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Epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor involved in

homeostatic regulation of normal cells and carcinogenesis of epithelial malignancies.

With rapid development of the precision medicine era, a series of new therapies targeting

EGFR are underway. Four EGFR monoclonal antibody drugs (cetuximab, panitumumab,

nimotuzumab, and necitumumab) are already on the market, and a dozen other

EGFR monoclonal antibodies are in clinical trials. Here, we comprehensively review the

newly identified biological properties and anti-tumor mechanisms of EGFR monoclonal

antibodies. We summarize recently completed and ongoing clinical trials of the classic

and new EGFRmonoclonal antibodies. More importantly, according to our new standard,

we re-classify the complex evolving tumor cell resistance mechanisms, including those

involving exosomes, non-coding RNA and the tumor microenvironment, against EGFR

monoclonal antibodies. Finally, we analyzed the limitations of EGFR monoclonal antibody

therapy, and discussed the current strategies overcoming EGFR related drug resistance.

This review will help us better understand the latest battles between EGFR monoclonal

antibodies and resistant tumor cells, and the future directions to develop anti-tumor EGFR

monoclonal antibodies with durable effects.

Keywords: monoclonal antibodies, non-coding RNA, tumor microenvironment, epidermal growth factor receptor,

resistance, exosomes

INTRODUCTION

Over 30 years ago, Stanley Cohen and Rita Levi-Montalcini discovered epidermal growth factors
(EGF) and nerve growth factors (NGF) and won the Nobel Prize for Physiology and Medicine (1).
Epidermal growth factor receptor (EGFR), also known as Her-1 or ErbB-1, the expression product
of the proto-oncogene C-erbB-1, is a 170-kDa transmembrane glycoprotein composed of a single
polypeptide chain. EGFR (HER1), ErbB-2 (HER2), ErbB-3 (Her3), and ErbB-4 (Her4) constitute
the ErbB receptor family.
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Cancers are difficult to treat due to their complexity (2–6).
Members of the HER family are overexpressed, dysregulated,
or mutated in many human Tumors, including colorectal, head
and neck, and small cell lung cancers. As a result, EGFR has
become one of the most popular cancer treatment targets (7). To
date, there are two main drug types for cancer targeted therapy
based on high EGFR expression: EGFR monoclonal antibodies,
including the currently approved cetuximab, panitumumab,
nimotuzumab, and necitumumab, and tyrosine kinase inhibitors,
including afatinib, erlotinib, gefitinib, and osimertinib, which
have been approved for marketing. However, as with other
cancer therapeutics, these treatments lead to drug resistance (8),
and only a few patients have a lasting response to currently
available treatments.

In this review, we summarize the mechanisms of action of
monoclonal antibody drugs targeting EGFR as well as their
clinical trials and market conditions. We additionally list the
latest EGFR drug resistances and comprehensively evaluate the
latest strategies to overcome EGFR resistance.

CHARACTERISTICS OF EGFR

EGFR binds to its natural ligand and then form homo- or
heterodimers with ErbB family members, thereby triggering
activation of the downstream signaling pathway and affecting
cell differentiation and proliferation. As the 60 receptor protein
tyrosine kinases (RTKs) found in the human genome, EGFR
primarily have extracellular ligand-binding, transmembrane and
intracellular kinase regions (Figure 1) (9, 10). The extracellular
domain can be divided into four sub-structures. The extracellular

FIGURE 1 | The EGFR structure, signaling pathways, and functions.

domain can be divided into four sub-structures. Domains
I and III can to bind ligands and have a β-helical fold:
Two cysteine-rich regions, domains II and IV, are responsible
for the opening of the receptor dimerization interface. The
transmembrane domain contains an alpha helix transmembrane
peptide. The intracellular domain contains a 250-amino-acid
conserved protein tyrosine kinase core and 229 C-tail residues
to regulate tyrosine residues (11, 12).

ErbB receptors are widely expressed in various cell types.
Under steady state conditions, receptor activity is effectively
regulated by the ligand (13). Binding of ligands, such as EGF,
to the EGFR extracellular domain induces EGFR dimerization,
thereby activating EGFR tyrosine kinase activity and receptor
trans autophosphorylation (14). EGFR ligand family can be
divided into three groups. The first group includes the epidermal
growth factor, epigen and amphiregulin, and transforming
growth factor alpha, which are specialized to bind only EGFR.
The second group includes betacellulin, epiregulin HB-EG,
which bind EGFR andHer4. The third group includes neuregulin
(NRG1-4), which is further subdivided based on their binding
ability to Her3 and Her4 (NRG1 and nrG2) or only Her4
(nrG3 and nrG4) (15). The ErbB receptor (homologous and
hetero- dimers), activated upon binding to a ligand, forms a
signal transduction complex with a number of signaling proteins.
Subsequently, at least five downstream signaling pathways (such
as Ras/ERK, PI3K/Akt, and STAT) are activated, controlling cell
proliferation, differentiation, apoptosis, and other forms of cell
death. More importantly, EGFR overexpression (up-regulation
or amplification) or mutation is usually associated with
progression and resistance of epithelial tumors (16) (Figure 1).

Frontiers in Oncology | www.frontiersin.org 2 July 2020 | Volume 10 | Article 1249

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Cai et al. Epidermal Growth Factor Receptor

ANTI-TUMOR MECHANISMS AND
EFFECTS OF EGFR mAbs

Currently, the anti-EGFR treatment includes monoclonal
antibodies (mAbs), Tyrosine kinase inhibitors (TKIs), immune
therapies using vaccines, and antisense therapies (17). However,
monoclonal antibodies and TKIs exert effective anti-EGFR
therapy in clinical trials. Currently, there are four major EGFR
monoclonal antibodies approved for clinical usage, namely
cetuximab, panitumumab, nimotuzumab, and necitumumab.

