THE LASKERIAN PROPERTY, POWER SERIES RINGS AND NOETHERIAN SPECTRA

ROBERT GILMER¹ AND WILLIAM HEINZER²

ABSTRACT. We show that if the power series ring R[[X]] in one indeterminate over a commutative ring R with identity is Laskerian, then R is Noetherian. On the other hand, if R[[X]] is a ZD-ring, then R has Noetherian spectrum, but R need not be Noetherian. We show that, in general, a Laskerian ring has Noetherian spectrum.

Let R be a commutative ring with identity. An ideal Q of R is primary if each zero divisor of the ring R/Q is nilpotent, and Q is strongly primary if Q is primary and contains a power of its radical. In the terminology of Bourbaki [**B**, Ch. IV, pp. 295, 298], the ring R is Laskerian if each ideal of R is a finite intersection of primary ideals, and R is strongly Laskerian if each ideal of R is a finite intersection of strongly primary ideals. It is well known that

Noetherian \Rightarrow strongly Laskerian \Rightarrow Laskerian,

and Evans in [E] showed that a Laskerian ring is what he calls a ZD-ring (for zero-divisor ring), which is defined as follows. A ring R is a ZD-ring if the set of zero divisors on the R-module R/A is a finite union of prime ideals for each ideal A of R. In [HO], Heinzer and Ohm proved that R is Noetherian if R[X] is a ZD-ring, and hence the conditions Noetherian, strongly Laskerian, Laskerian and ZD are equivalent in R[X]. We investigate here relationships among these four conditions in the power series ring R[[X]]. We prove in Theorem 1 that R[[X]] Laskerian implies R is Noetherian. We then give an example to show that R need not be Noetherian if R[[X]] is a ZD-ring. On the other hand, R has Noetherian spectrum if R[[X]] is a ZD-ring (Theorem 2). The paper concludes with the result that a Laskerian ring has Noetherian spectrum.

THEOREM 1. Let R be a commutative ring with identity. The power series ring R[[X]] in one variable over R is Laskerian if and only if R is Noetherian.

PROOF. It is enough to prove the "only if" part of the theorem. Assume, to the contrary, that R[[X]] is Laskerian and R is not Noetherian. By [AGH, Theorem 2.3], there exists a prime ideal P of R such that PR[[X]], the extension of P to R[[X]], is properly contained in P[[X]], the set of power series all of whose

¹Research supported by NSF Grant MCS 76-06591.

© 1980 American Mathematical Society 0002-9939/80/0000-0202/\$02.00

Received by the editors November 2, 1978 and, in revised form, May 25, 1979.

AMS (MOS) subject classifications (1970). Primary 13E05, 13J05; Secondary 13A15, 13C15.

Key words and phrases. Laskerian ring, power series ring, Noetherian, ZD-ring, Noetherian spectrum.

²Research supported by NSF Grant 78-00798.

coefficients belong to P. Pick $f \in P[[X]]$, $f \notin PR[[X]]$, and let A = PR[[X]] + (Xf). Let $A = \bigcap_{i=1}^{n} Q_i$ be a shortest primary representation of A, where Q_i is P_i -primary. Thus $\bigcup_{i=1}^{n} P_i$ is the set of zero divisors on R/A. We note that Nakayama's Lemma applied to the ring R[[X]]/PR[[X]] shows that $f \notin A$, and hence X is a zero divisor on R/A. Choose j so that $X \in P_j$, and let k be such that $X^k \in Q_j$. Then $Q_j \supseteq (PR[[X]], X^k) \supset P[[X]]$. Since P[[X]] is prime and contains A, it follows that $Q_t \subseteq P[[X]]$ for some t, and hence $Q_i \subset Q_j$. This contradiction to the irredundance of the representation $\bigcap_{i=1}^{n} Q_i$ completes the proof of Theorem 1.

