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The Large-Time Behavior of the
Scalar, Genuinely Nonlinear Lax-Friedrichs Scheme*

By EitanTadmor**

Abstract. We study the Lax-Friedrichs scheme, approximating the scalar, genuinely nonlinear
conservation law u, + fx(u) = 0, where /(h) is, say, strictly convex, /> ¿„ > 0. We show
that the divided differences of the numerical solution at time t do not exceed 2(/¿,)-1. This
one-sided Lipschitz boundedness is in complete agreement with the corresponding estimate
one has in the differential case; in particular, it is independent of the initial amplitude, in
sharp contrast to linear problems. It guarantees the entropy compactness of the scheme in this
case, as well as providing a quantitative insight into the large-time behavior of the numerical
computation.

Introduction. We consider monotonicity-preserving schemes of the 3-point con-
servative form

(1.1)        vv(t + k) = vr(t) -\[h(vv(t), v,+1{t)) - ä(*V-i(')> vv(t))],

serving as consistent approximations to the scalar conservation law

(1.2a) ^(x,t)+^(u(x,t)) = 0,

and subject to initial data

(1.2b) vv(t)\l=0 = u(x,,0),       h(x,0) e L1 n r n £K.

Here, vv(t) = v(xv, t) denotes the approximation value at the gridpoint (xv = vàx, t),
k and àx are, respectively, the time-step and mesh size such that the mesh ratio
X = k/Ax is kept fixed, and h(-, •) is the Lipschitz continuous numerical flux
consistent with the differential one, h(v, v) = f(v).

Studying conservative difference approximations to (1.2), one aims at having
(i) compactness,

(ii) entropy condition.
By compactness we merely mean the compactness of the family of solutions

[v(-,t) = p(-,f; Ax),0< t < T,0< Ax^e).
A standard tool used in that direction, e.g., [1], [3], [6], [11], is to guarantee that
the total variation TV[t;(f)] = T,v\vv+l(t) - vv(t)\ remains bounded in time, v e
LX(BV, [0, T]): since the mean value v(t) = £„ v„(t)Ax is independent of t, it then

Received May 26, 1983.
1980 Mathematics Subject Classification. Primary 65P05, 35L65.
'Research was supported by the National Aeronautics and Space Administration under NASA

Contract No. NAS1-17070 while the author was in residence at ICASE, NASA Langley Research Center,
Hampton, VA 23665.

**Current Address: School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.

©1984 American Mathematical Society
0025-5718/84 $1.00 + $.25 per page

353

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



354 EITAN TADMOR

follows that v e L°°(Ll n L00, [0, T]); a classical argument which involves Helly's
theorem, the diagonal process and Lipschitz continuity of \u(-, t)\Li, implies L\œ-
compactness. By compactness there follows the existence of a subsequence Ü -limit
solution v(x, t), v(x, t) = limx=.l,Ax')Ax'_>0 vv(t\ Ax'), 0 <; t < T, satisfying (1.2) in
the weak sense. In Section 2 we show that 3-point monotonicity-preserving schemes
are exactly those whose total variation does not increase in time; in particular,
therefore, they admit a limit-weak solution.

It is well-known that independently of the initial smoothness, weak solutions of
(1.2) are, in general, not unique. By the entropy condition, we refer to a variety of
criteria which single out the so-called physically relevant solution, thus guarantee
uniqueness: geometrically they require characteristics to propagate toward shocks;
analytically they indicate the existence of vanishing viscosity. In the case/is convex,
for example, they amount to Oleinik's (E) condition requiring «left > wright across
shock discontinuities. A standard way used to verify the entropy condition, e.g., [1],
[7], [13], is by constructing a discrete entropy pair satisfying an entropy inequality.
Unfortunately, the limit solutions of monotonicity-preserving schemes are not
necessarily the physically relevant ones—examples of limit solutions violating the
entropy condition in this case are well known (e.g., Example 2.4 below).

Monotone schemes—those for which the RHS of (1.1) is nondecreasing in each of
its y-arguments—is by now a classical example for a subclass of monotonicity
preserving schemes, capturing both the compactness and the entropy requirements.
This has been shown by successfully implementing ideas along the above lines, e.g.
[1], [7], [13]. Recently, Osher [13] introduced, for the method of lines, a general
E class of monotonicity-preserving schemes enjoying both properties of entropy-
satisfying compactness.

Identifying 3-point conservative schemes according to their numerical viscosity
coefficient [6], we arrive, in Section 2, to the following concise characterizations:
while monotonicity-preserving schemes (compactness) are exactly those having
numerical dissipation no more than Lax-Friedrichs (LF) scheme, no less than
Murman's scheme, entropy-satisfying schemes are those further restricted by having
no less dissipation than Godunov's scheme; the latter is, in fact, the fully discrete
analogue of Osher's E schemes.

