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THE LATTICE OF BELNAPIAN MODAL LOGICS:

Special Extensions and Counterparts

Abstract. Let K be the least normal modal logic and BK its Belnapian
version, which enriches K with ‘strong negation’. We carry out a systematic
study of the lattice of logics containing BK based on:
• introducing the classes (or rather sublattices) of so-called explosive,

complete and classical Belnapian modal logics;
• assigning to every normal modal logic three special conservative exten-

sions in these classes;
• associating with every Belnapian modal logic its explosive, complete

and classical counterparts.
We investigate the relationships between special extensions and counter-
parts, provide certain handy characterisations and suggest a useful decom-
position of the lattice of logics containing BK.
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Introduction

The study of lattices of paraconsistent constructive logics with ‘strong
negation’ presented in [22] shows that such lattices have nice internal
structure, and one can often transfer certain fundamental results from
the well-understood lattice of intermediate logics to them. We wish to
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study paraconsistent modal logics with ‘strong negation’ in a similar
way. Namely, in this article we start investigating the lattice of Belna-
pian modal logics, i.e. those containing the four-valued version BK of the
least normal modal logic K, in a systematic manner.

The logic BK was introduced in [25], and it can be viewed as conser-
vatively extending K by adding ‘strong negation’, denoted by ∼, which
allows both ‘gaps’ (incomplete information) and ‘gluts’ (inconsistent in-
formation). Further  BK may be seen as enriching Belnap-Dunn useful
four-valued logic [3, 4, 8], which coincides with first-degree entailment,
written FDE for short. More precisely, the smallest normal modal en-
richment of FDE is known as KFDE [26, 27], and following [25] one can
obtain BK from KFDE by adding the absurdity constant (⊥) and the
material implication (→). So in [25] the four-valued matrix BD4 for
Belnap-Dunn logic was augmented with → and ⊥. The resulting matrix
BD4⊥

→ determines the extension N4⊥
p of the logic N4⊥ by Peirce’s law, i.e.

N4⊥
p := N4⊥ + {((p → q) → p) → p};

see [21].1 Naturally there exist alternative ways of adding a conditional
to BD4. E.g., some relevant logicians take the connective ⇒, suggested
by R. Brady in [7], to be the most natural truth-functional conditional
associated with FDE (cf. [17, 31]). Following Brady, let BN4 denote the
logic determined by the matrix obtained by augmenting BD4 with ⇒. In
effect, the connectives → and ⇒ coincide with the weak implication and
the strong implication defined on BD4 by O. Arieli and A. Avron [2]. It
was proved in [2] that → and ⇒ are interdefinable modulo the language
{∨,∧,∼} of BD4 as follows:

x ⇒ y := (x → y) ∧ (∼ y → ∼ x),

x → y := (x ⇒ (x ⇒ y)) ∨ y.

Hence BN4 turns out to be definitially equivalent to the ⊥-free fragment
of N4⊥

p . Then in [11], L. Goble introduced a modal system extending
BN4. Notice that although this system and BK were originally described
in different languages, [11] and [25] treat the modal operators in exactly
the same way. Consequently Goble’s logic will be definitially equivalent
to the ⊥-free fragment of BK. Yet another modal system was intro-

1 Here N4
⊥ is a version of Nelson’s paraconsistent logic N4 [1] augmented with

the absurdity constant ⊥ (see also [21]). Actually, the lattice of N4
⊥-extensions has

a more regular structure than that for N4.
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duced by A. Jung and U. Rivieccio in [13]. They took the logic of
bilattices GBL⊃ from [2], which is a conservative enrichment of N4⊥

p ,
as the non-modal basis of their system.2 More importantly, the modal
operators in [13] behave differently than in [25], so in particular, the
{∨,∧,→,∼,⊥,�}-fragment of Jung-Rivieccio modal logic turns out to
be essentially different from that of BK.

Moreover, it was proved in [25] that the Belnapian version BS4 of the
modal logic S4 and its three-valued extension B3S4 are closely related
to Nelson’s constructive logics N3 (from [18, 36]) and N4⊥. Namely, N3

and N4⊥ can be faithfully embedded into B3S4 and BS4 respectively 
this is done not by using the method of introducing new propositional
letters (first exploited in [36] and [12]), but by providing an analogue
of Gödel-McKinsey-Tarski translation of intuitionistic logic into S4. In
particular, the weak implications of N3 and N4⊥ are definable in terms
of modalities, as a kind of ‘strict implication’ in the sense of C. I. Lewis.
Now since different interesting results for intermediate logics were ob-
tained by transferring suitable theorems for S4-extensions, one expects
that various results for Belnapian modal logics extending B3S4 and BS4

can be transferred to N3- and N4⊥-extensions in an effective way. This
also motivates our study.

Actually, we should note the similarity between algebraic seman-
tics for extensions of Nelson’s constructive logics and that for Belnapian
modal logics: both can be characterised using so-called twist-structures
(the term is due to M. Kracht [14])  where any twist-structure is an al-
gebra defined on the direct power of the universe of another algebra, but
the new operations are not componentwise, they are somehow ‘twisted’.
In effect, for the first time such structures (over Heyting algebras, and
with the property that the meet of the components of every element is
zero) were introduced independently by M. Fidel [9] and D. Vakarelov
[35] as a presentation of N -lattices [29], to provide an algebraic semantics
for Nelson’s explosive logic N3. Then in [19] it was proved that Nelson’s
paraconsistent logic N4 can be characterised using twist-structures over
implicative lattices, and that the abstract closure of the class of these
structures forms a variety.3 Other examples of application of twist-stru-
ctures may be found in [28] and [23].

2 In [2], ⊃ denotes the weak implication.
3 Here by the abstract closure of a given class K of algebras we mean the collection

of all isomorphic copies of algebras in K.
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Later, in [25], twist-structures over modal algebras were defined. And
it was proved in [24] that the abstract closure of the class of all such
structures, which coincides with the collection of so-called BK-lattices, is
a variety, and that the lattice of its subvarieties and the lattice of BK-
extensions are dually isomorphic. In effect, BK turns out to be algebraiz-
able (in the sense of [6]), with equivalent algebraic semantics given by
the BK-latices. It was also established in [24] that every twist-structure
for BK is uniquely determined by three invariants, namely its underlying
modal algebra, a suitable �-filter and a suitable ♦-ideal  this may be
compared with the representation for N3 in [30] and its generalisations
to N4 and N4⊥ in [20, 21].4

In view of the aforementioned similarity between algebraic semantics
of N4⊥ and that of BK we will take a route reminiscent of that in [21].
In the case of N4⊥-extensions it was essential to isolate the subclasses
of so-called explosive and normal logics  these arise naturally when col-
lapsing one or other invariant (apart from the underlying algebra, of
course) in the representation of twist-structures over Heyting algebras.5

So if an N4⊥-extension belongs to both classes, then its semantics boils
down to some collection of Heyting algebras  hence it was proved that
the lattice of such extensions is isomorphic to that of superintuitionis-
tic logics (in fact, by mapping each such N4⊥-extension to its ∼-free
fragment), cf. [21]. Also, it was important to introduce so-called special
conservative extensions for superintuitionistic logics and counterparts
for N4⊥-extensions, and to study them (see [21] for details). In effect
all this turned out to be very useful in obtaining transfer results from
the superintuitionistic logics to the N4⊥-extensions. E.g., by a remark-
able theorem of L. Maksimova [16], there exist exactly seven non-trivial
superintuitionistic logics with Craig interpolation property  hence, by a
transfer theorem from [22], one can get exactly twenty eight special N4⊥-
extensions sharing the same property. Turning to BK, here is our plan:

• We introduce the classes  or rather sublattices  of explosive, com-
plete and classical Belnapian modal logics (see [33]). Then we prove
that these classes are semantically characterised by collapsing one or
other invariant  or even both  in the representation of twist-struc-
tures over modal algebras.

4 While [20] deals with N4, [21] adapts the main results of [20] to the logic N4
⊥.

5 In the case of Belnapian modal logics, ‘normal’ will correspond to ‘complete’.
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• We show that for any normal modal logic L, the intersection of the
class of its conservative BK-extensions with each of the classes from
above is an interval. Moreover, the endpoints of these intervals cor-
respond to the four special conservative extensions of L, which are
the most plausible candidates for transferring certain fundamental
properties from the lattice of normal modal logics (cf. [21, 22, 33]).

• We associate with each BK-extension its counterparts in the classes
of explosive, complete and classical logics, and define embeddings of
these counterparts into the original logic.