In contrast to the polynomial ring case, we proceed to give an example showing that R[[X]], a ZD-ring, does not imply that R is Noetherian. Thus, assume that F and K are fields of nonzero characteristic p, that F is a subfield of K and that K/F is infinite dimensional, purely inseparable, and of finite exponent e. Let V be a rank-one discrete valuation ring of the form K + M, where M is the maximal ideal of V, and let R = F + M. Clearly V is the integral closure of R, and since K/F is infinite dimensional, the domain R is not Noetherian. Now V[[X]] is a two-dimensional regular local ring, and V[[X]] and R[[X]] have the same quotient field since the conductor M[[X]] of R[[X]] in V[[X]] is nonzero. Moreover, $f^{p^*} \in R[[X]]$ for each $f \in V[[X]]$ so that V[[X]] is the integral closure of R[[X]], and these two rings have homeomorphic spectra. In particular, R[[X]] is a two-dimensional quasi-local domain with Noetherian spectrum, and hence is a ZD-ring.

The next result shows that one aspect of the preceding example carries over to the general case.

THEOREM 2. If R[[X]] is a ZD-ring, then R has Noetherian spectrum.

PROOF. We establish the contrapositive. Thus, assume that there exists an infinite strictly ascending sequence $A_1 \,\subset A_2 \,\subset \cdots$ of radical ideals of R. For each i, let P_i be a prime ideal of R such that $A_i \subseteq P_i$ and $A_{i+1} \notin P_i$. Let $\overline{A_{i+1}}$ denote the canonical image of A_{i+1} in R/P_i . If $\overline{A_{i+1}}$ is all of R/P_i , then let $Q_i = P_i[[X]]$ in R[[X]]. If $\overline{A_{i+1}}$ is a proper ideal in R/P_i , let $a_i \in A_{i+1} \setminus P_i$ and consider the ideal generated by $\overline{a_i} + X$ in $(R/P_i)[[X]]$. Since R/P_i is an integral domain, the ideal $(\overline{a_i} + X)$ does not meet the multiplicative system $\{\overline{a_i}^n\}_{n=1}^{\infty}$ in R/P_i . Hence there exists a prime ideal $\overline{Q_i}$ of $(R/P_i)[[X]]$ that contains $\overline{a_i} + X$ and does not meet $\{\overline{a_i}^n\}$. Let Q_i be the inverse image of $\overline{Q_i}$ in R[[X]]. We observe that Q_i is a prime ideal such that $P_i[[X]] \subseteq Q_i, a_i + X \in Q_i$ and $a_i \notin Q_i$ so that $A_{i+1} \notin Q_i$ and $X \notin Q_i$.

Consider the set $\{Q_i\}$ of prime ideals defined above. We show first that there is no containment relation between Q_i and Q_j for i < j. Note that $Q_j \notin Q_i$ since $A_j \subseteq Q_j$ and $A_j \notin Q_i$. To show that $Q_i \notin Q_j$, we consider separately the cases $\overline{A}_{i+1} = R/P_i$ and $\overline{A}_{i+1} \neq R/P_i$. If $\overline{A}_{i+1} = R/P_i$, then $Q_i = P_i[[X]]$ and $Q_j + Q_i =$ R[[X]] since $Q_i + Q_j \supseteq P_i[[X]] + A_{i+1}R[[X]] = R[[X]]$. Hence $Q_i \notin Q_j$ in this case. If, however, $\overline{A}_{i+1} \neq R/P_i$, then $a_i + X \in Q_i$ and $a_i + X \notin Q_j$ since $a_i \in$ $A_{i+1} \subseteq Q_j$ and $X \notin Q_j$ (note that the relations $A_{i+1} \subseteq Q_j$ and $X \notin Q_j$ are true no matter whether $\overline{A}_{j+1} = R/P_j$ or $\overline{A}_{j+1} \neq R/P_j$). Let $B = \bigcap_{i=1}^{\infty} Q_i$. We observe that this intersection is irredundant. To prove that Q_n is irredundant, we note that $Q_1 ldots Q_{n-1}A_{n+1}$ is contained in $\bigcap_{i \neq n} Q_i$, but is not contained in Q_n . Irredundancy of the representation $\bigcap_{i}^{\infty} Q_i$ easily implies that $\bigcup_{i}^{\infty} Q_i$ is the set of zero divisors on R/B. To complete the argument, we prove that $\bigcup_{i}^{\infty} Q_i$ is not a finite union of prime ideals, and hence R[[X]] is not a ZD-ring. Suppose not, and let $\bigcup_{i}^{\infty} Q_i = M_1 \cup \cdots \cup M_k$. Each Q_i is contained in some M_i , and since the set $\{Q_i\}$ is infinite, some M_i contains infinitely many of the primes Q_i -say M_i contains Q_i and Q_j , where i < j. If $Q_i = P_i[[X]]$, we obtain the contradiction that $R[[X]] = Q_i + Q_j \subseteq M_i$, and if $Q_i \neq P_i[[X]]$, then $X = (a_i + X) + (-a_i) \in Q_i + Q_j \subseteq M_i$, contrary to the fact that $X \notin \bigcup_{i=1}^{\infty} Q_i$.