In both cases, the LF scheme plays a special role as the one having the most
allowable numerical dissipation. In Section 3 we begin studying the LF scheme in
the genuinely nonlinear case where / is, say, strictly convex, ó* = Min/(f) > 0.
(Here and elsewhere in the paper, ■ denotes differentiation and a(v) stands for
f(v).) We show that the following one-sided Lipschitz condition holds

n \                             „,n 1+1(0-1-1(0 <  2(L) ^-ÏKx-^-

The one-sided Lipschitz bound is in complete agreement with the corresponding
estimate one has in the differential case [10, Theorem 3.1]. In particular, it is
independent of the initial amplitude; this is in sharp contrast to the situation in the
linear problem. Estimate (L) guarantees both compactness and the entropy condi-
tion as well as providing quantitative insight into the behavior of the numerical
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GENUINELY NONLINEAR LAX-FRIEDRICHS SCHEME 355

solution. In Section 4 we verify the (L) estimate for the LF scheme when the CFL
condition is replaced by the weaker monotonicity-preserving requirement.

To motivate (L), one differentiates (1.2) to find that along any characteristic
dx/dt = a(u(x, t)) we have d(ux)/dt = -à(ux)2; the latter equation is dominated
by the characteristic ODE

dw .       2 I  \—t-= — a*w ,       w = w(t).

For the last ODE one has w(t) < 1/íá*; since physically relevant solutions of (1.2)
are exactly those whose characteristics can be drawn backward to the initial line
/ = 0, we conclude that ux «s 1/iâ* (weakly), which is the differential analogue of
having (L). Interestingly, the very same equation which rules out the existence of
(long-time) strong solutions, e.g., [8], [9], can be used to show the existence of a
physically relevant weak one. (Alternatively, the following simpler geometric argu-
ment holds: the straight characteristics issued backward from (xv t) and (x2, t) meet
the initial line t = 0, at x, - ta(u(x2, t)) and x2 - ta(u(x2, t)), respectively; the
requirement for these characteristics not to intersect yields, after little rearrange-
ment,

a(u(x2,t))-a(u(xl,t))      1
-——-< -,       x2> x1.)

Xy       Xi t

We close by saying that most likely the one-sided (L) condition holds for other
schemes—those in the E class are, of course, natural candidates. If so, (L) will
provide, in the genuinely nonlinear case, a unified alternative to the standard total
variation boundedness/entropy inequality approach, in showing the entropy-satisfy-
ing compactness.

2. Three-Point Monotonicity-Preserving Schemes. We start by considering 3-point
schemes in an increment form

(2.1a) vp(t + k) = vv(t) + Cv\1/2àv, - C;_l/2Avv_x,

where

(2.1b) C±1/2sC±(<v(0,<Wi(0)-

Having the scheme in such increment form is not a restriction. In fact, we have

Lemma 2.1. Every 3-point conservative scheme (1.1) can be written in an increment
form (2.1). Conversely, any 3-point incremental scheme is conservative, provided the
following consistency requirement,

A/„
(2-2) Q + l/2 ~~  Q+l/2 =     'fa''

holds.
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356 EITAN TADMOR

Proof. We follow Harten [5, Section II.3]. Suppose (2.1) admits a consistent
conservative form; equating the RHS of (2.1a) and (1.1), we obtain (for simplicity,
we drop the time dependence)

C+i/2Ai - C-i/2A^-i = -MMi>«wi)-Mi-i>«0]-
Setting vv_x = ogives

/-,ax                            r+       _ ^Hvv,vv)-h(vv,vv+l)
(2-3a) C„+1/2 = A--r--,

while putting vv = y„+1 implies

(2-3b) C„_1/2 = A--r--. ütí„-i

Thus, the incremental coefficients are necessarily those given in (2.3). We note that,
using (2.3), the consistency condition h(v, v) = f(v) amounts to having (2.2).

Now, suppose (2.2) holds, and define the consistent numerical flux

(2.4a J Hvr,v,+1)=f(vr)-^Cr\1/2àvT.

Making use of (2.2), we find

(2.4b:_!)   *(»,_!, O =/U_i) - jC;_l/2Avv_1 = f(ov) - ^CrZ.1/2Avr_lt

which puts the RHS of (2.1a) in the consistent conservative form (1.1), thus
completing the proof.

