [32], and some signal transduction processes me-

diated by plant hormones such as gibberellic acid [33],

abscisic acid (ABA) [34], or salicylic acid [35]. Mean-

while, increasing evidence has revealed that WRKY pro-

teins are involved in responses to various abiotic stresses

[36]. In Arabidopsis, results of a microarray study dem-

onstrated that the expressions of some WRKY transcripts

are regulated in response to abiotic stresses, includ-

ing salinity, drought, and cold [37-39]. In rice, under

various abiotic and phytohormone treatments, the ex-

pression of WRKY genes showed significant differences

[40]. In Poncirus trifoliate, a WRKY gene, PtrWRKY2,

showed differential responses to cold and drought stresses

[41], while in soybean, at least nine WRKY genes were

found to be differentially expressed under abiotic stress

[42]. Collectively, this evidence indicates that WRKY genes

play important roles in various physiological processes

in plants.

Soybean is one of the most important economic crops

in the world. Genome and transcriptome sequencing

of the palaeopolyploid soybean have been completed

[43,44]. In the present study, we searched this genome se-

quence to identify WRKY proteins, and compared the

structure of the encoded proteins with those of their puta-

tive homologous WRKY genes in Arabidopsis. In order to

investigate tandem duplication events, soybean chromo-

some sequence information was applied to map WRKY

transcripts to their corresponding genetic loci on chromo-

somes. A phylogenetic tree was constructed to evaluate

evolutionary relationships among WRKY genes in the two

plant species. In addition, we analyzed the transcriptome

atlas of WRKYgenes in different tissues under normal con-

ditions, and found notable differential expression between

groups, which indicated broad functional divergence in this

family. Positive selection analysis revealed that evolutionary

rates differed among the different groups. Moreover, evolu-

tionary patterns of the WRKY gene family were examined

in Arabidopsis, rice, and soybean. The results indicated that

WRKY genes in soybean were duplicated mainly through

segmental duplication, which differed from homologous

genes in Arabidopsis and rice. These results provide useful

information for future studies of molecular evolution of

the WRKY gene family in soybean.

Results
Identification and distribution of the WRKY gene family

in soybean

In plants, the dicot model organism Arabidopsis is com-

monly used to predict the function of a gene in a newly

or partially sequenced organism that has a close phylo-

genetic relationship to Arabidopsis, such as soybean.

Moreover, there are at least 72 WRKY family members

in Arabidopsis, and most of these genes have been exten-

sively studied and reported to be involved in many physio-

logical and biochemical processes [20,22]. With the aim of

defining the soybean protein-containing WRKY domains,

we downloaded the 72 known Arabidopsis WRKY protein

sequences from the Arabidopsis transcription factor data-

base (AtTFDB; http://arabidopsis.med.ohio-state.edu/). In

order to examine the structural features of each AtWRKY,

we performed a multiple sequence alignment (data not

shown). Two members, At4g12020 and At4g30930, were

excluded from the analysis due to incomplete zinc fingers

and the lack of WRKY domains. Therefore, 70 Arabidopsis

WRKY protein sequences were used to BLAST the com-

pleted soybean genome sequences for genes that encode

proteins containing the WRKY domain. The WRKY do-

main of each predicted protein was identified by searching

against the SMART database. After manually removing

overlapping genes, a total of 133 non-redundant genes in

the soybean genome were identified as members of the

WRKY family (Additional file 1). Among these members,

annotation (predicted) of 23 proteins revealed that they

have two complete WRKY domains each, which all be-

long to group I. In addition, physical positions of WRKY

genes were obtained from the Phytozome database, and

were used to map these genes onto their corresponding

soybean chromosomes (Figure 1). Results showed that

WRKY genes in soybean could be mapped on all chro-

mosomes, from chromosome 1 to 20. Chromosome 8

had the highest density of WRKY genes with 11 mem-

bers, while in chromosomes 10, 11, 12, and 20, no more

than three WRKY genes could be found, respectively.

Examination of the location of each WRKY gene revealed

that all GmWRKY genes, except for Glyma02g39870,

Glyma03g25770, Glyma04g05700, Glyma04g12830, Glyma

05g20710, Glyma06g06530, Glyma06g13090, Glyma06g
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27440, Glyma06g47880, Glyma08g01430, Glyma09g09400,

Glyma09g24080, Glyma09g37930, Glyma11g29720, Glyma

12g23950, Glyma13g34280, Glyma14g17330, Glyma14g

36430, Glyma14g37960, Glyma15g20990, Glyma16g05880,

Glyma17g29190, Glyma18g39970, Glyma18g49140, Glyma

19g02440, Glyma19g26400, and Glyma20g03410, origi-

nated from segmental duplications (102 of 133) or tan-

dem duplications (18 of 133) (Figure 1). The 27 genes

mentioned above might have been produced by retro-

transposition instead.

Multiple sequence alignment and structure analysis

The phylogenetic relationship of GmWRKY proteins

was examined by multiple sequence alignment of their

WRKY domains, which span across approximately 60

amino acids (Figure 2). A comparison with soybean

WRKY domains and several homologous Arabidopsis

proteins resulted in a separation of the different groups

and subgroups. For each group or subgroup, one

Arabidopsis protein was selected randomly, which in-

cluded At2g04880C, with only one C-terminal WRKY

domain, At4g26440N, with only one N-terminal WRKY

domain, At1g80840, At1g18860, At1g69310, At2g30590,

At1g29280, and At2g46400. As shown in Figure 2, the

sequences of soybean WRKY were found to be highly

conserved.

In order to better separate the groups and examine the

evolutionary relationships of the WRKY family in soy-

bean and Arabidopsis, an unrooted phylogenetic tree was

constructed from alignments of their domain protein se-

quences, which resulted in the formation of three distinct

clusters: group I, group II, and group III (Figure 3). WRKY

proteins of Arabidopsis and soybean were present in all

clusters. This classification was consistent with results of

Rushton et al. [20], who suggested that WRKY domains

could be classified into three large groups corresponding

to groups I, II, and III of Arabidopsis. Notably, AtWRKY

members were more similar to those in the same class in

divergent species than they were to other WRKY proteins

in the same species. In order to examine the syntenic rela-

tionship of the WRKY gene family between the genomes

of soybean and Arabidopsis, each WRKY gene within the

family in Arabidopsis was searched in the PGDD (http://

chibba.agtec.uga.edu/duplication/) (data no shown). During

the course of this analysis we found that synteny was rela-

tively well conserved between soybean and Arabidopsis

proteins. For example, in subgroup II a (Figure 3), several

GmWRKYs (Glyma06g06530, Glyma07g02630, Glyma

Figure 1 Chromosome distribution of soybean (Glycine max) WRKY genes. The size of a chromosome is indicated by its relative

length. Red outlined boxes represent segmentally duplicated genes. Tandem duplicated genes are indicated with vertical green lines.

The location information and chromosome information were obtained from Phytozome. The figure was produced using the

MapInspector program.
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08g23380 Glyma13g44730, and Glyma15g00570) lo-

cated on different chromosomes are orthologs of a same

AtWRKYgene (At1g80840). Additionally, it is worth noting

that the structure and phylogenetic tree of the GmWRKY

domain clearly indicated that group II proteins could be di-

vided into five distinct subgroups (II a-e).