More generally, the article studies the relationships between special ex-
tensions and counterparts, provides some handy characterisations and
offers a useful decomposition of the lattice of logics containing BK.

The rest of the article is organised as follows. Section 1 consists of
preliminary material on BK and the lattice of its extensions, including
algebraic semantics and a rather detailed survey of related results. In
particular, we define the variety of BK-lattices, which provides an ade-
quate algebraic semantics for BK in the sense of [6], and recall that any
BK-lattice A is completely determined by its underlying modal algebra
A⊲⊳ and two special invariants, namely the �-filter ∇l (A) on A⊲⊳ and
the ♦-ideal ∆l (A) on A⊲⊳ (see [24, 32]).

In Section 2, the sublattices of explosive, complete and classical BK-
extensions are introduced. We prove that a BK-extension L is explosive
(normal) iff ∆l (A) (respectively ∇l (A)) is trivial for all BK-lattices A
satisfying L, and L is classical iff it is both explosive and normal. Then
for every normal modal logic L we define the four special BK-extensions
η (L), η3 (L), η◦ (L) and ηc (L), characterise them semantically, and also
show how they can be embedded into L. Moreover, we prove that:

• the Belnapian logics η (L) and ηc (L) are the least and greatest con-
servative enrichments of L in the lattice of BK-extensions;

• η3 (L) and η◦ (L) are the least explosive and least complete conser-
vative enrichments of L respectively.

This means that the set of all conservative enrichments of L, as well as its
intersections with the classes of explosive and complete BK-extensions,
is an interval, and that ηc (L) is the unique classical BK-extension of L
(Proposition 2.12; see also [33]). Next we obtain a characterization of
special logics in terms of admissible rules (Proposition 2.13). We use
it to prove that the mappings η, η3 and η◦ are lattice monomorphisms
commuting with infinite meets and joins, whereas ηc is an isomorphism
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between the lattice of normal modal logics and the lattice of classical
BK-extensions (Proposition 2.15; see also [33]).

Section 3 investigates the connections between the lattice of Belna-
pian modal logics and its subclasses of explosive, complete and classical
BK-extensions (in a manner similar to Section 2). For every BK-exten-
sion L we define its explosive, normal and classical counterparts as the
least L-extensions in the respective classes of logics. Then we provide a
semantic characterisation of the counterparts of L, and prove that they
can be embedded into L. Finally, we study the classes Spec (L1, L2) of
Belnapian modal logics, where the explosive and complete counterparts
of any L ∈ Spec (L1, L2) coincide with L1 and L2 respectively. Here we
prove that all such classes are intervals, and describe the endpoints of
these intervals.

We conclude with a few comments on future research (Section 4).

1. Preliminaries

1.1. Belnapian modal logics

In [25] the logic BK and its extensions were introduced in the language

L := {∨,∧,→,⊥,∼,�,♦}

where ∼ stands for ‘strong negation’. Let For(L) denote the set of all L-
formulas; and similarly for other languages. By an L-logic we mean a
collection of L-formulas closed under the substitution rule, modus ponens
and the monotonicity rules for � and ♦, i.e. under

ϕ (p1, . . . , pn)

ϕ (ψ1, . . . , ψn)
,

ϕ ϕ → ψ

ψ
,

ϕ → ψ

�ϕ → �ψ
and

ϕ → ψ

♦ϕ → ♦ψ
.

Further  for any X, Y ⊆ For(L) we take

X + Y := the intersection of all L-logics containing X ∪ Y .

Denote by EL the set of all L-logics extending L. One readily verifies
that EL with operations ∩ and + is a lattice, in which the lattice ordering
coincides with the inclusion relation.

For convenience we shall also use certain abbreviations:

¬ϕ := ϕ → ⊥, ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ)

and ϕ ⇔ ψ := (ϕ ↔ ψ) ∧ (∼ϕ ↔ ∼ψ).
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Definition 1.1. BK is the least L-logic containing the following axioms:

1. all tautologies of the classical propositional logic stated in the lan-
guage {∨,∧,→,⊥};

2. the five strong negation axioms

∼ (p ∧ q) ↔ (∼ p ∨ ∼ q), ∼ (p → q) ↔ (p ∧ ∼ q),

∼ (p ∨ q) ↔ (∼ p ∧ ∼ q), ∼ ∼ p ↔ p and ∼ ⊥;

3. the two K axioms

(�p ∧ �q) → � (p ∧ q) and � (p → p);

4. the four modal interaction axioms

¬�p ↔ ♦¬ p, �p ⇔ ∼♦∼ p,

¬♦p ↔ �¬ p, ♦p ⇔ ∼�∼ p.

We shall be concerned with the sublattices of EBK corresponding to

B3K := BK + {∼ p → (p → q)}, BK◦ := BK + {p ∨ ∼ p}

and B3K◦ := BK + {∼ p → (p → q), p ∨ ∼ p}.

With every L-logic L we associate two consequence relations, ⊢L

(local) and ⊢∗
L (global), as follows. For any Γ ∪ {ϕ} ⊆ For(L):

• Γ ⊢L ϕ iff ϕ can be obtained from L ∪ Γ by modus ponens only;
• Γ ⊢∗

L ϕ iff ϕ can be obtained from L ∪ Γ by modus ponens and
the monotonicity rules for � and ♦.

In particular, it was proved in [25, Sections 4–5] that the relations ⊢BK

and ⊢B3K are strongly complete w.r.t. suitable classes of Kripke frames 
with Belnapian valuations employed  and ⊢∗

BK
and ⊢∗

B3K
are strongly

complete w.r.t. suitable classes of twist-structures over modal algebras.
As expected, BK shares some interesting features with the construc-

tive Nelson’s logic: ↔ does not have the congruence property w.r.t. ∼,
but only for all the other connectives; while ⇔ in effect has the con-
gruence property w.r.t. each connective in L. More precisely, as was
observed earlier in [25], although BK is not closed under the ordinary
replacement rule, every L from EBK will be closed under the positive
replacement rule and the weak replacement rule, i.e. under

ϕ ↔ ψ

γ (ϕ) ↔ γ (ψ)
(PR) and

ϕ ⇔ ψ

χ (ϕ) ↔ χ (ψ)
(WR).
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where γ does not contain ∼. Note that (WR) is easily seen to be equiv-
alent to the replacement rule for the strong equivalence, viz. to

ϕ ⇔ ψ

χ (ϕ) ⇔ χ (ψ)
.

An L-formula ϕ is said to be a negation normal form (nnf for short)
iff all occurrences of ∼ in ϕ immediately precede propositional variables.
It is straightforward to define a translation which maps each L-formula
ϕ into an nnf ϕ such that ϕ ↔ ϕ ∈ BK  by exploiting the axioms (2)
and (4), and the rule (PR).

We now recall some algebraic terminology. Throughout this text we
use A, B and the like to stand for algebras, reserving the corresponding
uppercase italic letters A, B, etc. for their respective domains.

Given a propositional language, an expression of the form ϕ = ψ
where ϕ and ψ are formulas of the language is called an identity. Further,
for an algebra A (of the same language) we say that

ϕ = ψ holds in A i f f v (ϕ) = v (ψ) for each A-valuation v.