An essential property characterizing the scalar differential solution operator,
which is highly desirable to be retained in the discrete framework as well, is
preserving monotone profiles. We have

Lemma 2.2. Three-point monotonicity-preserving schemes are exactly those whose
total variation is nonincreasing. They are characterized by the set of inequalities

(2.5) Q+l/2 ^ 0,    Q + l/2 ^ 0,    1 — C„ + 1/2 — C„ + 1/2 > 0.

Proof. Differencing (2.1a), we obtain

(2.6) Avv(t + k) = C;+3/2Avr+1(t)+{l - c;+1/2 - C;+l/1)Avv(t)

+ Cv\l/2Avv_l(t).

Setting £>„-i(0 = vv(t) = vv+1(t), i.e., Ao,_x(0 = Av,(t) = 0, we find

Avv(t + k) = c;+3/2Av„+l(t).

By monotonicity preserving, the sign of Avp(t + k) must agree with that of Avv+l(t),
and, hence, C„++3/2 = C+(vv+l, vr+2) should be nonnegative for arbitrary op+l, vv+2.
The other inequalities in (2.5) follow likewise by setting Av„_l(t) = Avv+1(t) = 0
andAu„(0 = Au„+1(0 = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENUINELY NONLINEAR LAX-FRIEDRICHS SCHEME 357

Next, we follow Harten [6] in showing that (2.4) implies the nonincrease in total
variation; summing (2.6), we obtain

tv[«(* + *)] -EM* + *)|<EIC3/2IK+i(OI
V V

+ E|(i - C+i/2 - c-+1/2)| MOI + EIC-1/2I Mi(OI-
Reindexing the first and third summations, we find, on account of (2.4), that the
RHS does not exceed

EC+i/2M0l + E(i - C+1/2- C+1/2)M0I
V V

+ EC+i/2M0I = E|a^(0I-
V V

Since, on the other hand, nonincreasing total variation implies monotonicity preserv-
ing [6], there follows the equivalence between the two and their characterization by
(2.4).

The consistency requirement (2.2) shows that there is only one degree of freedom
in setting up the recipe for a 3-point conservative scheme; let

(2-7) Qp+1/2 = Q+1/2 + S+i/2-
Then by averaging (2.4a „) and (2.4b,,) we have

(2.8) h(vv,vv+l) = ^f(vv) + f(vv+l) - ^Qv+l/2Avv}.

The scheme (1.1) is then recast into the form

(2.9) vv(t + k) = vv(t) -j[f(v„+1(t)) -f(v^(t))]

+ f[Mô,-i/2*i-i(0)].
which reveals the role Q plays as the numerical viscosity coefficient [6]. Noting that
according to (2.2)

/91iVl   r+     _ C+1/2 + Ç.+1/2     C+1/2 - C+1/2     l / + XA-M
(2.10) C„+1/2 =-2-±-2-_2   ^"+1/2        AtT  '

we conclude

Corollary 2.3. A 3-point conservative scheme (2.9) is monotonicity preserving and
total variation nonincreasing if, and only if, its numerical viscosity coefficient, <2„+1/2,
satisfies

ßr+1/a «(2.11) A«.

We turn now to considering a few examples.
Example 2.4. Murman's scheme [12] is the nonlinear conservative generalization of

the upwind Courant-Isaacson-Rees (CIR) scheme

(2.12a)    vv(t + k) = vv(t) -X[if+1/2(/r+i -/„) +(1 - î,-i/2)a -/,-i)],
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358 EITAN TADMOR

where

1, A».<0,
(2.12a') s„+1/2

Noting that sp+l/2 = \(\ - sign[A/,/AyJ), its incremental form (2.1a) amounts to

°' f>0-

(2.12b) C+1/2 = 2I1 Au. + 1 Ao.
A/,
Aw. Ao„

and it admits the consistent conservative form (1.1) with

1
Hvy,Vr+l)= 2 I/,+/-+! -(2.12c)

Its numerical viscosity coefficient is given by

A/,
A«. Ao.

(2.12d) .CIR,i- + l/2
A/,
Ao.

and hence it meets the monotonicity-preserving requirement (2.11) provided the
CFL-like condition AsupJA/,/At;J < 1 is fulfilled. If this is the case, then by
Lemma 2.2 and the previously argued compactness, the scheme admits a limit
solution v(x, t) = Mmx=vtiX,>Ax<_,0 vv(t\ Ax'). It is well known that this limit solution
nevertheless may turn out to be a physically irrelevant one as shown, for example, by
choosing initial data vv(t = 0) = sign(p - 1/2): with/(î/) = u2, the scheme admits
this initial discontinuity as an "expansive shock" steady-state solution rather than
dissolving it as a rarefaction, the reason being its lacking of (i.e., zero) dissipation in
this case.