We conclude the paper with a proof that a Laskerian ring has Noetherian spectrum. If R is Laskerian, it is clear that each ideal of R has only finitely many minimal prime divisors. Since a ring with the latter property has Noetherian spectrum if and only if the ascending chain condition for prime ideals (a.c.c.p.) is satisfied in R ([M, Sätze 15, 16] or [OP]), to prove that R has Noetherian spectrum, it suffices to prove that a.c.c.p. is satisfied in R. The next result is well known for a Noetherian ring [ZS, Theorem 20, p. 229]; we extend to the case of a Laskerian ring.

PROPOSITION 3. Let P be a prime ideal of R, a Laskerian ring, and let $(0) = \bigcap_{i=1}^{n} Q_i$ be a shortest primary representation of (0) in R. The intersection of the set of P-primary ideals of R is the intersection of the family of components Q_i that are contained in P.

PROOF. By standard techniques of localization, it is enough to prove that if R is quasi-local with maximal ideal P, then the intersection of the set of P-primary ideals is (0). Thus, take $x \in P$, $x \neq 0$. We have $x \notin xP$, and hence P is the set of zero divisors on R/xP. Therefore P is a belonging prime of xP, and there exists a P-primary ideal Q that does not contain x. As x is arbitrary it follows that the intersection of the set of P-primary ideals is (0).

THEOREM 4. A Laskerian ring has Noetherian spectrum.

PROOF. Let R be a Laskerian ring and assume that R does not have Noetherian spectrum. Then there exists an infinite strictly ascending sequence

$$P_0 \subset P_1 \subset P_1' \subset P_2 \subset P_2' \subset \cdots$$

of proper prime ideals of R. By passage to R/P_0 , we assume without loss of generality that R is an integral domain. We prove by induction that there exist ideals $Q_1, \ldots, Q_n, A_n, B_n$ of R and elements x_1, x_2, \ldots, x_n of R with the following properties.

(1) Q_i is P_i -primary for each *i*, and $A_n = Q_1 \cap \cdots \cap Q_n$.

(2) For $1 \leq i \leq n, x_i \in \bigcap_{j \neq i} Q_j$ and $x_i \notin Q_i$.

(3) $(x_1, \ldots, x_n) \subseteq B_n, A_n \nsubseteq B_n$, and each belonging prime of B_n is contained in P'_n .

For n = 1, we take $Q_1 = P_1$. Proposition 3 implies that there exists a P'_1 -primary ideal Q'_1 that does not contain P_1 . Pick $x_1 \in Q'_1$, $x_1 \notin Q_1$, and define B_1 to be $x_1R_{P'_1} \cap R$. We have $B_1 \not\supseteq A_1 = Q_1$ since $B_1R_{P'_1} = x_1R_{P'_1} \subseteq Q'_1R_{P'_1}$ and $P_1 \not\subseteq Q'_1R_{P'_1}$, and the other conditions of (1)-(3) are clearly satisfied.

