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THE LASKERIAN PROPERTY, POWER SERIES RINGS

AND NOETHERIAN SPECTRA

ROBERT GILMER1 AND WILLIAM HEINZER2

Abstract. We show that if the power series ring /t[[Jf]] in one indeterminate over

a commutative ring R with identity is Laskerian, then R is Noetherian. On the

other hand, if Ä[[A']] is a ZD-nng, then R has Noetherian spectrum, but R need

not be Noetherian. We show that, in general, a Laskerian ring has Noetherian

spectrum.

Let R be a commutative ring with identity. An ideal Q of R is primary if each

zero divisor of the ring R/Q is nilpotent, and Q is strongly primary if Q is primary

and contains a power of its radical. In the terminology of Bourbaki [B, Ch. IV, pp.

295, 298], the ring R is Laskerian if each ideal of R is a finite intersection of

primary ideals, and R is strongly Laskerian if each ideal of R is a finite intersection

of strongly primary ideals. It is well known that

Noetherian => strongly Laskerian => Laskerian,

and Evans in [E] showed that a Laskerian ring is what he calls a ZD-ring (for

zero-divisor ring), which is defined as follows. A ring R is a ZD-ring if the set of

zero divisors on the R-module R/A is a finite union of prime ideals for each ideal

A of R. In [HO], Heinzer and Ohm proved that R is Noetherian if R[X] is a

ZD-ring, and hence the conditions Noetherian, strongly Laskerian, Laskerian and

ZD are equivalent in /?[A"]. We investigate here relationships among these four

conditions in the power series ring Ä[[Ar]]. We prove in Theorem 1 that /?[[Ar]]

Laskerian implies R is Noetherian. We then give an example to show that R need

not be Noetherian if .R[[A"]] is a ZD-ring. On the other hand, R has Noetherian

spectrum if ÄffA']] is a ZD-ring (Theorem 2). The paper concludes with the result

that a Laskerian ring has Noetherian spectrum.

Theorem 1. Let R be a commutative ring with identity. The power series ring

R[[X]] in one variable over R is Laskerian if and only if R is Noetherian.

Proof. It is enough to prove the "only if" part of the theorem. Assume, to the

contrary, that /{[[A1]] is Laskerian and R is not Noetherian. By [AGH, Theorem

2.3], there exists a prime ideal P of R such that PR [[X]], the extension of P to

/{[[A]], is properly contained in Z>[[Ar]], the set of power series all of whose
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coefficients belong to P. Pick / G P[[X]], f G PR[[X]], and let A = PR[[X]] +

(AT). Let A = D "_i Ô, be a shortest primary representation of A, where ß, is

P,-primary. Thus U"=i P¡ is the set of zero divisors on R/A. We note that

Nakayama's Lemma applied to the ring R[[A"]]/PR[[A"]] shows that/ G A, and

hence A" is a zero divisor on R/A. Choosey so that X G Pp and let k be such that

Xk G Qj. Then Q¿ D (PR[[X]], Xk) z> P[[X]]. Since P[[X]] is prime and contains

A, it follows that Q, C P[[X]] for some /, and hence Q, c Q¡. This contradiction to

the irredundance of the representation C\ "_ i ß, completes the proof of Theorem 1.

In contrast to the polynomial ring case, we proceed to give an example showing

that R[[A"]], a ZD-ring, does not imply that R is Noetherian. Thus, assume that F

and K are fields of nonzero characteristic p, that F is a subfield of K and that K/F

is infinite dimensional, purely inseparable, and of finite exponent e. Let V be a

rank-one discrete valuation ring of the form K + M, where M is the maximal ideal

of V, and let R = F + M. Clearly V is the integral closure of R, and since K/F is

infinite dimensional, the domain R is not Noetherian. Now F[[A]] is a two-dimen-

sional regular local ring, and K[[A]] and R[[A]] have the same quotient field since

the conductor M[[X]] of R[[X]\ in V[[X]] is nonzero. Moreover,/'' G R[[X]\ for

each / G V[[X]] so that V[[X]] is the integral closure of R[[X]], and these two

rings have homeomorphic spectra. In particular, R[[A"]] is a two-dimensional

quasi-local domain with Noetherian spectrum, and hence is a ZD-ring.

