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Abstract: The explosive process of 5G communication evokes the urgent demand of miniaturized and 

integrated dielectric ceramics filter. It is a pressing need to advance the development of dielectric 

ceramics utilization of emerging technology to design new materials and understand the polarization 

mechanism. This review provides the summary of the study of microwave dielectric ceramics 

(MWDCs) sintered higher than 1000  from 2010 up to now, with the purpose of taking a broad and ℃

historical view of these ceramics and illustrating research directions. To date, researchers endeavor to 

explain the structure–property relationship of ceramics with multitude of approaches and design a new 

formula or strategy to obtain excellent microwave dielectric properties. There are variety of factors 

that impact the permittivity, dielectric loss, and temperature stability of dielectric materials, covering 

intrinsic and extrinsic factors. Many of these factors are often intertwined, which can complicate new 

dielectric material discovery and the mechanism investigation. Because of the various ceramics 

systems, pseudo phase diagram was used to classify the dielectric materials based on the composition. 

In this review, the ceramics were firstly divided into ternary systems, and then brief description of the 

experimental probes and complementary theoretical methods that have been used to discern the 

intrinsic polarization mechanisms and the origin of intrinsic loss was mentioned. Finally, some 

perspectives on the future outlook for high-temperature MWDCs were offered based on the synthesis 

method, characterization techniques, and significant theory developments. 

Keywords: high-temperature microwave dielectric ceramics (MWDCs); pseudo phase diagram; 

developments and challenges; composition–structure–property relationship 

 

1  Introduction

 

Over the past half century, semiconductor integration 
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technology has become one of the most far-reaching 

and significant technological innovations in human 

society. The rapid development of this technology has 

enabled mankind to enter today’s information society. 

However, semiconductor devices as active devices are 

only part of the electronic components. Another part of 
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the huge amount and a wide variety of components 

with different functions are passive devices. The core 

materials of these components are various types of 

functional ceramic materials. Microwave dielectric 

ceramics (MWDCs) are the pivotal component of a 

passive device, which are mainly used as filters, 

resonators, RF antennae, frequency discriminators in 

electronic countermeasures, navigation, radar, home 

satellite live television receivers, and hand-held mobile 

phones. The applications of MWDCs in different 

frequency are directly plotted in Fig. 1. However, the 

development of microwave ceramics had gone through 

a sluggish procession because of the lack of suitable 

materials for dielectric resonator. The discovery of 

rutile (also known as titanium dioxide ceramics) in the 

1970s makes it possible to synthesis dielectric resonator 

[1]. Various literature has been reported to explore the 

potential candidates of MWDCs after that, from single 

oxide, binary oxide, to ternary oxide. According to the 

data in the Web of Science, over 1000 papers were 

published about MWDCs around the world after 2000. 

Figure 2 presents the trend of published papers where 

more than 30% of investigations belong to China. 

To evaluate the dielectric properties of ceramics, the 

relative permittivity (εr), dielectric loss (loss tangent or 

quality factor (Q×f value)), and temperature coefficient  

of resonant frequency (τf) are the three pivotal 

characteristics. As early as in 2006, the direction of 

development of microwave dielectric materials has 

been highlighted by Ohsato et al. [2], including high Q 

and low εr ceramics for millimeter-wave application, 

high Q and high εr ceramics for base station, and high 

εr ceramics for miniaturization of mobile phone. Up to 

now, researchers have explored hundreds of ceramics 

to enrich the database of MWDCs, but only a dozen of 

those ceramics with unique properties have been 

commercially used to fabricate relevant devices because 

most of the ceramics lack stability or generate large 

loss in the electronic components. Booming development 

of millimeter technology and 5G communication have 

rendered a new round of requirement of MWDCs of 

low permittivity with a stable dielectric loss in the scope  
 

 
 

Fig. 1  Applications of MWDCs in different frequencies. 
 

 
 

Fig. 2  (a) Number of published papers about MWDCs from 2000 and (b) percentage of published papers from different countries. 
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of frequency up to 100 GHz. Especially, the emergency 

of COVID-19 makes video conferencing and 

telecommuting as a daily part in our lives. Consequently, 

the unprecedented growth of global data volume and 

huge demand for high data rates urge researchers to 

search more alternative materials for commercial 

electronic market. It is also a very significant issue for 

the industry to yield ceramics with ultra-low permittivity 

which are suitable for 5G and 6G communication 

system. However, it is still a “try and error” state in our 

experiments for discovering materials or optimizing 

the properties of the reported ceramics. The main 

difficulty in the development of MWDCs is to 

understand the fundamental relationship of composition– 

structure–property and draw general trends throughout 

the field, after normalizing and comparing the various 

results. Despite long-term sustained attempts, there is 

no systematic or comprehensive theory which can 

provide common guidance in the experiments and drive 

currently reported ceramics toward commercialization 

applications.  

With the exploration of MWDCs clusters and the 

development of modern experiment techniques, 

investigations about MWDCs have been largely scoped 

by the designs and search for new systems and 

reoptimizing their properties. It is paramount that an 

MWDCs candidate has an appropriate dielectric constant, 

low dielectric loss, and near-zero temperature coefficient 

of resonant frequency for applications. Generally, to 

tune the microwave dielectric properties, there are two 

parts that should be taken into consideration (extrinsic 

and intrinsic parts). Extrinsic part is usually regarded 

as the influence originated from the synthesis method 

and raw materials. MWDCs usually prepare by solid 

state reaction method, and the sintering conditions 

directly influence the microstructure and compactness 

of ceramics, which subsequently affect the microwave 

dielectric properties. Meanwhile, the selectivity of size 

distribution, purity, non-stoichiometric ratio, species of 

different compounds, and pretreatment of raw materials 

based on their physical and chemical properties are 

crucial for reaching optimal microwave dielectric 

properties. For example, the procedures to reduce 

pores are designed for ceramics containing the volatile 

element, evolving non-stoichiometric ratio in the 

chemical formula, and providing the compensation 

atmosphere of volatile element. The relevant attempts 

are mostly discussed for the rock salt structure ceramics 

such as Li2Mg3TiO6. Besides, various synthesis methods, 

namely sol–gel method, sink plasma sintering method, 

and high energy ball-milling method are gradually 

used for preparing the MWDCs, and numbers of 

studies analyze the discrepancy of microwave 

dielectric properties obtained with different methods. 

The intrinsic part stems from anharmonic lattice 

vibration, which primarily generates large dielectric 

loss. As yet, there is no technology or theory that could 

feasibly adjust the anharmonic lattice vibration to 

reduce dielectric loss. In the experiment, after carefully 

controlling the sintering conditions and selecting raw 

materials, the most pragmatic approach to optimize the 

properties is cation substitution with the consideration 

of the radii and the electronegativity of cations, 

contributing to reducing the dielectric loss or 

modifying the temperature coefficient of resonant 

frequency. Near-zero temperature coefficient of resonant 

frequency is also obtained by designing co-exited 

phase system with introduction of two ceramics with 

opposite τf values, but the composite ceramics may 

lead to a poor Q×f value. More recently, the strategy of 

tri-layer structures of Zn1.01Nb2O6/TiO2/Zn1.01Nb2O6 

[3], MgTiO3/TiO2/MgTiO3 [4], and Zn3Nb2O8/TiO2/ 

Zn3Nb2O8 [5] were verified as a method to obtain the 

temperature-stable ceramics with low dielectric loss. 

Currently, the database of MWDCs is enriched by 

insightful information about the structure and properties, 

and the growing number of literature converts from 

description of phenomena to explanation of the theoretical 

mechanism of the dielectric materials. Thorough and 

comprehensive investigation of ceramics is gradually 

presented to estimate the extrinsic and intrinsic 

influence on the microwave dielectric properties. For 

instance, the common discussion of polarization 

mechanism is usually based on the ionic polarization, 

where the Clausius–Mossotti (C–M) equation is 

applied to evaluate the discrepancy of theoretical εr and 

measured εr. The popularization of Rietveld-refinement 

in the literature supports the analysis of lattice 

parameters, packing fraction, and chemical bond 

characteristic obtained by the complex chemical bond 

theory (P–V–L) theory. Especially, disassembling the 

crystal into the sum of sample binary compound based 

on the crystal parameters and coordinate numbers of 

each ions [6], the investigations about application of 

P–V–L theory into multi-type structure emerge in 

abundance. The origin of dielectric loss is quantified 

by lattice vibrational spectroscopy, and the contribution 

of each chemical bond to the microwave dielectric  
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properties is verified by P–V–L theory. For some 

unique ceramics, researchers bend themselves to 

exploring the underlying mechanism for the observed 

phenomenon. The influence of long-range movement 

of charged defects in the grain and grain boundary was 

estimated by the impedance analysis, terahertz (THz) 

time-domain spectroscopy analysis, and the electron 

paramagnetic resonance spectra, which can explain the 

defect generation mechanism in doped Li2ZnTi3O8 

ceramics. The analysis of disordered–ordered crystal 

structure evolution and super-lattice in rock salt 

ceramics and complex perovskite ceramics gives 

evidence to explain the ultra-low dielectric loss. Both 

the development of experimental and theoretical method 

allows us to summarize the relevant experimental 

probes of different systems and propose the challenges 

and prospects of MWDCs. 

While many great review and perspective articles 

have been published about MWDCs, they have 

finished the review by classified MWDCs based on the 

criteria of sintering temperature, dielectric constant, 

and crystal structure [1,7–9]. Furthermore, the early 

works before 2010 are mainly concentrated on the 

description of phase composition, micrographic images, 

and variation of microwave dielectric properties. The 

topic about the MWDCs sintered lower than 950  is ℃

especially focused owing to the advantages of 

low-temperature co-fired ceramics (LTCC) technology 

where this approach guarantees the integration of 

electronic components. Considering either the 

timespan or topic covered, the mentioned ceramics, in 

this review, are all sintered higher than 1000 . The ℃

LTCC system including ceramics with a few sintering 

aids, glass–ceramics system, or glass-free system is not 

referred. To follow the development of new analysis 

methods, MWDCs, beginning with the first reported 

properties and upgrading the relevant references after 

2010, were included. Additionally, because of so 

various structures and properties of MWDCs, pseudo 

phase diagram was used to classify the ceramics 

according to the composition, which will serve as the 

basis and link for each pseudo phase diagram of 

diversity composition. The organization of this review 

consists of a brief section detailing the phase evolution 

or structure transformation of oxide ceramics in the 

designed pseudo phase diagram, and then the 

chronological experimental probes for a unique system 

are summarized.  

2  Phase diagram 

The phase diagram is a visual representation of the 

phase equilibrium, which defines the composition of 

multiphase system. It is an efficient and convenient 

technique to analyze the composition and their 

proportion, which plays a significant role in guiding 

the research and exploration of materials to reduce the 

manpower and material resources effectively. This 

section provides a broad context by summarizing the 

ceramics system based on pseudo phase diagram, and 

all the composition in the following pseudo phase 

diagram is in molar ratio. The endpoint of each pseudo 

phase diagram contains more than one component, and 

the labelled ceramics are the primary system reported 

by researchers. The summary of investigations in the 

same general formal is listed in detail. 

2. 1  Silicate and germanate 

There is a low εr (< 10) for silicates, owing to the low 

ionic polarizability of Si4+ and half covalent bond in 

Si–O. In the binary silicate, the CaSiO3, Mg2SiO4, 

Zn2SiO4, and Re2SiO5 are the main representatives, 

where CaSiO3 usually appeared as the crystalized 

phase in CaO–B2O3–SiO2 glass. Ternary silicate such 

as diopside-type CaMgSi2O6, melitile-type A2BC2O7 

and AB2C2O7 (A = Sr, Ca, Ba; B = Mg, Zn, Co, Mn, 

Cu), and cuspidine-type Ca3SnSi2O9 were highlighted 

by researchers, due to the diverse crystal structures in 

those systems. With the wake of exploration of new 

ceramics, the germanate gradually occurred as a 

candidate material with low dielectric loss despite of 

the expensive cost of GeO2 as raw material. The 

pseudo phase diagram of the silicate and germanate is 

presented in Fig. 3, where the primary phases of binary 

and ternary silicate and germanate are listed in the 

phase diagram. 

2.1.1  Binary silicate ceramics 

Synthesis of dense SiO2 ceramic is challengeable 

because of its complexity in polymorphs and phase 

transitions. Until 2012, microwave dielectric properties 

of SiO2 ceramic were reported as εr ≈ 3.81, Q×f value ≈ 

80,400 GHz, and τf ≈ –16.1 ppm/ , sintered at ℃

1650  for 3℃  h [10]. After that, Li et al. [11] illustrated 

that 0.84SiO2–0.16TiO2 composite ceramics possessed 

satisfied properties of εr ≈ 5.91, Q×f value ≈ 39,680 GHz, 

and τf ≈ –4.5 ppm/ , sintered at 1275  for 3 h. ℃ ℃  
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Fig. 3  Pseudo phase diagram of the silicate and germinate. 

 

Comparing to the difficulty of preparing compact SiO2 

ceramic, the restriction of preparing dense CaSiO3 

ceramic stemmed from the narrow sintering 

temperature range of pure CaSiO3 and the porous 

microstructure [12]. Commonly, CaSiO3 was reported 

as a main phase in the CaO–B2O3–SiO2 glass–ceramic 

system, which primarily determined the properties. 

There are two main phases of CaSiO3, containing 

low-temperature wollastonite (α-CaSiO3) and high- 

temperature preudo-wollastonite (β-CaSiO3). Through 

a sol–gel method, the microwave dielectric properties 

of α-CaSiO3 are: εr ≈ 6.69, Q×f value ≈ 25,398 GHz, 

sintered at 1320  [13]. In order to improve the ℃

microwave dielectric properties, (Ca1–xMgx)SiO3 ceramics 

with x = 0.1, 0.5, 0.9 were verified as single phases, 

and properties of εr ≈ 6.49, Q×f value ≈ 62,420 GHz, 

and τf ≈ –43.3 ppm/  were obtained when sintered at ℃

1320  w℃ ith x = 0.1 [14]. Besides, the investigation of 

CaSiO3–Al2O3 ceramics revealed that the secondary 

phases of Ca2Al2SiO7 and CaAl2Si2O8 would 

deteriorate the microwave dielectric properties with 

excessive Al2O3 [15,16]. According to Hu et al. [17], 

the phase transformation of CaSiO3 was inhibited with 

the increase of SiO2 content, and α-CaSiO3–2 wt% Al2O3– 

2.5 wt% TiO2 shows excellent properties of εr ≈ 7.88, 

Q×f value ≈ 24,412 GHz, and τf ≈ –0.52 ppm/  ℃ [18]. 