Assume that $Q_1, \ldots, Q_n, A_n, B_n, x_1, \ldots, x_n$ are given satisfying (1)-(3). Choose $y_{n+1} \in A_n, y_{n+1} \notin B_n$. Applying Proposition 3 to the Laskerian ring $R_{P_{n+1}}/B_nR_{P_{n+1}}$, we conclude that there exists a P_{n+1} -primary ideal Q_{n+1} containing B_n such that $y_{n+1} \notin Q_{n+1}$. We define $A_{n+1} = A_n \cap Q_{n+1}$. Note that $A_{n+1} \notin B_n$, for $A_n \notin B_n$ and Q_{n+1} is not contained in the set of zero divisors on R/B_n . To define x_{n+1} and B_{n+1} , first observe that Proposition 3 implies that $B_n R_{P'_{n+1}} = \bigcap_{\lambda \in \Lambda} (B_n, y_{n+1}C_\lambda) R_{P'_{n+1}}$, where $\{C_\lambda\}_{\lambda \in \Lambda}$ is the set of P'_{n+1} -primary ideals. Since $A_{n+1} \notin B_n$ and since $B_n = B_n R_{P'_{n+1}} \cap R$, there exists $\lambda \in \Lambda$ such that $A_{n+1} \notin (B_n, y_{n+1}C_\lambda) R_{P'_{n+1}} \cap R$. Choose $r \in C_\lambda$, $r \notin P_{n+1}$, and define $x_{n+1} = y_{n+1}r$, $B_{n+1} = (B_n, x_{n+1}) R_{P'_{n+1}} \cap R$. Since $y_{n+1} \notin Q_{n+1}$ and $r \notin P_{n+1}$, we have $x_{n+1} \notin Q_{n+1}$. Thus, (1) and (2) are satisfied for Q_1, \ldots, Q_{n+1} and $x_1, x_2, \ldots, x_{n+1}$. Moreover, (3) is satisfied for B_{n+1} by choice of x_{n+1} and B_{n+1} . By induction, we conclude that there exist infinite sequences $\{Q_i\}_1^\infty$, $\{A_i\}_1^\infty$ and $\{B_i\}_1^\infty$ so that conditions (1), (2) and (3) are satisfied for all n.

We define $A = \bigcap_{i=1}^{\infty} Q_i$, and we note that this representation is irredundant since $x_n \in \bigcap_{j \neq n} Q_j$ and $x_n \notin Q_n$ for each *n*. Moreover, $A: (x_n) = Q_n: (x_n)$ is P_n -primary for each *n*. This implies that A admits no representation as a finite intersection of primary ideals, for if it did-say $A = \bigcap_{i=1}^{k} H_i$ is a shortest representation, where H_i is M_i -primary-then a standard argument shows that $\{M_i\}_{i=1}^k$ is the set of prime ideals of R realizable as the radical of an ideal of the form A: (x). Therefore R is not Laskerian, and this completes the proof of Theorem 4.

We remark that the ZD-property implies neither (1) ascending chain condition for prime ideals (a.c.c.p.), nor (2) that each ideal has only finitely many minimal primes. For example, each valuation ring is a ZD-ring, and a valuation ring need not satisfy a.c.c.p. For (2), let $\{X_i\}_{i=1}^{\infty}$ be a set of indetminates over the field K, let $D = \bigcup_{n=1}^{\infty} K[[X_1, \ldots, X_n]]$ and let $R = D/(\{X_1X_j | i \neq j\})$. The ring R is one-dimensional quasi-local with maximal ideal $M = (\{x_n\}_1^{\infty})$, and $\{P_i\}_{i=1}^{\infty}$ is the set of minimal primes of R, where $P_i = (\{x_j | j \neq i\})$. The union of each infinite subset of $\{P_i\}_{i=1}^{\infty}$ is M, so R is a ZD-ring, but (0) has infinitely many minimal primes.

References

[AGH] J. T. Arnold, R. Gilmer and W. Heinzer, Some countability conditions in a commutative ring, Illinois J. Math. 21 (1977), 648-665.

[B] N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.

[E] E. G. Evans, Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155 (1971), 505-512. MR 42 #7654.

[HO] W. Heinzer and J. Ohm, On the Noetherian-like rings of E. G. Evans, Proc. Amer. Math. Soc. 34 (1972), 73-74. MR 45 # 3385.

[M] S. Mori, Uber eindeutige Reduktion in Ringen ohne Teilerkettensatz, J. Sci. Hiroshima Univ. Ser. A 3 (1933), 275–318.

[OP] J. Ohm and R. Pendleton, Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631-640. MR 37 #5201.

[ZS] O. Zariski and P. Samuel, *Commutative algebra*, vol. I, The University Series in Higher Mathematics, Van Nostrand, Princeton, N. J., 1958.

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907