Example 2.5. Godunov's scheme [4] is determined by the numerical flux

(2.13a) h{vv,vv+l) = f(uR(xv+l/2,k)),

where uR(x, t) is the solution of the Riemann problem (1.1) with initial data

(2.13a')
tv„,        x^x„ + l/2

uR(x,t = o) = L       x>Xv+
1/2-

Consider, for simplicity, the convex case, / > 0. Except for the sonic rarefaction
case, uR(xp+l/2, k) takes the value of either vv+1 or v„; by (2.8), \~1Qy+1/2Av„ equals
the difference between the sum/, +/„+1 and twice the numerical flux h(vv,vp+l).
Hence the numerical viscosity coefficient in this case is given by

\f,+i    2/00+/,     iffl(0,)<fl(y)_o<fl(cL+1),

(2.13b)    ßc.,+1/2-{
Aw.

A/,
Av„ otherwise.

We remark that, in the general nonconvex case, one has, due to Osher [13, Section 2],

M^.«Vn)-        Min        [ägn(ür+1 - vv)f(v)\,
,,min      ^ ., ^ ,,max
¿V+l/2^1 ^tV + 1/2
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GENUINELY NONLINEAR LAX-FRIEDRICHS SCHEME 359

where u™"/-™2* = Min/Max(or, vp+l). Hence, the numerical viscosity coefficient of
Godunov's scheme boils down to A times

¿+i+/,-2/(«>)

i.e.,
(2.13b')

Qg.c+1/2

À Max

A/,

Max
min       ^llt- f,max

¿W 1/2 ^'^W 1/2

/,+i+/,-2/(»)
Ail

At;.,

if a(u) vanishes, f,V + l/2 < V < l>„ •1/2.

Av..
iîa(v)*0,vZal/2^v^viri/2-

Thus, Godunov deviates from the CIR scheme exactly where the latter fails—it
introduces nonzero dissipation in the sonic rarefaction case.

Example 2.6. The Engquist-Osher (EO) scheme [2] has numerical flux

(2.14a) h(vv,vv+l) = \{fv+fp+l-jy\f(ü)\dv},

and hence its numerical dissipation coefficient in the convex case/ > 0 is given by

(2.14b)       QEo,+i/2 = ̂ f'+l\M\dv
V "vv

f./,+i-2/to+Z,
|Ai>,

A/,
Av..

iia(v„) ■ a(vv+l) <0,

otherwise.

Thus, it deviates from the CIR scheme in the sonic case, introducing even more
dissipation than Godunov does in the sonic shock case—in fact, it treats the latter
case, a(v„) > 0 > a(vv+i), as a "compressive rarefaction."

Example 2.7. The Lax-Friedrichs (LF) scheme is given by

(2.15a)   vv(t + *) - ^(hl-^O + <Wi(0) -¿(/(<Wi(0 -/K-i(O).
Its incremental coefficients, numerical flux and numerical viscosity coefficient are
given respectively by

(2.15b) C+1/2 = ̂ 1 + 4^1,iy ' "A/,

*(«v»«Wi)" 2yv+^+l ~~ x^v")'

ßi i.

(2.15c)

(2.15d) ViLF,i.+l/2

Thus, the LF scheme is monotonicity-preserving provided the CFL-like condition
AsupJA/yAi;,,! < 1 is met, and hence admitting a limit solution in this case;
interestingly, as we shall see later on, this solution still may be the physically
irrelevant one. Only upon strengthening the CFL condition, Asupjaif)! < 1. wm we
get the desired convergence due to the scheme monotonicity, as is the case with
Godunov and EO schemes.
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360 EITAN TADMOR

In view of the above examples, we see that the CIR and LF schemes have,
respectively, the least and the most numerical dissipation allowed under the mono-
tonicity-preserving requirement, as (2.11), (2.12d), and (2.15d) read

Corollary 2.8. A 3-point scheme is monotonicity-preserving if, and only if, its
numerical viscosity coefficient, ß„+1/2, satisfies

(2-16) ôciR.i'+l^ ^ Qv + l/2 ^ Ôlf,c+i/2-

In [13], Osher introduces, for the method of lines, a class of E schemes which
according to our terminology can be interpreted as exactly those having no less
numerical dissipation than Godunov's; Osher showed that such E schemes satisfy
the entropy condition. Carrying on his ideas to the fully discrete case we formulate,
though do not prove,

Corollary 2.9. A 3-point scheme is monotonicity-preserving (compactness) and
entropy satisfying if its numerical viscosity coefficient is further restricted by

(2.17) 00.1-+1/2 ^ Qv+l/2 ^ ßLF,i- + l/2-

Finally, we note that all the above-mentioned schemes are first order accurate.
This is not a coincidence, since generically we have

Lemma 2.10. Any 3-point monotonicity-preserving scheme is of first order accuracy.