EGFR monoclonal antibodies exert antitumor activity by
specialized structures that have different functions. The variable
region fragment (FV) is an important component of a
monoclonal antibody. It consists of a portion of the light and
heavy chains of the antibody. This part of the structure can
specifically recognize tumor receptors and cause a series of
direct or indirect Tumor suppression response, taking cetuximab
as an example (Figure 2). Many studies have shown that: (a).
Cetuximab blocks ligand binding to EGFR by competitively
binding to specific extracellular regions of EGFR, thereby
inhibiting the EGFR downstream signaling (18, 19); (b). It
sterically hinders the binding of EGFR to other Her family
members; (c). Cetuximab inhibits EGFR downstream signaling
cascade by promoting EGFR internalization and degradation
(19); (d). It can also cause cell cycle arrest at G1 by increasing cell

cycle inhibitor p27 kip1 and inhibiting proliferating cell nuclear
antigen (PCNA) (20); (e). Tumor cells with high expression of
EGFR are often accompanied by a significant increase in the level
of pro-angiogenic factors, resulting in increased angiogenesis.
Cetuximab can significantly inhibit the expression of pro-
angiogenic factors, thereby reducing tumor angiogenesis (21–23);
(f). Cetuximab or other similar anti-EGFR antibody treatments
alter Bcl-2 (anti-apoptosis) and Bax (pro-apoptosis) protein
balance, promoting apoptosis in tumor cells (23, 24); (g). In a
recent study, cetuximab was shown to induce radiosensitization
of A549 cells by increasing H2AX (H2A histone family, member
X) levels and inhibiting DNA-pk (25). With the development
of monoclonal antibody engineering, a variety of FV-based
engineered monoclonal antibodies have been derived, such as
single chain antibody fragment (scFv), Bispecific T cell Engager
(BiTE) and so on. Studies have reported (26) that chimeric
antigen receptor T-cell immunotherapy (CAR-T) based on scFv
has significant effects in preclinical trials. In addition, oncolytic
viruses armed with scFv have also shown considerable efficacy in
tumor treatment (27). Fv can play a greater role in combination
with other therapies due to its specific antigen recognition
function, which is a key factor in targeted therapy.

The monoclonal antibody constant region FC mediates
monoclonal antibody innate immunity, which mainly binds
immune factors or cells in the body to exert a tumor suppressing

FIGURE 2 | The major anti-tumor mechanisms of EGFR monoclonal antibodies. Cetuximab inhibits EGFR by the following mechanisms: (a) competitively blocking

ligand binding to EGFR; (b) sterically hindering the binding of EGFR to other Her family members; (c) promoting EGFR internalization and degradation; (d) activating the

complement dependent cytotoxicity (CDC) pathway; (e) causing cell cycle arrest at G1; (f) inhibiting the expression of pro-angiogenic factors; (g) promoting apoptosis;

(h) natural killer (NK) cells or macrophages mediated antibody-dependent cellular cytotoxicity (ADCC); (i) increasing H2AX levels and inhibiting DNA-pk.
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effect. Studies have shown that (h). It inhibits tumor cell growth
through the complement dependent cytotoxicity (CDC) pathway
(28); (i). Cetuximab belongs to the IgG1 type and can bind to
FcR on the surface of natural killer (NK) cells or macrophages
by its own Fc segment, thereby producing antibody-dependent
cellular cytotoxicity (ADCC) (29, 30); Pollack et al. (31) found
that the direct immune effect of EGFR antibodies is related to
MHC molecules. Later, some researchers compared the immune
effects related to the FC region of different EGFR monoclonal
antibodies. In head and neck cancer, Trivedi et al. (32) performed
a side-by-side comparison of cetuximab and panitumumab. The
results showed that although panitumab the degree of effective
inhibition of EGFR signaling by mAb is similar to that of
cetuximab, but it is less effective in mediating anti-tumor cell
immune mechanisms. Similarly, cetuximab, panitumumab, and
nimotuzumab The direct comparison between them was carried
out by Mazora et al. (33). Although all three drugs target the
EGFR receptor, they can cause different immune effects, and we
can better combine drugs for these differences. Therefore, the
innate immunity caused by the monoclonal antibody FC region
is very important in the treatment of tumors.

Similarly, nimotuzumab and panitumumab also exert an
anti-tumor effect by competitively binding to different regions
of the EGFR extracellular region to inhibit downstream
signaling pathways. Panitumumab is a fully human recombinant
κ immunoglobulin G2 (IgG2) monoclonal antibody with a
molecular weight of∼147 kD and a high-affinity specific binding
to the extracellular domain of EGFR (30). Nimotuzumab (h-
R3) is a humanized monoclonal antibody that inhibits the
downstream cascade of EGFR signaling by specifically binding to
the extracellular domain of EGFR (34). Natural killer (NK) cells
are activated by nimotuzumab, after which nimotuzumab induce
Dendritic cell (DC) maturation and tumor antigen (TA)-specific
CD8+ T cells. HLA-I expression on tumor cells can be restored
by nimotuzumab, reversing an EGFR-mediated mechanism of
immune-escape of tumors (35). The extracellular region domain
III of EGFR can be bound by nimotuzumab, which overlaps with
the site recognized by cetuximab mAb. The difference is that
nimotuzumab binds to EGFR and blocks EGF binding, but allows
EGFR to adopt its active conformation, and EGFR signaling
can be reduced to a ligand-independent level via nimotuzumab
interference. Necitumumab (IMC-11F8) is a fully human IgG1
mAb that targets the region of EGFR extracellular domain III and
blocks ligand binding to EGFR, which is currently used primarily
for the treatment of non-small cell lung cancer (NSCLC) (36).
Although both Necitumumab and Nimotuzumab bind to the
domain III of EGFR, they bind to different sites. Nimotuzumab
competitively bind to the domain III (353–358) of EGFR with
ligand and Necitumumab competitively bind to the domain
III (384–409) of EGFR with ligand, this structural difference
may lead to differences in the efficacy and resistance of the
two antibodies.

Besides the above four approved drugs, there are some other
antibodies currently being tested: Mab A13, AMG595, cetuximab
(Erbitux, C225), depatuxizumab (ABT 806), depatuxizumab,
mafodotin, duligotuzumab (MEHD7945A, RG7597), Futuximab
(Sym004), GC1118, imgatuzumab (GA201), matuzumab (EMD

72000), necitumumab (Portrazza), nimotuzumab (h-R3),
anitumumab (Vectibix, ABX-EGF), zalutumumab, humMR1,
and tomuzotuximab (Table 1).

We summarized all the EGFR monoclonal antibody drugs
described above (Table 1). These monoclonal antibodies are
basically the IgG type, primarily IgG1. Unlike IgG2 type
antibodies, the specific response functions of IgG1mainly include
ADCC and CDC (41). Panitumumab is a human IgG2 isotype,
which is often considered to have limited immune effector
functions (42). Most of these antibodies are humanized or
chimeric antibodies with reduced immunogenicity and antigen
affinity. These EGFR monoclonal antibodies can have different
anti-cancer characteristics depending on their Fv and Fc regions.
The drug patents of panitumumab, necitumumab, matuzumab,
and cetuximab have expired or are about to expire.

Pre-clinical Studies and Clinical Trials of
EGFR mAbs Available on the Market
EGFR is involved in the growth and metastasis of a variety of
epithelial malignancies, and EGFR inhibitors have been used as a
routine treatment in clinical oncology. Here, key and new clinical
trials are collated (8) (Table 2).

