THE LASKERIAN PROPERTY, POWER SERIES RINGS AND NOETHERIAN SPECTRA

ROBERT GILMER ${ }^{1}$ AND WILLIAM HEINZER ${ }^{2}$

Abstract

We show that if the power series ring $R[[X]]$ in one indeterminate over a commutative ring R with identity is Laskerian, then R is Noetherian. On the other hand, if $R[[X]]$ is a ZD-ring, then R has Noetherian spectrum, but R need not be Noetherian. We show that, in general, a Laskerian ring has Noetherian spectrum.

Let R be a commutative ring with identity. An ideal Q of R is primary if each zero divisor of the ring R / Q is nilpotent, and Q is strongly primary if Q is primary and contains a power of its radical. In the terminology of Bourbaki [B, Ch. IV, pp. 295, 298], the ring R is Laskerian if each ideal of R is a finite intersection of primary ideals, and R is strongly Laskerian if each ideal of R is a finite intersection of strongly primary ideals. It is well known that

$$
\text { Noetherian } \Rightarrow \text { strongly Laskerian } \Rightarrow \text { Laskerian, }
$$

and Evans in $[\mathbf{E}]$ showed that a Laskerian ring is what he calls a ZD-ring (for zero-divisor ring), which is defined as follows. A ring R is a ZD-ring if the set of zero divisors on the R-module R / A is a finite union of prime ideals for each ideal A of R. In [HO], Heinzer and Ohm proved that R is Noetherian if $R[X]$ is a ZD-ring, and hence the conditions Noetherian, strongly Laskerian, Laskerian and ZD are equivalent in $R[X]$. We investigate here relationships among these four conditions in the power series ring $R[[X]]$. We prove in Theorem 1 that $R[[X]]$ Laskerian implies R is Noetherian. We then give an example to show that R need not be Noetherian if $R[[X]]$ is a ZD-ring. On the other hand, R has Noetherian spectrum if $R[[X]]$ is a ZD-ring (Theorem 2). The paper concludes with the result that a Laskerian ring has Noetherian spectrum.

Theorem 1. Let R be a commutative ring with identity. The power series ring $R[[X]]$ in one variable over R is Laskerian if and only if R is Noetherian.

Proof. It is enough to prove the "only if" part of the theorem. Assume, to the contrary, that $R[[X]]$ is Laskerian and R is not Noetherian. By [AGH, Theorem 2.3], there exists a prime ideal P of R such that $P R[[X]]$, the extension of P to $R[[X]]$, is properly contained in $P[[X]]$, the set of power series all of whose

[^0]coefficients belong to P. Pick $f \in P[[X]], f \notin \operatorname{PR}[[X]]$, and let $A=P R[[X]]+$ ($X f$). Let $A=\cap_{i=1}^{n} Q_{i}$ be a shortest primary representation of A, where Q_{i} is P_{i}-primary. Thus $\cup_{i=1}^{n} P_{i}$ is the set of zero divisors on R / A. We note that Nakayama's Lemma applied to the ring $R[[X]] / P R[[X]]$ shows that $f \notin A$, and hence X is a zero divisor on R / A. Choose j so that $X \in P_{j}$, and let k be such that $X^{k} \in Q_{j}$. Then $Q_{j} \supseteq\left(P R[[X]], X^{k}\right) \supset P[[X]]$. Since $P[[X]]$ is prime and contains A, it follows that $Q_{t} \subseteq P[[X]]$ for some t, and hence $Q_{t} \subset Q_{j}$. This contradiction to the irredundance of the representation $\bigcap_{i=1}^{n} Q_{i}$ completes the proof of Theorem 1.

In contrast to the polynomial ring case, we proceed to give an example showing that $R[[X]]$, a ZD-ring, does not imply that R is Noetherian. Thus, assume that F and K are fields of nonzero characteristic p, that F is a subfield of K and that K / F is infinite dimensional, purely inseparable, and of finite exponent e. Let V be a rank-one discrete valuation ring of the form $K+M$, where M is the maximal ideal of V, and let $R=F+M$. Clearly V is the integral closure of R, and since K / F is infinite dimensional, the domain R is not Noetherian. Now $V[[X]]$ is a two-dimensional regular local ring, and $V[[X]]$ and $R[[X]]$ have the same quotient field since the conductor $M[[X]]$ of $R[[X]]$ in $V[[X]]$ is nonzero. Moreover, $f^{p^{*}} \in R[[X]]$ for each $f \in V[[X]]$ so that $V[[X]]$ is the integral closure of $R[[X]]$, and these two rings have homeomorphic spectra. In particular, $R[[X]]$ is a two-dimensional quasi-local domain with Noetherian spectrum, and hence is a ZD-ring.