Proof. The truncation error for a smooth solution u of (1.2a) is given, modulo
third order terms, by

-^f[{Q(u,u)-XV(u)}ux]x.
By Corollary 2.3, A|a(w)| < Q(u, u) < 1, which implies that the coefficient inside
the inner curly brackets is nonnegative

Q(u,u) -X2a2(u) =s A|a(w)|-(l - X\a(u)\) > 0;

indeed, unless A|A/„/Ai;„| = 1 where the scheme is reduced to the trivial nongeneric
case of pure translation, strict inequalities hold, excluding more than first order
accuracy. We remark that an alternative proof can be given by the same argument
used to show first order accuracy for monotone schemes: the first two inequalities
which characterize monotonicity-preserving in (2.5) express, according to (2.3), the
fact that upon setting v = vp_1 = v„ = vy+v the RHS of (1.1), H(vT_v v„, vp+l), is
nondecreasing in its first and third arguments; the third inequality in (2.5) implies
that the partial derivatives w.r.t. these arguments are nonnegative; noting that the
dependence on the second argument is not as essential, the result follows along the
lines of [7].

3. Time-Decay in the Genuinely Nonlinear LF Scheme. The Lax-Friedrichs scheme

t*t\                     t,^,\     1+1(0 + 1-1(0     xif f    \(3.1) vp(t + k) =-2-2 (^r+1 "■''-"

is essentially a staggered-type scheme. To simplify the notations we introduce the
staggered differencing operator À = A (2 Ax) and correspondingly D = A/2 Ax;
Dv(t) abbreviates Dvv(t), D(t) = sup„ Z)„(f).
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We are interested in the time-decay of the numerical solution vv(t) in the
genuinely nonlinear case, i.e., when ä(v) ¥= 0 for all v, say when f(v) is strictly
convex

á* = Miná(o) > 0.

Theorem 3.1. Consider the LF scheme (3.1) under the CFL condition

(3.2) Xsup|a(i>„(0)|<l.
V

Then, for arbitrary d,d > 1, we have

(3.3) D(t) < Max
dk

(t + dk)ä* ' t + dk D(t = 0)

Proof. By induction, starting with / = 0 where the second term inside the
maximum brackets is reduced to D(t = 0). The general step follows by showing

<3'4> S«>*7^M' M = Max dXä— ,AxD(t = 0)

Differencing (3.1) gives

(3.5) Avv(t + k) =-2-^   *'+ï~   ''-1''

By the strict convexity of/

(3.6) a(v„)~Avp + ^\AvA   < Afv < a(vv+2)Avv - ^r\~Avv\ .

The RHS inequality follows by second order Taylor expansion around bl+2; the
LHS, around vv. Inserted into (3.5), (3.6) yields

-                    1 - Xa(vv+l) x           \+Xa(vr+l)xAvp(t + k)^-±J±1L^+J +-^±l¿¿,Vpi

Xá* ¡IX I2   ,   IX |2\--4^(|Al+i|   + Mil )
or, after division by 2Ax,

Cll\          ¿w- .   .-■>  - 1 ~Xfl(l + i) a     /^  ,  1 + Ml+i) *     ,,x(3.7) />„(/ +fc)<-5-Dv+l(t)+-r-A-i(0

/cà„
(42+i(0 + 42-i(0).

The CFL condition implies that the sum of the first two terms on the right does not
exceed Max[/>„+1(/), Dy_x(t)]; the sum of the two terms inside the last brackets on
the right is not less than Max[ZJ„+1(0, A-i(0]2- Hence,

(3.8)   Dv(t + k)< Max[£+1(i), A-i(0] " ^T Max[4+1(/), A-i(0F-

We distinguish between two cases:
(i) Assume M < (t + dk)/kà + dX. The quadratic z(l - yz) is monotonie in-

creasing as long as z < l/2y, y > 0. This is the case with the RHS of (3.8) viewed as
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such a quadratic in z = Max[í\+1(í), Dv_x(t)\ with y = kà^/2, since by assump-
tion

z = Max[A,+1(i),A-i(0] dX ^   1
t + dk      ^ kat 2y \y-kat/2

Thus increasing the RHS of (3.8) by replacing Ma\[Dp+i(t), Dy_1(t)] with its
assumed upper bound (dX/(t + dk))M, we find

Dv(t + k) ^
dX ■M\\ kä + dX Mt + dk    \       2(t + dk)

Since, by definition, M is greater than 2/dXà*, the expression in parentheses does
not exceed 1 - k/(t + dk), and the last inequality yields

D,(t + k)^ d\
t + dkMil t + dk

d\
t + k + dkM.