To obtain compact ceramics, SnO2-doped α-CaSiO3 

ceramics with εr ≈ 9.27, Q×f value ≈ 53,000 GHz, and 

τf ≈ –52 ppm/  sintere℃ d at 1450  were reported in a ℃

relative density higher than 97% [19]. 

With a Q×f value larger than 100,000 GHz, another 

class of binary silicate can be written as A2SiO4 (A = 

Ba, Sr, Ca, Mg, Zn) [20–23]. Forsterite Mg2SiO4 is 

extensively explored because of its superior 

microwave dielectric properties (εr ≈ 7.8, Q×f value ≈ 

240,000 GHz, and τf ≈ –67 ppm/ , sintered at 1450℃ – 

1500 ) [2,24,25]. Nevertheless, the high sintering ℃

temperature and large τf value inhibit its application. 

To adjust τf value, both co-exited phase of 

Mg2SiO4–Ca0.9Sr0.1TiO3 [26] and Zn2SiO4–TiO2 [27] 

contributed to a near-zero τf value. Melting CuO could 

enhance the sintering procession of Zn2SiO4, and the 

quality factor reached 105,500 GHz when sintered at 

1150  [28]. Zn℃ -deficient formula was verified valid to 

suppress the formation of secondary phase in Zn2SiO4 

ceramics, and Zn1.8SiO3.8 was estimated with properties 

of εr ≈ 6.451, Q×f value ≈ 102,807 GHz, and τf ≈ –32 

ppm/℃, sintered at 1300  [29].℃  

After predicting the permittivity of ZrO2–SiO2, 

HfO2–SiO2, La2O2–SiO2, and Y2O3–SiO2, those systems 

were clarified as an alternative of dynamic random 

access memory capacitor dielectric materials [30]. The 

exploration of properties of Sm2SiO5 and Nd2SiO5 

ceramics compensated the absence of study on 

microwave dielectric properties of Re2O3–SiO2, where 

the microwave dielectric properties were listed as εr ≈ 

8.44, Q×f value ≈ 64,000 GHz, and τf ≈ –37 ppm/  ℃

and εr ≈ 7.94, Q×f value ≈ 38,800 GHz, and τf ≈ 

–53 ppm/  with the molar ratio of Re℃ 2O3/SiO2 = 

1:1.05, respectively [31,32].  

2.1.2  Ternary silicate and germanate ceramics 

Clinopyroxene-type ABC2O6 (A = Ca; B = Co, Mg, Zn, 

Fe; C = Si, Ge) materials, akermanite-type A2BC2O7 

(A = Sr, Ca; B = Mg, Zn, Co, Mn; C = Si, Ge), and 

melilite-type A2BSi2O7 (A = Sr, Ca, Ba; B = Mg, Zn, 

Co, Mn, Cu) occupied the primary family of ternary 

silicate ceramics. Increasing attention has been paid for 

CaMgSi2O6 owing to its low permittivity ≈ 7.5, which 

is suitable to be substrate [14,33–35]. Both the 

substitution of Zn2+, Co2+, Cu2+, Mn2+ for Mg2+ and 

introduction of Sr2+ into Ca2+ of CaMgSi2O6 were 

benefit for reducing the dielectric loss. Microstructure 

with many pores of CaMnSi2O6 was observed by Chen 

et al. [36], and the effect of porosity on the properties 

was investigated by spherical-pore model. Akermanite-type 

A2BC2O7 (A = Sr, Ca; B = Mg, Zn, Co, Mn; C = Si, Ge) 

systems belong to the structure group of 142P m  (113) 

in tetragonal, while melilite-type A2BC2O7 (A = Ba; 

B = Co, Zn, Cu, Mg; C = Si, Ge) and AB2C2O7 (A = 

Ba; B = Co, Zn; C = Si, Ge) systems were clarified in 

monoclinic structure [37–44]. The literature about the 

effect of structure evolution and chemical bond 

parameters in A2BSi2O7 and AB2Si2O7 represented that 
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the Si–O bond played the significant role in structural 

stability and dielectric polarization.  

The monoclinic Ca3SnSi2O9 and Ca3MgSi2O8 with 

space group P21/c were investigated to supplement the 

compound of ternary silicate oxides. Ca3SnSi2O9 

ceramics were obtained in a wide sintering temperature 

region from 1400 to 1525 , with non℃ -stoichiometric 

composition (molar ratio of Ca:Sn:Si = 1:1.2:1) as raw 

materials [45]. Single phase Ca3MgSi2O8 possessed near 

99% of the theoretical density after sintered at 1375 , ℃

with εr ≈ 13.8, Q×f value ≈ 27,000 GHz, and τf ≈ –62 

ppm/  [4℃ 6]. Sintering behavior and phase 

composition of gillespite-structured MCuSi4O10 (M = 

Ba1–xSrx, Sr1–xCax) ceramics were established by Song 

et al. [47], and SrCuSi4O10 possessed microwave 

dielectric properties of εr ≈ 5.59, Q×f value ≈ 82,252 GHz, 

and τf ≈ –41.34 ppm/ . The first℃ -principles calculation 

was applied to determine where Ni2+ and Li+ would 

occupy in BaAl2Si2O8 ceramics, and the change of 

bond strength and bond valence were analyzed [48,49]. 

The unpresented ternary silicate and germanate 

phase in pseudo phase diagrams are summarized as 

well in this section. The rare earth-based ternary 

silicate oxides, such as apatite with general formula 

A10(MO4)6O2 (A = alkaline earth, rare earth, Pb; M = 

Si, Ge, P, V), have received much attention since the 

apatite structure allowed numbers of substitutions at all 

the three sites. The lattice parameters and the local 

charge compensation of apatite type compounds were 

determined in 1972 [50], and those ceramics were 

established as candidate of fluorescent lamp phosphors 

and laser technology. To improve the densification of 

lithium apatite LiRe9(SiO4)6O2 ceramics (Re = La, Pr, 

Nd, Sm, Eu, Gd, Er), relative density was higher than 

90% for all samples after doping 1 wt% LiF [51]. The 

microwave dielectric properties of SrRE4Si3O13 (RE = 

La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, Yb, and Y) 

were in the range of 9–16 for permittivity with the 

maximum of Q×f value ≈ 26,000 GHz [52], while the 

optimal microwave dielectric properties of CaRE4Si3O13 

(RE = La, Nd, Sm, and Er) were εr ≈ 13.37, Q×f value ≈ 

18,600 GHz, and τf ≈ –17.8 ppm/  at Re = Er [53].℃  

To obtain new dielectric materials, some researchers 

pursued materials with the composition containing 

GeO2 and Ga2O3 and reported microwave dielectric 

properties of those materials firstly. With inverse spinel 

structure, LiGa5O8 was verified as a cubic structure 

where Li+ and Ga3+ distributed in the octahedral B site 

with 1:3 ordering [54]. The large deviation between εr 

and εrth in Ba2MGa11O20 (M = Bi, La) was ascribed to 

the “rattling” effect of cations and the existence of lone 

pair ions of Bi3+ [55]. The different τf values of 

AGe4O9 (A = Ba, Sr) were ascribed to the distortion of 

[GeO6] octahedron where τf values were –44.2 ppm/  ℃

for the former and –11.7 ppm/  for the later [56]. ℃

Normal garnet A3Y2Ge3O12 (A = Ca, Mg) ceramics 

possessed τf ≈ 120.5 ppm/  for A = Ca and ℃ –40.6 ppm/  ℃

for A = Mg [57]. As doped ions, (Li0.5Ga0.5)
3+ in 

Mg2Al4Si5O18 would obtain the highest Q×f value of 

50,560 GHz [58]. Ca3M2Si3O12 (M = Yb, Y) ceramics 

were consistent with the general formula of garnet 

structure, and those ceramics crystalized as 

silico-carnotite structure with high-energy ball milling 

method [59]. The microwave dielectric properties were 

recorded as εr ≈ 9.2, Q×f value ≈ 56,400 GHz, and τf ≈ 

–77.5 ppm/  and ℃ εr ≈ 8.7, Q×f value ≈ 29,094 GHz, 

and τf ≈ –76.8 ppm/  for Ca℃ 3Yb2Si3O12 and 

Ca3Y2Si3O12, respectively. A serial of Ca3MZrGe3O12 

(M = Co, Zn), Ca4ZrGe3O12, and Ca3B2Ge3O12 (B = Al, 

Ga) ceramics were successfully prepared, and the 

quality factors were higher than that of Ca3M2Si3O12 

[60–62]. Similarly, Sr3B2Ge3O12 (B = Yb, Ho) were 

investigated by Li et al. [63] using vibration 

spectroscopy, and the τf was tuned to near zero with 

CaTiO3 ceramics. 0.8Y3MgAl3SiO12–0.2TiO2 ceramic 

sintered at 1475  ℃ showed a τf ≈ +5.2 ppm/ , where ℃

the co-existed phase contained Y2Ti2O7 and TiO2 along 

with Y3MgAl3SiO12 phase [64]. Dense Mg3Ga2GeO8 

ceramics presented microwave dielectric properties of 

εr ≈ 9.41, Q×f value ≈ 133,113 GHz, and τf ≈ –63.54 

ppm/  [65]. Single phase LiYSiO℃ 4 ceramics could be 

obtained in 1100–1140 , and a near℃ -zero τf of 

(+4.52)–(+8.03) ppm/  was observed [66].  ℃  

Furthermore, phase transition from A2/a to P21/a 

was observed in new silicate in the formula of 

CaSn1–xTixSiO5, where the variation of τf values was 

ascribed to the Sn/TiO6 octahedral distortion [67]. 

Secondary phase of SnO2 and SrSiO3 appeared at 

0.2 ≤ x ≤ 0.45 in Ca1–xSrxSnSiO5 ceramics, which 

could adjust the positive τf of CaSnSiO5 to –1.2 ppm/℃ 

[68]. CaSiO3 and CaSnSiO5 phases would improve the 

τf to –7.2 ppm/  in Ca℃ 2(Hf1–xSnx)Si4O12 when x = 0.4 

[69]. 

2. 2  Niobate and tantalate based on ZnO–Nb2O5–TiO2 

There is a large body of niobate and tantalate dielectric 

ceramics, and the relevant researches highlight the 

phase evolution, structure transformation, and chemical 
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bond characteristics. In order to elucidate the influence 

of undercoordinated sites on the dielectric properties, 

analysis according to P–V–L theory and vibration 

spectra is verified as valid approach to understand the 

relationship of the state of chemical bond with 

polarization and stability of lattice. Indeed, it seems 

that researchers could identify the contribution of each 

chemical bond to dielectric properties by P–V–L 

theory and infrared reflectivity spectrum. However, 

reaching general conclusions about the effect of a 

unique chemical bond or Wycoff site on different 

properties may be difficult, since the P–V–L theory is 

just predictable theoretically. The actual dielectric 

properties of ceramics are still evaluated based on 

experiments, and thorough, quantitative, and multi- 

perspective analysis is required. Figure 4 is the phase 

diagram of the mainly reported niobate and tantalate 

dielectric ceramics, where the rutile-type, ixiolite- 

type, and columbite-type structures were obtained 

after (Zn1/3Nb2/3)
4+ was doped into TiO2. The detailed 

phase division of A0.5B0.5CO4 and the relevant 

investigations of this binary system are summarized 

in the following.  

2.2.1  Rutile–trirutile/ixiolite/wolframite–columbite 

type ceramics 

Rutile, brookite, and anatase are the three types of TiO2 

in nature. TiO2 itself possesses a high permittivity ≈ 

100, a low dielectric loss tangent (tanσ) value (6×10–5 

at a frequency of 3 GHz), and a high τf value of 

450 ppm/  [70]. It is valid that TiO℃ 2 phase is used to 

target the aim of near zero τf value as a secondary phase 

in the system with a negative τf value. Meanwhile, 

long-term focus has been paid on the structure 

transformation and property optimization of TiO2 with 

 

 
 

Fig. 4  Pseudo phase diagram of the niobate and tantalite. 

substitution ions of different physicochemical properties. 

The cation substitution for Ti4+ can reduce the 

dielectric loss or tune the τf value, evolving monovalent, 

divalent, trivalent, tetravalent, or pentavalent cations, and 

their groups of two cations. Especially, the extensive 

elaboration of dependence of microwave dielectric 

properties on the crystal structure of (Zn1/3B
5
2
+
/3)xTi1–xO2 

(B5+ = Nb, Ta) ceramics was reported by Kim and 

Kang [71]. The phase relation of ternary system of 

ZnO–TiO2–Nb2O5 was first discussed in 1992 [72]. It 

summarized that the solid solution of rutile phase 

appeared in the range of molar content of (Zn1/3Nb2/3)
4+ 

lower than 58%, ixiolite ZnTiNb2O8 exited in the range 

of 69%–85%, while columbite solid solution of 

ZnNb2O6 formed when the content was higher than 

93% [73], and the solid solution area of different types 

was marked with shadow in the pseudo phase diagram 

in Fig. 4.  

Compared with the ongoing report of ZnTiNb2O8, 

the study of Zn0.15Nb0.3Ti0.55O2 is still rare. Generally, 

Zn0.15Nb0.3Ti0.55O2 appeared as the secondary phase 

which would control the dielectric properties of 

composite ceramics [74–76]. It possessed properties of 

εr ≈ 94.35, Q×f value ≈ 10,889 GHz, and τf ≈ 353.43 

ppm/ , sintered at 1050  [71], which was potential ℃ ℃

to be τf compensator as TiO2. Yang et al. [77] directly 

added the Zn0.15Nb0.3Ti0.55O2 into Zn0.5Ti0.5NbO4 ceramics, 

and the structure evolution and chemical bond 

parameters have been calculated. Zr4+ with the larger 

radius than Ti4+ was used to dope into 

Zn0.15Nb0.3(Ti1–xZrx)0.55O2 [78], where the expansion of 

bond length and cell volume renders the decline of 

covalency of all bonds. The decline of bond ionicity 

was obtained since the shrinking of cell volume and 

bond length in Zn0.15Nb0.3–xTaxTiZr0.55O2 [79]. 

The structure of formula A0.5B0.5CO4 can be 

categorized into four types: wolframite-type AZrB2O8 

(A = Mn, Zn, Mg, Co, Ni; B = Nb, Ta), rutile-type 

A0.5Ti0.5NbO4 (A = Ni, Co, Cu), tetragonal trirutile- 

type A0.5Ti/Sn0.5TaO4 structure (A = Co, Ni, Zn, Mg), 

and ixiolite-type ZnTiNb2O8. The schematic of those 

classifications is shown in Fig. 5, and the related 

investigations of each structure are illustrated in this 

section. The effects of different cations (Mn, Zn, Mg, 

Ni, and Co) at A-site of AZrNb2O8 illustrated that 

dielectric constant, quality factor, and τf values relied 

on the ionic polarizability, packing fraction, and B-site 

octahedral distortions, respectively [80–85]. Among 

them, MgZrNb2O8 shows the optimal quality factor 
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(εr ≈ 26, Q×f value ≈ 120,816 GHz, and τf ≈ –50.2 ppm/ ,℃  

at f = 6.85 GHz [86]). The microwave dielectric 

properties of wolframite-type AZrB2O8 (A = Mn, Zn, 

Mg, Co, Ni; B = Nb, Ta) and the structure-relationship 

were determined via combining the far-infrared and 

terahertz spectroscopy with P–V–L theory [87–91]. 