Denote by Eq (A) the set of all identities which hold in A.
By a modal algebra (see, e.g., [15]) we understand an algebra of the

form 〈A,∨,∧,¬,�〉 where 〈A,∨,∧,¬〉 is a Boolean algebra and the op-
eration � satisfies the following conditions:
• � (a ∧ b) = �a ∧ �b for any {a, b} ⊆ A;
• �1 = 1 where 1 is the greatest element w.r.t. the usual lattice order-

ing 6 on the Boolean algebra.
Alternatively, a modal algebra may be defined as a Boolean algebra with
♦ instead of �, such that:
• ♦ (a ∨ b) = ♦a ∨ ♦b for any two elements of it;
• ♦0 = 0 where 0 is the least element of it.
Actually we can switch between � and ♦ by using

♦a = ¬�¬ a and �a = ¬♦¬ a,

and moreover, take a → b := ¬ a ∨ b and ⊥ := 0 if needed.
Next, by a De Morgan algebra we mean an 〈A,∨,∧,∼,⊥,⊤〉, for

which 〈A,∨,∧,⊥,⊤〉 is a bounded distributive lattice, and in which the
identities ∼ ∼ p = p and ∼ (p ∧ q) = ∼ p ∨ ∼ q hold. In effect, one easily
checks that ∼ (p ∨ q) = ∼ p ∧ ∼ q and ∼ ⊥ = ⊤ also hold in any De
Morgan algebra.
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By an Ockham lattice (consult [5, 34]) we understand a bounded dis-
tributive lattice 〈A,∨,∧,¬,⊥,⊤〉 in which the following identities hold:

¬ (p ∧ q) = ¬ p∨ ¬ q, ¬ (p ∨ q) = ¬ p∧ ¬ q, ¬ ⊥ = ⊤ and ¬ ⊤ = ⊥

(but not necessarily ¬ ¬ p = p, of course).
Let B = 〈B,∨,∧,¬,�〉 be a modal algebra. Call a non-empty sub-

set S of B a �-filter (♦-ideal) on B iff S is a lattice filter (ideal) on
〈B,∨,∧〉 and for every b ∈ S we have �b ∈ S (respectively ♦b ∈ S).
Further  as can be readily verified, the family of all �-filters and that
of all ♦-ideals form two lattices, which we denote by F� (B) and I ♦ (B)
respectively. They play an important role in the algebraic semantics for
BK; cf. [24, Section 6] and [32, Section 3]. It is well-known that F� (B)
and I ♦ (B) are isomorphic to the lattice of congruences on B (see, e.g.,
[15, Theorem 4.1.10]).

Definition 1.2 (see [25]). For a modal algebra B = 〈B,∨,∧,¬,�〉, by
the full twist-structure over B we mean the algebra

B⊲⊳ = 〈B ×B; ∨,∧,→,⊥,∼,�,♦〉

whose operations are given by

(a, b) ∨ (c, d) := (a ∨ c, b ∧ d), (a, b) ∧ (c, d) := (a ∧ c, b ∨ d),

(a, b) → (c, d) := (¬ a ∨ c, a ∧ d), ⊥ := (0, 1), ∼ (a, b) := (b, a),

� (a, b) := (�a,♦b) and ♦ (a, b) := (♦a,�b).

A twist-structure over B is a subalgebra A of B⊲⊳ such that π1 (A) = B
(we use πi to denote the i-th projection function, for i ∈ {1, 2}). Let
S⊲⊳ (B) be the collection of all twist-structures over B.

Given a twist-structure A (over some modal algebra) and a set Γ∪{ϕ}
of L-formulas, we write Γ |=A ϕ iff for any A-valuation v, if π1 (v (ψ)) = 1
for each ψ ∈ Γ, then π1 (v (ϕ)) = 1. Now let

Γ |=⊲⊳
BK ϕ i f f Γ |=A ϕ for all twist-structures A.

We can also define |=⊲⊳
B3K

by restricting ourselves to A’s such that a∧b = 0
for any (a, b) ∈ A.

Theorem 1.3 ([25]). For every Γ ∪ {ϕ} ⊆ For(L) with Γ non-trivial

w.r.t. BK, we have

Γ ⊢∗
BK ϕ ⇐⇒ Γ |=⊲⊳

BK ϕ.

And similarly for B3K.
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To axiomatise the abstract closure of the class of all twist-structures,
it may be convenient to pass to the language

L′ := {∨,∧,¬,⊥,⊤,∼,�},

as was done in [24]. Clearly we can switch between L and L′ by using

¬ (a, b) = (a, b) → ⊥ and ⊤ = ∼ ⊥,

(a, b) → (c, d) = ¬ (a, b) ∨ (c, d) and ♦ (a, b) = ∼�∼ (a, b).

We shall work in L, so in the next section certain results of [24, 32] will be
adapted to this language. In particular, when dealing with BK-lattices,
¬ a, ⊤, etc. merely abbreviate a → ⊥, ∼ ⊥, etc.

1.2. Belnapian modal algebras

Now we turn to the lattice-theoretic description of twist-structures.

Definition 1.4 (see [24]). A BK-lattice (or Belnapian modal algebra) is
an algebra of the form 〈A,∨,∧,→,⊥,∼,�,♦〉 such that:

1. 〈A,∨,∧,∼,⊥,⊤〉 is a De Morgan algebra;
2. 〈A,∨,∧,¬,⊥,⊤〉 is an Ockham lattice;
3. ¬ a ∧ ¬ ¬ a = ⊥ and ¬ a ∨ ¬ ¬ a = ⊤ for each a ∈ A;
4. ∼ ¬ a = ¬ ¬ a for each a ∈ A;
5. ¬�a = ♦¬ a and ¬♦a = �¬ a for each a ∈ A;
6. �⊤ = ⊤ and � (¬ a ∧ ¬ b) = �¬ a ∧ �¬ b for any {a, b} ⊆ A;
7. for any {a, b} ⊆ A, if ¬ a = ¬ b and ¬ ∼ a = ¬ ∼ b, then a = b.

Denote by VBK the class of all BK-lattices.

As was observed in [24], twist-structures over modal algebras belong
to VBK, and moreover it was proved that every BK-lattice can be trans-
formed into such a structure. Given A ∈ VBK, for each a ∈ A, take

e⊲⊳ (a) := ¬ ¬ a and ι⊲⊳ (a) := (e⊲⊳ (a) , e⊲⊳ (∼ a)).

In effect, e⊲⊳ (A) turns out to be the domain of a modal algebra, called
the underlying modal algebra of A, and we get a suitable structure via ι⊲⊳.

Proposition 1.5 ([24]). Let A be a BK-lattice. Then:

• the set e⊲⊳ (A) is closed under the operations ∨, ∧, ¬ and � of A,

hence A⊲⊳ := 〈e⊲⊳ (A) ,∨,∧,¬,�〉 is a modal algebra;
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• the mapping ι⊲⊳ is an embedding of A into (A⊲⊳)⊲⊳
, whence A is

isomorphic to the twist-structure ι⊲⊳ (A) over A⊲⊳.

Notice that if A ∈ S⊲⊳ (B), then e⊲⊳ (A) = {(a,¬a) | a ∈ B}, and thus
π1 is an isomorphism from A⊲⊳ onto B.

Next we revise Theorem 1.3. Given a BK-lattice A, take

DA := {a ∈ A | ¬ a = ⊥}.

For a set Γ ∪ {ϕ} of L-formulas, we write Γ |=〈A,DA〉 ϕ iff for each
A-valuation v, if v (ψ) ∈ DA for every ψ ∈ Γ, then v (ϕ) ∈ DA. In par-
ticular, when A ∈ S⊲⊳ (B), we easily get DA = {(1, b) | b ∈ B}, whence
Γ |=〈A,DA〉 ϕ turns out to be equivalent to Γ |=A ϕ (cf. [24]). This
quickly leads to

Theorem 1.6 ([24]). For every Γ ∪ {ϕ} ⊆ For(L) with Γ non-trivial

w.r.t. BK, we have

Γ ⊢∗
BK ϕ ⇐⇒ Γ |=〈A,DA〉 ϕ for all A ∈ VBK.

And similarly for B3K, in which case we restrict ourselves to BK-lattices

A such that ¬ (a ∧ ∼ a) = ⊤ for any a ∈ A.

As was also proved in [24], the quasi-identity of Item 7 in Defini-
tion 1.4 can be replaced by identities. Consequently

Theorem 1.7 ([24]). VBK is a variety.

As was shown in [24, Section 5], VBK in fact gives us an equivalent al-
gebraic semantics for the global consequence relation ⊢∗

BK
, using ¬ p = ⊥

and p ⇔ q as the defining equation and the equivalence formula, respec-
tively  see [6] for the corresponging definitions. From this we deduce,
using results from [6, Section 4], that the lattice of extensions of ⊢∗

BK

is, in effect, dually isomorphic to that of sub-quasi-varieties of VBK. In
the axiomatic case, viz. for elements of EBK, the intended isomorphism
works as follows. For every collection L of L-formulas and every family
V of BK-lattices, we take

V (L) := {A ∈ VBK | ¬ϕ = ⊥ ∈ Eq (A) for all ϕ ∈ L},

L (V ) := {ϕ ∈ For(L) | ¬ϕ = ⊥ ∈ Eq (A) for all A ∈ V }.
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Notice that given A ∈ VBK and ϕ ∈ For(L), we shall occasionally write
A |= ϕ instead of ¬ϕ = ⊥ ∈ Eq (A), without danger of confusion; and
similarly for classes of BK-lattices and sets of L-formulas.6

Theorem 1.8 ([24]). V and L define two mutually inverse dual isomor-

phisms between EBK and the lattice of subvarieties of VBK.