The phylogenetic classification was found to be con-

sistent with the motif composition among group or

subgroup. Differences between groups or subgroups

were observed in not only the type of motifs in one

WRKY protein, but also in the motif number in one

WRKY protein. As displayed schematically in Additional

file 2 and Additional file 3, nine types of motifs were

detected, including three types of WRKY motifs. The

majority of the proteins of subgroups I (73.9%; 17 of 23),

II c (93.8%; 30 of 32) and II d (93.3%; 14 of 15), together

Figure 2 Alignment of multiple soybean WRKY genes and selected AtWRKY domain amino acid sequences. Alignment was performed

using Clustal W. The suffixes ‘N’ or ‘C’ denote the N-terminal and C-terminal WRKY domains from Group I WRKY proteins, respectively. The amino

acids forming the zinc-finger motif are highlighted in yellow. The conserved WRKY amino acid signature is highlighted in blue. The four β-strands

are shown in red. The position of a conserved intron is indicated by an arrowhead.
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with those of group III (87.5%; 14 of 16), share a unique

WRKY motif, which is shown in red color in Additional

file 3. Subgroups II a and II b have the same motif com-

ponents, suggesting a close phylogenetic relationship.

The motif number in each WRKY protein ranged from

two to six, and this difference is apparent in groups or

subgroups of the WRKY family. For example, all mem-

bers of group III and the majority of subgroups II e and

II d members have two motifs, including a WRKY motif.

Interestingly, the relative motif positions in different

groups or subgroups also vary significantly. Therefore,

motif composition can shed light on phylogenetic rela-

tionships of the WRKY family.

Comparison of full-length cDNA sequences with cor-

responding genomic DNA sequences suggested that the

exon number of soybean WRKY genes ranged from two

to eight. The results of intron/exon structure identifica-

tion (Additional file 4) showed that most of the WRKY

Figure 3 Phylogenetic tree of WRKY domains among soybean and Arabidopsis. The amino acid sequences of the WRKY domain of soybean

and Arabidopsis were aligned with Clustal W and the phylogenetic tree was constructed using the maximum likelihood method in MEGA 5.0.

Group 1 proteins with the suffix ‘N’ or ‘C’ indicate the N-terminal WRKY domains or the C-terminal WRKY domains, respectively. Genes with similar

functions clustered together are indicated by filled green circles. Gene expansion in soybean and Arabidopsis are indicated by coloring the

subclade with the same color as the leaf label. The red arcs indicate different groups (or subgroups) of WRKY domains.
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domain-containing protein genes in different groups or

subgroups have very conservative exon numbers. Mem-

bers of group II d have three exons, and 14 of the 16 genes

in group III have three exons. Notably, except for their dif-

ferences in exon numbers, the relative exon positions in

different groups or subgroups also vary significantly. The

exon/intron analysis showed clear differences in both exon

positions and exon numbers across the different groups or

subgroups.

Together, these results indicated that soybean WRKY

domains could be classified into three large groups:

group I, group II, including group II a-e, and group III.

Basic information of all soybean WRKY family members,

including conserved heptapeptide, zinc-finger type, do-

main number, group, coding sequence (CDS) length, and

gene length, is provided in Additional file 1.

Transcriptome atlas and promoter analysis

Since the transcriptome sequencing of soybean was

completed, the availability of the soybean gene expres-

sion atlas facilitates additional studies on the basic biol-

ogy of soybean [44]. The recently developed RNA-Seq

web-based tools, which include gene expression data

across multiple tissues and organs, allow for charac-

terization and comparisons of the gene transcriptome

atlas in soybean. Consequently, distinct transcript abun-

dance patterns are readily identifiable in the RNA-Seq

atlas data set for all 133 GmWRKYs. Similar to other

genes that encode transcription factors, many of the

GmWRKYs exhibited low transcript abundance levels, as

determined by the RNA-Seq atlas analysis. Furthermore,

we observed that most of the genes had very broad ex-

pression spectra. However, six GmWRKYs, including

Glyma04g05700, Glyma04g39650, Glyma04g40120, Glyma

08g01430, Glyma01g05050, and Glyma14g11440, lacked

expression information, which possibly indicated that these

were pseudogenes or were expressed only at specific devel-

opmental stages or under special conditions. We observed

that accumulation of WRKY gene transcripts was associ-

ated with different tissues, and expression patterns differed

among each WRKY gene member (Figure 4). In soybean,

33.1% (44 of 133) of the analyzed WRKYs were constitu-

tively expressed in all of the seven tissues tested, which

suggested that GmWRKYs play regulatory roles at mul-

tiple developmental stages. By contrast, most GmWRKYs

showed preferential expression. RNA-Seq atlas data re-

vealed that the majority (92 of 133; 69.2%) of GmWRKYs

exhibited transcript abundance profiles with marked peaks

in only a single tissue. This result suggests that these

WRKY proteins function as tissue-specific regulators and

are limited to discrete cells or organs. Approximately 45 of

these 133 (33.8%) GmWRKYs showed the highest tran-

script accumulation level in root tissue, 20 (15.0%) showed

the highest transcript accumulation in flower tissue, 13

(9.8%) showed the highest transcript accumulation level in

nodule tissue, and surprisingly, only one showed the

highest transcript accumulation level in seed tissue. The

wide expression of these genes suggests that WRKY genes

from soybean are involved in the development of all organs

or tissues under normal conditions. In addition to groups

of genes that exhibited similar transcript abundance pro-

files but were relatively phylogenetically distinct, several

phylogenetic clades shared the same transcript abundance

profile to a large extent. For example, in subgroup II b,

most of the GmWRKYs were preferentially expressed in

root tissue. Interestingly, in Arabidopsis, according to the

experimental results of Dong et al. [45], more than half of

the members in subgroup II b showed similar preferential

expression in the root tissue under normal conditions,

which indicated the conserved functional role of subgroup

II b in root development between the two species. The ex-

pression of members of group I in soybean was detectable

in flower tissue, which suggested their conserved roles in

flower formation. Members of group I also showed similar

expression patterns in nodule and root development. Fur-

thermore, GmWRKYs with high sequence similarity and

shared expression profiles represent good candidates for

evaluation of gene functions in soybean. The transcriptome

atlas indicted that differential expression was extended to

all groups or subgroups of the soybean WRKY gene family,

which was further verified by the promoter analysis. Be-

cause transcription factors bind to corresponding tran-

scription factor binding sites (TFBSs) upstream of genes of

interest, profiles of cis-acting elements may thus provide

useful information related to the regulatory mechanism of

gene expression. A computational tool, PlantCARE [46],

was adopted to identify putative TFBSs in the 1500-bp

DNA sequence upstream of the translation initiation

codon of WRKY genes in soybean. Four types of cis-acting

elements were found to be significantly abundant in the

promoter region of GmWRKY genes (Additional file 5).

The first type of cis-acting element enriched in the pro-

moter region is the light responsive elements, such as

G-box [47,48], GAG-motif [49], Box I [50], and Box 4

[51], etc. The G-box element appears to be more abundant

in subgroup II a, in which each member contains at least

two copies. In addition, the mean number of G-box copies

was 3.625 in subgroup II a, which is higher than that in

other subgroups or in the whole WRKY gene family. This

result indicates that the G-box element seems to be

enriched in subgroup II a. All but seven (94.7%; 126 of 133,

Group I; 2, Group II b; 2, Group II c; 1, Group II d; 1, and

Glyma14g37960; 1) have at least one Box 4 element copy.