Partial replace of A-site (such as Mg0.5Zn0.5ZrNb2O8 

[92], Zn1–xCoxZrNb2O8 [93–95]), Zr-site substitution of 

Zn(Ti1–xZrx)Ta2O8 [96], ZnZr1–xSnxNb2O8 [97,98], doped 

Nb-site of MgZr(Nb1–xSbx)2O8 [99,100], ZnZrNbTaO8 

[101], MgZrNb2–x(Sn1/2W1/2)xO8 [102], and non- 

stoichiometric MgZrNb2+xO8+2.5x [103] provided evidence 

that relative density, packing fraction, bond valence, 

and chemical bond characteristics majored the variation 

of microwave dielectric properties. To adjust the 

negative τf values, the study about the relationship of 

TiO2 on MgZrNb2O8 [104] and ZnZrNb2O8 [105] 

presented that co-exited ceramics would reach near 

zero τf values. The microwave dielectric properties 

were εr ≈ 43, Q×f value ≈ 46,110 GHz, and τf ≈ –2.5 

ppm/  for 0.63MgZrNb℃ 2O8–0.37TiO2 ceramics; εr ≈ 

44, Q×f value ≈ 38,500 GHz, and τf ≈ –2.4 ppm/  for ℃

0.3ZnZrNb2O8–0.7TiO2 ceramics. Additionally, literature 

demonstrated that H3BO3 or B2O3 addictive aids could 

contributed to densification and improvement of the 

sintering behavior for ZnZrNb2O8 and MgZrNb2O8 

[106–108]. 

The dielectric properties of A0.5B0.5NbO4 ceramics 

are much different. Ni0.5Ti0.5NbO4 and Cu0.5Ti0.5NbO4 

crystalized in rutile structure presented with positive τf 

values of 79.1 and 49.2 ppm/℃, respectively [109,110]. 

The characteristic of rutile Co0.5Ti0.5NbO4 was sought 

by solid state reaction and sol–gel method [111,112], 

where the microwave dielectric properties were εr ≈ 64, 

Q×f value ≈ 65,300 GHz, τf ≈ 223.2 ppm/  and ℃ εr ≈ 

64.19, Q×f value ≈ 16,800 GHz, τf ≈ 66.17 ppm/ ,℃  

respectively. In the solid solution of Ni0.5–xZnxTi0.5NbO4, 

the dielectric constant was enhanced from 56.8 to 

62.54 [113]. Introduction of CoNb2O6 and Zn1.01Nb2O6 

into CoTiNb2O8 rendered the Q×f increasing considerably 

due to the enhanced densification and obtained the τf 

values of 0.5 and 0 ppm/ , respectively [114,115]. ℃

Zhang et al. [116] and Li et al. [117] reported that τf 

value would shift from positive to negative after Zr 

substitution in CoTi1–xZrxNb2O8, where the τf value 

was correlated with oxygen octahedral distortion and 

B-site bond valence. Superlattice diffraction peak 

which is relevant with cation ordering was observed in 

Co0.5Ti0.5Nb1–xSbxO4 ceramics, contributing to the 

augment of Q×f value [118]. 

The trirutile-type structure was observed in some 

tantalates, antimonates, and bismuthates. This crystal 

structure was built by ordering octahedral cations 

along c-axis, which possessed three times c-axis of 

rutile-type one [119,120]. Currently, Co0.5Ti0.5TaO4 

[121], NiTiTa2O8 [122], Co0.5Zr0.5TaO4 [90], NiSnTa2O8 

[123] were reported as trirutile-type structure. Among 

them, NiSnTa2O8 showed a near zero τf value (εr ≈ 21.04, 

Q×f value ≈ 31,328 GHz, and τf ≈ –2.63 ppm/ ). ℃  

Ixiolite phase ZnTiNb2O8 is a fully disordered 

α-PbO2 structure, where Zn/Ti/Nb ions statistically 

occupied the octahedral cation sites [124]. Up to now, 

numbers of substitution on ZnTiNb2O8 have been 

reported, such as Co [125], Mg [74], Ca [126], Sn 

[127], Zr [128], and Ta [129–131]. The crystal structure 

refinement and Raman spectrum study of ZnTiNb2O8, 

together with the mode assignment were completed by 

Liao and Li [132]. In the ZnO–Nb2O5–xTiO2 (1 ≤ x ≤ 2) 

system, ceramics were composed of Zn0.17Nb0.33Ti0.5O2 

and ZnTiNb2O8 when x ≥ 1.8 [133]. Using the effective 
 

 
 

Fig. 5  Schematic of classification of A0.5B0.5CO4. 
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route of sintering reaction for ZnNb2O6 and TiO2 nano 

powders, a superior property of ZnTiNb2O8 was 

achieved compared with that prepared by solid-state 

method [134]. Dielectric constant and dielectric loss 

were evaluated in microwave and THz range in Al0.5Nb0.5 

doped into ZnTiNb2O8, where the results indicated the 

negligible shift of dielectric constant in those 

frequencies, as shown in Fig. 6 [135]. Furthermore, 

ixiolite MgTiNb2O8 prepared by aqueous sol–gel 

process and then sintered at 1000  showed ℃ εr ≈ 33.8, 

Q×f value ≈ 26,260 GHz, and τf ≈ –19.2 ppm/  [136].℃  

In the family of AB2O6 (A = Ca, Mg, Mn, Co, Ni, 

Zn; B = Ta, Nb), the relationship of permittivity with 

electronegativity was presented by Lee et al. [137]. 

Two structure classifications have been identified in 

this system, namely rutile-type (trirutile) and α-PbO2- 

type (tri-α-PbO2, columibite) [138,139]. Comprehensive 

studies of columbite niobates concluded that the εr was 

in the range of 17–22, τf value varied from –45 to –76, 
 

 
 

Fig. 6  Absorption coefficients of ZnTi1–x(Al0.5Nb0.5)xNb2O8 

ceramics at 0.6 and 0.9 THz. Reproduced with permission 

from Ref. [135], © The American Ceramic Society 2019. 
 

and the Q×f value was over 95,000 GHz of MgNb2O6 

[140,141]. The investigations about property optimization 

and preparation methods were concentrated on 

MgNb2O6, ZnNb2O6, and ZnTa2O6 due to their 

potential of application. For sintering behavior, the 

sintering temperature can be reduced to 1150  of ℃

MgNb2O6 by sol–gel method [142]. Doped ceramics of 

(Zn1–xNix)Ta2O6 [143], Zn(Ta1–xNbx)2O6 [144], 

Zn(Ta1–xSbx)2O6 [145], and composite ceramics 

composed of ZnO–Nb2O5–1.75TiO2–5 mol% MgO, 

(1–x)ZnTa2O6–xMgNb2O6, (1–x)ZrTi2O6–xZnNb2O6, 

and (1–x)ZnTa2O6–xNiNb2O6 were designed successfully 

to reach near-zero τf value [146–149]. Liu and Deng 

[150] proposed that the grain size of ZnNb2O6– 

(Zn0.7Mg0.3)TiO3 ceramics became smaller with the 

ZnNb2O6 content increasing. The secondary ZnV2O6 

was observed with higher than 1 wt% V2O5 into 

ZnNb2O6 [151]. The property comparison of MgTa2O6 

was obtained by sol–gel procession and solid reaction 

sintering by Wu et al. [152]. Liu et al. [153] verified 

that the unpaired d-electrons contribution to the room 

temperature loss should be taken into consideration of 

ZrTiO4–ZnNb2O6. It was interesting that the structure 

transformation was identified as tri-α-PbO2, α-PbO2, 

trirutile, and rutile in (1–x)ZnTa2O6–xTiO2 along with 

the increase of x [154]. ZnNb2O6 ceramics prepared by 

microwave sintering exhibited relative density of 

94.3%, and the quality factor was dominated by the 

distribution of grain size [155]. Recently, the intrinsic 

dielectric properties were investigated using chemical 

bond theory and lattice vibrational spectra, which 

indicated that B1u mode at 168.87 cm–1 was highly 

related to the dielectric properties [156], and the fitted 

results of infrared-related spectrum are presented in 

Fig. 7. 

 
 

Fig. 7  Real ε′(ω) and imaginary ε″(ω) of relative permittivity after (a) LTPC and (b) FPSQ mode fit. LTPC, Lorentz three parameter 

semiquantum model; FPSQ, four parameter semiquantum model. Reproduced with permission from Ref. [156], © The American 

Ceramic Society 2019. 



894  J Adv Ceram 2021, 10(5): 885–932 

www.springer.com/journal/40145 

2.2.2  ReTiCO6 ceramics 

The crystal structure of double tantalates of rare-earth 

elements with titanium tantalite compounds based on 

ReTiTaO6 is sorted into two parts: orthorhombic 

aeschynite symmetry with rare earth atomic number in 

the range of 55–66 and orthorhombic euxenite symmetry 

with that of 67–71 [157,158]. Generally, high εr and 

positive τf were obtained for the former, while 

relatively low εr and negative τf were observed for the 

latter. The effect of microstructure on properties of 

RETiNbO6 (RE = La, Sm, and Y) ceramics was 

presented by Lei et al. [159]. The dielectric constant of 

RETiNbO6 system (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, 

Dy, Y, and Yb) and RETiTaO6 (RE = La, Ce, Pr, Nd, 

Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al, and In) 

increases with the RE ionic radius [157,158]. It was 

reported that LaTiNbO6 usually stabilized as a 

monoclinic structure, and Zhang and Zuo [160] 

proposed that ceramics with coexistence of O and M 

phases could be achieved after prolonging the 

annealing time. And then, they [161–164] conducted 

out the substitutions for La and Nb sites, in which the 

structure evolution, octahedral distortion, and vibrational 

spectrum were elaborated in detail. More recently, 

dielectric and optical properties of Ln0.8Lu0.2TiNbO6 

(Ln = Ce, Pr, Nd, and Sm) were presented by John and 

Solomon [165], where the optimal microwave dielectric 

properties were shown for Sm0.8Lu0.2TiNbO6: εr ≈ 35, 

Q×f value ≈ 37,390 GHz, and τf ≈ 15 ppm/ .℃  

2.2.3  ReCO4/Mg4C2O9/Zn3C2O8 ceramics 

The ABO4 composition material system of RENbO4 

(RE = lanthanoid atoms, being La to Lu as well as Y) 

was firstly investigated in light of their luminescence, 

damping, and phase transformation characteristics, and 

their microwave dielectric properties were firstly 

proposed in 2006 [166]. The satisfied properties of 

LaNbO4, NdNbO4, and SmNbO4 attracted much 

attention recently. For NdNbO4 ceramics, substitution 

for Nd site by single cations such as Sr, Ca, Mn, Co, 

Mg, Zn, Y, Al, Bi, Sm, La [167–175], and Nb site by 

Ta, Sb [176–179] were completed to adjust the 

microwave dielectric properties. In our recent reports, 

the groups of different isovalent cations of (AxB1–x)
5+ 

(A = Mg, Al, Si, Zr; B = W, Mo) have been listed as 

valid substitution for Nb site to reduce dielectric loss 

[180–183]. The analysis of combination of P–V–L 

theory and vibration spectrum suggested that doping 

into Nb site was beneficial to improving quality factor. 

Meanwhile, NdNbO4 prepared in sol–gel method or 

composite ceramics composed of NdNbO4–CaTiO3 

[184], NdNbO4–CaF2 [185], and NdNbO4–MgO [186] 

have also been reported to perfect the properties. 

Similarly, intrinsic dielectric properties of EuNbO4 

were studied by Liu et al. [187]. In the full range of 

La2O3–Nb2O5–V2O5 system, four typical phase regions 

were verified, including monoclinic fergusonite, tetragonal 

sheelite, B-site ordered sheelite, and composite of 

monoclinic LaVO4 and tetragonal sheelite phases [188]. 

Likewise, MgO was designed as an addition for 

LaNbO4 ceramics and the excellent properties were 

listed as εr ≈ 19.8, Q×f value ≈ 94,440 GHz, and τf ≈ 

6.1 ppm/  [189]. More recently, structure℃ –property 

relationship of another A3+B5+O4 binary oxide, zircon- 

type AVO4 (A = Eu, Y) ceramics, was discussed by 

packing fraction and bond valence [190]. Ferroelastic 

phase transition from monoclinic fergusonite to 

tetragonal scheelite was observed by in situ Raman 

spectroscopy and X-ray diffraction of La(Nb0.9V0.1)O4, 

and the schematic of εr typical-ceramics versus 

temperature was shown by Zhou et al. [191]. NiO/CoO 

added into LaNbO4 would distinctly optimize the 

quality factor since the larger and uniform grain was 

obtained [192]. Although the thermal properties 

[193–196] and the first-principles calculation of 

electronic structure and optic properties of RETaO4 

(RE = Y, La, Sm, Eu, Dy, Er) [197] have been 

investigated, the intrinsic dielectric loss has not been 

summarized in this system. Microwave dielectric 

properties of ErNbO4 prepared by sol–gel method were 

reported by Devesa et al. [198], and the grain size 

varied from 31.27 to 86.65 µm and 40.96 to 78.23 µm 

by Rietveld refinement and Sherrer’s formula, respectively. 

ZrTiO4 followed the general formula of ABO4, and the 

intrinsic dielectric loss of Zr0.8Sn0.2TiO4 was 

investigated by THz time domain spectroscopy [199]. 

The structure of corundum-like phase of Mg4Nb2O9 

was verified by Kumada et al. [200], where the cations 

were ordered by the stack of two layers of a mixture of 

Mg and Nb and one layer of Mg along the c-axis. 

Mg4(Nb2–xTax)O9 solid solution was synthesized in the 

sintering temperature range of 1350–1400  [201], ℃

which possesses a comparable quality factor (Q×f 

value ≈ 350,000 GHz for x = 2) to that of Al2O3. To 

deal with the limitation of high sintering temperature, 

both Mg4Nb2O9 and Mg4Ta2O9 were generated by 

sol–gel method and the variation of property with  
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sintering temperature was analyzed [202–204]. An 

accompanying minor phase of Mg5Nb4O15 gradually 

disappeared as the calcined temperature increased to 

850 . High frequency dielectric properties of A℃ 5B4O15 

microwave dielectric were evaluated by Kamba et al. 