One very useful property deserves mention here.

Proposition 1.9 ([32]). The lattice EBK is distributive.

Given a twist-structure A over a modal algebra B, take

∇ (A) := {a ∨ b | (a, b) ∈ A} and ∆ (A) := {a ∧ b | (a, b) ∈ A}.

The importance of these sets will become clear in a moment.

Proposition 1.10 ([24]). For each A ∈ S⊲⊳ (B) we have

∇ (A) = {a | (a, 0) ∈ A} and ∆ (A) = {a | (1, a) ∈ A},

whence ∇ (A) ∈ F� (B) and ∆ (A) ∈ I ♦ (B); moreover

A = {(a, b) ∈ B ×B | a ∨ b ∈ ∇ (A) and a ∧ b ∈ ∆ (A)}.

On the other hand, if ∇ ∈ F� (B) and ∆ ∈ I ♦ (B), then

{(a, b) ∈ B ×B | a ∨ b ∈ ∇ and a ∧ b ∈ ∆}

is closed under all twist-operations; in effect for A ∈ S⊲⊳ (B) having this

set as domain, ∇ (A) = ∇ and ∆ (A) = ∆.

Consequently A is uniquely determined by the triple (B,∇(A),∆(A))
which we write as A = Tw (B,∇ (A) ,∆ (A)).

A version for VBK was provided in [32]. Given a BK-lattice A, take

∇l (A) := e⊲⊳ ({a ∨ ∼ a | a ∈ A}),

∆l (A) := e⊲⊳ ({a ∧ ∼ a | a ∈ A}).

(actually, e⊲⊳ plays the role of π1 in the case of twist-structures).

Proposition 1.11 ([32]). Let A ∈ VBK. Then ∇l (A) ∈ F� (A⊲⊳) and

∆l (A) ∈ I ♦ (A⊲⊳). Furthermore, ι⊲⊳ (A) = Tw (A⊲⊳,∇l (A) ,∆l (A)).

6 However, for a modal algebra B and a formula ψ of its language, B |= ψ means
that ψ = 1 holds in B, i.e. ψ = 1 belongs to Eq (B).
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2. Special Extensions

Logics from EB3K, EBK◦ and EB3K◦ are respectively called explosive,
complete and classical. Obviously EB3K ∩ EBK◦ = EB3K◦.

Proposition 2.1. 1. V(B3K) coincides with {A ∈ VBK | ∆l(A) = {⊥}}.

2. V (BK◦) coincides with {A ∈ VBK | ∇l (A) = {⊤}}.

3. V (B3K◦) coincides with {A ∈ VBK | ∆l(A) = {⊥} and ∇l(A) = {⊤}}.

Proof. Notice that by Proposition 1.11, for each A ∈ VBK we have:

∆l (A) = {⊥} ⇐⇒ ∆ (ι⊲⊳ (A)) = {⊥A} = {0A⊲⊳
};

∇l (A) = {⊤} ⇐⇒ ∇ (ι⊲⊳ (A)) = {⊤A} = {1A⊲⊳
}.

So it suffices to consider only A ∈ S⊲⊳ (B) where B is a modal algebra.
Ad 1. We need to show that

¬ (∼ p → (p → q)) = ⊥ ∈ Eq (A) ⇐⇒ ∆ (A) = {0}.

Let (a, b) and (c, d) be elements of A. Then

¬ (∼ (a, b) → ((a, b) → (c, d))) = ¬ ((b, a) → (¬ a ∨ c, a ∧ d)) =

¬ (¬ b ∨ ¬ a ∨ c, b ∧ a ∧ d) = (b ∧ a ∧ ¬ c,¬ b ∨ ¬ a ∨ c),

which equals (0, 1) iff a ∧ b ∧ ¬ c = 0. Hence

A |= ∼ p → (p → q) ⇐⇒

a ∧ b ∧ ¬ c = 0 for all (a, b) ∈ A and c ∈ B,

i.e. iff a ∧ b = 0 for any (a, b) ∈ A.

Ad 2. Now we need to show that

¬ (p ∨ ∼ p) = ⊥ ∈ Eq (A) ⇐⇒ ∇ (A) = {1}.

Let (a, b) be an element of A. Then

¬ ((a, b) ∨ ∼ (a, b)) = ¬ (a ∨ b, b ∧ a) = (¬ a ∧ ¬ b, a ∨ b),

which equals (0, 1) iff a ∨ b = 1. The rest is trivial.

Ad 3. It follows immediately from (1) and (2). ⊣
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Corollary 2.2. Let L ∈ EBK. The following equivalences hold:

1. B3K ⊆ L iff for every A ∈ V (L), ∆l (A) = {⊥};

2. BK◦ ⊆ L iff for every A ∈ V (L), ∇l (A) = {⊤};

3. B3K◦ ⊆ L iff for every A ∈ V (L), ∆l (A) = {⊥} and ∇l (A) = {⊤}.

Proof. By Theorem 1.8, for any {L1, L2} ⊂ EBK,

L1 ⊆ L2 ⇐⇒ V (L1) ⊇ V (L2).

It remains to apply the previous proposition. ⊣

Recall that EK is the lattice of normal modal logics in the language

L− = {∨,∧,→,⊥,�,♦},

with least element K. Given a class K of modal algebras, define

L (K) :=
{

ϕ ∈ For(L−) | K |= ϕ
}

.

Clearly there are natural ways to get elements of EBK from elements
of EK. For each L ∈ EK, let

η (L) := BK + L, η3 (L) := B3K + L,

η◦ (L) := BK◦ + L and ηc (L) := B3K◦ + L.

Belnapian logics from η (EK), η3 (EK), η◦ (EK) and ηc (EK) are respec-
tively called special, special explosive, special complete and classical. In-
deed  as we shall see  these four play an important role in our study,
because:

• η (L) and ηc (L) are respectively the least and greatest conservative
extensions of L ∈ EK in the lattice EBK;

• at the same time η3 (L) and η◦ (L) are the least conservative exten-
sions of L in EB3K and EBK◦ respectively.

But before going on to that, we need to look at L−-fragments of Bel-
napian modal logics. Given L ∈ EBK, define σ (L) to be L ∩ For(L−).

Lemma 2.3. For every BK-lattice A and every L−-formula ϕ,

A |= ϕ ⇐⇒ A⊲⊳ |= ϕ.
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Proof. Since any BK-lattice A is isomorphic to the twist-structure
ι⊲⊳ (A) over A⊲⊳, it suffices to show that for all A ∈ S⊲⊳ (B),

¬ϕ = ⊥ ∈ Eq (A) ⇐⇒ ϕ = 1 ∈ Eq (B).

Suppose B |= ϕ = 1. Each A-valuation v induces the B-valuation

v′ : p 7→ π1 (v (p)).

Certainly v′ (ϕ) = 1. By Definition 1.2 it follows that v (¬ϕ) = (0, 1).
Suppose that B 6|= ϕ = 1  let v′ be a B-valuation for which v′ (ϕ) 6=

1. Clearly there exists an A-valuation v such that

v′ (p) = π1 (v (p)) for all variables p.

Then using Definition 1.2 we obtain v (¬ϕ) 6= (0, 1). ⊣

In other words, σ (L) is completely determined by the underlying
modal algebras of L-models. More precisely, given K ⊆ VBK, define

K⊲⊳ := {A⊲⊳ | A ∈ K}.

The previous lemma trivially implies

Proposition 2.4. Let L be a logic in EBK and K a class of BK-lattices.

If L = L (K), then σ (L) = L (K⊲⊳).

We now turn to special Belnapian modal logics.

Proposition 2.5. For any L ∈ EK and A ∈ VBK, the following hold:

1. A |= η (L) iff A⊲⊳ |= L;

2. A |= η3 (L) iff A⊲⊳ |= L and ∆l (A) = {⊥};

3. A |= η◦ (L) iff A⊲⊳ |= L and ∇l (A) = {⊤};

4. A |= ηc (L) iff A⊲⊳ |= L, ∆l (A) = {⊥} and ∇l (A) = {⊤}.

Proof. Ad 1. This is by Lemma 2.3  remembering that VBK |= BK.
Ad 2. Suppose A |= η3 (L). Then A⊲⊳ |= L by Lemma 2.3. Moreover,

since A ∈ V (B3K), by Proposition 2.1 we get ∆l (A) = {⊥}.
Suppose A⊲⊳ |= L and ∆l (A) = {⊥}. Then A |= L by Lemma 2.3.