The next result shows that one aspect of the preceding example carries over to the general case.

Theorem 2. If $R[[X]]$ is a $Z D$-ring, then R has Noetherian spectrum.
Proof. We establish the contrapositive. Thus, assume that there exists an infinite strictly ascending sequence $A_{1} \subset A_{2} \subset \cdots$ of radical ideals of R. For each i, let P_{i} be a prime ideal of R such that $A_{i} \subseteq P_{i}$ and $A_{i+1} \ddagger P_{i}$. Let \bar{A}_{i+1} denote the canonical image of A_{i+1} in R / P_{i}. If $\overline{A_{i+1}}$ is all of R / P_{i}, then let $Q_{i}=P_{i}[[X]]$ in $R[[X]]$. If \bar{A}_{i+1} is a proper ideal in R / P_{i}, let $a_{i} \in A_{i+1} \backslash P_{i}$ and consider the ideal generated by $\bar{a}_{i}+X$ in $\left(R / P_{i}\right)[[X]]$. Since R / P_{i} is an integral domain, the ideal $\left(\bar{a}_{i}+X\right)$ does not meet the multiplicative system $\left\{\bar{a}_{i}^{n}\right\}_{n=1}^{\infty}$ in R / P_{i}. Hence there exists a prime ideal \bar{Q}_{i} of $\left(R / P_{i}\right)[[X]]$ that contains $\bar{a}_{i}+X$ and does not meet $\left\{\bar{a}_{i}^{n}\right\}$. Let Q_{i} be the inverse image of \bar{Q}_{i} in $R[[X]]$. We observe that Q_{i} is a prime ideal such that $P_{i}[[X]] \subseteq Q_{i}, a_{i}+X \in Q_{i}$ and $a_{i} \notin Q_{i}$ so that $A_{i+1} \nsubseteq Q_{i}$ and $X \notin Q_{i}$.

Consider the set $\left\{Q_{i}\right\}$ of prime ideals defined above. We show first that there is no containment relation between Q_{i} and Q_{j} for $i<j$. Note that $Q_{j} \ddagger Q_{i}$ since $A_{j} \subseteq Q_{j}$ and $A_{j} \Phi Q_{i}$. To show that $Q_{i} \ddagger Q_{j}$, we consider separately the cases $\bar{A}_{i+1}=R / P_{i}$ and $\bar{A}_{i+1} \neq R / P_{i}$. If $\bar{A}_{i+1}=R / P_{i}$, then $Q_{i}=P_{i}[[X]]$ and $Q_{j}+Q_{i}=$ $R[[X]]$ since $Q_{i}+Q_{j} \supseteq P_{i}[[X]]+A_{i+1} R[[X]]=R[[X]]$. Hence $Q_{i} \ddagger Q_{j}$ in this case. If, however, $\vec{A}_{i+1} \neq R / P_{i}$, then $a_{i}+X \in Q_{i}$ and $a_{i}+X \notin Q_{j}$ since $a_{i} \in$ $A_{i+1} \subseteq Q_{j}$ and $X \notin Q_{j}$ (note that the relations $A_{i+1} \subseteq Q_{j}$ and $X \notin Q_{j}$ are true no matter whether $\bar{A}_{j+1}=R / P_{j}$ or $\bar{A}_{j+1} \neq R / P_{j}$). Let $B=\cap_{i=1}^{\infty} Q_{i}$. We observe that this intersection is irredundant. To prove that Q_{n} is irredundant, we note that
$Q_{1} \ldots Q_{n-1} A_{n+1}$ is contained in $\bigcap_{i \neq n} Q_{i}$, but is not contained in Q_{n}. Irredundancy of the representation $\cap_{1}^{\infty} Q_{i}$ easily implies that $\cup_{1}^{\infty} Q_{i}$ is the set of zero divisors on R / B. To complete the argument, we prove that $\cup_{1}^{\infty} Q_{i}$ is not a finite union of prime ideals, and hence $R[[X]]$ is not a ZD-ring. Suppose not, and let $\cup_{1}^{\infty} Q_{i}=M_{1} \cup \cdots \cup M_{k}$. Each Q_{i} is contained in some M_{t}, and since the set $\left\{Q_{i}\right\}$ is infinite, some M_{t} contains infinitely many of the primes Q_{i}-say M_{t} contains Q_{i} and Q_{j}, where $i<j$. If $Q_{i}=P_{i}[[X]]$, we obtain the contradiction that $R[[X]]=$ $Q_{i}+Q_{j} \subseteq M_{i}$, and if $Q_{i} \neq P_{i}[[X]]$, then $X=\left(a_{i}+X\right)+\left(-a_{i}\right) \in Q_{i}+Q_{j} \subseteq M_{i}$, contrary to the fact that $X \notin \cup_{i=1}^{\infty} Q_{i}$.