[205] using far-infrared reflection, transmission 

spectroscopy, and time-resolved THz transmission 

spectroscopy. Considering the negative influence of 

second phase on properties and sintering behavior of 

Mg4Nb2O9, excess MgO and Mg(OH)2 were used to 

adjust the composition of Mg4Nb2O9 [206,207], which 

presented that the appearance of Mg4Nb2O9 pure phase 

was more easily with Mg(OH)2 as raw materials. A 

dramatically improvement of quality factor was 

achieved by Ni and Ta co-doped into this system, and 

(Mg0.95Ni0.05)4(Nb1–xTax)2O9 shows satisfied properties 

of εr ≈ 12.76, Q×f value ≈ 442,000 GHz, and τf ≈ 

–54 ppm/ , when ℃ x = 1 and sintered at 1375  [208]. ℃
(BxW1–x)

5+ substitution at Nb5+ site (B = Li, Mg, Al, Ti) 

in Mg4Nb2O9-based ceramics revealed that the τf 

depended on the distortion of the oxygen octahedra, 

while (Ti1/2W1/2)
5+ substitution had the highest quality 

factor of 233,000 GHz [209]. The investigation of 

y(Mg0.95Co0.05)4Ta2O9–(1–y)CaTiO3 ceramics provided 

a promising dielectric material for application with 

temperature stability, and the properties were shown as 

εr ≈ 25.78, Q×f value ≈ 200,000 GHz, and τf ≈ 

–4.69 ppm/  [210]. ℃  

Zn3Nb2O8 was another promising binary niobite 

compound, which could be successfully produced with 

98% theoretical density sintered at 1100  [211]. A ℃
two-stage sintering method was proposed to optimize 

the microstructure of Zn3Nb2O8 [212], where the 

sintering temperatures were 1150 and 1200  for the ℃
first time and the second sintering temperatures were 

1050 and 1100 , respectively. Sintered based on this ℃
approach, ceramics presented denser grain packing and 

less abnormal grain growth. Adding secondary phase 

into ceramics to compensate for τf value would 

introduce a large amount of second phase, which were 

ascribed to the large dielectric loss. Aiming to reduce 

the defects stemmed from the secondary phase, layer- 

cofired ceramic architectures were designed such as 

Zn1.01Nb2O6/TiO2/Zn1.01Nb2O6 [3], MgTiO3/TiO2/MgTiO3 

[4], and Zn3Nb2O8/TiO2/Zn3Nb2O8 [5]. High-Q value 

was remained and temperature-stable MWDCs were 

obtained for all the reported tri-layer co-fired ceramics.  

2. 3  Rock-salt structure 

Closely followed by the ever-growing explosion of 

global data volume and the rapid boost of millimeter- 

wave technology, the requirement of materials with 

low permittivity (εr ≤ 25) and high Q×f value is 

increasingly urgent. In the exploration of new 

composition ceramics, many rock-salt Li-containing 

compounds emerge as focal points. The general 

formula of rock-salt ceramics is AaBbOa+b (A
+ = Li, Na; 

B4+ = Ti, Sn, Zr; B5+ = Nb and Ta). Li2TiO3 underwent 

an order–disorder phase transition at 1213 , in which ℃

the structure consisted of ordered (Li,Ti) layer, with the 

property of εr ≈ 12.76, Q×f value ≈ 44,200 GHz, and 

τf ≈ –54 ppm/  [213]. The sintering behavior of ℃

excess Li for non-stoichiometry Li2+xTiO3 ceramics 

was investigated by Bian and Dong [214] and Hao 

et al. [215] after the determination of pseudo-binary of 

Li2O–TiO2 [216,217]. For co-doped substitution, Zn1/3Nb2/3, 

Mg1/3Nb2/3, and Co1/3Nb2/3 addition into Li2TiO3 could 

adjust the τf from positive to negative [218–220]. 

Cu1/3Nb2/3 doped ceramics with 3 wt% H3BO3 were 

designed as a patch antenna and a dielectric resonator 

antenna [221]. The solid solution of Li2TiO3–MgO 

[222], Li2TiO3–ZnO [223,224], and Li2TiO3–Li3NbO4 

[225] attracted much interest of researcher owing to 

their high quality factor. The primarily reported 

ceramics of Li2O–MgO/ZnO/CoO–Ti/Sn/ZrO2 ternary 

system contain Li2Mg/NiTi/ZrO4, Li2Zn/Mg/CoTi3O8, 

Li2Zn/Co/Mg3Ti4O12, Li2Mg/Ni3Ti/SnO6, Li2ZnTi5O12, 

Li2Mg4TiO7, Li6Mg7Ti3O16, Li4MgSn2O7, and Li2NiZrO4; 

while LiZnNbO4, Li3Mg2NbO6, and Li2Mg3NbO6 

occupied the dominated composition of Li2O–MgO/ 

ZnO/CoO–Nb/Ta/Sb2O5. The microwave dielectric 

properties of the mentioned pure phase ceramics are 

listed in Table 1 [224,226–246], and the phase diagram 

of rock-salt structure is plotted in Fig. 8, where the 

ordered–disordered range was summarized from Zhang 

et al. [246,247]. Simultaneously, Gu et al. [248] stated 

the two-phase and thermally stable ceramics of 

0.8Li3NbO4–0.2Ca0.8Sr0.2TiO3, where the τf value was 

5.2 ppm/ .℃  

2.3.1  Li2O–MgO/ZnO/CoO–Ti/Sn/ZrO2 ternary system 

Secondary phases of Mg2TiO4 and Li2Mg3Ti4O12 were 

highly related to the properties when Yao et al. [249] 

prepared the Li2MgTiO4 after sintered higher than 

1250 . The variation of di℃ electric properties of 

Li2Mg0.95A0.05TiO4 (A = Ni, Co, Mn, Zn) indicated that 

the dielectric polarizability dominated the dielectric 

constant [250], and a near zero τf (–4.03 ppm/ ) was ℃

obtained for 0.1 mol Zn substitution for Mg [251].  
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Fig. 8  Pseudo phase diagram of rock-salt structure. 
 

Table 1  Microwave dielectric properties of pure 

phase with rock-salt structure 

Formula εr Q×f (GHz) τf (ppm/ )℃  ST ( )℃  Ref. 

Li2MgTiO4 17.25 97,300 –27.2 1360 [226] 

Li2NiTiO4 19.25 51,290 –20.1 1275 [230] 

Li2MgZrO4 12.30 40,900 –12.31 1175 [234] 

Li2MgTi3O8 27.2 40,000 2.6 1000 [227] 

Li2CoTi3O8 28.9 52,600 7.4 1025 [228] 

Li2ZnTi3O8 25.6 90,000 –10.8 1000 [229] 

Li2Co3Ti4O12 21.4 35,000 –22 1050 [233] 

Li2Mg3Ti4O12 20.2 62,300 –27.1 1125 [232] 

Li2Zn3Ti4O12 20.6 106,700 –48 1075 [231] 

Li2Mg3TiO6 15.2 152,000 –39 1280 [235] 

Li2Ni3TiO6 13.18 9800 –7.3 1275 [238] 

Li2Mg4TiO7 13.43 233,600 –7.24 1600 [239] 

Li6Mg7Ti3O16 15.27 209,400 –11.31 1550 [240] 

Li2ZnTi5O12 38.4 54,300 82.9 1260 [237] 

Li4MgSn2O7 12.4 58,754 12.1 1180 [241] 

Li2NiZrO4 12.3 20,000 –23.4 1300 [242] 

LiZnNbO4 15.6 85,310 –63.7 1070 [236] 

Li3Mg2NbO6 14.94 100,965 –21.96 1225 [243] 

Li3Mg2SbO6 10.5 84,600 –9.0 1300 [244] 

Li2Mg3NbO6 16.8 79,642 –22 1300 [224] 

Li3MgNbO5 16.2 96,796 –24.8 1260 [245] 

ST: sintering temperature ( ).℃  

 

Both Li2Mg4TiO7 and Li4Mg3Ti2O9 exhibited LiFeO2- 

like cubic phase with space group Fm3̄m. The optimal 

combination of microwave dielectric properties of 

Li2(Mg0.9A0.1)4TiO7 (A = Co, Ni, Mg, Zn, Ca) was 

observed for Zn doped ceramics (εr ≈ 14.77, Q×f value ≈ 

162,200 GHz, and τf ≈ –4.30 ppm/ ) and Ca (℃ εr ≈ 

15.79, Q×f value ≈ 100,300 GHz, and τf ≈ –1.43 ppm/ )℃  

[252]. Pure cubic Li4Mg3Ti2O9 phase was formed in 

the whole range of 0 ≤ x ≤ 0.4 with Mg1/3Ta2/3 

occupying Ti site [253]. 

Except for the sintering temperature, the heating 

rates and substation will directly influence the grain 

size, densification, and properties. Lu et al. [254] 

pointed out that the sintering rate increasing from 3 to 

7 /min would deteriorate the quality f℃ actor of 

Li2ZnTi3O8 ceramics. If ball milling is applied for the 

raw materials at first for 4 h, then the sintering 

temperature of Li2ZnTi3O8 ceramics could reduce from 

1075 to 925 , and those ceramics were chemically ℃

compatible with Ag [255]. Sintering the ceramics in a 

box type electric furnace and in a microwave furnace 

would obtain Li2ZnTi3O8 ceramics with the grain size 

of 38 and 7 µm, respectively [256]. Mg, Co, and Zn 

substitution for Zn in Li2ZnTi3O8 increased the quality 

factor because of the more compact microstructure 

[257–259]. Whereas, the secondary phases were recorded 

after the introduction of Sr2+ or (SrxCa1–x) into Li2ZnTi3O8 

[260–262]. Phase evolution of (1–x)Li2ZnTi3O8–xTiO2 

system indicated that pure Li2ZnTi3O8 with cubic 

structure was observed when x ≤ 0.2 (the lattice 

parameter is similar to MgFe2O4 with space group of 

Fm3̄m (227)), solid solution was exited in the range of 

0.2 ≤ x ≤ 0.4 with cubic structure (the lattice 

parameters is similar to Zn2Ti3O8 with space group of 

P4332 (212)), and rutile TiO2 phase appeared when x ≥ 

0.6 [263]. The τf value moves from –15 to 102.4 in 

(1–x)Li2ZnTi3O8–xTiO2 (0 ≤ x ≤ 0.4) [264]; meanwhile, 

near zero τf value was also achieved by Bari et al. [265] 

in this system. 4 wt% TiO2 was added into Li2ZnTi3O8 

with different particle sizes, where the nanoparticles 

and micron particles all generated a more uniform 

microstructure and relative density reached to 98.5% 

[266]. Similar to TiO2-doped Li2ZnTi3O8 ceramics, phase 

composition and properties of Li2Mg(Ti1–xSnx)3O8 (x = 

0.1–0.25) were concluded as with 0.10 ≤ x ≤ 0.15, 

the spinel and rutile were co-exited; with 0.20 ≤ x ≤ 

0.25, the spinel, rutile, and ilmenite were obtained 

[267], and the optimal properties of Li2ZnTi3O8– 

0.2SnO2 composite ceramics exhibited: εr ≈ 20.9, Q×f 

value ≈ 89,500 GHz, and τf ≈ –24 ppm/  [268]. The ℃

variation of dielectric properties with density of 

(1–x)Li2(Mg0.95Zn0.05)3Ti3O8–xLi2TiO3 (x = 0.727, 0.778, 

0.821, and 0.889) was discussed systematically by 

Zhang et al. [269]. The concentration of oxygen 

vacancy, relative density, and decrease in damping 

behavior would influence the Q×f value of Li2ZnTi3O8–x 

wt% Nb2O5 [270]. To trace the dielectric response of 

lattice vibration, the response process of dielectric loss 

in Li2ZnTi3–xMxO8 (M = Al3+, Nb5+, (Al0.5Nb0.5)
4+, 
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(Zn1/3Nb2/3)
4+, and (Li1/4Nb3/4)

4+) was discussed 

systematically containing the conduction loss and 

lattice vibration loss [271]. The conduction loss which 

acts at frequency lower than terahertz is neglectful by 

researchers concentrating on MWDCs, while AC 

impedance analysis was used to identify the effect of 

dopants and the mechanism of conduction loss in this 

system. Combining the fitting THz time domain 

spectrum and far infrared reflectivity spectrum, the 

dielectric response was illustrated in depth based on 

lattice loss and conduction loss. 

Ultra-low loss microwave dielectric materials of 

Li2Mg3TiO6-based ceramics are extensively studied via 

doping cations into Mg and Ti site. Bivalent cations 

[272] such as Ca2+, Ni2+, Zn2+, and Mn2+ were verified 

effectively to adjust the microwave dielectric properties 

for Mg site, and co-doped of Al1/2Nb1/2 and Zn1/3Nb2/3 

for Ti-site enhanced the Q×f values to 174,300 GHz 

[273] and 168,911 GHz [274], respectively. For MWDCs, 

compactness microstructure guarantees the satisfied 

microwave dielectric properties. However, porous 

microstructure caused by the loss of Li element under 

high temperature is a problem for all compounds 

containing Li. To cure the volatilization of lithium, 

Fang et al. [275–277] proposed a reliable method 

which provided the Li-rich sintering atmosphere, and 

they obtained serial MWDCs based on Li–Mg–Sn/Ti 

oxides with excellent properties. The schematic 

representation of the devices provided with the Li-rich 

atmosphere is shown in Fig. 9, and this similar method 

was gradually popularized to other systems with 

volatilization element to obtain the ceramics with 

dense microstructure. The negative τf values can be 

compensated by Ca0.8Sr0.2TiO3, and the sample with 

0.91Li2Mg3TiO6–0.09Ca0.8Sr0.2TiO3 showed a τf value 

of –3.65 ppm/  [278]. ℃  
 

 
 

Fig. 9  Schematic representation of the Li2/3(1−x)Sn1/3(1−x)MgxO 

(x = 0–4/7) placement for providing ZrO2-burying 

protective atmosphere and Li-rich sintering atmosphere. 

Reproduced with permission from Ref. [277], © The 

American Ceramic Society 2017. 