Also by Proposition 2.1 we get A ∈ V (B3K), i.e. A |= B3K. Hence
A |= η3 (L).

Ad 3. Similar to 2.
Ad 4. It follows immediately from 2 and 3. ⊣
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With each modal algebra B we associate three twist-structures:

B⊲⊳
3 := Tw (B, B, {0}), B⊲⊳

◦ := Tw (B, {1}, B)

and B⊲⊳
c := Tw (B, {1}, {0}),

i.e. the twist-structures over B with domains

B⊲⊳
3 :=

{

(a, b) ∈ B2 | a ∧ b = 0
}

, B⊲⊳
◦ :=

{

(a, b) ∈ B2 | a ∨ b = 1
}

and B⊲⊳
c := B⊲⊳

3 ∩B⊲⊳
◦ = {(a,¬a) | a ∈ B},

respectively. Using Proposition 2.1 it is easy to prove

Proposition 2.6. Let A ∈ S⊲⊳ (B). We have the following:

1. B⊲⊳
c = A⊲⊳ ≤ A ≤ B⊲⊳.

2. A |= B3K iff A ≤ B⊲⊳
3 ;

3. A |= BK◦ iff A ≤ B⊲⊳
◦ ;

4. A |= B3K◦ iff A = B⊲⊳
c .

By analogy with the case of BK-extensions, we call a BK-lattice spe-
cial, special explosive, special complete or classical iff it is isomorphic to
a twist-structure of the form B⊲⊳, B⊲⊳

3 , B⊲⊳
◦ or B⊲⊳

c respectively.

Proposition 2.7. For each L ∈ EK, the corresponding logics η (L),
η3 (L), η◦ (L) and ηc (L) are conservative extensions of L, i.e. belong to

σ−1 (L).

Proof. Evidently L ⊆ η (L) ∩ For(L−). Furthermore,

η (L) ⊆ η3 (L) ∩ η◦ (L) and η3 (L) + η◦ (L) = ηc (L),

so we only need to check that for every ϕ ∈ For(L−),

ϕ 6∈ L =⇒ ϕ 6∈ ηc (L).

Suppose ϕ ∈ For(L−) \ L. Hence there exists a modal algebra B such
that B |= L and B 6|= ϕ. Now since (B⊲⊳

c )⊲⊳ is isomorphic to B, we have
B⊲⊳

c 6|= ϕ by Lemma 2.3, and B⊲⊳
c |= ηc (L) by Proposition 2.5. Thus

ϕ 6∈ ηc (L). ⊣

Given an L-formula ϕ(p1, ..., pn), we can write its nnf ϕ(p1, ..., pn) as

ϕ′ (p1, . . . , pn,∼ p1, . . . ,∼ pn)
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where ϕ′ ∈ For(L−). Then we define:

ϕ⊲⊳ := ϕ′ (p1, . . . , pn, pn+1, . . . , p2n);

ϕ3
⊲⊳ := ϕ′ (p1, . . . , pn, pn+1 ∧ ¬ p1, . . . , p2n ∧ ¬ pn);

ϕ◦
⊲⊳ := ϕ′ (p1, . . . , pn, pn+1 ∨ ¬ p1, . . . , p2n ∨ ¬ pn);

ϕc
⊲⊳ := ϕ′ (p1, . . . , pn,¬ p1, . . . ,¬ pn).

Recall that whenever ϕ is an nnf, it coincides with ϕ by construction.

Proposition 2.8. For any L-formula ϕ (p1, . . . , pn) and any modal al-

gebra B, the following equivalences hold:

1. B⊲⊳ |= ϕ iff B |= ϕ⊲⊳; 2. B⊲⊳
3 |= ϕ iff B |= ϕ3

⊲⊳;
3. B⊲⊳

◦ |= ϕ iff B |= ϕ◦
⊲⊳; 4. B⊲⊳

c |= ϕ iff B |= ϕc
⊲⊳.

Proof. Without loss of generality we may assume that ϕ is a nnf.

Ad 1. Suppose B⊲⊳ 6|= ϕ whence there exists a B⊲⊳-valuation v
for which π1 (v (ϕ)) 6= 1. Let v⊲⊳ be a B-valuation such that for all
i ∈ {1, . . . , n},

v⊲⊳ (pi) = π1 (v (pi)) and v⊲⊳ (pn+i) = π2 (v (pi)),

so in particular, v⊲⊳ (pn+i) = π1 (v (∼ pi)). Then, as can be readily veri-
fied, we have v⊲⊳ (ϕ⊲⊳) = π1 (v (ϕ)) 6= 1. Thus B 6|= ϕ⊲⊳.

Conversely, suppose v (ϕ⊲⊳) 6= 1 for some B-valuation v. And let v⊲⊳

be a B⊲⊳-valuation such that for all i ∈ {1, . . . , n},

v⊲⊳ (pi) = (v (pi), v (pn+i)),

and so π1 (v⊲⊳ (∼ pi)) = v (pn+i). It is now straightforward to check that
π1 (v⊲⊳ (ϕ)) = v (ϕ⊲⊳) 6= 1. Hence B⊲⊳ 6|= ϕ.

Ad 2. Suppose there exists a B⊲⊳
3 -valuation v for which π1(v(ϕ)) 6= 1.

Let v⊲⊳ be as in (1). Since v is a B⊲⊳
3 -valuation, we have

π1 (v (p)) ∧ π1 (v (∼ p)) = π1 (v (p)) ∧ π2 (v (p)) = 0,

i.e. π1 (v (∼ p)) 6 π1 (v (¬ p)). Thus for every i ∈ {1, . . . , n},

π1 (v (∼ pi)) = π1 (v (∼ pi)) ∧ π1 (v (¬ pi)) = v⊲⊳ (pn+i ∧ ¬ pi).

Furthermore, one can easily verify that v⊲⊳

(

ϕ3
⊲⊳

)

= π1 (v (ϕ)) 6= 1.
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Conversely, suppose v
(

ϕ3
⊲⊳

)

6= 1 for some B-valuation v. Then let v⊲⊳
3

be a B⊲⊳-valuation such that for all i ∈ {1, . . . , n},

v⊲⊳
3 (pi) = (v (pi), v (pn+i) ∧ ¬ v (pi)),

so in particular, π1 (v⊲⊳
3 (pi)) ∧ π2 (v⊲⊳

3 (pi)) = 0. Hence v⊲⊳
3 is a B⊲⊳

3 -valu-
ation. It is straightforward to verify now that π1 (v⊲⊳

3 (ϕ)) = v
(

ϕ3
⊲⊳

)

6= 1.

Analogous arguments apply to (3) and (4). ⊣

Corollary 2.9. For any ϕ ∈ For(L) and L ∈ EK, the following hold:

1. ϕ ∈ η(L) iff ϕ⊲⊳ ∈ L; 2. ϕ ∈ η3 (L) iff ϕ3
⊲⊳ ∈ L;

3. ϕ ∈ η◦ (L) iff ϕ◦
⊲⊳ ∈ L; 4. ϕ ∈ ηc (L) iff ϕc

⊲⊳ ∈ L.

Proof. Ad 1. Suppose ϕ ∈ η (L). Then for every modal algebra B,

B |= L
Prop. 2.5

=⇒ B⊲⊳ |= η (L) =⇒ B⊲⊳ |= ϕ
Prop. 2.8

=⇒ B |= ϕ⊲⊳.

Consequently ϕ⊲⊳ holds in all models of L, i.e. belongs to L.

Suppose ϕ⊲⊳ ∈ L. Then for each BK-lattice A,

A |= η (L)
Prop. 2.5

=⇒ A⊲⊳ |= L =⇒ A⊲⊳ |= ϕ⊲⊳

Prop. 2.8
=⇒ (A⊲⊳)

⊲⊳ |= ϕ =⇒ A |= ϕ,

where the last implication is because A is isomorphic to a subalgebra of
(A⊲⊳)

⊲⊳
, namely to ι⊲⊳ (A). Thus ϕ belongs to η (L).

Ad 2. Suppose ϕ ∈ η3 (L). Then for every modal algebra B,

B |= L
Prop. 2.5

=⇒ B⊲⊳
3 |= η3 (L) =⇒ B⊲⊳

3 |= ϕ
Prop. 2.8

=⇒ B |= ϕ3
⊲⊳.

Consequently ϕ3
⊲⊳ holds in all models of L.