Its mean number of copies (3.744) in the whole WRKY

gene family was apparently higher than that of other types

of cis-acting elements except for TATA-box, CAAT-box,

and unnamed-4. This result suggests that the Box 4 elem-

ent tends to be enriched in the soybean WRKY gene
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Figure 4 Expression profiles of 127 soybean WRKY genes. The hierarchical cluster color code: the largest values are displayed as the reddest (hot),

the smallest values are displayed as the bluest (cool), and the intermediate values are a lighter color of either blue or red. Pearson correlation clustering

was used to group the developmentally regulated genes. Six genes were excluded from the analysis due to no expression in an organ or a period.
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family. As one part of a conserved DNA module involved

in light responsiveness, previous studies showed that the

Box 4 element is frequently found in promoter regions of

different genes from various species [51,52]. However, it is

noteworthy that the Box 4 element was found in high

frequency in the soybean WRKY gene family, which sug-

gests that the Box 4 element may be important for light-

controlled transcriptional activity [53]. Plant hormone

responsive elements, such as ABRE [54], P-box [55], as well

as the TCA-element [56], constitute the second class.

ABRE (51.9%; 69 of 133) appears to be one of the most

abundant hormone-related cis-acting element in soybean,

suggesting that abscisic acid (ABA) regulates the expres-

sion of some GmWRKYs, whereas such elements were

rarely detected in Group II d (20.0%; 3 of 15). By contrast,

the salicylic acid responsive TCA-element was frequently

found in groups or subgroups. These observations suggest

that GmWRKYs in different groups are likely to be signifi-

cantly regulated by different types of hormones. The third

most abundant cis-acting element class consisted of ele-

ments that respond to external environmental stresses. We

observed that most of the GmWRKYs examined appeared

to contain MBS (72.2%; 96 of 133) [57], heat shock element

(HSE) (77.4%; 103 of 133) [58], and TC-rich repeat ele-

ments (71.4%; 95 of 133) [59]. MBS is an element involved

in drought induction, and HSE is also enriched in the pro-

moter. With a few exceptions, GmWRKYs contain more

than two copies of this element. Circadian elements, which

are involved in circadian control [60], is the fourth type

of cis-acting element that was abundantly found in the

promoter regions of soybean WRKY genes. PlantCARE

identified 98 (73.7%; 98 of 133) GmWRKY genes con-

taining circadian elements, which may be responsible

for its distinct diurnal expression pattern. The presence

of a diversity of cis-acting elements in the upstream regions

of GmWRKYs indicates that GmWRKYs may function in a

relatively wide range of activities.

The above results indicated that the 133 WRKY genes

in soybean display differential expression, either in their

transcript abundance or in their expression patterns

under normal growth conditions in different groups or

subgroups.

Detection of positive selection and functional divergence

analysis (FDA)

Site models and branch-site models in PAML [61] were

used to detect positive selection in the WRKY gene family

of soybean. Substitution rate ratios of non-synonymous

(dN or Ka) versus synonymous (dS or Ks) mutations

(dN/dS or ω) were calculated. A Ka/Ks ratio of 1 indicates

genes that are subject to neutral selection, <1 indicates

genes subject to negative selection, and >1 indicates genes

subject to positive selection [62]. Additional file 6 lists par-

ameter estimates and log-likelihood values for each site

model. Two pairs of models (M0/M3 and M7/M8) were

selected and compared. The site-homogeneous model, M0

(one-ratio), assumes one ω for all sites, whereas M3

(discrete) assumes a general discrete distribution. Two

other models used were M7 (beta), which assumes a beta

distribution of ω that is limited to the range (0, 1), and M8

(beta & ω), which adds an extra site class with ω estimated

[63]. In addition, to test for variable omega ratios among

lineages, we conducted the likelihood ratio test (LRT) to

compare the two extreme models. The log likelihood

values under the one-ratio model and the discrete model

were determined to be −8608.409 and −8272.457, respect-

ively. Twice the log likelihood difference value, 2ΔlnL =

335.95, was found to be strongly statistically significant

(p < 0.01), thus revealing a heterogeneous selective pres-

sure among lineages. Moreover, the log likelihood value

under the beta model and the beta & ω were −8253.022

and −10197.202, respectively. Twice the log likelihood dif-

ference, 2ΔlnL = 1944.18, was also strongly statistically

significant (p < 0.01). The comparison of M3 versus M0 re-

vealed that none of the codon sites appeared to be under

the influence of positive selection (ω > 1). By contrast,

comparing the M7 model to the M8 model indicated

that ~0.001% of codons fell within an estimated ω value of

2.638, suggesting positive selection. We also used Bayes

empirical Bayes (BEB) estimation methods in model M8

[64] to identify sites under positive selection. We found

only one positive selection site at the 0.05 significance level,

and three sites at the 0.01 significance level. Together, these

results indicate that no strong positive selection sites could

be detected under the site model in the soybean WRKY

gene family.

Branch-site models allow ω to vary both among sites

in the protein and across branches on the tree, and aim

to detect positive selection affecting a few sites along

particular lineages [64]. The branches being tested for

positive selection are referred to as the foreground

branches, and all other branches on the tree are referred

to as background branches. The BEB method was im-

plemented to calculate posterior probabilities (Qks) for

site classes if the LRT suggested the presence of codons

under positive selection on the foreground branch [65].

In our study, group I, group II a-e, and group III were se-

lected as foreground branches, respectively, while the other

groups were selected as the background branches. It is not-

able that no positive selection sites were observed in groups

II a, II b, or II d. In contrast, positive selection sites detected

by the branch-site model (Table 1) were distributed in

groups II e and III at the 0.01 significance level. This result

demonstrated that the groups have different evolutionary

rates. Group II e and group III appeared to be confronted

with strong positive Darwinian selection, as many highly

significant positive sites were present, whereas evolution in

the other groups appeared to be more conservative.

Yin et al. BMC Plant Biology 2013, 13:148 Page 8 of 19

http://www.biomedcentral.com/1471-2229/13/148



Type I functional divergence (shifted evolutionary rate)

and Type II functional divergence (altered amino acid

physicochemical property) between gene clusters of the

WRKY gene family were estimated by posterior analysis

using the program DIVERGE v2.0 [66,67]. Because these

methods are not sensitive to saturation of synonymous

sites, they have been extensively applied in research of

various gene families [68-70]. The estimation was based

on the WRKY protein neighbor-joining tree, in which

seven major clades were clearly present. Pairwise com-

parisons of paralogous WRKY genes from group I, group

II a-e, and group III were carried out, and the rate of

amino acid evolution at each sequence position was esti-

mated. Our results (Additional file 7) indicated that with

nine exceptions (group pairs II d/II e, II d/III, II d/II a,

II d/I, II e/III, III/II a, and II b/I), the coefficients of

Type-I functional divergence (θML) between WRKY

groups were moderately statistically significant (p < 0.05),

with θML values ranging from 0.201 to 0.395, or strongly

statistically significant (p < 0.01) with θ ML values ranging

from 0.311 to 0.618. These results indicated significant

site-specific altered selective constraints on some members

of the WRKY family, leading to subgroup-specific func-

tional evolution after diversification. Additionally, Type-I

functional divergence was not evident in the comparison

of group II d with the other four groups, which suggests

that group II d may be the most conservative clade. Type-

II functional divergence was evident in all groups or sub-

groups (Additional file 8), with θ-II values ranging from

0.033 to 0.288 (p < 0.05), indicating a radical shift of amino

acid properties. These results suggest that the relative im-

portance of Type-I and Type-II functional divergence

might be associated with specific functional classes of the

WRKY gene family in soybean.