The phase evolution of Li2O–3MgO–mTiO2 (1 ≤ 

m ≤ 6) was summarized as the phase diagram shown 

in Fig. 10 [279], where the phase structures changed as 

(Li2Mg3TiO6, m = 1)→(Li2Mg3Ti4O12 and Mg2TiO4, 

m = 2, 3)→(Li2Mg3Ti4O12, m = 4)→(Li2Mg3Ti4O12, 

MgTiO3, and Li2MgTi3O8, m = 5)→(Li2Mg3Ti4O12, 

MgTiO3, Li2MgTi3O8, and MgTi2O5, m = 6). The 

application of P–V–L theory to Li2MgTiO4 [280], 

Li4Mg3Ti2O9 [281], and Li2Mg3TiO6 [282] revealed 

that the bond ionicity (fi) descended as fi(Ti–O) > 

fi(Mg–O) > fi(Li–O). As analogy with Li2O–3MgO– 

mTiO2 ceramics, Li2ZrO3–MgO ceramics were explored 

as well [234,283,284]. High quality factor could be 

obtained in (Mg1/3Sb2/3)
4+ substitutions for Li2Mg4ZrO7 

ceramics, which reached 153,140 GHz [285]. Zirconium 

deficiency of Li2Mg3Zr1–xO6 ceramics was designed and 

remarkable dielectric properties were presented: εr ≈ 13.13, 

Q×f value ≈ 116,400 GHz, and τf ≈ –26.30 ppm/  [286].℃  

2.3.2  Li2O–MgO/ZnO/CoO–Nb/Ta2O5 ternary system 

An intermediate compound of Li3Mg2NbO6 at x = 1/3 

appeared in the investigation of structure evolution of 

Li(3–3x)M4xNb(1–x)O4 (M = Mg, Zn), and the results 

indicated that solid solution could be formed in a wide 

range between Li3NbO4 and MgO [224]. Considering 

the existed compounds of Li2TiO3–MgO and Li3NbO4– 

MgO, Zhang et al. [246] supposed that a three- 

component solid solution would be formed in Li2TiO3– 

Li3NbO4–MgO, and the pseudo phase diagrams of 

those component were presented in Fig. 11. The most 

extensively studied ceramics in this system are 

Li2Mg3Nb/TaO6 and Li3Mg2NbO6. For instance, a large 

grain size (130 μm) was recorded after using reaction 

sintering process to generate Li3Mg2NbO6 [287]. Single 

cation doped solid solution of Li3(Mg1–xCox)2NbO6 [288], 

Li3(Mg1–xMnx)2NbO6 [289], Li3Mg2Nb1–xMoxO6+x/2 [290],  

 

 
 

Fig. 10  Ternary phase diagram of Li2O–3MgO–mTiO2 

systems. Reproduced with permission from Ref. [279], © 

Elsevier Ltd and Techna Group S.r.l. 2016. 
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Li3Mg2Nb1–xTaxO6 [291], Li3Mg2Nb1–xVxO6 [292], 

Li3Mg2Sb1–xO6 [293], Li3Mg2–xZnxSbO6 [294], 

Li3Mg2(Nb1–xWx)O6+x/2 [295], Li3Mg2Nb1–xTixO6–x/2 [296], 

Li3+xMg2Nb1–xTixO6 [297], and Li3Mg2Nb0.96(MxW1–x)0.04O6 

(M = Li+, Mg2+, Al3+, Ti4+) [298] or non-stoichiometric 

Li3Mg2+xSbO6 [299] have been probed and analyzed to 

explain the variation of dielectric properties through 

current theory including P–V–L theory, packing 

fraction, and C–M equations. It was interesting that the 

“dark hole” phenomenon of Li2TiO3 was cured by 

adding Li3Mg2NbO6 and the τf value of 0.96Li2TiO3– 

0.04 Li3Mg2NbO6 was 2.6 ppm/  [300]. Since yet there℃  

was no literature about the structure transformation of 

Li2TiO3–Li3NbO4–MgO to renew the understanding of 

rock-salt ceramics, Zhang et al. [247,301,302] gradually 

updated the reports about Li3Mg2NbO6-based ceramics. 

The phase transitions among the orthorhombic, cubic, 

and monoclinic were verified by XRD (Fig. 12) and 

TEM analysis (Fig. 13). The systematical analysis of 

lattice evolution and ordering transformation indicated 

that the low dielectric loss of this system was mainly 

ascribed to the superlattice. The THz time-domain 

spectroscopy was firstly used in this system to evaluate 

the intrinsic dielectric loss associated with phonon 

oscillation. Meanwhile, the configurational entropy 

was calculated to explain the change of disordered and 

ordered crystal structures, where the disordering cubic 

phase generated much larger configurational entropy 

than the ordered orthorhombic and monoclinic phase 

(Fig. 14). 
  

 
 

Fig. 11  Pseudo phase diagrams of (a) Li2TiO3–Li3NbO4–MgO and (b) Li2SnO3–Li3NbO4–MgO ternary systems. Reproduced 

with permission from Ref. [246], © Elsevier Ltd and Techna Group S.r.l. 2020. 

 

 
 

Fig. 12  (a) XRD patterns of Li3Mg2–x/3SnxNb1–2x/3O6 (x = 0–1.5) MWDCs sintered at 1290  for 4 h. (b) Amplified spectra of ℃
the XRD patterns from 17° to 25°. (c) Amplified spectra of the XRD patterns from 41° to 45°. Reproduced with permission from 

Ref. [302], © American Chemical Society 2020. 
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Fig. 13  Selected area electron diffraction (SAED) patterns of Li3+xMg2–2xNb1–xTi2xO6 (0 ≤ x ≤ 1) ceramics for (a) x = 0 

sample taken along [100]O zone axis, (b) x = 0.5 sample along [100]C zone axis, and (c) x = 1 sample along [001]M zone axis. 

(d−f) Corresponding high resolution transmission electron microscopy (HRTEM) images of the selected areas of the above 

samples. Reproduced with permission from Ref. [247], © Elsevier Ltd and Techna Group S.r.l. 2020.  

 

 
 

Fig. 14  Configurational entropy (Sconfig) of the cation 

substitutions for the three different types of phases in the 

Li3+xMg2–2xNb1–xTi2xO6 (0 ≤ x ≤ 1) system as a function 

of the substitution amount (x). Reproduced with 

permission from Ref. [247], © Acta Materialia Inc. 2021. 

 

In contrast to the large scale studies of Li3Mg2NbO6- 

based ceramics, only Li4MgSn(2–1.25x)NbxO7 (0 ≤ x ≤ 

0.15) was reported to evaluate the change of 

microstructure in Li4MgSn2O7. The mean grain size of 

the doped ceramics ranged from 1.35 to 4.01 μm and 

the cracks appeared along with the occurrence of the 

secondary phase [303]. 

2. 4  Tungsten bronze structure and titanate based 

on BaO–TiO2  

Since 1970, the exploration of BaO–TiO2 system has 

been continuous renewed. Among them, BaO–4TiO2 

and 2BaO–9TiO2 are the most extensively investigated 

ceramics as the representative ceramics with medium 

dielectric constant. The pseudo phase diagram of 

tungsten bronze structure and binary system based on 

BaO–TiO2 system is shown in Fig. 15. In contrast to 

other sections in this review, the investigations about 

the compounds within this phase diagrams are 

relatively less, because the study of ceramics in 

BaO–R2O3–TiO2 (R = La–Gd) has been almost 

accomplished and widely used in the industry. 

2.4.1  BaO–TiO2/Nb2O5/Ta2O5 system and Re2TiO5 

The frequency dependence of Q×f value was observed 

for Ba2Ti9O20 ceramics, which was ascribed to the 

extrinsic dielectric loss [304]. After adding Sm2O3 into 

BaTi4O9, precursor of BaTi4O9 and BaSm2Ti4O12 was 

 

 
Fig. 15  Pseudo phase diagram of tungsten bronze 

structure and binary titanite. 
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modeled by a cool iso-static press and calcined at 

1300 , and a near℃ -zero temperature coefficient of 

+2.2 ppm/  was achieved with 40 mol% Sm℃ 2O3 [305]. 

(Zn1/3Nb2/3)
4+ substitution for Ti4+ in Ba2Ti9O20 modified 

the τf value to +7 ppm/  [306]. Pseudobrookit℃ e-type 

A5B4O15 (A = Ba, Sr, Mg, Ca; B = Nb, Ta) was firstly 

investigated by Jawahar et al. [307], which showed εr ≈ 

11–51, Q×f value ≈ 2400–88,000 GHz, and τf ≈ 

(–73)–232 ppm/℃. Based on sol–gel method, 

Mg5Nb4O15 nano-powders were obtained at 600 , ℃

and then the sintering temperature can be reduced to 

1300  [204]. On the basis of P℃ –V–L chemical bond 

theory, the relationship of chemical bond characteristic 

and microwave dielectric properties of Eu2TiO5 was 

discussed deeply [308]. Meanwhile, the electron 

localization function (ELF) based on the first-principles 

calculation was evaluated to provide the information of 

bond covalency [309], which provided a strategy to 

estimate the chemical bond characterization. 

2.4.2  Tungsten bronze structure 

The different compositions of tungstenbronze-type 

with Ba6–3xR8+2xTi18O54 solid solution reported by 

Ohsato [310] in 2001, and the compounds were 

presented in Fig. 16. The relative permittivity of 

BaO–R2O3–TiO2 (R = La–Gd) was higher than 80, and 

the solid solubility region became narrower as the 

ionic radius of rare earth increasing [311]. The doping 

effect and the determination of crystal structure of 

Ba6–3xR8+2xTi18O54 were summarized in the review of 

dielectric materials for wireless communication [1]. 

After 2010, there are only a few studies focused on this 

system. Three distinct phases were formed using 

variable size TiO2 reagents into BaO–Nd2O3–TiO2 

[312]. Ba6–3xR8+2xTi18O54 (BRT, R = La, Pr, Nd, Sm) 
 

 
 

Fig. 16  BaO–R2O3–TiO2 (R = rare earth) ternary system. 
Reproduced with permission from Ref. [310], © Elsevier 
Science Ltd. 2001. 

solid solution family was reported with high 

permittivity. When x = 2/3, Ba4Nd9.33Ti18O54 was 

regarded as the most investigated ceramics to lower its 

τf value and sintering temperature or improve its Q×f 

value. Yao et al. [313] and Chen et al. [314] proposed 

that with Al2O3 added BaO–Nd2O3–TiO3 ceramics, the 

Q×f value would increase obviously. The temperature- 

stable ceramics could be obtained by Pb and Sr 

substitution for Ba3.75Nd9.5Ti18O54 [315]; Ba4.5Re9Ti18O54 

(Re = La, Nd) [316]; solid solution of Ba4.2Nd9.2Ti18–xSnxO54 

[317], (Ba0.98Sr0.02)3.75Nd9.5Ti18x(Zn1/3Nb2/3)xO54 [318], 

Ba6−3xNd8+2xTi18−y(Cr1/2Nb1/2)yO54 [319], Ba4Nd9.33 

(Al0.5Nb0.5)xTi18–xO54 [320], Ba3.75Nd9.5Ti18–z(Al1/2Nb1/2)O54 

[321], and BaxSr1–xTiO3 [322]; NdAlO3 [323] addition 

to Ba4Sm9.33Ti18O54; MgO, Al2O3, and MnO2 substituted 

for Ti4+ [324] in Ba4.2Sm9.2Ti18O54, Ba4La3.73Sm4.66Bi0.93Ti18O54, 

Ba4(Pr0.4Sm0.6)28/3Ti18−yGa4y/3O54 [325], and Ba4(Pr1–x 

Smx)28/3Al4y/3O54 [326]. Among those reports, the analysis 

of Raman spectrum of Ba3.75Nd9.5Ti18–z(Al1/2Nb1/2)O54 

enriched the theoretical study of tungstenbronze-type. 

2.4.3  BaO–ZnO–TiO2 system 

Ceramics based on the BaO–ZnO–TiO2 system have 

been concluded as Ba4ZnTi11O27, BaZn2Ti4O11, 

Ba2ZnTi5O13, and BaxZnxTi8–xO16–hollandite [327]. 

The substitution of Cu for Zn dramatically increased 

the Q×f value because of the restrain of the formation 

of Ti3+ ions [328]. Considering the opposite τf values of 

BaTi4O9 and BaZn2Ti4O11, the τf values of composite 

ceramic based on those two phases varied gradually 

from 12 to –13 ppm/  [329]. CuO also worked as flu℃ x 

former to enhance the densification in the BaTi4O9– 

BaZn2Ti4O11 composite ceramics, and the 0.85BaTi4O9– 

0.15BaZn2Ti4O11–1 wt% CuO presented the properties 

as εr ≈ 36.4, Q×f value ≈ 62,600 GHz, and τf ≈ 

+0.2 ppm/  [330]. Phase evolution of BaZn℃ 2Ti4O11– 

BaNd2Ti4O12 ceramics was determined by Yu et al. 

[331], where 0.8BaZn2Ti4O11–0.2BaNd2Ti4O12 ceramics 

possessed properties as εr ≈ 39.1, Q×f value ≈ 37,850 GHz, 

and τf ≈ –9 ppm/ .  ℃  

2. 5  Perovskite related structure 

The ideal perovskite (written as ABO3) is cubically 

symmetric with a space group of Pm3̄m, and the 

represented material is SrTiO3. Due to the flexibility of 

ABO3 perovskite, variants of perovskite have been 

investigated, and the classification of perovskite- 

related structure with representative structure is 

summarized in Fig. 17. The perovskite-related structure  
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Fig. 17  Classification and the representative structure of perovskite-related structure. 

 

contained cubic-type, orthorhombic-type, and hexagonal- 

type structures. For hexagonal-type structure, the twinned 

hexagonal structure means the closely packed AO3 

layers were stacked in the order of (ccch)2, while the 

shifted hexagonal structure corresponds to ccchhccc 

order. The typical representative of twinned structure is 

Ba8CoTa6O24 and the shifted structure is Ba8CoNb6O24 

with eight-layer hexagonal perovskite structure [332]. 

The pseudo phase diagram of ABO3 and complex 

ABO3 type is provided in Fig. 18. From cubic and 

orthorhombic to hexagonal perovskite structure, 

researchers have proposed that tolerance factor, distortion 

of octahedron, and temperature of phase transition 

determined the variation of τf value, and the ordered/ 

disordered cations were primarily related to quality 

factor. 

2.5.1  ABO3 formula 

This section contains the ceramics with a general 
 

 
Fig. 18  Pseudo phase diagram of perovskite related structure. 

formula of ABO3 and their related structure or system. 