Suppose ϕ3
⊲⊳ ∈ L. Then for each BK-lattice A,

A |= η3 (L)
Prop. 2.5

=⇒ A⊲⊳ |= L =⇒ A⊲⊳ |= ϕ3
⊲⊳

Prop. 2.8
=⇒ (A⊲⊳)⊲⊳

3 |= ϕ
Prop. 2.6

=⇒ A |= ϕ

(for the last implication, notice that by Proposition 2.6, ι⊲⊳ (A) is a sub-
algebra of (A⊲⊳)⊲⊳

3 whenever A |= B3K). Thus ϕ belongs to η3 (L).

Analogous arguments apply to (3) and (4). ⊣



The lattice of Belnapian modal logics 21

Given a class K of modal algebras, we define

K⊲⊳ := {A⊲⊳ | A ∈ K}, K⊲⊳
3 := {A⊲⊳

3 | A ∈ K},

K⊲⊳
◦ := {A⊲⊳

◦ | A ∈ K}, K⊲⊳
c := {A⊲⊳

c | A ∈ K}.

It is now easy to get results reminiscent of Proposition 2.4.

Proposition 2.10. Let L be a logic in EK and K a class of modal al-

gebras such that L = L (K). Then

η (L) = L (K⊲⊳), η3 (L) = L (K⊲⊳
3 ),

η◦ (L) = L (K⊲⊳
◦ ), ηc (L) = L (K⊲⊳

c ).

Proof. We shall only consider η◦ (L) = L (K⊲⊳
◦ ). Perfectly analogous

arguments work for the other three equalities.
By Proposition 2.5, K |= L implies K⊲⊳

◦ |= η◦ (L)  and so the inclu-
sion η◦ (L) ⊆ L (K⊲⊳

◦ ) follows.
In the opposite direction, suppose ϕ 6∈ η◦ (L). By Corollary 2.9 we

have ϕ◦
⊲⊳ 6∈ L, i.e. there exists B ∈ K such that B 6|= ϕ◦

⊲⊳  and hence
B⊲⊳

◦ 6|= ϕ by Proposition 2.8. Thus ϕ 6∈ L (K⊲⊳
◦ ). ⊣

Actually, we have shown that a logic in EBK has the form η (L),
η3 (L), η◦ (L) or ηc (L) iff it can be characterised by a family of twist-
structures of the appropriate form (or their isomorphic copies). More
precisely:

Corollary 2.11. Let L ∈ EBK. The following equivalences hold:

1. L is special iff L = L (K) for some class K of special BK-lattices.

2. L is special explosive iff L = L (K) for some class K of special explosive

BK-lattices.

3. L is special complete iff L = L (K) for some class K of special complete

BK-lattices.

4. L is classical iff L = L (K) for some class K of classical BK-lattices.

Proof. From left to right, apply Proposition 2.10.
For right to left we shall only consider (2), because almost the same

argument works for the other cases. Assume that L = L (K) for some
class K of special explosive BK-lattices. Then, as can be easily verified,
L coincides with L

(

(K⊲⊳)
⊲⊳

3

)

. Thus L = η3 (σ (L)) by Propositions 2.4
and 2.10. ⊣
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We are now ready to demonstrate the role η (L), η3 (L), η◦ (L) and
ηc (L) play in the study of conservative extensions of L.

Proposition 2.12. For each L ∈ EK, the following hold:

1. σ−1 (L) = [η (L), ηc (L)];
2. σ−1 (L) ∩ EB3K =

[

η3 (L), ηc (L)
]

;
3. σ−1 (L) ∩ EBK◦ = [η◦ (L), ηc (L)];
4. σ−1 (L) ∩ EB3K◦ = {ηc (L)}.

Proof. Obviously we deal with intervals: for any {L1, L2, L3} ⊆ EBK,

L1 ⊆ L2 ⊆ L3 and {L1, L3} ⊆ σ−1 (L) =⇒ L2 ∈ σ−1 (L).

Moreover
{

η (L), η3 (L), η◦ (L), ηc (L)
}

⊆ σ−1 (L) by Proposition 2.7.
Ad 1. Clearly [η (L), ηc (L)] ⊆ σ−1 (L), thus we need to show the

converse. Let L′ ∈ EBK be such that σ (L′) = L. For each BK-lattice A,

A |= L′ Lemma 2.3
=⇒ A⊲⊳ |= L

Prop. 2.5
=⇒ A |= η (L).

This gives η (L) ⊆ L′, hence η (L) is the infimum of σ−1 (L) in EBK. On
the other hand, for every BK-lattice A, (A⊲⊳)

⊲⊳

c
is a subalgebra of ι⊲⊳ (A)

by Proposition 2.6, and consequently is embeddable in A, so

A |= L′ =⇒ (A⊲⊳)
⊲⊳

c
|= L′.

Take K = {A⊲⊳ | A ∈ VBK and A |= L′}. Clearly K⊲⊳
c |= L′, i.e. L′ ⊆

L (K⊲⊳
c ). By Proposition 2.4, L = L (K)  which in turn implies ηc (L) =

L (K⊲⊳
c ) by Proposition 2.10. This gives L′ ⊆ ηc (L), hence ηc (L) is the

supremum.
It is now straightforward to verify (2), (3) and (4). ⊣

Corollary 2.9 readily implies the admissibility of certain rules in cer-
tain logics. E.g. for every L-formula we have

ϕ ∈ η (L) =⇒ ϕ⊲⊳ ∈ η (L),

i.e. the rule ϕ/ϕ⊲⊳ is admissible in η (L). As we shall shortly see, such
rules can be used to characterise η (EK), η3 (EK), η◦ (EK) and ηc (EK).7

Proposition 2.13. Let L ∈ EBK. The following equivalences hold:

1. L is special iff the rule ϕ/ϕ⊲⊳ is admissible in L.

2. L is special explosive iff the rule ϕ/ϕ3
⊲⊳ is admissible in L.

7 For the first time this kind of characterisation appeared in [14], where it was
obtained for special extensions of Nelson’s explosive logic.
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3. L is special complete iff the rule ϕ/ϕ◦
⊲⊳ is admissible in L.

4. L is classical iff the rule ϕ/ϕc
⊲⊳ is admissible in L.

Proof. Before presenting the main proof, we establish

Lemma 2.14. 1. The rule ϕ⊲⊳/ϕ is admissible in every L ∈ EBK.

2. The rule ϕ3
⊲⊳/ϕ is admissible in every L ∈ EB3K.

3. The rule ϕ◦
⊲⊳/ϕ is admissible in every L ∈ EBK◦.

4. The rule ϕc
⊲⊳/ϕ is admissible in every L ∈ EB3K◦.

Proof. We shall only consider (3). Similar arguments apply to (1), (2)
and (4), and are omitted.

Ad 3. Fix L ∈ EBK◦. Let A ∈ VBK be such that A |= L. We have

A |= ϕ◦
⊲⊳

Lemma 2.3
=⇒ A⊲⊳ |= ϕ◦

⊲⊳

Prop. 2.8
=⇒ (A⊲⊳)

⊲⊳

◦ |= ϕ
Prop. 2.8

=⇒ A |= ϕ

(for the last implication, notice that by Proposition 2.6, ι⊲⊳ (A) is a sub-
algebra of (A⊲⊳)

◦
3 whenever A |= BK◦). So if ϕ◦

⊲⊳ ∈ L, then ϕ ∈ L. ⊣

As for the proposition, we shall only consider (2). In fact perfectly
analogous arguments work for (1), (3) and (4).

By Corollary 2.9 the rule ϕ/ϕ3
⊲⊳ is admissible in each L ∈ η3 (EK).

Now suppose ϕ/ϕ3
⊲⊳ is admissible in L ∈ EBK. Then, using Lemma

2.14 and Corollary 2.9, we obtain that for every L-formula ϕ,

ϕ ∈ L ⇐⇒ ϕ3
⊲⊳ ∈ L ⇐⇒ ϕ3

⊲⊳ ∈ σ (L) ⇐⇒ ϕ ∈ η3 (σ (L)).

Thus L = η3 (σ (L)), so L is special explosive. ⊣

Proposition 2.15. 1. σ is a lattice epimorphism from EBK onto EK

commuting with infinite meets and joins.

2. η, η3 and η◦ are lattice monomorphism from EK to EBK, EB3K and

EB3K◦ respectively, which commute with infinite meets and joins.

3. ηc is a lattice isomorphism between EK and EB3K◦.