(ii) M > (t + dk)/kä*dX. The quadratic z(l - yz) has a maximal value l/4y,
y > 0. Viewing the RHS of (3.8) as such a quadratic in z = Max[Z)„+1(0. Dv_x(t)}
with y = kà */2, it does not exceed a maximal value of (recall d > 1)

A(' + *)< 1 < / + iflc ¿X / + dk dX M.2kä* " kä*(t + k + dk)      t + k + dk   kä*dX     t + k + dk

This completes the proof.
We remark that (3.2) requires verification of the CFL condition Asup„|a(t;)| < 1

only at the grid values u = v„(t). In the next section we discuss the situation when the
weaker CFL-like condition Asup„|A/„/At;,,| < 1 due to monotonicity preserving
holds. We pause here to discuss a few implications of Theorem 3.1, excluding the
rarefaction-free trivial case where by (3.7) D(t = 0) < 0 implies D(t) < 0 later on.

>   d

(t+dk) a

Figure 3-1
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The one-sided Lipschitz estimate (3.3) involves a free parameter d, d > 1, which
can be chosen so as to minimize the Lipschitz bound.

Choosing d = 2/ka1fD(t = 0), see Figure 3-1, we conclude

Corollary 3.2. Assume the CFL condition (3.2) holds. Then, the LF scheme (3.1)
satisfies

ncA ,lin 1 + i(0-1-i(0   ,       2D(t = 0) 2(3.9) sup -r-r-<-—-<T^-v , 2Ax tà,D(f = 0) + 2     ta*

Proof. We have to verify that the above choice of d is admissible, i.e., that
2 4 ,d =-—,- > 1   or    ——-->X.

kä*D(t = 0) ä*Av(t = 0)

Indeed, CFL condition (3.2) implies

Àà* supÄü„(/ = 0) < X supÂa(vv(t = 0)) < 2A sup\a(vp(t = 0))| < 4.
V V V

To draw global estimates from the one-sided Lipschitz condition (3.9), we
have—due to the staggered nature of the LF scheme—to distinguish between the
even and odd numbered grid values

4(0 s MO,     v;(t) « v2v+1(t);
under the CFL assumption of Corollary 3.2, (3.9) amounts to

(3.10) **«)*%•       *f<0<^.
Given a grid function w = {wv}, its increasing (similarity decreasing) variation,
TV+[w] (similarly TV_[w]) is defined by

TV±[w]=±    E    Aw,.
±Aw„>0

Thus, we have
(3.11a) TV[w] = TV+[w]+TV"[w],
while, when restricted to the interval [x_x, xx],

(3.11b)    TV+[w]|u_.iX.]-TV-[w]|II_.,Jt.]-    E    Aw„ = w(xJ-w(x_J.
x.-x.

In particular, (3.11a), (3.11b) imply

(3.11c)      TVMIr*-^] = 2 TV*[w]\1x_k,Xk] ± [w(x_J - w(xj].
According to this terminology, (3.10) yields

(3.12) TV+k(0l<     E    *¡r<i¡r »»PP["(0],
At>;(/)>otá*      íá*

and similarly for v"(t).
Consider now the Cauchy problem (1.2). There are two cases:
(i) The periodic problem. Let P be the period. Depending on whether it consists of

an even or odd number of grid points, say even, we have by (3.12), that the
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increasing variation of v'(t) does not exceed 2P/tä+; because of its periodicity,
(3.11c) imply that v'(t) has a total variation which equals twice its increasing one.
Hence

(3.13) TV[„'(0] <   „.   4P( ,, „.;Min a(v (t))

Thus, the total variation of v'(t) per period tends to zero as t tends to infinity, in an
inverse linear rate, ~ t~l. In particular, since the mean value of v'(t), v'(t), is
conserved in time, we conclude that for t large enough

(3.14) s„p|<(0-f(»-0)[<a(ff(2;'_0)).
The last two estimates are—apart from the unessential factor of two—in complete
agreement with the corresponding estimates one has in the differential case [10,
Theorem 4.3].