Furthermore, some critical amino acid residues respon-

sible for functional divergence were predicted with suitable

cut-off values derived from the Qk of each comparison. In

order to reduce false positives, Qk > 0.8 was used as the

cutoff to identify Type-I and Type-II functional divergence-

related residues in all comparisons between the seven

Table 1 Parameters estimation and likelihood ratio tests for the branch-site models

Branch-site model

Foreground
branches

Estimates of parameter Positive selection sites (BEB) 4

Site class1 0 Site class 1 Site class 2a Site class 2b

Group 1 P0 = 0.75959 P1 = 0.05958 P2a = 0.16768 P2b = 0.01315 261G*,262S*,282H*,

ω0(b)
2 = 0.05978 ω1(b) = 1.00000 ω2a(b) = 0.05978 ω2b(b) = 1.00000 288D*, 292 M*

ω0(f)
3 = 0.05978 ω1(f) = 1.00000 ω2a(f) = 232.95169 ω2b(f) = 232.95169

Group 2a P0 = 0.00000 P1 = 0.00000 P2a = 0.92727 P2b = 0.07273 None

ω0(b) = 0.06077 ω1(b) = 1.00000 ω2a(b) = 0.06077 ω2b(b) = 1.00000

ω0(f) = 0.06077 ω1(f) = 1.00000 ω2a(f) = 999.00000 ω2b(f) = 999.00000

Group 2b P0 = 0.00001 P1 = 0.00000 P2a = 0.92726 P2b = 0.07273 None

ω0(b) = 0.06039 ω1(b) = 1.00000 ω2a(b) = 0.06039 ω2b(b) = 1.00000

ω0(f) = 0.06039 ω1(f) = 1.00000 ω2a(f) = 1.00000 ω2b(f) = 1.00000

Group 2c P0 = 0.80507 P1 = 0.06312 P2a = 0.12223 P2b = 0.00958 261G**,275R**

ω0(b) = 0.06042 ω1(b) = 1.00000 ω2a(b) = 0.06042 ω2b(b) = 1.00000

ω0(f) = 0.06042 ω1(f) = 1.00000 ω2a(f) = 167.23585 ω2b(f) = 167.23585

Group 2d P0 = 0.00000 P1 = 0.00000 P2a = 0.92727 P2b = 0.07273 None

ω0(b) = 0.06118 ω1(b) = 1.00000 ω2a(b) = 0.06118 ω2b(b) = 1.00000

ω0(f) = 0.06118 ω1(f) = 1.00000 ω2a(f) = 981.94932 ω2b(f) = 981.94932

Group 2e P0 = 0.76730 P1 = 0.06008 P2a = 0.16008 P2b = 0.01253 248E**, 249Y**, 286A*,

ω0(b) = 0.06061 ω1(b) = 1.00000 ω2a(b) = 0.06061 ω2b(b) = 1.00000 288D**, 298E**, 299G**

ω0(f) = 0.06061 ω1(f) = 1.00000 ω2a(f) = 999.00000 ω2b(f) = 999.00000

Group 3 P0 = 0.63465 P1 = 0.04978 P2a = 0.29262 P2b = 0.02295 258P*, 260 K**, 263P**, 275R*,

ω0(b) = 0.06176 ω1(b) = 1.00000 ω2a(b) = 0.06176 ω2b(b) = 1.00000 293 L*, 294I**, 298E**, 303H**

ω0(f) = 0.06176 ω1(f) = 1.00000 ω2a(f) = 999.00000 ω2b(f) = 999.00000

Note: * p < 0.05 and ** p < 0.01 (x2 test).

1 The sites in the sequence evolve according to the same process, the transition probability matrix is calculated only once for all sites for each branch.

2 Background ω.

3 Foreground ω.

4 The number of amino acid sites estimated to have undergone positive selection; BEB: Bayes Empirical Bayes.
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WRKY groups or subgroups. Results showed distinct differ-

ences in the number and distribution of predicted sites for

functional divergence within each pairwise comparison.

However, some critical amino acid sites still showed evi-

dence of both Type-I and Type-II functional divergence in

corresponding pairs. For example, five critical residues were

predicted for the subgroup II e/II c (248E, 258P, 264Y,

275R, 295 V) and II e/II b (248E, 258P, 275R, 276G, 298E)

pairwise comparisons, whereas three critical amino acids

sites were predicted for the subgroup II e/I (248E, 264Y,

275R) and III/II b (264Y, 295 V, 298E) pairwise compari-

sons, respectively. Similar cases were found in other sub-

group pairwise comparisons. Shifted evolutionary rates and

altered amino acid physicochemical properties co-occurred

at the same amino acid sites, revealing that these sites have

played important roles in functional divergence during the

process of evolution.

Expansion pattern of the WRKY family in soybean

Gene duplication events are important for gene family

evolution, because duplicated genes provide the raw ma-

terials for the generation of new genes, which in turn fa-

cilitate the generation of new functions. Three principal

evolutionary patterns were attributed to gene dupli-

cations: segmental duplication, tandem duplication, and

transposition events such as retroposition and replicative

transposition [71]. Among these, segmental duplication

occurs most frequently in plants because most plants are

diploidized polyploids and retain numerous duplicated

chromosomal blocks within their genomes [72]. Previous

studies reported several rounds of whole-genome dupli-

cation (WGD) in both the Arabidopsis and rice genomes

[73,74]. The occurrence of large-scale gene duplication

events was also demonstrated in soybean [43]. For this

analysis, we focused on the tandem and segmental dupli-

cation modes. Tandem duplications were characterized

as multiple members of one family occurring within the

same intergenic region or in neighboring intergenic re-

gions, where genes were clustered together with a max-

imum of 10 extra genes between them [40]. We searched

for contiguous WRKY genes in both the sharing region

and neighboring regions. Eighteen of the 133 genes (13.5%)

in this family were found to be located as tandem repeats

in soybean (Figure 1), indicating that tandem duplications

contributed to the expansion of this family. We also tested

the hypothesis that segmental duplication events played a

large role in the evolution of the WRKYgene family in soy-

bean. For each WRKY gene, we tallied the number of

flanking protein-coding genes with a best non-self match

to a protein-coding gene neighboring its paralog. Ac-

cording to our results, 76.7% (102 of 133) of genes showed

high conservation, indicating that these WRKY genes were

formed through segmental duplication in soybean (Table 2).