Cetuximab

Cetuximab was approved by the FDA for metastatic colorectal
cancer (CRC) and KRAS wild-type CRC in 2004 and 2009,
respectively. A series of related clinical trials confirmed the
efficacy of cetuximab. In a randomized phase II clinical trial
of cetuximab and irinotecan in the treatment of irinotecan
refractory metastatic CRC, EGFR-positive patients were
randomized into two groups according to a 2:1 approach.
One group received cetuximab alone (111 patients) and the
other group received irinotecan + cetuximab (218 patients).
This study confirmed that cetuximab has certain effect as the
partial radiological response rate of the combination therapy
and monotherapy groups were 22.9 and 10.8%, respectively.
In addition, there was a significantly longer time to tumor
progression in favor of the combination arm (4.1 compared to
1.5 months). The toxicity of the combination treatment group
was more frequent, but its severity were similar to those expected
for irinotecan alone (43). This level of radiological response has
accelerated FDA approval of cetuximab in the United States.
Full approval followed the demonstration that cetuximab with
best supportive care was associated with an overall survival
(OS) advantage when compared to best supportive care alone
(57). However, the use of cetuximab’s small-scale efficacy and
the determination of KRAS status made its clinical significance
questionable. In a retrospective analysis of tumor patients, OS
after cetuximab treatment was higher in patients with KRAS
wild-type tumors (9.5 vs. 4.8 months). The incidence of adverse
events at grade 3 (or higher) in the cetuximab group was 78.55%
compared to 59.1% in the support group alone (P < 0.001) (44).

Phase III or IV clinical trial was carried out comparing
the efficacy of X-Ray Therapy (XRT) alone or XRT cetuximab
in patients with head and neck squamous cell carcinoma.
The trial (45) recruited 424 patients at multiple countries and
centers in <3 years. Patients were randomly assigned to receive
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TABLE 1 | Complete list of EGFR monoclonal antibodies (37–40).

Drugs Mechanism of action of

McAb

Disease Antibody type R&D company Market

status

Clinical trial

batch number

Patent

expiry

Mab A13 Competitively bind to the

domain III of EGFR with

ligand

NR Humanized IgG1

antibody

NR NR NR NR

AMG595 Linker to the cytotoxic agent

maytansinoid DM1 target

EGFRvIII

Recurrent glioblastoma

Multiforme

Humanized IgG1

antibody

Amgen Inc. Clinical trials NCT01475006 NR

Cetuximab

(Erbitux, C225)

Competitively bind to the

domain III (408–468) of

EGFR with ligand, generate

ADCC effect

HNSCC (M)

Metastatic colorectal

cancer (M)

Chimeric IgG1 antibody Eli Lilly and

Company,

Merck KGaA,

Bristol

Myers

Squibb Company

Marketed NCT01012258 02/2018

Depatuxizumab

(ABT 806)

Competitively bind to region

of domain II with ligand and

inhibits receptor

dimerization

Solid tumors Humanized IgG1

antibody

AbbVie Inc Clinical trials NCT01800695 NR

Depatuxizumab

mafodotin

NR NSCLC

Malignant glioma

Glioblastoma

Multiforme

IgG1 antibody to toxin

conjugate

AbbVie Inc Clinical trials NCT02573324

NCT02343406

NR

Duligotuzumab

(MEHD7945A,

RG7597)

A monoclonal antibody with

dual EGFR/HER3 specificity

Colorectal cancer

HNSCC

NSCLC

Humanized

IgG1 antibody

Hoffmann-La

Genentech Inc, F.

Roche Ltd.

Clinical trials NR 09/2031

Futuximab

(Sym004)

Competitively bind to the

domain III of EGFR with

ligand

Colorectal cancer

HNSCC

NSCLC

Mixture of two chimeric

IgG1 antibodies

NR NR NR 05/2028

GC1118 Competitively bind to the

domain III (350–360) of

EGFR with ligand

Colorectal cancer

Gastric cancer

Solid tumors

Humanized

IgG1 antibody

Green Cross

Corporation

Clinical trials NCT03618667 12/2029

Imgatuzumab

(GA201)

The Fc region of GA201 is

glycosyl-modified to contain

bisected non-fucosylated

carbohydrates to enhance

binding to FcγRIIIA

Squamous Cell

Carcinoma

Head and Neck

Humanized

IgG1 antibody

Roche Clinical trials NCT01046266 NR

Matuzumab (EMD

72000)

Competitively bind to the

domain III (460–461) of

EGFR with ligand

INACTIVE Humanized

IgG1 antibody

EMD Serono Inc.,

Merck

KgaA

INACTIVE NCT00215644 09/2013

Necitumumab

(portrazza)

Competitively bind to the

domain III (384–409) of

EGFR with ligand

NSCLC (M)

Solid tumors

Humanized IgG1

antibody

Eli Lilly and

Company

Marketed NCT01624467 03/2025

Nimotuzumab

(h-R3)

Competitively bind to the

domain III (353–358) of

EGFR with ligand

HNSCC (M)

Metastatic pancreatic

Cancer

Esophageal cancer

Gastric cancer

Humanized IgG1

antibody

InnoMab Pte. Ltd.,

Biocon Ltd

Marketed NCT00369447 11/2015

Panitumumab

(Vectibix,

ABX-EGF)

Competitively bind to the

domain III (386–391) of

EGFR with ligand

Metastatic colorectal

Cancer (M)

Solid tumors

Humanized IgG2

antibody

Amgen Inc.,

Takeda

Pharmaceutical

Company Ltd.

Marketed NCT00842257 04/2020

Zalutumumab NR NR Humanized IgG1

antibody

Genmab A/S Clinical trials NCT01054625 NR

HumMR1 The MR1 murine antibody

was subjected to

humanization through CDR

grafting method

NR Chimeric anti-EGFR

monoclonal IgG1

antibody

NR NR NR NR

Tomuzotuximab IgG1 sugar engineered mAb Solid tumors Cetuximab is enhanced

by IgG1 glycosylation

to enhance ADCC

effect

Glycotope GmbH Clinical trials NTC01222637 NR

EGFR, epidermal growth factor receptor; EGF, epidermal growth factor; M, marketed; HNSCC, head and neck squamous cell carcinoma; NR, not reported; NSCLC, non-small cell lung

cancer; DM1, a cytotoxic agent; ADCC, antibody-dependent cell-mediated cytotoxicity; HER3, Receptor tyrosine-protein kinase erbB-3; CDR, complementarity-determining region;

mAB, monoclonal antibody.

Frontiers in Oncology | www.frontiersin.org 5 July 2020 | Volume 10 | Article 1249

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


C
a
ie
t
a
l.