Perovskite family is entirely studied because of their 

pyro and piezo electricity, linear and non-linear electric– 

optic properties, and superconducting properties. A 

serials of investigation of CaTiO3 with MgTiO3-based 

[333–339], LaAlO3-based [340–347], LaGaO3 [348], 

Re(Zn1/2Ti1/2)O3 [349], (Mg1–xZnx)1.8Ti1.1O4 [350], BiSbO4 

[351], Nd(Mg0.4Zn0.1Sn0.5)O3 [352], Sm0.9Nd0.1AlO3 

[353], Ca(Mg1/3Nb2/3)O3 [354], (Li0.5La0.5)TiO3 [355], 

Li0.5Nd0.5TiO3 [356], Li0.5Sm0.5TiO3 [357], Mg0.95Co0.05TiO3 

[335], (Sm,Nd)AlO3 [358–364], Zn2SnO4 [365], Li3NbO4 

[248], Ca(Mg1/3Nb2/3)O3 [366], Sm0.9Nd0.1AlO3 [367], 

Na0.5Nd0.5TiO3 [368], Nd(Mg1/2Ti1/2)O3 [369,370], 

Bi0.5Na0.5TiO3 [371], 3CaO–Re2O3–2WO3 system 

[372], Ba0.6Sr0.4La4Ti4O15 [373], La2MgGeO6 [374], 

(Ca0.8Sr0.2)(SnxTi1–x)O3 [375], Ca0.7Ti0.7La0.3(Al0.3–xGax)O3 

[376], Ca(1–x)Nd2x/3TiO3 [377], Ca0.6La0.2667TiO3 [378], 

Ca0.6La0.267Ti1–x(Nb0.5Ga0.5)xO3 [379], Ca0.6Nd0.8/3TiO3– 

(Li0.5Nd0.5)TiO3 [380], Ca0.4–xMgxSm0.4TiO3 [381], 

CaTi1–x(Nb0.5Ga0.5)xO3 [382], Ca0.66Ti0.66Sm0.34Al0.34O3 

[383], Ca0.66Ti0.66Nd0.34Al0.34O3 [384], CaTi1–x(Al0.5Nb0.5)xO3 

[385,386], Ca0.6La0.8/3(SnxTi1–x)O3 [387], Ca(1–3x/2)CexTiO3 

[388], Ca0.35Li0.25Nd0.35Ti1–x(Zn1/3Ta2/3)xO3 [389], 

Ca0.61Nd0.26Ti1–xCrxO3 [390], CaTi1–x(Mg1/2W1/2)xO3 

[391], and Ca(HfxTi1–x)O3 [392] ceramics have been 

reported thoroughly. Different thermally treated methods 

to minimize the dielectric loss for CaTiO3 were 

proposed by Hu et al. [393]. The dielectric constant 

values saturated at 7.7–8.5 of Ca0.8Sr0.2SnO3 ceramics 

in the sintering temperature range of 1450–1540  ℃

[394]. 0.4Nd2.94/3Ba0.03(Mg0.5Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 

ceramics modified the τf value to –7 ppm/  when ℃

sintered at 1600  [395]. Although numbers of ℃
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investigations about optimizing the properties of 

CaTiO3 ceramics have been reported, the vibrational 

characteristic of CaTiO3 was verified by Shi et al. [396] 

in 2020. 

For solid solution of Ba[Ti0.4Ga0.3Nb0.3(1–x)Sb0.3x]O3, 

a near zero τf value of –1.1 ppm/  was obtained℃  with 

x = 0.5 [397], while a τf value of 8.2 ppm/  was ℃

achieved for (Sr0.2Ga0.488Nd0.208)Ti1–xGa4x/3O3 with x = 

0.5 [398]. A dramatical decrease of τf value from 1171 

to –82 ppm/  was obtained for Sr(Zr℃ xTi1–x)O3 [399]. 

In the chemical formula of SrO(Sr1–xBaxTiO3)n (x = 0, 

0.5; n = 1–4), it is demonstrated that samples with n = 

1, 2 had no dielectric non-linear behavior in the 

temperature range of (–165)–50 , while the ℃

tunability increased with n increasing [400]. Two 

second phases containing BaWO4 and Ba2Ti5O12 were 

observed in Ba0.5Sr0.5Ti1–3y/2WyO3 system with y ≥ 

0.02 [401], and BaTiSiO5 phase was indexed in 

Ba0.4Sr0.6Ti1–ySiyO3 [402]. The dielectric constant can 

be adjusted apparently in the Ba0.4Sr0.6TiO3–BaMoO4 

and Ba0.5Sr0.5TiO3–AMoO4 (A = Ba, Sr) composite 

ceramics, where only cubic perovskite structure and 

scheelite structure were detected [403,404]. However, 

the BaMoO4 was observed when MgMoO4 added into 

Ba0.5Sr0.5TiO3 [405]. Adding Zr0.8Sn0.2TiO4 into 

Ba0.4Sr0.6TiO3, the dielectric constant and dielectric 

loss increased with the increase of the content of 

Zr0.8Sn0.2TiO4 [406]. Adding Fe power in 

Ba0.4Sr0.6TiO3 ceramics indicated that the appearance 

of Fe2+ and Fe3+ would decrease the O vacancy 

concentrations and enhance the microwave dielectric 

properties [407]. In the ternary system of Ba0.5Sr0.5TiO3– 

MgO–Mg2TiO4 [408], Ba0.5Sr0.5TiO3–MgO–Mg2SiO4 

[409], and (1–x–y)BaTiO3–xCr2Ti3O9–yBi2O3 [410], 

the dielectric constant reduced with more Mg2TiO4 and 

Mg2SiO4, while solid solution was observed with Cr3+ 

and Bi3+ into BaTiO3. Co-doping ZnO, Al2O3, and 

MgO on the Ba0.66Sr0.4TiO3 would generate Mg(Zn)Al2O4 

as the secondary phase [411]. The lattice vibrations of 

Ba0.4Sr0.6TiO3 ceramics were systematically investigated 

by Jiang et al. [412] after Mn substituted for Sr. Zr and 

Sn doped into Ba0.1Mg0.9TiO3 ceramic would bring 

about Ba2Ti9O20 and BaTi5O11 [413]. Similar to CaTiO3, 

the effect of LnAlO3 (Ln = Sm, Nd) on BaTiO3-based 

ceramics was systematically studied by Liu et al. [414] 

and Xie et al. [415]. Solid solution of BaxMg1–xTi0.95Sn0.05O3 

[416] and local 1:1 ordering in B-site of 

Sr(Ga0.5Nb0.5)1–xTixO3 was verified by TEM and 

Raman spectroscopy, and the decline of quality factor 

stemmed from the anharmonicity by Ti substitution 

[417]. 0.2SrTiO3–0.8Ca0.61Nd0.26Ti1–xAl4x/3O3 ceramics 

also reached a near zero τf value with x = 0.5 [418]. 

(1–x)Mg(Ti0.95Sn0.05)O3–xBaTiO3 compounds experienced 

a phase transition of tetragonal-structure BaTiO3, 

monoclinic-structure Ba4Ti11O26, and triclinic-structure 

Ba2Ti9O20 [419]. Likewise, Sr(1–1.5x)CexTiO3 (x = 

0.1–0.67) ceramics changed from cubic, tetragonal, to 

orthorhombic, and the dielectric behaviors were 

dominated by oxygen vacancies and defect dipoles 

[420]. Tian et al. [421,422] reported that (Co0.5W0.5)
4+ 

and (Zn0.5W0.5)
4+ occupying the Ti-site in BaTiO3 would 

render the τf value change from positive to negative. 

BaWO4 phase appeared in Ba1–xSrx(Mg0.5W0.5)O3 

ceramics and Ba2Mg0.95Zn0.05WO6, and the grain size 

distributed in a narrow range around 0.8 µm [423,424]. 

A τf value of –2.4 ppm/  was achieved for B℃ -site 

deficient Ba(Mg(1–x)/2Yx/3□x/6W1/2)O3 [425]. In the non- 

stoichiometric system of (Sr0.4Ce0.4)1–xNdxTi0.8Mg0.2O3, 

solid solution was obtained when x ≤ 0.2, while the 

satisfied properties were εr ≈ 53, Q×f value ≈ 

26,700 GHz, and τf ≈ +2.8 ppm/  with ℃ x = 0.4 [426]. 

Meanwhile, compositional dependence of microwave 

dielectric properties of doped SrTiO3 sintered in air is 

presented as Fig. 19. It was demonstrated that SrTiO3 

added into ZnAl2O4–3Zn2SiO4–2SiO2 could reduce the 

sintering temperature from 1320 to 1180–1200  ℃

[427]. 

With the same general formula of ABO3, the 

investigations of NdGaO3, NdNbO3, and AgTa/NbO3 

are listed adjacently to CaTiO3 and SrTiO3. Phase 

composition was identified for NdGaO3–Bi0.5Na0.5TiO3 

system, and new temperature-stable ceramics with 

0.4NdGaO3–0.6Bi0.5Na0.5TiO3 was obtained [428]. 

Order–disorder transformation of A-site-deficient 

perovskites plays a significant role in conductivity of 

materials. The investigation of crystal structure and 

dielectric properties of the Nd(1–x)/3MxNbO3 (M = Li, 

Ag; 0 ≤ x ≤ 0.2) suggested that the dielectric loss 

majored by the lithium or silver ionic conduction at 

low frequencies [429]. Solid solution of AgNb/TaO3- 

based ceramics was then studied extensively [430,431]. 

Temperature-stable MWDCs with the formula of 

(La,Nd)2/3TiO3 were studied by Saleem et al. [432]. 

MgTiO3 also belongs to the general formula of 

ABO3. The substitution for MgTiO3 such as Ni, Zn, Co, 

and Mn for Mg has been investigated systematically 

[433–436], where (Mg1–xCox)TiO3 ceramics were 

crystalized as ilmenite structure when x ≤ 0.5, and the  
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Fig. 19  Compositional dependence of microwave dielectric characteristics of Nd2O3, CeO2, Al2O3, and Nb2O3 doped SrTiO3 

compound sintered in air, closed pipe, and nitrogen atmosphere with (a) relative permittivity (εr), (b) TCF (τf), and (c) Q×f value, 

respectively. Reproduced with permission from Ref. [426], © The Chinese Ceramic Society 2020. 

 

secondary phase was detected with more doping 

cations [437]. (Zn1–xMgx)TiO3 was prepared and 

demonstrated that the dielectric constant and loss 

decreased with Mg increase [438]. For Sn doped into 

Ti site in MgTiO3, in the range of x = 0.05–0.07, the 

ceramics exhibited excellent microwave dielectric 

properties of εr ≈ 16.8–17.1, Q×f value ≈ 298,000– 

312,000 GHz, and τf ≈ (–53)–(–50) ppm/  [439]. ℃

Mg0.95Co0.05TiO3 ceramics possessed properties as εr ≈ 

17.03, Q×f value ≈ 170 THz, and τf ≈ –40 ppm/  ℃

when prepared by Semi Alkoxide precursor method 

[440]. Gong et al. [441] obtained Mg(Sn0.05Ti0.95)O3 

ceramics with microwave dielectric properties εr ≈17.6, 

Q×f value ≈ 328,543 GHz, and τf ≈ –42 ppm/ , and ℃

Jia et al. [442] proposed that Mg(Ti1–xNbx)O3 showed 

microwave dielectric properties: εr ≈ 18.12, Q×f value ≈ 

163,618 GHz, and τf ≈ –40.1 ppm/ . Through sol℃ –gel 

process, the quality factor of geikielite-type MgTiO3 

saturated when the ceramics sintered at 1200  [443]. ℃

After adding B2O3 into MgTiO3, the composite ceramics 

could be densified at 1100  [444]. Investigation of ℃

introduction SrTiO3 into Mg(Zr0.05Ti0.95)O3 ceramics 

suggested that a close zero τf value could achieve at 

0.96Mg(Zr0.05Ti0.95)O3–0.04SrTiO3 [445,446]. In the 

study of a designed composition of MgTiO3 (Mg/Ti = 

1, 1.02, 1.04, 1.05, 1.07), the generation of MgTi2O5 

which derived from Mg/Ti = 1 was restrained, and then 

pure phase of MgTiO3 was obtained when Mg/Ti = 

1.02 [447]. (Co1–xZnx)TiO3 sintered at 1350  possessed ℃

εr ≈ 20, Q×f value ≈ 107,000GHz, and τf ≈ –60 ppm/  ℃

with x = 0.05 [448]. The choice of raw material of 

MgO and Mg(OH)2 had a major influence on the phase 

formation and dielectric loss for 0.97MgTiO3–0.03SrTiO3 

[449]. In the system of (1–x)MgTiO3–xMg2.05SiO4.05– 

0.06CaTiO3, τf ≈ 1.45 ppm/  was obtained with ℃ x = 

0.2 [450]. ZnTiO3-type phase, Zn2TiO4-type, and TiO2 

phase were co-existed in (Zn0.3Co0.7)Ti1–xSnxO3, and 

the satisfied microwave dielectric properties were εr ≈ 

24, Q×f value ≈ 66,700GHz, and τf ≈ –5.43 ppm/  ℃

with x = 0.02 [451]. It was interesting that MgTiO3 and 

Mg2TiO4 were the main phases in Mgn+1TinO3n+1 (n = 2, 

3, 4, 5, 6, and 7), and the Mg2TiO4 was effectively 

inhibited with n increasing [452]. New cofired tri-layer 

ceramic architecture of MgTiO3/TiO2/MgTiO3 was 

designed to realize the temperature-stable and 

ultrahigh-Q ceramics, where the property comparison of 

MgO–TiO2 system (Fig. 20) indicated that this new 

strategy was effective for developing high-performance 

dielectric resonators [4]. 2 wt% B2O3 as an addictive 

could effectively reduce the sintering temperature from 
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1275 to 1175  in 0.9625MgTiO℃ 3–0.0375Ca0.5Sr0.5TiO3 

[453]. Mg2TiO4-related and Mg6Ti5O16-based ceramics 

in MgO–TiO2 system were also reported. 

Mg6Ti5O16-based MWDCs were systematically 

investigated by Yu et al. [454], where the τf value could 

be adjusted to –3 ppm/℃ by Ca2+ substitution. To 

explore the application for mobile communication, Nb5+ 

ion was added into Mg2SnO4 to improve the quality 

factor [455]. By mechanical synthesis method, the 

value of quality factor was sensitive to the initial 

particle size and microstructure of Mg2TiO4 [456]. 

Meanwhile, the oxygen vacancies and average sizes 

were highly influenced on the dielectric loss of adding 

La2O3, V2O5, and CeO2 into Mg2TiO4 [457,458]. A 

maximum quality factor value of 210,700 GHz was 

obtained in (Mg1–xZnx)1.8Ti1.1O4 with x = 0.06 [459]. 