Intriguingly, comparison of the 102 segmental duplicated

genes in our study to the results of Du et al. [75] suggested

that 91 (89.2%; 91 of 102) WRKY genes originated from

WGDs, and the duplication status of the remaining 11

(10.7%; 11 of 102) WRKY genes, including Glyma01g05050,

Glyma01g43420, Glyma02g15920, Glyma02g45530, Glyma

03g00460, Glyma03g31630, Glyma08g15210, Glyma10g

03820, Glyma13g38630, Glyma18g16170, and Glyma

18g44030, was singleton, which indicated that these seg-

mental duplication genes may be derived from independ-

ent duplication events. These results indicated that most of

the WRKY genes in soybean were retained after WGDs.

Edger et al. [76] stated that dosage-sensitive genes, includ-

ing transcription factors, were preferentially retained fol-

lowing WGDs, which is compatible with the present study.

We did not find evidence that other pairs of paralogous

genes in soybean originated from segmental duplication.

These results indicate that the soybean WRKY family arose

mainly through segmental duplications.

We also used Ks, as the proxy for time, and the con-

served flanking protein-coding genes to estimate the

dates of the segmental duplication events. The mean Ks

values and the estimated dates for all segmental duplica-

tion events corresponding to WRKY genes are listed in

Table 2. The segmental duplicated events in soybean ap-

pear to have occurred recently, and focus on two periods,

10–20 mya and 40–60 mya, which is consistent with the

ages of the genome duplication events [43]. Taken together,

our analyses suggested that segmental duplication is the

main mechanism for expansion of this WRKY gene family,

accompanied by tandem duplications.

Discussion
Identification, classification, and phylogenetic analysis

of the soybean WRKY gene family

The genome sequence and transcriptome profiles of soy-

bean provide a large amount of useful data to explore

functional diversity from multiple perspectives. In this

study, we identified 133 WRKY members in the soybean

genome. A phylogenetic tree including 133 distinct pro-

tein sequences clearly demonstrated that these genes

could be divided into three groups. This classification

was further supported by the results of motifs and exon/

intron analyses. The topology of our phylogenetic tree

constructed from WRKY genes of two species (soybean

and Arabidopsis) is largely consistent with that derived

from Arabidopsis alone. All of the evidence obtained sug-

gested that the classification was reasonable and reliable.

WRKY transcription factors have their evolutionary

origin in ancient eukaryotes, whose genomes contain a

single WRKY gene with two WRKY domains. The pres-

ence of a group I WRKY protein in these ancient organ-

isms suggests that group I WRKY genes represent the

ancestral form, with other groups arising later through

losses and gains of WRKY domains [22]. In the present
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Table 2 Estimates of the dates for the segmental duplication events of WRKY family in soybean

Segment pairs Number of anchors KS (mean ± s.d.) Estimated time (mya)

Glyma01g05050 & Glyma18g16170 4 0.60 ± 0.20 49

Glyma01g06550 & Glyma02g12490 3 0.17 ± 0.06 14

Glyma01g06870 & Glyma02g12830 4 0.16 ± 0.08 13

Glyma01g31920 & Glyma03g05220 5 0.19 ± 0.06 16

Glyma01g31920 & Glyma18g44030 3 0.71 ± 0.22 58

Glyma01g39600 & Glyma11g05650 17 0.17 ± 0.07 14

Glyma01g43420 & Glyma05g36970 5 0.70 ± 0.19 57

Glyma01g43420 & Glyma08g02580 4 0.68 ± 0.17 56

Glyma02g01420 & Glyma03g37940 8 0.67 ± 0.11 55

Glyma02g01420 & Glyma10g01450 19 0.20 ± 0.11 16

Glyma02g01420 & Glyma19g40560 7 0.72 ± 0.17 59

Glyma02g15920 & Glyma03g31630 6 0.60 ± 0.16 49

Glyma02g15920 & Glyma10g03820 11 0.15 ± 0.11 12

Glyma02g36510 & Glyma17g08170 18 0.13 ± 0.05 11

Glyma02g45530 & Glyma14g03280 6 0.12 ± 0.05 10

Glyma02g46690 & Glyma08g43770 8 0.61 ± 0.19 50

Glyma02g46690 & Glyma14g01980 16 0.13 ± 0.07 11

Glyma02g47650 & Glyma14g01010 21 0.14 ± 0.08 11

Glyma03g00460 & Glyma09g41050 5 0.51 ± 0.12 42

Glyma03g31630 & Glyma10g03820 6 0.55 ± 0.10 45

Glyma03g33380 & Glyma19g36100 21 0.19 ± 0.17 16

Glyma03g37870 & Glyma19g40470 18 0.15 ± 0.07 12

Glyma03g37940 & Glyma10g01450 9 0.73 ± 0.16 60

Glyma03g37940 & Glyma19g40560 17 0.15 ± 0.07 12

Glyma03g38360 & Glyma19g40950 11 0.16 ± 0.09 13

Glyma03g41750 & Glyma07g06320 5 0.66 ± 0.23 54

Glyma03g41750 & Glyma16g02960 3 0.62 ± 0.26 51

Glyma03g41750 & Glyma19g44380 19 0.18 ± 0.13 15

Glyma04g08060 & Glyma06g08120 14 0.18 ± 0.12 15

Glyma04g39620 & Glyma06g15260 14 0.23 ± 0.19 19

Glyma04g39650 & Glyma05g31800 4 0.72 ± 0.19 59

Glyma04g39650 & Glyma06g15220 15 0.22 ± 0.19 18

Glyma04g39650 & Glyma08g15050 4 0.66 ± 0.19 54

Glyma04g40130 & Glyma06g14720 18 0.25 ± 0.25 20

Glyma05g01280 & Glyma06g20300 6 0.57 ± 0.21 47

Glyma05g25330 & Glyma08g08340 12 0.21 ± 0.19 17

Glyma05g25770 & Glyma08g08720 14 0.20 ± 0.15 16

Glyma05g29310 & Glyma08g12460 18 0.16 ± 0.07 13

Glyma05g31800 & Glyma06g15220 4 0.63 ± 0.22 52

Glyma05g31800 & Glyma08g15050 19 0.14 ± 0.08 11

Glyma05g36970 & Glyma08g02580 17 0.22 ± 0.15 18

Glyma05g37390 & Glyma08g02160 17 0.14 ± 0.08 11
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Table 2 Estimates of the dates for the segmental duplication events of WRKY family in soybean (Continued)