E
p
id
e
rm

a
lG

ro
w
th

F
a
c
to
r
R
e
c
e
p
to
r

TABLE 2 | Clinical trials of the approved EGFR antibody drugs.

Tumor type Drug X Combination

therapy drugs

Route, dose Comparison (medication

group and control group)

Efficacy (PR, OS,

PFS et), survival

benefit = months

Safety (list grade III and IV

adverse events)

Phase I, II, III (n) References/

clinical trials

Metastatic

colorectal cancer

Cetuximab Irinotecan Initially 400 mg/m²

followed by weekly 250

mg/m²

Cetuximab combined with

irinotecan (218) vs.

irinotecan (111)

PR 22.9 vs. PR 10.8% Grade III and IV adverse events

65.1 vs. 43.5%

Phase II (329) (43)

Colorectal cancer Cetuximab BSC Initially 400 mg/m² to

weekly infusions at 250

mg/m²

Cetuximab plus BSC (287)

vs. BSC (285)

OS = 6.1 vs. 4.6

KRAS wild type

OS = 9.5 vs. 4.8

Grade III and IV adverse events

78.5 vs. 59.1%

Randomized

Phase III (572)

(44)

Head and neck

squamous cell

cancer

Cetuximab XRT 400 mg/m² initial dose

to followed weekly

doses at 250 mg/m²

RT (213) vs. RT plus

Cetuximab (211)

OS = 29.3 vs. 49.0 Received cetuximab had a

greater number of grade 3 and 4

infusion reactions (3%)

Phase III (424) (45)

Head and neck

squamous cell

carcinoma

Cetuximab Panitumab Cetuximab 2.5, 25,

62.5 mg/m2

panitumumab-0.06,

0.5, and 1 mg/kg,.

Cetuximab (n = 12) vs.

panitumab (n = 15)

NR Cetuximab-IRDye800CW and

panitumumab-IRDye800CW

grade 1 adverse events,

respectively, is 15 and 1

Phase I (27) (46)

Advanced NSCLC Cetuximab Carboplatin and

paclitaxel

250 mg/m² weekly

after loading dose

Cetuximab vs. control Median OS = 5.4 vs.

4.8

210 [37%] in the cetuximab

group vs. 158 [25%] in the

control group

Phase 3 (277) (47)

SCCHN Cetuximab Nivolumab 250 mg/m² weekly

after loading dose

Cetuximab + IC vs.

Nivolumab+ Cetuximab

OS = 5.1 vs. 7.1 Favored nivolumab vs. IC Phase 3 (361) NCT02105636

Metastatic

colorectal cancer

Panitumumab BSC Panitumumab 6 mg/kg

every 2 weeks

Panitumumab plus

BSC (231) vs. BSC (232)

PR = 8 vs. 0% Skin Toxicity 3/4

14 vs. 0%

Phase III (463) (48)

Metastatic

colorectal cancer

Panitumumab FOLFOX4 Intravenously (IV) over

1 h at 6 mg/kg every 2

weeks on day

Panitumumab-FOLFOX4 vs.

FOLFOX4 (1:1)

PFS = 9.6 vs. 8.0

OS = 23.9 vs. 19.7

Grade 3/4: 96 vs. 31% Phase III (1,183) (49)

KRAS wild-type

biliary cancer.

Panitumumab Cisplatin and

gemcitabine

9 mg/kg BW, i.v q3w Cisplatin and gemcitabine +

panitumumab (A) vs.

cisplatin + gemcitabine (B)

PFS = 54 vs. 73% OS

= 12.8 months (arm A)

vs. 20.1 months (arm

B)

Neutropenia26 (44%) vs. 13

(47%)

Phase II (90) (50)

Confirmed

metastatic colon

or rectum

adenocarcinoma

Panitumumab BSC 6.0mg /kg Panitumumab with BSC, n

= 142; vs. BSC, n = 128

PFS = 5.2 vs. 1.7 OS

= 10.2 vs. 7.4

PAN WITH BSC 46.4% vs.

BSC18.7

Phase III (270) (51)

HNSCC Nimotuzumab Cisplatin Nimotuzumab (200

mg/week)

CRT + nimotuzumab (20)

vs. CRT (20) vs. RT +

nimotuzumab (17) vs. RT

groups (19)

CR = 90 vs. 70 vs.

70.59 vs. 31.01%

PR = 10 vs. 0 vs. 5.88

vs. 5.26%

Grade 3/4: 55 vs. 25 vs. 59 vs.

84%

Phase IIb (92) (52)

Nasopharyngeal

carcinoma.

Nimotuzumab Chemoradiotherapy 200mg, iv weekly for 7

courses

Single-arm treated with

induction chemotherapy,

sequential Nimotuzumab

plus concurrent

chemoradiotherapy

OS = 85.6% LRC =

97.8% PFS = 79.5%

Neutropenia (35.5)

Thrombocytopenia (17.7)

Phase II (45) (53)

Advanced

esophageal

squamous cell

cancer

Nimotuzumab Paclitaxel and

cisplatin

Nimotuzumab 200mg

weekly

Single arm RR = 51.8% DCR =

92.9% OS = 14.0

months

Alopecia (78.6%)

Neutropenia (46.4%),

nausea (48.3%)

Phase II (56) (54)

(Continued)
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radiotherapy with (n = 211) or without (n = 213) cetuximab.
Weekly doses of cetuximab: 400 mg/m² initial dose, followed by
seven weekly doses at 250 mg/m². Cetuximab has significantly
improved the OS. For patients treated with RT plus cetuximab,
the median duration of OS was 49.0 months, but was 29.3
months for those treated with RT alone. Furthermore, the authors
did not report any increase in the toxicity usually associated
with radiotherapy for HNSCC. FDA approved cetuximab in
combination with local or regional advanced XRT refractory
HNSCC or as a platinum refractory monotherapy for recurrent
or metastatic HNSCC.

Herbst et al. (47) studied the activity of cetuximab with
carboplatin and paclitaxel in EGFR-FISH positive (EGFR-
FISH+) patients. Progression-free survival (PFS) was not
significantly different between the arms among the EGFR-FISH+

subpopulation (HR = 0.92 [0.75–1.12], P = 0.40). OS was not
significantly different among treatment arms in the overall study
population (HR = 0.93 [0.83–1.04], P = 0.22). In a prespecified
analysis among patients with EGFR-FISH+ cancers, OS was
significantly improved in the cetuximab group (HR = 0.58
[0.39–0.86], P = 0.01): median OS of 11.8 months (95% CI:
8.6–13.5) and 6.1 months (95% CI: 4.2–8.7) in cetuximab and
chemotherapy arms, respectively. The most common grade 3–4
Adverse Events (AEs) were neutropenia (n= 210 cetuximab; n=
158 control). Grade 5 AEs occurred in 5% (n = 32) of cetuximab
and 2% (n= 13) of controls.