(ii) The pure Cauchy problem. Suppose the initial data v(x = x„, t = 0) are
supported in a finite interval of length L. Applying (3.11c) over the support of v'(t),
we find that its total variation equals twice its increasing one; using (3.12) to bound
the latter we conclude

(3.15) TV[t/(0U^ supper)]-

In the differential case, the solution support at time t expands like tï/2, [10, Section
4], and (3.15) implies a total variation decay < t~1/2. In the discrete case, the
support of v(t) does not exceed L + 2X~lt and hence

(3.16) "M')k¿ + g.
showing the boundedness of the total variation. We remark that in both the periodic
and pure Cauchy problems, similar estimates like those derived above hold for v"(t)
as well, since the difference between its end values, according to the above «'-esti-
mates, is uniformly bounded. Therefore, in either case, we end up with a bound on
the total variation which shows that the one-sided Lipschitz condition (3.9) guaran-
tees the desired compactness, which in turn leads to the existence of a limit solution

v(x, t) =        lim        í;„(í;Ax').
.v = i»Ajc',Ax'->0

It also implies the entropy condition: taking the limit Ax -* 0 in (3.9), it follows that
yieft > üright acr°ss discontinuities. Thus,

v(x, t) =        lim       v„(t, Ax)
.x = i/A.x,A.ï->0

is the unique, physically relevant solution of (1.2). The desired convergence of the
LF scheme is, of course, well-known. The point made here was to show that by
virtue of the one-sided Lipschitz condition (3.9), one can deduce both the entropy-
satisfying convergence as well as quantitative insight into the large-time behavior of
the numerical solution.

4. Time-Decay in the Genuinely Nonlinear LF Scheme (cont'd.). In this section we
continue our discussion on the time-decay of the LF scheme

ÍAt\ (,±lr\ 1+1(0   +   1-1(0 Xíf f \(4.1) vv(t + k) =-2-2U,+i-f,-\)
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in the genuinely nonlinear case, say, strictly convex case, ó* = Min;, à(v)> 0,
restricted by the weaker CFL-like condition AsupjA/„/At;„| < 1, due to monotonic-
ity preserving.

Theorem 4.1. Let d,d > 1, be arbitrary, and consider the LF scheme (4.1) under the
CFL-like condition

(4.2) A sup
V

Then (3.3) holds, i.e.,

(4.3) D(t) ^ Max

A/,
Av„

t + k(d- 1)
/ + k(d+ 1)'

dk
(t + dk)à^ t + dkD(t = 0)

Proof. We repeat the induction step used in the proof of Theorem 3.1, establishing
(3.4). Differencing (4.1) we find, as before,

(4.4) ^.(, + /t)>-«('>^-(')-|(A/„1-^_1).

By the mean-value theorem

(4.5) Afy = a(vv)Avv,   a(vv) = Ç  a(vr(0))dO,   vv(0) = vv + d~Avv.

Inserting (4.5) into (4.4), one obtains

t    /                1 + Afl(iJ„_1 ) ,       , .      1 - Xa(v„., ) -       . .
(4.6a)     Avv(t + k) =-f^^-Av^t) +-f^-Avv+l(t),

or, after division by 2Ax,

(4.6b)       b,(, + k) - '^f-'p.-C) + '-fUA„(.).
We distinguish between three cases:

(i) The shock-rarefaction interaction case. Assume D„_1(t) ■ ¿>„ + 1(i) < 0. If Dv + l(t)
> 0, then A.-i(0 < ° and from (4-6b)

1 ~~ Xa(vv.,) - , .£>„(/ + k)^-f^^D(t),
while if Dv _!(/) > 0, thenZ)„+1(0 < 0 and from (4.6b),

1 + Xa(v„_,) . , .
Dv(t + k)^-±^-D(t).

In either case, (4.2) implies

1 +À|a(î+i)lnDv(t + k) < ^(0
1 f + fc(¿-l)WX_ ¿À

" 2\       t + k(d+1)} t + dk t + k + dk
(ii) The shock case. £>„-i(0» A+i(0 < °- Then bY (4-6b)

^(' + ̂ <0<7TTT^M-

M.
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(iii) The rarefaction case. Assume ¿„_,(i), A+i(0 > 0. Our purpose is to repro-
duce the recursive inequality (3.8) which in turn led us to the desired bound (4.3).
We rewrite with the help of (4.5)

(4.7) A/„+1 - A/,_! = a(vy+l)Avy+1 - afa-Jfa,^
= a(v,+i)(h>,+i - A^_i) + {a(vy+1) - a(tJ,_1))At;>,_1,

where, using the mean-value theorem once more, we find

(4.8) a(vv^)-a(vv_l)=(X   [a(vy+i(9)) - a^.^O))} dd
Je=o

= C   f   à[rivy + 1(e)+(l-7,)vv_1(e)]dri[(l-e)'Avv_1+0~Avv+1}de.
ye=o-,T)=o

Inserting (4.8) into (4.7) and (4.7) into (4.4) we obtain, after division by 2Ax,

/. ~ N         ä /       . s      1 + ^öf^+i) -      / s      1 - Aa(t;„+1) -      . ,(4.9a)       Dy(t + k) =-±£tlLDr_¿t) +-Ai±lLDw+1(t)