Glyma06g15220 & Glyma08g15050 5 0.68 ± 0.23 56

Glyma06g15260 & Glyma08g15210 3 0.71 ± 0.21 58

Glyma06g46420 & Glyma12g10350 9 0.23 ± 0.19 19

Glyma06g46420 & Glyma13g38630 6 0.72 ± 0.11 59

Glyma07g02630 & Glyma08g23380 15 0.22 ± 0.18 18

Glyma07g02630 & Glyma13g44730 6 0.56 ± 0.18 46

Glyma07g02630 & Glyma15g00570 6 0.54 ± 0.15 44

Glyma07g06320 & Glyma16g02960 12 0.16 ± 0.07 13

Glyma07g06320 & Glyma19g44380 5 0.61 ± 0.17 50

Glyma07g36640 & Glyma15g14860 5 0.59 ± 0.21 48

Glyma07g36640 & Glyma17g03950 13 0.23 ± 0.23 19

Glyma07g36640 & Glyma09g03900 5 0.73 ± 0.18 60

Glyma07g39250 & Glyma09g00820 5 0.63 ± 0.15 52

Glyma07g39250 & Glyma15g11680 7 0.65 ± 0.18 53

Glyma07g39250 & Glyma17g01490 23 0.17 ± 0.11 14

Glyma08g23380 & Glyma13g44730 4 0.49 ± 0.18 40

Glyma08g23380 & Glyma15g00570 4 0.52 ± 0.17 43

Glyma08g26230 & Glyma18g49830 8 0.21 ± 0.08 17

Glyma08g43770 & Glyma14g01980 7 0.56 ± 0.13 46

Glyma09g00820 & Glyma15g11680 15 0.20 ± 0.14 16

Glyma09g00820 & Glyma17g01490 5 0.67 ± 0.21 55

Glyma09g03450 & Glyma15g14370 14 0.20 ± 0.15 16

Glyma09g03900 & Glyma15g14860 12 0.25 ± 0.21 20

Glyma09g03900 & Glyma17g03950 3 0.59 ± 0.17 48

Glyma09g06980 & Glyma13g00380 5 0.69 ± 0.18 57

Glyma09g06980 & Glyma15g18250 7 0.22 ± 0.21 18

Glyma09g06980 & Glyma17g06450 5 0.56 ± 0.11 46

Glyma09g39000 & Glyma18g47350 11 0.19 ± 0.10 16

Glyma09g39040 & Glyma18g47300 13 0.18 ± 0.10 15

Glyma09g41050 & Glyma18g44560 12 0.16 ± 0.06 13

Glyma10g01450 & Glyma19g40560 6 0.70 ± 0.17 57

Glyma10g37460 & Glyma20g30290 11 0.13 ± 0.05 11

Glyma11g05650 & Glyma17g18480 3 0.71 ± 0.23 58

Glyma12g10350 & Glyma13g38630 4 0.73 ± 0.10 60

Glyma12g33990 & Glyma13g36540 12 0.23 ± 0.20 19

Glyma13g00380 & Glyma17g06450 17 0.19 ± 0.13 16

Glyma13g17800 & Glyma17g04710 17 0.20 ± 0.17 16

Glyma13g44730 & Glyma15g00570 13 0.12 ± 0.06 10

Glyma14g11440 & Glyma17g34210 6 0.32 ± 0.19 26

Glyma14g11920 & Glyma17g33920 5 0.17 ± 0.05 14

Glyma15g11680 & Glyma17g01490 7 0.67 ± 0.20 55

Glyma15g14860 & Glyma17g03950 5 0.58 ± 0.24 48

Glyma15g18250 & Glyma17g06450 4 0.68 ± 0.16 56

Glyma16g02960 & Glyma19g44380 3 0.58 ± 0.17 48

Abbreviation: mya, million years ago.
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study, phylogenetic analysis based on the relationship of

different groups, indicated that domain gain and loss has

indeed been a driving force in the expansion of the

WRKY gene family. For example, subgroups II a, II b,

and II c were phylogenetically closer to the C-terminal

WRKY domain of group I.

Glyma14g37960 and Glyma18g39970 were not assigned

to any groups or subgroups. Glyma14g37960 has one

WRKY domain; however, it is phylogenetically closer to

group I N. Thus, Glyma14g37960 may have arisen from a

two-domain WRKY protein that lost one of its WRKY do-

mains during evolution, whereas in Glyma18g39970, a mu-

tation in the sequence outside of the WRKY domain may

have occurred before or after the domain loss.

Transcriptome atlas, positive selection, and FDA

of soybean WRKY proteins

The transcriptome atlas revealed differential expression

of the WRKY gene family under normal growth condi-

tions. Furthermore, results of the promoter analysis were

compatible with differential expression patterns. The ele-

ments were distributed across three main functional

categories, including biotic and abiotic stresses and

developmental processes. Surprisingly, Skn-1 motif ele-

ments, which are required for high levels of endosperm

expression in cooperative interaction with other motifs

(AACA, GCN4, ACGT) [77], were found to be abun-

dant in all groups or subgroups. This result appears to

contradict with the expression analysis, in which only one

gene showed the highest transcript accumulation level in

seed tissue. Since the function of cis-acting elements is to

regulate gene expression, we speculated that the reason for

this phenomenon might be due to the deficiency of Skn-1

motif element partners, AACA and ACGT elements,

which were rarely detected in our study. On the other

hand, according to the transcriptome atlas of the soybean

WRKY gene family, the majority of GmWRKYs showed

relatively reduced expression in seed development com-

pared to other organs, which suggests that the expression

of genes can be significantly affected when the Skn-1 motif

lacks its partners. To further investigate the reason for this

differential expression, we performed a positive selection

analysis and a functional divergence analysis.

We used both site models and branch-site models to

detect positive selection. The results of site models indi-

cated that one category of ω did not fit the data well to

describe the variability in selection pressures across

amino acid sites. Therefore, the branch-site models, which

allowed ω ratios to vary among sites and lineages simul-

taneously, appeared to be most suitable for describing

evolutionary processes of the WRKY gene family. The

branch-site analysis revealed that several sites were under

positive selection. Along the group II e clade, the following

sites were identified to be under positive selection: 248E,

249Y, 286A, 288D, 298E, and 299G. Similar results were

found in the group I, III, and II c clades.

Figure 5 shows the locations of amino acid sites

detected by PAML 4 in the 3D structure. Interestingly,

with the exception of four amino acid sites (position

258, 282, 293, and 294), sites in different groups or sub-

groups were all located in the loop regions. Duan et al.

[78] suggested that the DNA-binding ability of AtWRKY

was mediated through the beta-hairpin regions between

β2 and β3, and similar results were reported by Maeo

et al. [79]. These results confirmed the theory proposed

by Church et al. [80] for non-helical DNA binding. Fur-

thermore, previous work on DNA binding of the WRKY

family revealed that the conserved WRKYGQK region

was important for DNA binding [79]. According to our

results, the amino acid residues of bridging loops be-

tween β-strand regions may have been adapted for new

functional roles during the process of evolution.

Moreover, we further compared the number of WRKY

genes in different groups or subgroups among Arabidopsis,

rice, and soybean (Table 3). We observed that the number

of members in different groups or subgroups was approxi-

mately doubled in soybean than in corresponding groups

or subgroups in Arabidopsis and rice, which can be attrib-

uted to the more recent two genome duplication events in

the soybean genome [43]. The key difference is that the

number of group III members in soybean is roughly the

same as that in Arabidopsis, but half of that in rice. This

result may indirectly reflect the fact that group III in

the dicotyledons may be confronted with strong positive

Darwinian selection, whereas the evolution of this sub-

group may be more conservative in the monocotyledons.

Functional innovations include subfunctionalization [81],

neofunctionalization [82], and subneofunctionalization

[83]. Gene duplication may result in altered functional

constraints between the gene clusters of a gene family.

The results of the functional divergence analysis suggested

that WRKY genes should be significantly functionally di-

vergent from each other, especially with respect to the four

amino acid residues (248E, 275R, 288D and 298E) identi-

fied by both PAML 4 and DIVERGE 2.0 analyses, which

were inferred to have played important roles during evolu-

tion. On the other hand, functional divergence might re-

flect the existence of long-term selective pressures.