We conclude the paper with a proof that a Laskerian ring has Noetherian spectrum. If R is Laskerian, it is clear that each ideal of R has only finitely many minimal prime divisors. Since a ring with the latter property has Noetherian spectrum if and only if the ascending chain condition for prime ideals (a.c.c.p.) is satisfied in $R([M$, Sätze 15, 16] or [OP]), to prove that R has Noetherian spectrum, it suffices to prove that a.c.c.p. is satisfied in R. The next result is well known for a Noetherian ring [ZS, Theorem 20, p. 229]; we extend to the case of a Laskerian ring.

Proposition 3. Let P be a prime ideal of R, a Laskerian ring, and let $(0)=$ $\cap_{i=1}^{n} Q_{i}$ be a shortest primary representation of (0) in R. The intersection of the set of P-primary ideals of R is the intersection of the family of components Q_{i} that are contained in P.

Proof. By standard techniques of localization, it is enough to prove that if R is quasi-local with maximal ideal P, then the intersection of the set of P-primary ideals is (0). Thus, take $x \in P, x \neq 0$. We have $x \notin x P$, and hence P is the set of zero divisors on $R / x P$. Therefore P is a belonging prime of $x P$, and there exists a P-primary ideal Q that does not contain x. As x is arbitrary it follows that the intersection of the set of P-primary ideals is (0).

Theorem 4. A Laskerian ring has Noetherian spectrum.

Proof. Let R be a Laskerian ring and assume that R does not have Noetherian spectrum. Then there exists an infinite strictly ascending sequence

$$
P_{0} \subset P_{1} \subset P_{1}^{\prime} \subset P_{2} \subset P_{2}^{\prime} \subset \cdots
$$

of proper prime ideals of R. By passage to R / P_{0}, we assume without loss of generality that R is an integral domain. We prove by induction that there exist ideals $Q_{1}, \ldots, Q_{n}, A_{n}, B_{n}$ of R and elements $x_{1}, x_{2}, \ldots, x_{n}$ of R with the following properties.
(1) Q_{i} is P_{i}-primary for each i, and $A_{n}=Q_{1} \cap \cdots \cap Q_{n}$.
(2) For $1 \leqslant i \leqslant n, x_{i} \in \cap_{j \neq i} Q_{j}$ and $x_{i} \notin Q_{i}$.
(3) $\left(x_{1}, \ldots, x_{n}\right) \subseteq B_{n}, A_{n} \ddagger B_{n}$, and each belonging prime of B_{n} is contained in P_{n}^{\prime}.

For $n=1$, we take $Q_{1}=P_{1}$. Proposition 3 implies that there exists a P_{1}^{\prime}-primary ideal Q_{1}^{\prime} that does not contain P_{1}. Pick $x_{1} \in Q_{1}^{\prime}, x_{1} \notin Q_{1}$, and define B_{1} to be $x_{1} R_{P_{\mathrm{i}}} \cap R$. We have $B_{1} \nsubseteq A_{1}=Q_{1}$ since $B_{1} R_{P_{i}^{\prime}}=x_{1} R_{P_{\mathrm{i}}^{\prime}} \subseteq Q_{1}^{\prime} R_{P_{\mathrm{i}}^{\prime}}$ and $P_{1} \ddagger$ $Q_{1}^{\prime} R_{P_{i}^{\prime}}$, and the other conditions of (1)-(3) are clearly satisfied.