-kC    Í1  ä[---]dr,(l-e)d6D2_l(t)
•'e=o-/T)=o

" /'

Similarly, if we rewrite with the help of (4.5)

À/,+1 -À/,_! = «(«;,_!)(Aiv+i - Apf_x) + {a(vy+1)-a(vy_l))Avy+1
and express the difference inside the second parentheses on the right in terms of
(4.8), substitution into (4.4) gives us after division by 2Ax

(4.9b)   ox, + k)-1 + xf->A-,« + '~"f'-'A..W
n   n

-kfl    f1   a[---]dy,ed0Dp^(t)Dy+1(t).
Jfl = ñJr,=C\

-kí   f  äi-^d^edBD2^)

■kf   f   à[---]dr,(l-0)dOD,_1{t)Dr+1(t).
ye=oy7i=o

Since according to our assumption A-i(0» A+i(0 > 0, the fourth terms on the
RHS of (4.9a) and (4.9b) are nonnegative, while the sum of their first two terms does
not exceed Max[A-i(0» Dy+l(t)]; we therefore find

A(í + /c)<Max[A-1(0.A+1(0]-^/1 f ä[---]dv(i-e)deD2_l(t),

A(r + *)<Max[A_,(i),A+i(0]-*/1   f  ä[--]dvedeDy2+1(t).
J0 = çr>n = o

Since à[ ■ ■ ■ ] 3> ó», each of the double integrals on the RHS of the last two
inequalities is greater than jó*, implying

by(t + k) < Max[A-i(0, A+i(0] - ^*A-i(0.

Dy(t + k) « Max[ A-i(0. A+i(0] - ^A+iiO-
The last two inequalities amount to (3.8) and the proof is completed as before.
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The one-sided Lipschitz bound appearing on the RHS of (4.3) is the maximum
between the two terms

2 *   *(*-0),
(t + dk)à* '    t + dk

each of which involves a free parameter d, d > 1. For d » 1, the first term becomes
negligible and is dominated by the second D(t = 0)—the initial strength of rarefac-
tion. With d > 1, on the other hand, the first term dominates, provided no strong
rarefactions are present. This is certainly the case after quite some time, when
possible strong initial rarefaction is dissolved. Observe that as d decreases, we are
forced to use a stricter CFL limitation

X sup A/,
Av„

, t + k(d- 1)
* t + k(d+l)'

so that possible strong rarefaction will be dissipated. Thus, there are essentially two
situations:

(i) There exist no strong initial rarefactions, D(t = 0) = 0(1) (in particular, with
smooth initial data). Then we can take d » 1, easing the CFL limitation and giving
inverse linear time-decay due to the first term ~ ?_1.

(ü) Strong initial rarefactions are present, D(t = 0) = 0(h~l). Then we should
choose d > 1 with CFL limitation Xsupy\Àfy/Àvy\ «; t/(t + 2k), which over a time
period T ~ X (i.e., after 0(h~l) time steps) will cause these strong rarefactions to
dissipate. Afterwards, we are back in the first situation where no strong rarefactions
are present, and again, there is a time-decay ~ t~l.

It is clear that by using the time-uniform CFL-like requirement

X sup H
Av„

< 1 - e,        e > 0,

we get the same inverse linear time-decay; indeed, taking d > 2/e — 1 will do for
the above analysis. It shows that taking the full CFL limitation, e ~ 0, corresponds
to taking large d which may delay dissolving the rarefactions if initially strong—only
after n ~ e"1 time-steps will the strong rarefaction fully dissipate, allowing the
inverse linear time-decay to dominate.

Note, in particular, that as d -» oo, allowing the extreme CFL-like requirement
AsupJÄ/yÄi;,,! = 1 to be used is not enough to dissolve strong rarefactions if
present, despite the scheme being monotonicity-preserving in this case; the estimate
(4.3) reduces to D(t) < D(t = 0), and the following example bears out its sharpness.

Example 4.2. Consider the LF scheme(4.1) applied to Burgers' equation,/(j<) = w2,
with initial data vy(t = 0) = 8y0 and X = 1. The extreme CFL-like requirement
Xsupy\Äfy/Ävy\ = 1 is trivially satisfied, yet the initial, physically irrelevant spike
will travel one mesh to the right at the time, without being dissolved. The LF scheme
amounts, in this case, to a pure translation, lacking the dissipation to cause any
decay.

The above example does not contradict the convergence of the LF scheme to the
physically relevant limit solution due to its monotonicity, as much as it shows, as
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was  mentioned  above,  the  importance of using  the  stronger  CFL  limitation
Asup(,|a(t>)| < 1—the correct one to guarantee monotonicity.
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