Recently, researchers have begun to use therapeutic antibodies
for surgical imaging and other related research. Gao et al.
(46) studied the safety and pharmacodynamic properties of
cetuximab-IRDye800CW and panitumumab-IRDye800CW. In
two phase I trials, their results showed that the two drugs had
similar toxicity and efficacy to the parent compound, and the
experimental results indicated the therapeutic antibody can be
used as a clinically relevant imaging agent. These studies showed
the safety and efficacy of cetuximab modification, and indicate
that such antibodies can be used as imaging agents.

In a phase III clinical trial, Ferris et al. (58) conducted
a combination of EGFR monoclonal antibody and PD-1
monoclonal antibody. Stratification was based on previous
cetuximab exposure. For patients previously receiving cetuximab,
the median OS of nivolumab was 7.1 months and the median OS
of IC was 5.1 months (HR, 0.84; 95% CI, 0.62–1.15). Nivolumab
appeared to improve efficacy vs. IC regardless of prior cetuximab
use, supporting its use in patients with R/M SCCHN with
or without prior cetuximab exposure. Cetuximab regulates the
immune response and may affect the efficacy of subsequent
immunotherapy. The combination of cetuximab with other new
drugs is worth studying to get better results.

Panitumumab

In a clinical study (49), 463 patients with colorectal cancer were
randomly assigned to 2 treatment groups (1:1). One group was
treated using the best supportive treatment (232), whereas the
other group was treated with panitumumab plus best supportive
care (231). The favorable effect of panitumumab plus best
standard care (BSC) on PFS was evident among all patients,
irrespective of age, and number of previous treatments. The

Frontiers in Oncology | www.frontiersin.org 7 July 2020 | Volume 10 | Article 1249

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Cai et al. Epidermal Growth Factor Receptor

FDA updated the label of panitumumab for the treatment of
metastatic colorectal cancer, including information about KRAS
mutations: When the KRAS mutation in codon 12 or 13 was
found, panitumumab showed no therapeutic effect.

Other studies have shown that panitumumab was ineffective
in patients with NRAS mutations (59). It is also approved as
a first-line agent in combination with FOLFOX (49). Although
EGFR is targeted like cetuximab, the mechanisms of action of the
different types of EGFR antibodies, such as panitumumab (IgG2)
and cetuximab (IgG1), may differ. In addition to activating
the complement-dependent cytotoxicity (CDC), IgG1 EGFR
monoclonal antibodies can also mediate ADCC to produce
tumor killing effect.

It is not clear which drug is better, and one study showed
that the activity of both drugs was similar (60). Recently, Vogel
et al. (50) reported chemotherapy and panitumumab to be used
in KRASwild type biliary tumor treatment plan. They divided the
patients into group A (cisplatin/gemcitabine and panitumumab)
and group B (cisplatin/gemcitabine treatment without antibody).
PFS rate at 6 months was 54% (group A) vs. 73% (group B). Their
results show that panitumumab combined with chemotherapy
does not improve OS and objective response rate of patients with
KRAS wild-type advanced cholangiocarcinoma. Panitumumab
may have certain effect in other types of solid tumors. In another
study, Kim et al. (51) analyzed the effect of panitumumab
treatment based on RAS and v-Raf murine sarcoma virus
oncogene homology B (BRAF) mutation status. The results
show that panitumumab improves the survival of wild-type
RAS mCRC.

Although panitumumab effectively inhibits EGFR signaling
to a degree similar to cetuximab, it is less effective in mediating
antitumor cell immune mechanisms. This may explain the
difference in their clinical efficacy (32).

Nimotuzumab

Nimotuzumab (h-R3), a humanized monoclonal antibody, has
been used in the treatment of HNSCC in some countries (61),
and is a glioma orphan drug in the United States and the
European Union. In a study (52) in which nimotuzumab was
used in patients with advanced HNSCC, the nimotuzumab
plus CRT group showed a good 5-year survival rate. In
another phase II clinical study (53), results showed that
induction chemotherapy and sequential nimotuzumab plus
concurrent chemoradiotherapy yielded excellent survival benefits
and tolerable toxicity.

In addition, some new combination treatments seem to have
great prospects. Lu et al. (54) assessed the efficacy and safety of
nimotuzumab as a first-line treatment for advanced esophageal
squamous cell carcinoma (ESCC). A total of 56 patients were
enrolled in the trial, and the results suggest that the new
combination of nimotuzumab plus chemotherapy is a more
effective first-line treatment than the standard chemotherapy
regimen. Other studies have shown (33) that nimotuzumab
combined with cisplatin-based chemotherapy and radiotherapy
will increase the frequency of peripheral CD4 + CD39 +

FOXP3 + Treg, otherwise the frequency of nimotuzumab
will decrease when used as monotherapy To baseline value.

Therefore, studying the relationship between immune cells and
nimotuzumab is beneficial to the clinical benefit of patients.

Necitumumab

In 2015, necitumumab was approved by the US FDA for the
treatment of refractory metastatic squamous NSC lung cancer
(NSCLC). In the study by Spigel et al. (55), a total of 176 patients
were enrolled and randomized to either the necitumumab group
or the chemotherapy alone group. Their results show that
necitumumab and chemotherapy improve survival in patients
with advanced squamous NSCLC. In another study, Ciuleanu
et al. (56) studied the efficacy and safety of necitumumab in
patients with stage IV squamous non-small cell lung cancer.
The results of the study showed that necitumumab had the
same efficacy and acceptable safety compared to those of other
treatments (chemotherapy). Necitumumab is now a new first-
line treatment option for squamous NSCLC (62). EGFR-directed
monoclonal antibody therapy remains limited. At present,
research related to nizumab and other immunotherapy and
targeted drugsmay lead to better results for patients with NSCLC.

Hence, the currently listed drugs, mono- or combination
therapies, can improve survival rate and prolong remission
period. Some tumors achieved complete remission. The side
effects of the drugs were also within acceptable limits. However,
further clinical trials are still required to determine the
therapeutic effects and side effects of these drugs. More patients
may benefit from these drugs in the future.

Clinical Trials of EGFR mAbs That Are Not
in the Market
Here, we listed the clinical trials in which the pre-market
EGFR antibodies are being tested for their efficacy and side
effects (Table 3). Duligotuzumab (MEHD7945A) is a dual
EGFR/Her3 inhibitory antibody while Sym004 is a 1:1 mixture
of two recombinant mAbs (futuximab and modotuximab),
which bind specifically to non-overlapping epitopes located in
the extracellular domain (ECD) of the EGFR. Depatuxizumab
competitively binds to region of domain II with ligand and
inhibits receptor dimerization. Depatuxizumab mafodotin is an
Anti-EGFR Antibody Drug Conjugate. Several other antibodies
(matuzumab; nimotuzumab; zalutumumab) can be competitively
bind to the domain III of EGFR with ligand, but their binding
sites are different.