Assume that $Q_{1}, \ldots, Q_{n}, A_{n}, B_{n}, x_{1}, \ldots, x_{n}$ are given satisfying (1)-(3). Choose $y_{n+1} \in A_{n}, y_{n+1} \notin B_{n}$. Applying Proposition 3 to the Laskerian ring $R_{P_{n+1}} / B_{n} R_{P_{n+1}}$, we conclude that there exists a P_{n+1}-primary ideal Q_{n+1} containing B_{n} such that $y_{n+1} \notin Q_{n+1}$. We define $A_{n+1}=A_{n} \cap Q_{n+1}$. Note that $A_{n+1} \ddagger B_{n}$, for $A_{n} \ddagger B_{n}$ and Q_{n+1} is not contained in the set of zero divisors on R / B_{n}. To define x_{n+1} and B_{n+1}, first observe that Proposition 3 implies that $B_{n} R_{P_{n+1}^{\prime}}=\bigcap_{\lambda \in \Lambda}\left(B_{n}, y_{n+1} C_{\lambda}\right) R_{P_{n+1}^{\prime}}$, where $\left\{C_{\lambda}\right\}_{\lambda \in \Lambda}$ is the set of P_{n+1}^{\prime}-primary ideals. Since $A_{n+1} \nsubseteq B_{n}$ and since $B_{n}=B_{n} R_{P_{n+1}^{\prime}} \cap R$, there exists $\lambda \in \Lambda$ such that $A_{n+1} \nsubseteq\left(B_{n}, y_{n+1} C_{\lambda}\right) R_{P_{n+1}^{\prime}} \cap R$. Choose $r \in C_{\lambda}, r \notin P_{n+1}$, and define $x_{n+1}=y_{n+1} r, B_{n+1}=\left(B_{n}, x_{n+1}\right) R_{P_{n+1}^{\prime}} \cap R$. Since $y_{n+1} \notin Q_{n+1}$ and $r \notin P_{n+1}$, we have $x_{n+1} \notin Q_{n+1}$. Thus, (1) and (2) are satisfied for Q_{1}, \ldots, Q_{n+1} and $x_{1}, x_{2}, \ldots, x_{n+1}$. Moreover, (3) is satisfied for B_{n+1} by choice of x_{n+1} and B_{n+1}. By induction, we conclude that there exist infinite sequences $\left\{Q_{i}\right\}_{1}^{\infty},\left\{A_{i}\right\}_{1}^{\infty},\left\{x_{i}\right\}_{1}^{\infty}$ and $\left\{B_{i}\right\}_{1}^{\infty}$ so that conditions (1), (2) and (3) are satisfied for all n.

We define $A=\cap{ }_{i=1}^{\infty} Q_{i}$, and we note that this representation is irredundant since $x_{n} \in \cap_{j \neq n} Q_{j}$ and $x_{n} \notin Q_{n}$ for each n. Moreover, $A:\left(x_{n}\right)=Q_{n}:\left(x_{n}\right)$ is P_{n}-primary for each n. This implies that A admits no representation as a finite intersection of primary ideals, for if it did-say $A=\cap_{i=1}^{k} H_{i}$ is a shortest representation, where H_{i} is M_{i}-primary-then a standard argument shows that $\left\{M_{i}\right\}_{i=1}^{k}$ is the set of prime ideals of R realizable as the radical of an ideal of the form $A:(x)$. Therefore R is not Laskerian, and this completes the proof of Theorem 4.

We remark that the ZD-property implies neither (1) ascending chain condition for prime ideals (a.c.c.p.), nor (2) that each ideal has only finitely many minimal primes. For example, each valuation ring is a ZD-ring, and a valuation ring need not satisfy a.c.c.p. For (2), let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a set of indetminates over the field K, let $D=\cup{ }_{n=1}^{\infty} K\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ and let $R=D /\left(\left\{X_{1} X_{j} \mid i \neq j\right\}\right)$. The ring R is one-dimensional quasi-local with maximal ideal $M=\left(\left\{x_{n}\right\}_{1}^{\infty}\right)$, and $\left\{P_{i}\right\}_{i=1}^{\infty}$ is the set of minimal primes of R, where $P_{i}=\left(\left\{x_{j} \mid j \neq i\right\}\right)$. The union of each infinite subset of $\left\{P_{i}\right\}_{i=1}^{\infty}$ is M, so R is a ZD-ring, but (0) has infinitely many minimal primes.

References

[AGH] J. T. Arnold, R. Gilmer and W. Heinzer, Some countability conditions in a commutative ring, Illinois J. Math. 21 (1977), 648-665.
[B] N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
[E] E. G. Evans, Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155 (1971), 505-512. MR 42 \#7654.
[HO] W. Heinzer and J. Ohm, On the Noetherian-like rings of E. G. Evans, Proc. Amer. Math. Soc. 34 (1972), 73-74. MR 45 \# 3385.
[M] S. Mori, Über eindeutige Reduktion in Ringen ohne Teilerkettensatz, J. Sci. Hiroshima Univ. Ser. A 3 (1933), 275-318.
[OP] J. Ohm and R. Pendleton, Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631-640. MR 37 \# 5201 .
[ZS] O. Zariski and P. Samuel, Commutative algebra, vol. I, The University Series in Higher Mathematics, Van Nostrand, Princeton, N. J., 1958.

Department of Mathematics, Florida State University, Tallahassee, Florida 32306
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

[^0]: Received by the editors November 2, 1978 and, in revised form, May 25, 1979.
 AMS (MOS) subject classifications (1970). Primary 13E05, 13J05; Secondary 13A15, 13C15.
 Key words and phrases. Laskerian ring, power series ring, Noetherian, ZD-ring, Noetherian spectrum.
 ${ }^{1}$ Research supported by NSF Grant MCS 76-06591.
 ${ }^{2}$ Research supported by NSF Grant 78-00798.