The next result shows that one aspect of the preceding example carries over to

the general case.

Theorem 2. If R[[X]] is a ZD-ring, then R has Noetherian spectrum.

Proof. We establish the contrapositive. Thus, assume that there exists an infinite

strictly ascending sequence Ax g A2 g ■ ■ ■ of radical ideals of R. For each i, let

P¡ be a prime ideal of R such that A¡ G P¡ and Ai+X (f P¡. Let Ai+X denote the

canonical image of Ai+X in R/P¡. If Ai+X is all of R/P¡, then let ß = P,[[Ar]] in

R[[A"]]. If Ai+X is a proper ideal in R/P¡, let o, G Ai+x\P¡ and consider the ideal

generated by a¡ + X in (R/P,)[[A]]. Since R/P¡ is an integral domain, the ideal

(a¡ + X) does not meet the multiplicative system {a"}™_x in R/P¡. Hence there

exists a prime ideal ß, of (R/P¡)[[X]\ that contains a, + A"and does not meet {a"}.

Let ß be the inverse image of ß, in R[[A]]. We observe that ß, is a prime ideal

such that P,[[A"]] G ß„ a, + A G ß, and a¡ G ß, so that^1+1 $ ß, and X g Q¡.

Consider the set {ß,} of prime ideals defined above. We show first that there is

no containment relation between ß, and Q} for /' <j. Note that Qj (£ Q¡ since

A¿ G Qj and Aj J Q¡. To show that Q¡ $ QJy we consider separately the cases

Ai+X = R/P, and^+1 + R/P,. If Il+i - R/P„ then ß, = P,[[A]] and ß, 4- ß; =

R[[A]] since ß, + ß^. D Pt[[X]] + Ai+XR[[X]) = R[[A"]]. Hence ß,. $ ß,. in this

case. If, however, Ai+i =£ R/P¡, then a, + A G ß, and a, + A G ß7 since a, G

A + i £ 0/ anc^ % ^ Ö, (note that the relations Ai+X G Q} and X G ß, are true no

matter whether ^+, = R/Pj or ^+, ^ R/Py). Let Ä = n " , Q¡. We observe that

this intersection is irredundant. To prove that Qn is irredundant, we note that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE LASKERIAN PROPERTY 15

Q\ ■ ■ ■ Qn-i^n+i ls contained in n,-^, Q¡, but is not contained in Qn. Irre-

dundancy of the representation D î° Q¡ easily implies that U f Q¡ is the set of zero

divisors on R/B. To complete the argument, we prove that Uî° ß, is not a finite

union of prime ideals, and hence P^X]] is not a ZD-ring. Suppose not, and let

U î° fi- = A/, u • • • U Mk. Each ß, is contained in some M„ and since the set

{ß,} is infinite, some M, contains infinitely many of the primes ß,-say M, contains

ß, and Qp where /" <j. If ß, = P¡[[X]], we obtain the contradiction that R[[X]] =

Q + Qj Q M„ and if Q, * P^X}), then X = (a, + X) + (-a,) G Q, + ß, Q M„
contrary to the fact that X G U~ , Q,-

We conclude the paper with a proof that a Laskerian ring has Noetherian

spectrum. If R is Laskerian, it is clear that each ideal of R has only finitely many

minimal prime divisors. Since a ring with the latter property has Noetherian

spectrum if and only if the ascending chain condition for prime ideals (a.c.c.p.) is

satisfied in R ([M, Sätze 15, 16] or [OP]), to prove that R has Noetherian spectrum,

it suffices to prove that a.c.c.p. is satisfied in R. The next result is well known for a

Noetherian ring [ZS, Theorem 20, p. 229]; we extend to the case of a Laskerian

ring.

Proposition 3. Let P be a prime ideal of R, a Laskerian ring, and let (0) =

fl ?_ i Qi be a shortest primary representation of (0) in R. The intersection of the set

of P-primary ideals of R is the intersection of the family of components ß, that are

contained in P.

Proof. By standard techniques of localization, it is enough to prove that if R is

quasi-local with maximal ideal P, then the intersection of the set of P-primary

ideals is (0). Thus, take x G P, x ¥= 0. We have x £ xP, and hence P is the set of

zero divisors on R/xP. Therefore P is a belonging prime of xP, and there exists a

P-primary ideal ß that does not contain x. As x is arbitrary it follows that the

intersection of the set of P-primary ideals is (0).