The soybean WRKY gene family arose mainly through

segmental duplication

The dramatic variation we observe in gene family size

and distribution may have resulted owing to many pro-

cesses, including tandem duplication with high rates of

birth and death and gene duplication resulting from larger

scale genome events such as polyploidy or duplications

of chromosomal regions (here referred to as “segmental

duplications”).
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The current investigation revealed the duplication pat-

tern of the soybean WRKY gene family. One hundred

two genes were found to evolve from segmental duplica-

tion, suggesting that segmental duplication likely played

a pivotal role in WRKY gene expansion in the soybean

genome. The genome sequencing results revealed two

genome duplication events in soybean, aging ~13 mya

and ~57 mya [43], which is consistent with results of the

present study. We inferred that the expansion of the

WRKY gene family occurred along with genome duplica-

tion events, and that these genes were retained during

evolution. The structural similarity and variation be-

tween genes located on the same chromosome and the

phylogenetic analysis might help to explain the order

of duplication events of the soybean WRKY genes on

the same chromosome. For example, Glyma02g01420,

Glyma02g12830, and Glyma02g15920, which are located

in different duplication blocks of the same chromosome,

all have two introns flanked by three exons. However,

phylogenetic analysis showed that Glyma02g01420 was

more similar to Glyma10g01450, and Glyma02g15920

was more similar to Glyma10g03820, whereas Glyma

02g12830, which is located relatively close to Glyma02g

15920, had no duplicate genes on chromosome 10. It is

possible that the duplication of the same ancestral gene on

chromosome 2 resulted in Glyma02g12830 and the

Figure 5 Model building of the 3D structure of the soybean WRKY protein (Glyma13g00380) based on similarity to the AtWRKY4-C

domain (Protein Data Bank (PDB) code: 2lexA). The ensemble of the selected structures in stereo view (A), (B), (C), and (D) positive selection

sites detected by the branch-site model presented in group I, group II c, group II e, and group III, respectively. The sites with red color indicate

amino acid residues under statistically significant (p < 0.05) positive selection, as calculated by Bayes Empirical Bayes estimation methods. The

presented region is Asp247–Pro306, excluding the N-terminal region. The figure was produced using the Swiss-model and pyMOL programs.

Table 3 Number of WRKY genes in Arabidopsis, rice, and soybean

Group1 Group2a Group2b Group2c Group2d Group2e Group3

AtWRKY 13 4 7 18 7 9 14

OsWRKY 15 4 8 15 7 11 36

GmWRKY※ 23 8 19 32 15 18 16

Note: ※ the WRKY proteins of soybean (Glycine max).
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ancestor of Glyma10g01450 and Glyma10g03820, which

then evolved independently. The intron and exon se-

quences of the ancestor gene might have elongated or

shorten because of various reasons after it split into

Glyma02g01420 and Glyma02g15920. Through segmen-

tal duplication, the two chromosome segments, one

contained in Glyma02g12830 and the other contained

in Glyma02g01420 and Glyma02g15920, were inde-

pendently copied to different parts of chromosome

10. During subsequent evolution, the counterpart of

Glyma02g12830 was lost and structures for the counter-

parts of Glyma02g01420 and Glyma02g15920 changed

by deletion or insertion of other fragments or partial se-

quence repeat variations. Moreover, we noticed that

both the Arabidopsis and rice genomes underwent re-

cent duplication events, which also resulted in large-

scale expansion of the WRKY gene family in their

genomes. Therefore, we also examined the duplicated

pattern of WRKY genes in these model species.

The complete sequencing of the Arabidopsis genome

revealed numerous large-scale segmental duplications

[84]. Previous studies concluded that at least two rounds

of duplications probably occurred in the Arabidopsis

genome, with many losses and rearrangements leaving a

mosaic of “segmental duplications” or “duplication blocks”

[74,84]. Most duplication blocks appear to have originated

from one round of polyploidy, as estimated by using vari-

ous methods, that occurred 20–40 mya, before the evolu-

tion of the genus Brassica but after the separation of

Brassicaceae from other closely related eudicot families

[74]. Results of the present study showed that no appar-

ent tandem duplication events, and rare segmental dupli-

cation events (six pairs), exist in the Arabidopsis WRKY

gene family. Furthermore, the estimated time of the six

pairs of segmental duplicated genes focus on the period

of 24–27 mya (Additional file 9). Cannon at el. [72] found

nine distinct pairs of duplicated segments and no tandem

duplication events in the Arabidopsis WRKY family,

which is compatible with our study. Comparison of six

pairs of segmental duplicated genes in our study with the

results of Blanc et al. [85] suggested that only one pair of

genes (At1g13960 and At2g033400) originated from poly-

ploidy in Arabidopsis. Consequently, we speculated that

the other five segmental duplicated genes might have de-

rived from independent segmental duplication events. The

long period of time over which genome evolution has oc-

curred has provided many opportunities for functional di-

vergence in the genes that arose from duplications. Our

results did not reveal evidence that other pairs of WRKY

genes in Arabidopsis originated from duplicated blocks.

Therefore, most of the Arabidopsis WRKY genes may have

lost their paralogous genes after genome duplication [74].

With respect to rice, the expansion patterns of WRKY

gene family have been clearly demonstrated. Ramamoorthy

et al. [40] predicted 103 genes encoding WRKY transcrip-

tion factors in rice, and the majority of rice WRKY genes

(77.7%; 80 of 103) were detected on duplicated blocks. Of

the WRKY genes, 45.6% (47 of 103) of WRKY genes were

found to have corresponding coordinates generated by seg-

mental duplications. Furthermore, 35.0% (36 of 103) of the

WRKY genes were clustered together with a maximum of

10 extra genes between them, and were regarded as

tandemly duplicated genes. The results above were con-

firmed by Jiang et al. [86]. That is, that both tandem and

segmental duplication significantly contributed to the ex-

pansion of the WRKY gene family in rice.

All of the evidence suggests that the evolutionary pat-

terns of the WRKY gene family differ between soybean,

rice, and Arabidopsis. Species-specific expansion played

an important role in the evolution of this family in

plants. Segmental duplication appears to be the dominant

mechanism for the generation of duplicated genes in soy-

bean, whereas segmental duplication and tandem dupli-

cation may play similar roles in the expansion of the rice

WRKY gene family. Moreover, although Arabidopsis may

have a tetraploid ancestor, the majority of its duplicated

genes appear to have been lost throughout evolutionary

processes.

Conclusion
Previous studies have demonstrated that members of the

WRKY gene family play important roles in the regulation

of several plant developmental processes and in responses

to various biotic and abiotic stresses. Results of the present

study indicate that segmental duplication has likely been

the dominant mechanism of gene amplification during the

expansion of the WRKY family in soybean. Furthermore,

positive selection could be the main driving forces for the

functional divergence of duplicated genes, which may have

played a critical role in the responses of plants to various

stresses throughout their evolutionary history. The results

of this study will not only further our understanding of the

evolutionary processes of soybean WRKY genes, but will

also help to enhance functional genomics studies of WRKY

transcription factors in an important model system.