[(Mg0.5Zn0.5)0.95Co0.05]2TiO4 was demonstrated as the 

optimal composition in the solid solution of (Mg, 

Zn)2TiO4–Co2TiO4 with Q×f value ≈ 2100,000 GHz 

[460]. The average particle size of pure Mg2TiO4 

nano-powders was reduced to 163 nm via high energy 

ball milling method, and the excellent properties were 

εr ≈ 13.9, Q×f value ≈ 98,600 GHz, and τf ≈ 

–50.9 ppm/  [461]. Similarly to the formula of Mg℃ 2TiO4, 

spinel-based CoZnTiO4 ceramics were obtained after 

sintered at 1200 , and th℃ e properties were majored by 

the relative density and grain size [462]. Solid solution of 

Mg2(Ti1–xSnx)O4 [463] and ZnNiTiO4/ZnNiTi1–xSnxO4 

[464,465] was also reported. Until now, the intrinsic 

dielectric behavior of Mg2TiO4 based on P–V–L theory 

and infrared spectra was presented by Li et al. [466], 

where the Ti(1)–O bond plays a primary role in 

dielectric loss. Meanwhile, Mg2Ti1–xGa4x/3O4 would reach 

a Q×f value ≈ 205,416 GHz [467]. 

 

 
 

Fig. 20  Summary of Q×f value versus τf plot for 

MgO–TiO2 system MWDCs. Reproduced with permission 

from Ref. [4], © Elsevier Ltd and Techna Group S.r.l. 

2018. 

Furthermore, there are some compounds in the 

formula of Na0.5Ln0.5TiO3 (Ln = Sm, Nd). Fang et al. 

[468] and Zhou et al. [469] reported a serials of 

substitution, such as Na0.5Nd0.2Sm0.3Ti1–xSnxO3, 

Na0.5Nd0.5Ti1–xSnxO3, Na0.5Nd0.2Sm0.3Ti1–xZrxO3 [470], 

and Na1/2Sm1/2Ti1–x(Cr1/2Nb1/2)xO3 [471]. Near zero τf 

value appeared in Li0.5Sm0.5TiO3–Na0.5Sm0.5TiO3 

[472].  

2.5.2  A2B′B″O6 formula 

Due to the flexibility and adjustability of the crystal 

structure of perovskite, the investigation of complex 

perovskite with various cations occupying Ti site 

gradually emerged. The structural studies of A2B′B″O6 

(A = Ba, Sr, Ca; B′ = lanthanide, Mg, Cr, Bi; B″ = Nb, 

Ta, Sb, W) indicated that phase transitions were 

ascribed to the tilting of B′O6/B″O6. In the 

Ba2–2xSr2xSmSbO6 system, phase transitions of Fm3̄m, 

I2/m, and P21/n were observed and the τf value shifted 

from +25 to –50 ppm/  [473]. Effect of non℃ - 

stoichiometry Ba1+x(MgW)1/2O3, Ba(Mg1+yW)1/2O3, 

and Ba(MgW1+z)1/2O3 and the sintering temperature on 

microwave dielectric properties was systematically 

investigated by Wu and Bian [474] and Chen et al. 

[475], respectively. A zero τf value ceramic was 

obtained in Ba2Mg1–xCaxWO6 system with x = 0.1 

[474]. First-principles calculation of assignment for 

vibrational spectra of Ba(Mg1/2W1/2)O3 MWDCs is 

shown in Fig. 21 [476], which proposed that F1u(2) 

modes originated from Mg–O6 vibrations had the 

largest contribution to the dielectric properties. The 

investigation of microwave dielectric properties of 

giant permittivity ceramics with a A2B′B″O6 formula 

(Ba(Fe1/2Nb1/2)O3 and Sr(Fe1/2Nb1/2)O3) indicated that 

the permittivity was independent of frequency [477].  

Ln(B0.5C0.5)O3 (Ln = La, Sm, Nd; B = Mg, Zn; C = 

Ti, Sn) ceramics belonging to the general formula of 

A2B′B″O6 have been reported as low dielectric loss 

materials with an adjustable temperature coefficient of 

resonant frequency. Among them, minor amount of 

low-melt point oxide of Bi2O3 and B2O3 was usually 

used to enhance the sintering densification of 

Sm(Mg0.5Ti0.5)O3 [478,479], CuO was added into 

La2.98/3Sr0.01(Mg0.5Sn0.5)O3 to enhance the densification 

[480], and V2O5 was valid for reducing the sintering 

temperature of Nd(Zn1/2Ti1/2)O3 [481]. Solid solution 

of Nd(1–x)Smx(Mg0.5Sn0.5)O3 [482], Nd(Mg0.5–xCoxSn0.5)O3 

[483], Nd(1–2x/3)Cax(Mg0.5Sn0.5)O3 [484], Nd(1–2x/3)Srx 

(Mg0.5Sn0.5)O3 [485], Nd(1–2x/3)Bax(Mg0.5Sn0.5)O3 [486],  



J Adv Ceram 2021, 10(5): 885–932  905  

www.springer.com/journal/40145 

 
 

Fig. 21  Combinations of the symmetry coordinates 
(normalized) for IR-active F1u(2) modes. Reproduced 
with permission from Ref. [476], © The American 
Ceramic Society 2013. 
 

Nd(Mg0.5–xNixSn0.5)O3 [487], Nd(Mg0.5–xZnxSn0.5)O3 [488], 

Nd(Mg0.5Sn0.5–xTix)O3 [489], Nd(Mg0.5–xCaxSn0.5)O3 

[490], Nd [(Zn1–xCox)0.5Ti0.5]O3 [491], Nd(Zn0.5+xTi0.5)O3 

[492], Nd(1+x)(Mg1/2Sn1/2)O3 [493], Nd(Mg0.5Sn0.5(1+x))O3 

[494], La1–xBx(Mg0.5Sn0.5)O3 [495],  La(1–x)Smx(Mg0.5Sn0.5)O3 

[495], La0.97Sm0.03(Mg0.5Sn0.5)O3–Ca0.8Sr0.2TiO3 [395], 

La1–xYbx(Mg0.5Sn0.5)O3 [496], La(Mg0.5–xBaxSn0.5)O3 

[497], Pr0.22Y0.78TiTaO6 [498], La(Mg0.4Sr0.1Sn0.5)O3 

Nd(Co0.5Ti0.5)O3–Ca0.8Sr0.2TiO3 [499,500], La(Mg0.5–xSrxSn0.5)O3 

[501], Ca0.6La0.267TiO3–Ca(Sm0.5Nb0.5)O3 [502], and 

La[Al1–x(Mg0.5Ti0.5)x]O3 [503] was investigated based 

on sintering behavior and microstructure. Not only the 

investigations reported the microwave dielectric 

properties, but also the structure–property relationship 

containing intrinsic loss, vibrational modes, and 

chemical bond characteristics of Y2MgTiO6 was studied 

in detail, and the schematic representation of vibrational 

modes of Y site was presented in Fig. 22 [504]. 

2.5.3  A(B′1/3B″2/3)O3 formula 

A(B′1/3B″2/3)O3 (A = Ba, Ca; B′ = Mg, Zn; B″ = Nb, Ta) 

ceramics have been commercially used due to their 

excellent Q×f value, and the near-zero τf value. The 

order structures of Ca1–0.3xLa0.2x[(Mg1/3Ta2/3)1–xTix]O3- 

based, Ba(Mg1/3Nb2/3)O3-based, Ba(Zn1/3Ta2/3)O3-based 

and Ba3CaNb2O9 ceramics were investigated by TEM 

and the vibrational spectra to explain the cation 

ordering [505–525]. Meanwhile, superstructure reflections 

were obviously recorded in this system, such as 

Ba(Zn1/3Ta2/3)O3 doped with Nb2O5, MnO2, and V2O3 

[526,527]. The wavelength of 1:2 ordered superlattice 

modulation was about 0.71 nm, while that of 

disordered superlattice modulation was 0.41 nm of 

Ba((Co0.6–x/2Zn0.4–x/2Mgx)1/3Nb2/3)O3, shown as Fig. 23 

[511]. Adding MnO2 into Ba(Co1/3Nb2/3)O3 would 

enhance the grain growth and restrain the evaporation 

of CoO [527]. Meanwhile, the influence of B″-site 

non-stoichiometry of Ba(Co0.56Y0.04Zn0.35)1/3Nb2/3+x on 

properties was reported by Tang et al. [528], where 

Ba5Nb4O15 as a secondary phase was recorded. 

Simulation is carried out for Ba(Zn1/3Ta2/3)O3 for the 

design of linear metal taper [529]. Peng et al. [530] 

reported that addition of La2O3 into Ba(Mg1/3Ta2/3)O3, 

Ba1–xCax(Mg1/3Ta2/3)O3, and Ba[Mg1–xZnx]1/3Ta2/3O3 

led to the appearance of Ba0.5TaO3, and τf value 

reached to near zero [531,532]. The optimal properties 

of Ba[Mg(1–x)/3SnxTa2(1–x)/3]O3 exhibited as εr ≈ 24.1, 

Q×f value ≈ 138,500 GHz, and τf ≈ +0.2 ppm/  [533]. ℃

The variation of τf values for 1:1 and 1:2 complex 

perovskites was clarified to be mainly relevant with 

tolerance factors, which are summarized in Fig. 24 

[524]. It has been verified that samples with 

non-stoichiometric Mg2+ and Ta5+ in Ba(Mg1/3Ta2/3)O3 

exhibited a wide temperature stability [525,534], and 

the correlations between Q×f versus εr and τf versus εr 

of high-Q (≥ 100,000 GHz) MWDCs are presented in 

Fig. 25.  
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Fig. 22  Schematic representations of the vibrational modes of Y2MgTiO6 system (Y at 4e site). Reproduced with permission 
from Ref. [504], © The American Ceramic Society 2019. 

 

 
 

Fig. 23  SAED pattern with zone axis [11̄0]c and the corresponding HRTEM images for Ba((Co0.6−x/2Zn0.4−x/2Mgx)1/3Nb2/3)O3 

ceramics: (a) x = 0.1; (b) x = 0; (c) x = 0.1; (d) x = 0.2; (e) x = 0.3; (f) HRTEM image of an ordered area in high magnification. 

Reproduced with permission from Ref. [511], © The American Ceramic Society 2013. 

 

2.5.4  AnBnO3n+2 formula 

Perovskite-related oxides of series AnBnO3n+2 = ABOx 

(x = 3+2/n) (A = Ca, Sr, or La and B = Ti or Nb) with 

n = 4, 4.33, 4.5, 5, 6, and 7 have been a focus owing to 

their electronic and dielectric properties. The crystal 

type and the physical properties rely on the value of n, 

which descripts the number of octahedral layers in the 

slabs [535]. Besides Ca5Nb5O17, the AnBnO3n+2 phases 

appeared in the binary system of La2Ti2O7–CaTiO3,  

Nd2Ti2O7–CaTiO3, and Ca2Nb2O7–CaTiO3. Joseph et al. 

[536] reported the microwave dielectric properties of 

Ca5A4TiO17 (A = Nb, Ta) as εr ≈ 44.9, Q×f value ≈ 

17,600 GHz, and τf ≈ –112.9 ppm/  for Ca℃ 5Nb4TiO17; 

εr ≈ 40.1, Q×f value ≈ 16,500 GHz, and τf ≈ –53.6 

ppm/  for Ca℃ 5Ta4TiO17. The solid solution of 

SrLa4–xSmxTi5O17 (0 ≤ x ≤ 4) and Sr1–xCaxLa4–xTi5O17 

(0 ≤ x ≤ 1) would lower the τf to zero with a 

dielectric constant of near 53 [537,538], while τf 

declined to +70 ppm/  by Zr substituted for Ti of ℃  
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Fig. 24  Temperature coefficient of resonant frequency 

(τf) versus tolerance factor (t) for A(B′,B′′)O3 (A = Ca, Sr, 

Ba; B′ = Mg, Ca, Mn, Fe, Ni, Zn, Ga, In, Y, Gd, Tb, Dy, 

Ho, Er, Yb; B′′ = Nb, Ta) 1:1 and 1:2 complex perovskites. 

Reproduced with permission from Ref. [524], © Elsevier Ltd 

and Techna Group S.r.l. 2016. 

 

SrLa4Ti5O17 [539]. The intermediate of two end 

member phases of CaLa4Ti5O17 and Ca5Nb4TiO17 

showed that the εr varied from 45 to 52, Q×f was in the 

range of 9870–5680 GHz, and τf value ranged between 

–38 and –126.4 ppm/  [540]. La℃ 3Ti2TaO11 is an 

member of n = 3 in this series, and the textured 

La3Ti2TaO11 was fabricated by spark plasma sintering, 

showing that grain-orientation control was an effective 

way to tailor the properties of this ceramic [541]. 

SrCa4Nb4TiO17 and Ca5Nb4TiO17 sintered at their optimal  

 

temperature presented an elongated and plate-like 

grain [542]. From 0 to 4, the τf value shifted from –117 

to 415 in NaCa4–xSrxNb5O17 [543], while the τf value 

changed in the range of (–117)–473 ppm/  for ℃

Na1–xKxCa4Nb5O17 [544].  

2.5.5  Ca4La2Ti5O17  

The dielectric properties of Ca4La2Ti5O17 were firstly 

reported by Rejini et al. [545], which were crystalized 

as perovskite structure and the XRD results were matched 

well based on the formula of Ca0.706La0.353Ti0.882O3. 

There are rare studies about this system, which just 

concentrated on the modification of τf value. For 

example, the dielectric constant declined from 71.86 to 

35.23 in the solid solution of Ca4La2Ti5–x(Mg1/3Nb2/3)xO17 

(0 ≤ x ≤ 4), and a near-zero τf value (1.62 ppm/ ) ℃

was achieved at x = 3 [546]. Meanwhile, a near-zero τf 

value was measured for 0.4Ca4La2Ti5O17–0.6NdAlO3 

ceramics [547] and Mg4La2Ti5O17 ceramics [548].  

2.5.6  AnBn–1O3n formula 

A series of A4B3O12-type cation-deficient perovskite 

ceramics were consistent with the formula of 

Sr4–mLamTim–1Ta4–mO12 (m = 1, 2, 3). Sr3LaNb3O12 and 

SrLa3Ti2NbO12 were firstly characterized by Fang et al. 

[549,550]. B-site deficient twinned perovskites such as 

Ba8Ti3Nb4O24, Ba8MTa6O24 (M = Mg, Zn, Ni, Co, Cu), 

and Ba8Ga4–xTa4+0.6xO24 are classified as AnBn–1O3n   

 
 

Fig. 25  Correlation between microwave dielectric properties of high-Q (Q × f ≥ 100,000GHz) MWDCs: (a) Q×f versus εr; (b) 

τf versus εr. Reproduced with permission from Ref. [534], © Elsevier Ltd and Techna Group S.r.l. 2020. 
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hexagonal perovskites. Ba8ZnTa6O24 is a secondary 

phase of Ba(Zn1/3Ta2/3)O3-based systems, and the 

dielectric properties in the range of 5 Hz–50 MHz of 

Sb substitution for Nb-site have been systematically 

studied by Suresh et al. [551,552] through 

spectroscopic methods. In the microwave frequency 

region, the Q×f value and τf values of Ba8(Mg1–xZnx)Ta6O24 

ceramics decreased with the augment of x [553]. 