Proof. Ad 1. By Proposition 2.7, σ is onto EK. Obviously σ commutes
with infinite meets. We now turn to infinite joins. Let {Li | i ∈ I} ⊆
EBK where I is a non-empty set. Evidently

∑

i∈I σ (Li) ⊆ σ
(
∑

i∈I Li

)

;
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thus it suffices to establish the reverse inclusion. Note that by Proposi-
tion 2.12, Li ⊆ ηc(σ(Li)). So for each modal algebra B,

B |=
∑

i∈I σ (Li) =⇒ B |= σ (Li) for all i ∈ I

Prop. 2.5
=⇒ B⊲⊳

c |= ηc (σ (Li)) for all i ∈ I =⇒ B⊲⊳
c |= Li for all i ∈ I

=⇒ B⊲⊳
c |=

∑

i∈I Li
Lemma 2.3

=⇒ B |= σ
(
∑

i∈I Li

)

.

This gives the desired equality.
Ad 2. Clearly η, η3 and η◦ are one-one, by Proposition 2.7; and they

commute with infinite joins, by definition. Turning to infinite meets 
we shall now only consider η. Actually, perfectly analogous arguments
work for the other mappings. Let {Li | i ∈ I} ⊆ EK where I is a non-
empty set. Take

L∗ :=
⋂

i∈I Li and L′ :=
⋂

i∈I η (Li).

Observe that since Li = σ (η (Li)) by Proposition 2.7, we have

L∗ =
⋂

i∈I σ (η (Li)) = σ (L′).

Further, by Proposition 2.13 the rule ϕ/ϕ⊲⊳ is admissible in any η (Li),
and hence in L′. Thus L′ is special, by the same proposition. Conse-
quently

L′ = η (σ (L′)) = η (L∗)

(remember Proposition 2.7 to get the first equality).
Ad 3. Using Corollary 2.11 and Proposition 2.6 (for both see (4)),

we can easily show that ηc is onto EB3K◦. The rest follows as in (2). ⊣

In particular, the lattice of all Belnapian modal logics can be viewed
as a union of pairwise disjoint intervals of the form σ−1 (L), viz.

EBK =
⋃

L∈EK
[η (L), ηc (L)];

and EBK contains an isomorphic copy of EK, via ηc.

3. Counterparts

For convenience we introduce the following notation:

Exp := EB3K, Com := EBK◦, Clas := EB3K◦

and Gen := EBK \ (EB3K ∪ EBK◦).
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Remark. Clas = Exp ∩ Com = ηc (EK) by Proposition 2.15(3). As expec-
ted, Belnapian logics from Exp, Com and Clas are said to be explosive,
complete and classical respectively. Finally by logics of general form we
mean those which belong to Gen.

As we shall see, EBK can be decomposed into classes of such logics
in a way very similar to two decompositions that appeared in [22] 
one of the lattice of extensions of Nelson’s paraconsistent logic N4⊥,
with constant ⊥, into subclasses of explosive logics, normal logics and
those of general form, and one of the lattice of nontrivial extensions
of Johansson’s minimal logic into classes of intermediate, negative and
properly paraconsistent logics.

In the case of EBK we shall exploit the mappings (·)
exp

: EBK →

EB3K, (·)
com

: EBK → EBK◦ and (·)
cl

: EBK → EB3K◦ given by

Lexp := L+ B3K, Lcom := L+ BK◦ and Lcl := L+ B3K◦,

where L ranges over elements of EBK. Obviously Lcl = Lexp + Lcom.

Proposition 3.1. (·)
exp

, (·)
com

, and (·)
cl

are lattice epimorphisms.

Proof. By Proposition 1.9, they are homomorphisms. The rest is easy.
⊣

For each L in EBK, the logics Lexp, Lcom, and Lcl are respectively
called the explosive, complete and classical counterparts of L. E.g.

BKexp = B3K, BKcom = BK◦ and BKcl = B3K◦.

We collect some basic facts about counterparts in

Proposition 3.2. For any L ∈ EBK, the following hold:

1. L ∈ Exp iff L = Lexp iff Lcom = Lcl;
2. L ∈ Com iff L = Lcom iff Lexp = Lcl;
3. L ∈ Clas iff L = Lcl iff Lexp = Lcom;
4. σ (L) = σ

(

Lexp

)

= σ (Lcom) = σ (Lcl);
5. Lcl = ηc (σ (L)).

Proof. Ad 1. Clearly since Lexp is the least logic in Exp which extends
L, and B3K + BK◦ = B3K◦, we have

L ∈ Exp ⇔ L = Lexp and L = Lexp ⇒ Lcom = Lcl.

Hence it remains to show that Lcom = Lcl implies L ∈ Exp. Assume
B3K 6⊆ L. So by Corollary 2.2 (keeping in mind Proposition 1.5) there
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exists some twist-structure A = Tw (B,∇,∆) with ∆ 6= {0} such that
A |= L. We take A′ to be Tw (B, {1},∆). Obviously A′, being a suba-
glebra of A, also satisfies L. Then by Proposition 2.1, A′ |= Lcom but
A′ 6|= Lcl.

Ad 2. Similar to (1).
Ad 3. This follows easily from (1) and (2).
Ad 4. Remember that B3K, BK◦ and B3K◦ are conservative exten-

sions of K, by Proposition 2.7; and σ is a homomorphism, by Proposi-
tion 2.15(1).

Ad 5. Clearly Lcl and ηcσ (L) belong to B3K◦. Furthermore, their
images under σ coincide, by (4). Observe that by Proposition 2.12(4), σ
restricted to B3K◦ is an isomorphism, which implies the desired equality.

⊣

Here is a simple semantic characterisation of counterparts.

Proposition 3.3. For any L ∈ EBK and A ∈ VBK, the following hold:

1. A |= Lexp iff A |= L and ∆l (A) = {⊥}.

2. A |= Lcom iff A |= L and ∇l (A) = {⊤}.

3. A |= Lcl iff A |= L, ∆l (A) = {⊥} and ∇l (A) = {⊤}.

Proof. Immediate from Proposition 2.1. ⊣

Given ϕ (p1, . . . , pn) ∈ For(L), we represent its nnf ϕ (p1, . . . , pn) as

ϕ′ (p1, . . . , pn,∼ p1, . . . ,∼ pn)

with ϕ′ ∈ For(L−), and then define:

ϕexp := ϕ′ (p1, . . . , pn,∼ p1 ∧ ¬ p1, . . . ,∼ pn ∧ ¬ pn);

ϕcom := ϕ′ (p1, . . . , pn,∼ p1 ∨ ¬ p1, . . . ,∼ pn ∨ ¬ pn);

ϕcl := ϕ′ (p1, . . . , pn,¬ p1, . . . ,¬ pn).

With every twist-structure A = Tw (B,∇,∆) (where B stands for
some modal algebra, as before) we associate three substructures:

Aexp := Tw (B,∇, {0}), Acom := Tw (B, {1},∆)

and Acl := Tw (B, {1}, {0}).

Clearly, according to Proposition 3.3, if A is a model of L, then Aexp,
Acom and Acl are models of the corresponding counterparts of L. Also
the truth of formulas on Aexp, Acom and Acl can be naturally simulated
in A via the above translations.
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Proposition 3.4. For each L-formula ϕ (p1, . . . , pn) and each twist-

structure A over some modal algebra, the following equivalences hold:

1. A |= ϕexp iff Aexp |= ϕ;
2. A |= ϕcom iff Acom |= ϕ;
3. A |= ϕcl iff Acl |= ϕ.

Proof. Without loss of generality we may assume that ϕ is a nnf.
Ad 1. Suppose that A |= ϕexp. Let v be an Aexp-valuation. Then

(remembering Proposition 1.10) for all i ∈ {1, . . . , n} we have

π1 (v (pi)) ∧ π1 (v (∼ pi)) = π1 (v (pi)) ∧ π2 (v (pi)) = 0,

i.e. π1 (v (∼ pi)) ≤ π1 (v (¬ pi)). Thus for every i ∈ {1, . . . , n},

π1 (v (∼ pi)) = π1 (v (∼ pi)) ∧ π1 (v (¬ pi)) = π1 (v (∼ pi ∧ ¬ pi)).

Moreover, one readily verifies that π1 (v (ϕ)) equals π1

(

v
(

ϕexp

))

, which
must be 1, because v is also an A-valuation.

Conversely, suppose Aexp |= ϕ. Let v be an A-valuation. Then con-
sider v′ such that for all i ∈ {1, . . . , n},

v′ (pi) := (π1 (v (pi)), π2 (v (pi)) ∧ ¬π1 (v (pi))).