Methods
Sequence collection

Seventy WRKY protein sequences downloaded from

AtTFDB (http://arabidopsis.med.ohio-state.edu/AtTFDB/)

were used to BLAST against the soybean genome data-

base, Phytozome v8.0 (http://www.phytozome.net/soy-

bean), using the BLASTP program. Sequences were

selected as candidate proteins if their E value was ≤ 1e-10.

For each query sequence, information of the location on

chromosomes, genomic sequences, full coding sequences

(CDS), and protein sequences were collected from

Phytozome, and redundant genes were removed manually.
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The Simple Modular Architecture Research Tool (SMART;

http://smart.embl-heidelberg.de/) was used to confirm each

predicted WRKY member.

Phylogenetic tree construction and sequence analysis

The SMART program was used to extract the protein

sequences of the WRKY domain for each protein. Mul-

tiple sequence alignment of domain sequences of 133

WRKY family proteins from soybean and 70 protein se-

quences from Arabidopsis was performed using the Clustal

X 1.83 program with default parameters, and a phylogen-

etic tree was generated and viewed using MEGA Version

5.0. Exon and intron organizations of soybean WRKY

genes were determined by comparing predicted CDS with

their corresponding genomic sequences using GSDS

(http://gsds.cbi.pku.edu.cn/) software. Motifs of paralogous

WRKY proteins were identified statistically using MEME

with default settings, except that the maximum number of

motifs to find was set at 10.

RNA-Seq atlas and promoter analysis

RNA-Seq data were introduced to further analyze the

expression of GmWRKY genes. Data was normalized using

a variation of the reads/Kb/Million method, and Z-score

analysis was obtained from SoyBase (http://soybase.org/

soyseq/) [44,87]. A heat map was generated using the

GenePattern program (http://www.broadinstitute.org/

cancer/software/genepattern/index.html). The cis-acting

elements that regulate gene expression are distributed in

300–3000 bp upstream of the coding region, also take

into consideration of sequence restriction in PlantCARE

(http://bioinformatics.psb.ugent.be/webtools/plantcare/

html/) and the methods described by Liu et al. [68],

therefore, 1500 bp upstream of the coding region were

selected as promoter sequence and were downloaded

from Phytozome (www.phytozome.net) and Soybean Func-

tional Genomics Database (bioinformatics.cau.edu.cn).

Then these sequences were submitted to PlantCARE for

in silico analysis.

Positive selection and functional divergence

A maximum likelihood method in PAML was applied to

test the hypothesis of positive selection in the WRKY

gene family [63] under the site model and branch-site

model. In the site model, two pairs of models were

contrasted to test the selective pressures at codon sites.

First, models M0 (one ratio) and M3 (discrete) were

compared, using a test for heterogeneity between codon

sites in the dN/dS ratio value, ω. The second comparison

was M7 (beta) versus M8 (beta + ω > 1). Meanwhile, we

introduced the likelihood ratio test (LRT) to compare

the two extreme models. When the LRT suggested posi-

tive selection, the Bayes empirical Bayes (BEB) method

was used to calculate the posterior probabilities that

each codon was from the site class of positive selection

under models M3 and M8.

The branch-site model assumes that the ω ratio varies

between codon sites and that there are four site classes

in the sequence. The first class of sites is highly con-

served in all lineages with a small ω ratio, ω0. The sec-

ond class includes neutral or weakly constrained sites

for which ω = ω1, where ω1 is near or smaller than 1. In

the third and fourth classes, the background lineages

show ω0 or ω1, but foreground branches have ω2, which

may be greater than 1. When constructing the LRTs, the

null hypothesis fixes ω2 = 1, allowing sites evolving under

negative selection in the background lineages to be re-

leased from constraint and to evolve neutrally on the

foreground lineage; the alternative hypothesis constrains

ω2 ≥ 1 [64]. Posterior probabilities (Qks) were calculated

using the BEB method [65].

The software DIVERGE was used to reveal the functional

divergence between members of the WRKY protein family.

The coefficients of Type-I and Type-II functional diver-

gence (θ-I and θ-II, respectively) between any two clusters

of interest were calculated. A θ-I or θ-II significantly > 0 in-

dicates site-specific altered selective constraints or a radical

shift of amino acid physicochemical properties after gene

duplication and/or speciation [66]. Moreover, Qk was used

to predict critical amino acid residues that were responsible

for functional divergence. In this study, we screened the

codons (Qk > 0.8) as potential sites that were crucial for

functional divergence.

Analysis of WRKY gene expansion patterns and dating

the duplication events

In this study, we focused on two patterns of gene expan-

sion: tandem duplication and segmental duplication. Tan-

dem duplications were characterized as multiple members

of this family occurring within the same or neighboring

intergenic regions, where the WRKY genes were clustered

together with a maximum of 10 extra genes between them

[40]. Segmental duplications of each WRKY gene within

the family in soybean and Arabidopsis genomes were

searched in the PGDD (http://chibba.agtec.uga.edu/

duplication/). Within the range of 100 kb, the anchors

with synonymous substitution rates (Ks) values greater

than 1.0 were discarded because of the risk of satur-

ation. Assuming a molecular clock, the Ks values of du-

plicated genes are expected to be similar over time [88].

Therefore, we used Ks values to estimate the dates of

the segmental duplication events. The mean Ks value

was calculated for each pair of genes within a duplicated

block and was then used to date the duplication events.

The approximate date of the duplication event was

then calculated using the mean Ks values (T = Ks/2λ),

assuming clock-like rates (λ) of synonymous substitution

Yin et al. BMC Plant Biology 2013, 13:148 Page 16 of 19

http://www.biomedcentral.com/1471-2229/13/148

http://smart.embl-heidelberg.de/
http:/gsds.cbi.pku.edu.cn/
http://soybase.org/soyseq/
http://soybase.org/soyseq/
http://www.broadinstitute.org/cancer/software/genepattern/index.html
http://www.broadinstitute.org/cancer/software/genepattern/index.html
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://www.phytozome.net/
http://chibba.agtec.uga.edu/duplication/
http://chibba.agtec.uga.edu/duplication/


of 1.5 × 10−8 substitutions/synonymous site/year for

Arabidopsis [89] and 6.1 × 10−9 for soybean [90].
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Additional file 1: WRKY gene family in soybean.

Additional file 2: Schematic diagram of amino acid motifs of

soybean WRKY proteins from different groups (or subgroups). Motif

analysis was performed using MEME, as described in the Methods. The

grey solid line represents the corresponding WRKY protein and its length.

The different-colored boxes represent different motifs and their position

in each WRKY sequence. A detailed motif introduction is shown in

Additional file 3.

Additional file 3: Schematic diagram of WRKY protein motifs. The

schematic diagram was derived from MEME. The order of motifs of WRKY

proteins in the diagram was automatically generated by MEME according

to scores.

Additional file 4: Exon/intron structures of soybean WRKY genes.

The boxes and lines represent exons and introns, respectively. The bold,

dark blue lines indicate the 3’ downstream region. The WRKY genes were

separated according to group or subgroup.

Additional file 5: Promoter analysis of the soybean WRKY gene

family. The locus names and cis-acting element names are listed.

Additional file 6: Tests for positive selection among codons of
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Additional file 7: Maximum likelihood estimates of the coefficient

of Type-I functional divergence (θ) from pairwise comparisons
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