Theorem 4. A Laskerian ring has Noetherian spectrum.

Proof. Let R be a Laskerian ring and assume that R does not have Noetherian

spectrum. Then there exists an infinite strictly ascending sequence

P0 C P, C P[ C P2 C P2 C • • •

of proper prime ideals of R. By passage to P/P0, we assume without loss of

generality that R is an integral domain. We prove by induction that there exist

ideals Qx, . . ., Qn, An, Bn of R and elements xx, x2, . . . , xn of R with the following

properties.

(\) Qi is P,-primary for each i, and An = Qx n • • • n Q„.

(2) For 1< i < n, x, G D ¡^ Qj and x¡ G Q¡.

(3) (je,, . . ., x„) C Bn, An $ Bn, and each belonging prime of Bn is contained in

K-
For n = 1, we take Qx = P,. Proposition 3 implies that there exists a Pi-primary

ideal Q{ that does not contain P,. Pick xx E Q'x, x, G ßi> an£l define Bx to be

xxRP, n R. We have Bx J Ax = Qx since BXRP[ = xxRP[ Ç Q[RP[ and P, r£

Q'xRp., and the other conditions of (l)-(3) are clearly satisfied.
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Assume that ß,,. . ., ß„, A„, Bn, xx, . . . ,xn are given satisfying (l)-(3). Choose

yn+x G A„,y„+X G B„. Applying Proposition 3 to the Laskerian ring Rp /BnRp ,

we conclude that there exists a Pn+X -primary ideal Qn+X containing Bn such that

yn+1 <? Qn+v We define AH+, = 4, n ßn+,. Note that .4n+, $ 5„, for ^„ $ R„ and

ß„+1 is not contained in the set of zero divisors on R/Bn. To define xn+, and R„+,,

first observe that Proposition 3 implies that BnRP,¡ = H AeA(5„, vn+1Cx)R/>n+i,

where {CA}XeA is the set of P„'+1-primary ideals. Since An+x(£Bn and since

Bn = BnRP,t n R, there exists X G A such that An + x<£(Bn,yn + xCx)RP,+ ¡ n R.

Choose r G Cx, r G Pn+„ and define x„+1 = vB+1r, fin+1 = (B„, xn+x)RP,+ ¡ n R.

Since _y„+1 G ßn+1 and r G P„+„ we have xn+x G ß„+1. Thus, (1) and (2) are

satisfied for ß,,..., ßB+1 and xx, x2, . . . , xn+x. Moreover, (3) is satisfied for Bn+X

by choice of xn+x and Bn+X. By induction, we conclude that there exist infinite

sequences {ß,-}f\ {^<}î°. {*/}ï° and {R,},° so that conditions (1), (2) and (3) are

satisfied for all n.

We define A = D °L, Q¡, and we note that this representation is irredundant

since x„ G Dj¥=n Qy and xn G ß„ for each n. Moreover, A: (x„) = ß„: (x„) is

Pn-primary for each n. This implies that A admits no representation as a finite

intersection of primary ideals, for if it did-say A = Ç\k_xHiis a shortest repre-

sentation, where H¡ is M,-primary-then a standard argument shows that {M¡}k_x is

the set of prime ideals of R realizable as the radical of an ideal of the form A : (x).

Therefore R is not Laskerian, and this completes the proof of Theorem 4.

We remark that the ZD-property implies neither (1) ascending chain condition

for prime ideals (a.c.c.p.), nor (2) that each ideal has only finitely many minimal

primes. For example, each valuation ring is a ZD-ring, and a valuation ring need

not satisfy a.c.c.p. For (2), let {A,}*., be a set of indetminates over the field K, let

D = U "_, K[[XX, ..., AJ] and let R = D/({XlXJ\i ¥-j}). The ring R is one-di-

mensional quasi-local with maximal ideal M = ({xn},°), and {Pj}fLx is the set of

minimal primes of R, where P¡ = ({xy\j =£ i}). The union of each infinite subset of

{P¡}fLx is M, so R is a ZD-ring, but (0) has infinitely many minimal primes.
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