Similarly, a single phase with hexagonal 8H perovskite 

structure of Ba8Ti3Nb4–xSbxO24 ceramics was prepared, 

and τf value declined from 110 to 2 ppm/  [554].℃  

BaWO4 was used to adjust the large τf value of 8H 

hexagonal perovskite Ba4LiNb3O12, and the properties 

of εr ≈ 16.9, Q×f value ≈ 75,500 GHz, and τf ≈ +8.7 

ppm/  were obtained [555]. Phase transformation in ℃

the sequence of hexagonal, hexagonal along with cubic, 

and cubic was observed in Ba4LiNb3–xSbxO12 and 

Ba4LiTa3–xSbxO12 system. Especially, the optimal 

microwave dielectric properties were achieved for 

Ba4LiNb2SbO12 with a zero τf [556,557]. τf value dropped 

from positive to negative in Ba3LiTa3–xSbxTi5O21 [558], 

and Ba3LiNb3–xSbxTi5O21 [559], while the τf value just 

reduced from 205 to 70 ppm/  for Ba℃ 3LiNb3–xTaxTi5O21 

[560]. A-site deficient perovskite structure was well 

matched for LiSmTa4O12 ceramics with tetragonal 

perovskite structure (A-site deficient perovskite structure), 

and the optimal microwave dielectric properties were 

εr ≈ 59.60, Q×f value ≈ 7760 GHz, and τf ≈ +41.8 ppm/℃ 

[561]. 

2.5.7  Srn+1TinO3n+1 (n = 1, 2, 3 4, ∞) formula  

Researchers paid their attention to Ruddlesden–Popper 

(R–P) structure until the dielectric properties of 

CaReAlO4 (Re = Nd, Sm, Y) were reported. The 

general formula of R–P compounds was written as 

(A,A′)n+1BnO3n+1, where the structure was built by 

corner-sharing (BO6) octahedral and interlayer of 

((A,A′)O). MLnAlO4 and SrLn2Al2O7 (M = Ca, Sr; 

R = Y, Sm, Nd, La) belong to the R–P series with n = 1 

and 2, respectively. The crystal structures of SrLaAlO4 

and SrLa2Al2O7 are presented in Fig. 26. Single 

crystals of ABCO4 layered compounds with K2NiF4 

structure were used as substrates for high-temperature 

superconductive thin films, while dielectric properties 

in this system were mainly investigated by Chen and 

his co-workers [562–574]. They contributed to analyze 

the relation between the intrinsic dielectric properties 

and crystal structure of MRAlO4 (M = Ca, Sr; and R = 

Y, Sm, Nd, La). Combining the compression/dilation 

effects of different cation–oxygen bonds and the 

stability of crystal structure with vibrational spectrum, 

they emphasized that the drop of the quality factor was 

ascribed to the abnormal variations of axial bonds and 

the theoretical dielectric loss was obtained after fitted 

the infrared reflectivity spectra. With (Zn0.5Ti0.5)
3+ 

substituted for Al3+ of SrLaAlO4, the best combination 

of microwave dielectric properties was εr ≈ 23.5, Q×f 

value ≈ 102,000 GHz, and τf ≈ –3.4 ppm/℃ [572]. In the 

SrLaAlO4–Sr2TiO4 system, some diffraction peaks 

shifted toward higher angles along with the variation 

of x, while some of them shifted toward lower angles, 

as shown in Fig. 27 [569]. This phenomenon was 

explained by the opposite change of a-axis and c-axis, 

where the octahedron elongated in the ab plane with 

the shrinkage in the c direction. The tolerance factor (t) 

of perovskite layer was used to evaluate the stability of 

those compounds, and the relation of t and 

r(M2+)/r(Ln3+) was plotted in Fig. 28 [573]. 

Sr0.6Ca0.4LaAlO4 with 10 wt% TiO2 presented a near 

zero τf ≈ –2.5 ppm/  [575].℃  
 

 
 

Fig. 26  Crystal structures of SrLaAlO4 and SrLa2Al2O7. 
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Fig. 27  XRD powder diffraction patterns of ceramics in (1−x)SrLaAlO4–xSr2TiO4 system with enlarged (004) and (200) 

diffraction peaks: (a) x = 0, (b) x = 0.025, (c) x = 0.05, (d) x = 0.10, (e) x = 0.15, (f) x = 0.2, (g) x = 0.4, (h) x = 0.6, (i) x = 0.8, 

and (j) x = 1. Reproduced with permission from Ref. [569], © The American Ceramic Society 2011. 

 

 
 

Fig. 28  Stability of K2NiF4 structure in MLnBO4 (M = 

Ca, Sr, Ba; Ln = Y, Sm, Nd, La; B = Al, Ga, (Mg0.5Ti0.5), 

(Zn0.5Ti0.5)) compounds in relation to t and r(M2+)/r(Ln3+). 

Reproduced with permission from Ref. [573], © The 

American Ceramic Society 2017. 
 

On the other hand, the R–P structure such as 

Srn+1TinO3n+1 (n = 1, 2) [576], SrLn2Al2O7 (Ln = La, 

Nd, Sm) [577–581], was also established as K2NiF4 

structure. The interlayer polarization was verified to 

influence the microstructure and internal stress, and the 

complete structure information of SrLn2Al2O7 

ceramics was obtained by TEM. Solid solution of 

(Sr1–xCax)2TiO4 [582], Sr2Ti1–xSnxO4 [583], Sr2 

[Ti1–x(Al0.5Nb0.5)x]O4 [584], and (Sr1–3x/2Lax)2Ti1–yCeyO4 

[585] was prepared to reduce the large τf value of 

Sr2TiO4. Moreover, Sr2CeO4 was obtained by Dai and 

Zuo [586], and the substitution of Ti4+ for Ce4+ in 

Sr2CeO4 generated a ceramic with excellent properties 

of εr ≈ 20.7, Q×f value ≈ 115,550 GHz, and τf ≈ 

–1.8 ppm/ .℃  

2. 6  Other system and machine learning in MWDCs 

Although the pseudo phase diagrams contain various 

primary systems, some ceramics such as CeO2, 

MgAl2O4, Ca3Ln2W2O12, and Ln2MoO6 (Ln = La, Y) 

do not classify. It is difficult to arrange those ceramics 

to any phase diagram and the relevant reports are 

relatively less, and thus, the investigations about the 

mentioned ceramics are listed in this section. 

Ce0.75Y0.25O1.875 ceramic was indexed as CeO2 phase, 

and the grain size changed from 0.64 to 1.23 µm 

contributing to a higher Q×f value [587]. The τf value 
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of (1–x)Bi2(Li0.5Ta1.5)O7–xTiO2 was tuned to –1.45 ppm/℃ 

with x = 0.04 [588]. 0.875CeO2–0.125TiO2 composition 

possessed properties of εr ≈ 27.38, Q×f value ≈ 

12,950 GHz, and τf ≈ –2.49 ppm/ , which could meet ℃

the criterion of practical application [589]. MgAl2O4 

transparent ceramic was designed and optimal 

microwave dielectric properties were obtained: εr ≈ 8.2, 

Q×f value ≈ 110,510 GHz, and τf ≈ –74.1 ppm/  [590]. ℃

The (Mg0.5Ti0.4)
3+ for Al3+ in MgAl2O4 could reduce 

the sintering temperature approximately 200  due to ℃

the less concentration of the Al–O bond [591]. 

Vibrational spectroscopy and microwave dielectric 

properties of Ca3Ln2W2O12 (Ln = La, Sm) were 

analyzed by Liu and Song [592], and the εr of those 

two phases were 18.7 and 19.5. Ln2MoO6 (Ln = La, Y) 

ceramics possessed a relative permittivity of 14.1–17.1, 

and the quality factor was 67,090 GHz for La2MoO6 

and 27,760 GHz for Y2MoO6, respectively [593]. 

In the wake of the update of computer science, 

date-driven approaches including data mining and 

machine learning have been applied in many disciplines 

for obtaining the obscure quantitative relationships. 

For material science, machine learning was used to 

realize the property prediction, composition optimization,  

 

and experimental design [594–600]. Qin et al. [601] 

employed five commonly-used algorithms with 32 

intrinsic chemical, structural, and thermodynamic 

features for modeling to predict low permittivity 

materials, where a database of 3300 materials has not 

been reported and the distribution of permittivity in 

virtual space of materials was shown in Fig. 29. 

Quantitative prediction of the Q×f value of gillespite- 

type ACuSi4O10 (A = Ca, Sr, Ba) ceramics was 

obtained by machine learning, and the results of 

(CaxSr1–x)CuSi4O10 and (BaySr1–y)CuSi4O10 ceramics 

matched well with the experimental Q×f value, as 

shown in Fig. 30 [602].  

3  Conclusions and further outlook 

MWDCs with a suitable permittivity, low dielectric 

loss, and temperature stability are a perpetual pursuit 

for researchers. Those ceramics offer technoeconomic 

advantages including integration, lightweight, and 

reliability. With the continuous exploration, significant 

progress is presently being made in designing new 

compounds, analyzing the polarization mechanism  

 
 

Fig. 29  Distributions of (a) model predicted relative permittivity in virtual space of materials, (b) cross-section of (a) for a 

clear view of low permittivity zone, and (c) measured permittivity. The notations of va, blm, and ppv are average cell volume per 

atom, average bond length, and polarizability per unit volume, respectively. Reproduced with permission from Ref. [601], © The 

Chinese Ceramic Society 2021. 
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Fig. 30  Machine learning prediction results. (a) 

Experimental and predicted Q×f values, (b) feature of bl2 

(bond length of A–O2 bond), and (c) feature of var (variance 

in bond lengths of A–O bond) of (CaxSr1–x)CuSi4O10 and 

(BaySr1–y)CuSi4O10 ceramics. The shadow area in (a) 

represents the standard error of 100 trials. Reproduced 

with permission from Ref. [602], © American Chemical 

Society 2021. 

 

along with the origin of dielectric loss, and predicting 

the microwave dielectric properties by theoretical 

model of machine learning. The relevant computational 

and experimental methods currently used to probe, 

predict, and understand intrinsic mechanisms are 

covered in this review. Because target ceramic system 

and their associated investigations are so diverse, we 

provide a brief classification on the composition of 

ceramics using pseudo phase diagram. The exploration 

of substitution of the given ceramics or new 

compounds is listed briefly following the pseudo phase 

diagram. Experimentally, it appears that substitution 

and composite ceramics are the most common used 

methods to optimize the microwave dielectric 

properties for a given system (reduce dielectric loss or 

adjust the τf value to near zero). The previous doping 

researches are concentrated on single ion substitution, 

while more development of the co-doping (group of 

two aliovalent cations with a certain mole ratio) 

appears recently. For the probe of new dielectric 

materials, the new system usually belongs to 

germanate and gallate, besides the familiar system of 

silicate, titanate, niobate, and tantalate. Comparing 

with conventional solid state reaction method, 

fabrication techniques containing solution-processed 

sol–gel method, high energy ball milling method, spark 

plasma sintering, and microwave sintering have been 

demonstrated as the promising approaches to improve 

the properties or sintering behaviors so far. Providing 

the atmosphere with the volatile element in the 

sintering procession is a valid method to reduce the 

pores. Multi-layer ceramic architecture has been 

verified as a design for temperature-stable ceramics, 

and the wide application for more system or in the 

industry is waiting for the exploration. 

The influence factor of microwave dielectric 

properties evolves extrinsic and intrinsic parts. The 

defects such as porosity, microstructure, and secondary 

phase are related to the relative density and grain size, 

which are extrinsic factors. Those results of a unique 

ceramics can be easily obtained by XRD and SEM, 

while the investigation of dielectric responded 

mechanism of intrinsic part is difficult due to the 

restrain of characterization techniques and the lack of 

general theory. Theoretically, from Clausius–Mossotti 

equation, packing fraction, cation valence, distortion of 

octahedron to the combination of P–V–L theory, lattice 

dynamics, and THz time-domain spectroscopy with the 

first-principles calculation, the intrinsic mechanism for 

MWDCs is gradually created. Recent efforts to employ 

P–V–L theory and infrared reflectivity spectra to 

understanding the intrinsic mechanism seem to be an 

easy and potential approach to draw conclusions for 

prediction the microwave dielectric properties. 

However, the development of “try and error” situation 

in experiments is a long-term procession. Toward this 

state end, greater fundamental understanding of 

dielectric response mechanism and increased practical 

performance metrics are required. The experimental 

trials and theoretical calculation serve as a database of 

MWDCs, and then, the machine learning is applied to 

predict new materials and their microwave dielectric 

properties. There has been an emerging trend about 

machine learning to provide new insight to draw a 

general conclusion to verify the effect of each factor on 

the variation of microwave dielectric properties. 

Challenges remain in the reconciliation of conclusion 

between existing theoretical approaches, the evaluation 

of P–V–L theory on microwave dielectric properties, 

and the advancement of first-principles calculation for 

describing the state of bond. Based on the theoretical 

analysis of MWDCs and the careful control of 

extrinsic influence, more comprehensive application- 

specific analyses to justify their adoption in electronic 

market may be able to complete. 

While there is always a need for fundamental research,  
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Fig. 31  Microwave dielectric properties of listed references: (a) εr versus Q×f values and (b) εr versus τf values. 
 

the acceleration of the commercial application of new 

materials and property optimized ceramics is another 

persistent target for researchers. This includes ending 

the limitation of currently available system and 

exploration materials with stable and excellent 

properties for electronic market. For example, alternative 

materials with satisfied microwave dielectric properties 

equal to perovskite ceramics are required in the 

industry. With the development of 5G and 6G, there is 

an urgent need for ceramics with ultra-low dielectric 

constant (< 5), low dielectric loss, and excellent 

temperature-stability in high frequencies. The 

compounds of borate, aluminate, silicate, and fluoride 

with low polarization should take into consideration as 

promising candidate. It may be a direction for 

discovering composite materials consisted of ceramics 

and organics. Meanwhile, reducing the sintering 

temperature of ceramics for meeting the need of LTCC 

is a highly challenging issue owing to its advantages in 

fabrication of electronic devices. On the other hand, 

the repeatability of microwave dielectric properties and 

the normalized evaluation method should be 

emphasized. The advancement of preparation method 

with simplified procedures should be taken into 

consideration as well. The investigation combining the 

discussion of the performance of a simulated and 

fabricated device with the analysis of fundamental 

mechanism of structure–property relationship should 

be more popularized to provide an entire and 

systematical exploration. As a summary, the 

microwave dielectric properties listed in the references 

are presented in Figs. 31(a) and 31(b). 

Lastly, we hope this brief progress report helps to 

understand the recent experimental methods and 

suggests an insight to take a new research direction for 

MWDCs. 
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