Depatuxizumab mafodotin (depatux-m) as an antibody drug
conjugate in an open-label research treatment of 60 patients with
recurrent glioblastoma showed preferable objective response
rate, PFS, and OS of 14.3, 25.2, and 69.1%, respectively (63).
Depatuxizumab is mainly used for solid tumors in which EGFR
is highly expressed. In a phase I clinical study, the median
time to progression of 49 glioblastoma patients was 55 days
and glioblastoma patients in control patients was 43 days.
Depatuxizumab was administered at a dose of 2 mg/kg every
other week (eow) and was extended to 6, 12, 18, 24 mg/kg (eow),
with about grade 3/4 AEs in 11 patients. A total of 14 patients died
during the study due to disease progression. NoOverall Response
(OR) occurred (64).
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TABLE 3 | Clinical trials of the un-approved EGFR antibodies.

Tumor type Drug X Combination

therapy drugs

Route, dose Comparison (medication

group and control group)

Efficacy (n/N, % of CR,

PR, SD, NR), survival

benefit = months

Safety (list grade III and

IV adverse events)

Phase I, II, III (n) References/

clinical trials

Recurrent

glioblastoma

Depatuxizumab

mafodotin

Temozolomide Depatux-m (0.5–1.5

mg/kg)

Single arm increments OR was 14.3%, PFS was

25.2%, and OS was 69.1%.

Grades 3/4 AEs occurring in

22% of patients

Phase I

multicenter trial

(60)

(63)

Advanced solid

tumors

Depatuxizumab

(ABT-806)

NR 2 mg/kg every other

week (eow) to escalate

to 6, 12, 18, and 24

mg/kg eow.

Single arm increments Median time to progression

was 55 vs. 43 days. No OR

occurred

Grade 3/4 AEs n = 11

(22%)

Phase I (49) (64)

Squamous cell

carcinoma of the

head and neck

Duligotuzumab Cetuximab Duligotuzumab

(1,100mg IV, q2w)

Both arms (duligotuzumab

vs. cetuximab 59:62)

PFS was 4.2 vs. 4.0

months; HR: 1.23, OS was

7.2 vs. 8.7 months; HR 1.15

and ORR (12 vs. 14.5%)

Duligotuzumab vs.

cetuximab, and GI disorders

(17 vs. 7%), infections (22

vs. 11.5%)

Phase II (121) (65)

Metastatic

colorectal cancer

Sym004

(futuximab +

modotuximab)

BSC or 5-FU or

Capecitabine

A: Sym004 (12 mg/kg)

B: Sym004 (9/6 mg/kg)

A: Sym004 (12 mg/kg)

B:Sym004 (9/6 mg/kg)

C: Standard of Care

OS = 7.9 vs. 10.3 vs. 9.6

CR = 0 (0) vs. 0 (0) vs. 1

(1.2)

PR = 11 (13.3) vs. 8 (9.3)

vs. 1 (1.2)

A: 58 (69.9%) vs. B: 41

(48.8%) vs. C: 9 (11.5%)

Phase II (254) NCT02083653

Head and neck

squamous cell

carcinoma

Imgatuzumab

(GA201)

Cetuximab Imgatuzumab (700mg)

or (1,400mg)

Imgatuzumab (700mg) vs.

Imgatuzumab (1,400mg) vs.

Cetuximab

Downregulation of

EGFR−35% [700mg];

−42% [1,400mg]; −21%

[cetuximab]

10 (48%) vs. 14 (70%) vs.

10 (56%)

n = 59 (66)

Advanced gastric

and

esophagogastric

adenocarcinomas

Matuzumab

(EMD 72000)

5-fluorouracil,

leucovorin and

cisplatin (PLF)

400mg matuzumab in

combination with PLF

or 800mg matuzumab

400mg dose n = 7; 800mg

dose n = 8

The best confirmed overall

response rate was 26.7%

0 (0) vs. 2 (13.3%) Phase I (15) (67)

Advanced

non-small cell lung

cancer

Nimotuzumab

(h-R3)

Gefitinib 200mg, i.v. weekly Nimotuzumab plus gefitinib

(78) vs. gefitinib alone (77)

PR = 13 (16.7%) vs. 17

(22.1%)

SD = 29 (37.2%) vs. 33

(42.9%)

OS = 14.0 (9.7–18.2) vs.

13.5 (11.3–15.7)

11 (14.3%) vs. 12 (15.6%) Phase II (155) (68)

Squamous-cell

carcinoma of the

head and neck

Zalutumumab Best supportive

care

Initially 8 mg/kg and

followed doses of 4

mg/kg

Zalutumumab plus BSC

(191) vs. BSC alone (95)

OS = 6.7 (5.8–7.0) vs. 5.2

(4.1–6.4)

(39 [21%] vs. 0) Phase III (286) (69)

Solid tumors Tomuzotuximab NR Weekly (12–1,370mg)

or 2-weekly (990mg)

A three-plus-three dose

escalation design.

12 SD, 1 PR, 1 CR, and 2

prolonged control of their

non-measurable disease.

Infusion-related reactions 3

grade, 12%

Phase I (41) (70)

BSC, best supportive care; FOLFOX, folinic acid (leucovorin), fluorouracil, oxaliplatin; FU, fluorouracil; HNSCC, head and neck squamous-cell carcinoma; NR, not reported; NSCLC, non-small-cell lung cancer; PR, Response rate; OS,

Median overall survival; PFS, Median progression free survival; DCR, disease control rate; CR, complete response; XRT, X-ray Radiation Therapy; RT, Radiation Therapy.
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The efficacy of duligotuzumab (MEHD7945A) and cetuximab
was evaluated in head and neck squamous cell carcinoma in a
randomized phase II study. Cetuximab and duligotuzumab were
comparable in PFS (4.0 vs. 4.2 months), OS (8.7 vs. 7.2 months),
and objective response rates (14.5 vs. 12%), contributing to
different rates of serious AEs (29.5 vs. 41%). These results
indicate that HER3 inhibition has a comparable effects with
EGFR inhibition (65).