Obviously π1 (v′ (pi)) ∧ π2 (v′ (pi)) = 0, hence v′ is an Aexp-valuation, so
we have π1 (v′ (ϕ)) = 1. By construction, for every i ∈ {1, . . . , n},

π1 (v (∼ pi ∧ ¬ pi)) = π1 (v (∼ pi)) ∧ ¬π1 (v (pi)) = π1 (v′ (∼ pi)).

Now one easily checks that π1

(

v
(

ϕexp

))

equals π1 (v′ (ϕ)), i.e. must be 1.
Analogous arguments apply to (2) and (3). ⊣

We are ready to embed Lexp, Lcom and Lcl into L.

Proposition 3.5. For any ϕ ∈ For(L) and L ∈ EBK, the following hold:

1. ϕ ∈ Lexp iff ϕexp ∈ L;
2. ϕ ∈ Lcom iff ϕcom ∈ L;
3. ϕ ∈ Lcl iff ϕcl ∈ L.

Proof. Ad 1. Suppose ϕ ∈ Lexp. Then for each twist-structure A,

A |= L
Prop. 3.3

=⇒ Aexp |= Lexp =⇒ Aexp |= ϕ
Prop. 3.4

=⇒ A |= ϕexp.

So  remembering Proposition 1.5 ϕexp holds in all models of L.
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Suppose ϕexp ∈ L. Then for every twist-structure A,

A |= Lexp

Prop. 3.3
=⇒ A |= L and ∆ (A) = {0}

=⇒ A |= ϕexp and A = Aexp

Prop. 3.4
=⇒ A |= ϕ.

Consequently ϕ belongs to Lexp.
Analogous arguments apply to (2) and (3). ⊣

Given a class K of twist-structures over modal algebras, we define

Kexp :=
{

Aexp | A ∈ K
}

, Kcom := {Acom | A ∈ K}

and Kcl := {Acl | A ∈ K}.

Obviously Kcl = Kexp ∩ Kcom. Now for counterparts we get

Proposition 3.6. Let L be a logic in EBK, and K a class of twist-

structures over modal algebras such that L = L (K). Then

Lexp = L
(

Kexp

)

, Lcom = L (Kcom) and Lcl = L (Kcl).

Proof. We shall only consider Lcom = L (Kcom), because perfectly ana-
logous arguments work for the other two equalities.

Since Kcom consists of substructures of K, we have Kcom |= L, and
hence Kcom |= Lcom by Proposition 3.3. So the inclusion Lcom ⊆ L (Kcom)
follows.

In the opposite direction, suppose ϕ 6∈ Lexp. Thus ϕexp 6∈ L by Pro-
position 3.5, i.e. there exists A ∈ K such that A 6|= ϕexp, which is clearly
equivalent to Aexp 6|= ϕ by Proposition 3.4. Consequently ϕ 6∈ L (Kcom).

⊣

One nice feature of our framework deserves mention here.

Proposition 3.7. For every L1 ∈ Exp and every L2 ∈ Com,

σ (L1) = σ (L2) ⇐⇒
there exists L ∈ EBK such that

Lexp = L1 and Lcom = L2.

Proof. Suppose σ (L1) = σ (L2). Observe that by Proposition 3.2(5),

(L1)
cl

= ηc (σ (L1)) = ηc (σ (L2)) = (L2)
cl
.

Let L be L1 ∩ L2. Then using Proposition 3.1, we obtain

Lexp = (L1)
exp

∩ (L2)
exp

= L1 ∩ (L2)
cl

= L1 ∩ (L1)
cl

= L1,



The lattice of Belnapian modal logics 29

Lcom = (L1)
com

∩ (L2)
com

= (L1)
cl

∩ L2 = (L2)
cl

∩ L2 = L2.

(bearing in mind that L′ ⊆ (L′)
cl

for all logics L′ in EBK).
The converse is immediate from Proposition 3.2(4). ⊣

For any L1 ∈ Exp and L2 ∈ Com satisfying σ (L1) = σ (L2), we con-
sider the special family

Spec (L1, L2) :=
{

L ∈ EBK | Lexp = L1 and Lcom = L2

}

and the distinguished logic

L1 ∗ L2 := BK +
({

ϕexp | ϕ ∈ L1

}

∪ {ϕcom | ϕ ∈ L2}
)

.

A simple semantic characterisation of L1 ∗ L2 is given by

Proposition 3.8. Suppose L1 ∈ Exp and L2 ∈ Com are such that

σ (L1) = σ (L2). Then for each twist-structure A,

A |= L1 ∗ L2 ⇐⇒ Aexp |= L1 and Aexp |= L2.

Proof. This follows easily from Proposition 3.4. ⊣

Here are some basic facts about families of the form Spec (L1, L2).

Proposition 3.9. Suppose L1 ∈ Exp and L2 ∈ Com are such that

σ (L1) = σ (L2). Then we have the following:

1. Spec (L1, L2) ⊆ σ−1 (L) where L denotes σ (L1);
2. if L2 ∈ Exp, then Spec (L1, L2) = {L1};
3. if L1 ∈ Com, then Spec (L1, L2) = {L2}.

Proof. Ad 1. Let L′ ∈ Spec (L1, L2). So by Proposition 3.2(4) we get
σ (L′) = σ((L′)

exp
) = σ (L1) = L, as desired.

Ad 2. Assume that L2 is in Exp, and hence in Clas. Let L′ ∈
Spec (L1, L2). Note that σ (L′) = σ (L2) by (1). Then using Proposi-
tion 3.2, we obtain

(L′)
com

= L2 = (L2)
cl

= ηc (σ (L2)) = ηc (σ (L′)) = (L′)
cl
,

i.e. L′ ∈ Exp. Thus L′ = (L′)
exp

= L1.
Ad 3. Similar to (2). ⊣

Further, each family of the form Spec (L1, L2) turns out to be an in-
terval in the lattice EBK, with endpoints looking quite natural.
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Proposition 3.10. For all L1 ∈ Exp and L2 ∈ Com which satisfy

σ (L1) = σ (L2), we have Spec (L1, L2) = [L1 ∗ L2, L1 ∩ L2].

Proof. Obviously, for any
{

L†, L‡
}

⊆ Spec (L1, L2) and L′ ∈
[

L†, L‡
]

,

(L†)
exp

⊆ (L′)
exp

⊆ (L‡)
exp

and (L†)
com

⊆ (L′)
com

⊆ (L‡)
com
,

whence (L′)
exp

= L1 and (L′)
com

= L2, i.e. L′ ∈ Spec (L1, L2). In words,
we deal with intervals.

By definition L ⊆ Lexp ∩ Lcom for each L ∈ EBK. So L ⊆ L1 ∩ L2

for all L ∈ Spec (L1, L2). Furthermore, as we saw already in the proof
of Proposition 3.7, L1 ∩ L2 belongs to Spec (L1, L2), and so it is the
supremum.

On the other hand, for every L ∈ Spec (L1, L2) we have
{

ϕexp | ϕ ∈ L1

}

∪ {ϕcom | ϕ ∈ L2} ⊆ L

by Proposition 3.5, and thus L1 ∗L2 ⊆ L. To show that L1 ∗L2 belongs
to Spec (L1, L2), fix some L ∈ Spec (L1, L2), e.g. L1 ∩ L2. Then

(L1 ∗ L2)
exp

⊆ Lexp = L1 and (L1 ∗ L2)
com

⊆ Lcom = L2.

And it is straightforward to verify that the reverse inclusions hold 
using Proposition 3.5 again. Hence L1 ∗ L2 is indeed the infimum. ⊣

We finish this section with an open question:
• Is it true that L1 ∗ L2 6= L1 ∩ L2 if neither L1 nor L2 is classical?

4. Conclusion

In effect, we have done all the work needed for providing so-called ‘trans-
fer results’ from EK (and its distinguished sublatices, like EK4 or ES4) to
EBK (and its respective sublatices, like Eη (K4) or Eη (S4)). To be more
precise, in our subsequent articles we plan to transfer general results on
tabularity, pretabularity, interpolation and definability properties (the
reader might consult [10] for details).

Another natural direction of research concerns the connections bet-
ween EN4⊥ and Eη (S4). We would want to first define Belnapian modal
companions for each logic in EN4⊥, and then to investigate relationships
between the properties of N4⊥-extensions and those of their companions.

Acknowledgements. We would like to thank an anonymous referee for
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