Sym004 is a mixture of antibodies directed against EGFR,
which consists of Futuximab and Modotuximab. A phase II
clinical study of this cancer, included 254 patients divided into
3 groups: group A sym004 (12 mg/kg), group B sym004 (9/6
mg/kg), and group C as the standard treatment group. In the
three groups, the OS was 7.9 vs. 10.3 vs. 9.6 months, respectively,
and the PR was 13.3 vs. 9.3 vs. 1.2% (NCT02083653). Temam
et al. (66) showed that, in patients with advanced head and neck
cancer, one patient achieved “pathological” complete remission,
and more than half of the other patients showed some efficacy
when Sym004 was used.

A study found that the overall response rate of matuzumab
with other chemotherapy drugs in first-line treatment in
EGFR-positive patients with advanced gastric cancer and

adenocarcinoma of the esophagogastric was 26.7%. The results
show that the matuzumab, combined with 5-fluorouracil,
leucovorin, cisplatin (PLF) is an acceptable treatment plan (67).

In a phase II study, nimotuzumab plus gefitinib and gefitinib
alone after platinum-based chemotherapy Were tested in 155
advanced NSC lung cancer patients. Their OS and PR were 14.0
vs. 13.5 months and 16.7 vs. 22.1%, respectively, and the toxicity
of the two groups did not significantly differ (68).

After the failure of platinum-based chemotherapy in
squamous cell carcinoma patients, they were further divided
into two groups: zalutumumab plus optimal supportive care and
optimal supportive care, and their OS rates were 6.7 and 5.2
months, respectively (69).

MECHANISMS OF EGFR ANTIBODY
RESISTANCE

Here, we comprehensively summarize the drug resistance
mechanisms of EGFR monoclonal antibodies and classified the
complex mechanisms, for the first time, into the following four
classes (Figure 3): (1) Pre-target, drug resistance factors before

FIGURE 3 | The drug resistance mechanisms of EGFR monoclonal antibodies. Four classifications: (1) Pre-target: b, c, and m (KRAS mutation, the tumor

microenvironment); (2) On-target: a and e (high expression of EGFR or ligand), f and g (mutation and deletion of extracellular domain binding site); (3) Post-target: j, k, l,

m, o, and p (EGFR downstream signaling pathways); (4) Off-target: q, n, h, and I (Drug resistance factors associated with non-EGFR signaling molecules or receptors).
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the binding of monoclonal antibody to EGFR receptor (KRAS
gene mutation, the influence of tumor microenvironment);
(2) On-target, the binding of monoclonal antibody to EGFR
drug resistance factors (high expression of EGFR or ligand,
mutation and deletion of extracellular domain binding site);
(3) Post-target, resistance mechanisms downstream of EGFR
monoclonal antibody binding to EGFR; (4) Off-target, the
resistance mechanisms via other signaling molecules or receptors
after monoclonal antibody-EGFR binding.

Pre-target
The tumor microenvironment (TME) is closely related to tumor
drug resistance (71). The resistance against monoclonal antibody
therapy also has a strong relationship with the TME. Studies have
shown that the accumulation of hyaluronic acid (HA), the main
component of TME, occurs in many solid tumor types and is
associated with poor prognosis and therapeutic resistance in a
variety of malignancies. The results suggest that high matrix HA
levels in the TME may form a barrier that inhibits the entry of
EGFR MAb and NK cells, promoting EGFR resistance (72).

KRAS mutations occur in colorectal cancer and are often
predictive of poor sensitivity to cetuximab or panitumumab (73,
74). Currently, KRAS mutation occurs in 30–50% of colorectal
cancers (75).

On-Target
Overexpression of EGFR has also been thought to be associated
with the development of acquired resistance, but one study
showed that cetuximab combined with chemotherapy improved
relapse/metastatic HNSCC and KRAS wild-type mCRC
regardless of tumor EGFR expression levels (76).

The results of Rajput et al. (77) showed that constitutive
changes in ligand TGFα can lead to constitutive activation of
EGFR, leading to tumor growth and metastasis. It was found
that cetuximab resistance can be induced by activating the
PI3K/Akt pathway and (78) alterations of EGFR itself [e.g., EGFR
polymorphisms (79) and EGFR variant III (vIII) expression (80–
82)]. In addition, Cetuximab competitively bind to the domain
III (408–468) of EGFR with ligand. Therefore, the exon 12 EGFR
mutation (S492R) encoding the extracellular region of EGFR
will affect the binding of cetuximab to the domain III of EGFR.
Panitumumab competitively binds to the domain III (386–391)
of EGFR with ligand, the difference in their binding sites causes
differences in drug resistance (83).

Overexpression of HER family ligands is also associated with
cetuximab resistance, and the nucleus entry pathway of EGFR.
The nuclear expression of EGFR can be used as a resistant
prediction of cetuximab reaction (84).

Post-target
When monoclonal antibody drugs are used, most patients will
develop secondary resistance, which is associated with mutations
in downstream signaling of EGFR. Studies have shown that
detecting the status of the gene of phosphate and tension
homology deleted on chromsome 10 (PTEN), BRAF, and EGFR
can determine the sensitivity of cetuximab treatment, showing
that BRAF status, EGFR amplification, and PTEN cytoplasmic

expression are correlated to cetuximab resistance in wild-type
KRAS metastatic colon cancer (85). Some rare mutations such
as BRAF-V600E mutation might result in a less beneficial anti-
EGFR monoclonal antibody treatment (86).

Wheeler et al. (87) found that Src family kinases (SFKs) were
highly activated in cetuximab-resistant cells, while PI3K/AKT
signaling pathways andHer3 expression levels increased. Further,
SFKs play a key role in cetuximab monoclonal antibody
resistance. Yang et al. (88) showed that inhibition of EGFR
ubiquitination in tumor cells can alter the expression level of
EGFR and regulate cell growth and survival by bypassing EGFR
via other pathways (e.g., Src kinase-mediated cell signaling) and
cause resistance to cetuximab.

Weinandy et al. (89) suggested that Eme1 protein is
significantly increased under cetuximab resistance, which often
means that treatment may fail. Mechanistically, elevated levels
of Mus81/Eme1 endonuclease during cetuximab treatment
promoted DNA repair and ultimately led to tumor cell growth.

Off-Target
Long non-coding RNA (lncRNA) has been reported to have a
close relationship with tumors. As a class of gene regulators,
lncRNA also has an important relationship with EGFR
monoclonal antibody resistance. Lu et al. (90) found that the
long-chain non-coding RNAMIR100HG produced miR-100 and
miR-125b, which synergistically inhibited five Wnt/β-catenin-
negative modulators, resulting in increased Wnt signaling,
leading to cetuximab resistance. Wnt inhibition in mAb-resistant
cells restored cetuximab reactivity. Peng et al. (91) found
that lncRNA POU5F1P4 down-regulation promoted cetuximab
resistance in mCRC. In another study, inhibition of lncRNA
LINC00973 attenuated cetuximab resistance and was associated
with glucose metabolism (92). The results of a study by Li et al.
(93) suggest that the expression of lncRNA H19 and MALAT1
may play a role in the resistance of cetuximab in mCRC. In
addition to lncRNA, other types of RNAs are also associated with
EGFR monoclonal antibody resistance (94).

Studies have shown (8, 87) that when EGFR monoclonal
antibody binds to EGFR, it will increase the heterodimerization
of EGFR and other receptors to activate downstream signaling
pathways, including Her2, Her3, and C-met. Other studies
have shown (95, 96) that even if the EGFR signal is inhibited
by monoclonal antibody drugs, other receptors on the tumor
cell membrane (FGFR1, PDGFRA, or VEGFR1) can be
overexpressed. Both of these conditions will produce resistance
to EGFR monoclonal antibody drugs. In addition, milk-derived
growth inhibitor (MDGI) is a small cytoplasmic protein that
plays an important role in the differentiation of epithelial
cells. Studies have shown that MDGI expression can affect the
transmission of EGFR signaling and cause cetuximab resistance
(96). A recent article reported that exosomes facilitate cetuximab
resistance through the PTEN/Akt pathway in cetuximab-
sensitive cancer cells (97).

With the continuous deepening of research in oncology,
more and more factors related to drug resistance have been
discovered. At present, tumor microenvironment, non-coding
RNA, exosomes are the focus of attention. Sidaway (98) studies
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show that: Cetuximab resistance occurs not only through
Darwinian acquisition of RAS–RAF pathway mutations, but also
via microenvironmental plasticity. The strong effect of cetuximab
on the immune landscape shows that systemic therapies can
change immune infiltrates quite dramatically. Lu et al. (90)
studies show that non-coding RNA is related to resistance to
EGFR treatment. De novo and acquired resistance, which are
largely attributed to genetic alterations, are barriers to effective
anti-epidermal-growth-factor-receptor (EGFR) therapy. These
findings identify a clinically actionable, epigenetic cause of
cetuximab resistance.

The composition of exosomes is more complex, which
contains a variety of biological macromolecules, such as:
nucleic acids (double-stranded DNA and various RNA subtypes),
proteins and lipids. These molecules are carried into the blood
circulation by exosomes and are then taken up by target cells,
thereby regulating target cell gene expression and cell function.
In addition, exosomes-related miRNAs, as short single-stranded
and non-coding RNA molecules, regulate the expression of
oncogenes or tumor suppressor genes and participate in cell
differentiation, apoptosis, and cell signal transduction (99).
Studies have shown that exosomes can affect the formation of
tumor microenvironment, enhance the ability of tumor cells to
invade andmetastasize, mediate tumor immunosuppression, and
participate in tumor chemoradiotherapy resistance to promote
the development of tumors (100).

In conclusion, non-coding RNA, tumor microenvironment
and exosomes are closely related to EGFR monoclonal antibody
resistance. Based on recent research, it is expected that effective
measures will be developed that can be applied to clinical
diagnosis and treatment.

CONCLUSIONS AND PERSPECTIVES

We summarize recently completed and ongoing clinical trials
of the classic and new EGFR monoclonal antibodies. More
importantly, according to our new standard, we re-classify the
complex evolving tumor cell resistance mechanisms, including
those involving non-coding RNA, tumor microenvironment and
exosomes against EGFR monoclonal antibodies. Studies have
shown that in KRAS wild-type CRC patients, the final response
to EGFR monoclonal antibody treatment is only about 15% (96,
101). However, EGFR mAbs remain one of the main approaches
for anti-cancer treatments. In recent years, research has been
conducted to overcome these resistance mechanisms in the
context of alterations of EGFR [e.g., EGFR polymorphisms (79),
EGFR nuclear internalization, EGFR variant III [vIII] expression]
(80, 81). In a recent study, the anti-EGFR antibody cocktail
Sym004 was used for successful treatment in the context of CRC
associated with EGFR extracellular domain mutation-mediated
cetuximab resistance (102). Monoclonal antibodyMM-151 binds
to multiple regions of the EGFR extracellular domain, thereby
inhibiting the transmission of mutant EGFR signaling (103).
In another study, cetuximab was glycosylated to have a higher
affinity for FcγRIIIA on human immune effector cells, further
enhancing ADCC activity. Clinical studies have shown that
glycosylation-modified antibodies restore sensitivity to EGFR

targeting in HNSCCs expressing EGFRK521 variants (79). In
addition, the deletion of exons 2–7 of EGFRvIII produced a
unique acid site, which makes the development of EGFRvIII
specific MAbs a possibility. These antibodies have been used to
detect EGFRvIII and to overcome EGFR resistance (104, 105).
Some tumor-related predictors can foresee patterns of drug
sensitivity. KRAS status is a predictive gene for cetuximab or
panitumumab in metastatic colorectal cancer and is a routine
test before administration (64, 106). A recent study showed that
Insulin receptor substrate 2 (IRS2) mutations can be used as a
predictor of anti-EGFR sensitivity when treating cancers with
high EGFR expression (96). Similarly, the amplification of the
EGFR gene (EGFRAMP) has also been reported to increase
the sensitivity of treatment (107). However, with the advent of
the era of precision medicine, targeted drugs have not achieved
long-term response, and new drug resistance mechanisms have
emerged. Doctors are looking for different strategies to cope with
new drug resistance mechanisms and achieve long-term disease
control (108). The treatment of single-gene monotherapy has
become a thing of the past, and the era of multidimensional
treatment has arrived (109).

It seems that there is still a long way to go before EGFR
monoclonal antibody drugs are fully efficient. In recent years,
with the emergence of CAR-T, oncolytic viruses (6, 110), and
other therapies (108, 111–113), scFv has been used to target
EGFR. scFv is smaller but retains the variable region function of
the mAb (114). CAR consists of three regions: the extracellular,
transmembrane, and intracellular domains (111). There seems
to be a link between the extracellular antigen recognition and
intracellular signaling domains for activating T cells. In turn,
a series of tumor-killing effects are produced. Part of the
extracellular domain of CAR that binds to the antigen can be
the scFv to EGFR (115). In a recent study, a peptide against
panErbB-CAR is now in clinical trial in HNSCC (116). In another
study, the EGFR-retargeted oncolytic virus containing an anti-
EGFR scFv proved to be effective in an orthotopic mouse model
of primary human glioma (117). Thus, the scFv produced by the
variable region of EGFRmonoclonal antibodies could potentially
be a significant component in the future treatment of cancers.
Getting the optimal effects with minimal adverse effects will
be the future development direction in the continued battles
between EGFR monoclonal antibodies and resistant tumor cells.
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