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Abstract

A completely regular semigroup is a semigroup which is a union of groups. The class CR of
completely regular semigroups forms a variety. On the lattice £(CR) of completely regular
semigroup varieties we define two closure operations which induce complete congruences. The
consideration of a third complete congruence on £(CR) yields a subdirect decomposition of
£(CR). Using these results we show that £(CR) is arguesian. This confirms the (tacit) conjec-
ture that £(CR) is modular.

1980 Mathematics subject classification {Amer. Math. Soc.) (1985 Revision): primary 20 M 05;
secondary 20 M 07, 08 B 15.

1. Preliminaries

Let S be a semigroup equipped with a unary operation. Then S is said to
be a completely regular semigroup if S satisfies, apart from the associative
law, the identities

- 1 - 1 - 1 . - K - l
XX X — X, XX = X X, (X ) = X.

If this is the case, then S is a union of groups: for a e S, a~x is the
inverse of a within the unique maximal subgroup of 5 to which a belongs.
Conversely, if S is a semigroup which is a union of groups, then 5 can
be equipped with a unary operation ~l such that the resulting algebra of
type (2,1) satisfies the above identities. The class CR of completely reg-
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[2] The lattice of completely regular semigroup varieties 25

ular semigroups thus forms a variety (i.e. an equational class). We shall
investigate the lattice £(CR) of completely regular semigroup varieties.

The main sources of reference for this paper are [10], [13], [16]. We refer
in particular to [13] and [16] for a more expanded bibliography concerning
the study of completely regular semigroups from the point of view of uni-
versal algebra. We adopt the lattice theoretic terminology of [6]. As for
a background on semigroup theory we refer to the standard texts [8], [14].
More details concerning the description of congruences on regular semigroups
can be found in [10], [11] and [12]. We shall now supplement the existing
notation with the following.

We list some subvarieties of CR which we shall need later. We first men-
tion the notation for the variety under consideration, next the terminology
for the completely regular semigroups which belong to the variety, and finally
the identities which, in addition to the associative law and the identities for
the variety of completely regular semigroups, determine the variety involved.

CS completely simple semigroups xy(xy)~lx = x,
LG left groups xyy~l = x,
RG right groups xx~xy = y,
G groups xx~x=yy~x,
B bands x2 = x,
LRB left regular bands xyx — xy,
RRB right regular bands xyx = yx,
LNB left normal bands x2 = x, xyz = xzy,
RNB right normal bands x2 = x, xyz — yxz,
SL semilattices x2 = x, xy = yx,
RB rectangular bands xyx = x,
LZ left zero semigroups xy = x,
RZ right zero semigroups xy — y,
T trivial semigroups x = y.

From the description of the lattice of band varieties in [1], [3] or [4] and
from [17] it follows that the above-mentioned completely regular semigroup
varieties generate the finite lattice of Figure 1. Further details concerning the
structure of the completely regular semigroups which belong to either of the
mentioned varieties can be found in [14] or [15].

If V and W are subvarieties of CR, then V o W will denote the class of
all completely regular semigroups S on which one can define a congruence
p such that SI p e W and such that every />-class which forms a completely
regular semigroup belongs to V. The class V o W is said to be the Mai' cev
product of V and W (in CR). We refer to [9] for more details concerning
the Mai' cev product of completely regular semigroup varieties.
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CR

RG

Figure 1

In the following X will be a countably infinite set and U(X) the free
unary semigroup on the set X. If V is any variety of unary semigroups, then
pv will denote the least congruence on U(X) such that U(X)/pv e V. We
let £ be the lattice of fully invariant congruences on U{X) which contain

any p e L, U(X)/p generates a variety of completely regular
semigroups, which we shall denote by V . It is well-known that

and
£(CR) -» £, V^px

are mutually inverse antiisomorphisms.
One often considers U(X) to be a subset of the free monoid F on the

set l u { ( , ) " ' } . For any a e U(X), with a = be in F, one says that b [c]
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is an initial [final] segment of a . We then denote by b and c the elements
of U(X) obtained from b and c by deleting unmatched parentheses.

If a e F, then the content of a, in notation c(a), is the set of the
variables (i.e. elements of X) which occur in a. If b is the largest initial
segment of a e U(X) in |c(a)| - 1 variables, then we put s(a) = b; dually,
if c is the largest terminal segment of a in |c(a)| - 1 variables, then we put

2. Two complete endomorphisms of £(CR)

For any regular semigroup S, we denote by E(S) the set of idempotents
of S. For e, f e E(S) we put e <{ f if and only if ef = e. The relation
<r on E(S) is defined in a dual way. We recall the following result.

RESULT 1 [10, Theorem 15]. Let S be a regular semigroup. The following
are equivalent for congruences p and 6 on S:

(i) in the lattice of equivalence relations on S we have

py R = dV R,

p n <t = e n <, .

For any p, 6 e £ we put p Tr 6 if and only if

(1) p/PcRVZ = d/Pc*vZ
where R. stands for Green's ^-relation on the free completely regular semi-
group U(X)/pCR. By the above Result 1, (1) is equivalent with

(2) />//>CRn</ = 0 / /> C R n< / ,

where <7 is the appropriate relation on the set of idempotents of U(X)/pCK .
It readily follows that Tr is a complete congruence on £,.

If a is any binary relation on the free completely regular semigroup
U(X)/pCR, then a* denotes the least congruence containing a. If a is
an equivalence relation, then a° denotes the greatest congruence contained
in a .

In the following theorem we use R and <, as in (1) and (2).

THEOREM 2. For any p e Z, the Tr-class pTr of p is an interval [pT , pT'\,

where pT and pT' are given by

n^l? and pTr/PcR
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PROOF. Following [10, Corollary 6], (/?//?CRn <,)* is the least among the
congruences a on U(X)/pCR which satisfy

PlPaf\ <,= a n </ .
Since p/pCR D <, is invariant under every endomorphism of U(X)/pCR,
then so is (p/pCR n <,)*. Hence there exists a (unique) pT € £ such that

and pT is the smallest element in pTr.

Following [10, Corollary 16], (p/pCR V R)° is the greatest among the con-
gruences a on U(X)/pCR which satisfy

p/pCR V R = a V R.

Since the equivalence relation p/pCR V R. is invariant under every endo-
morphism, and since X is countably infinite, it follows that (pi p^ V £)°
is a fully invariant congruence on U(X)/pCR [13, Lemma 2.3]. Hence there

exists a (unique) pT' € £ such that pT'/pCR — {P/PCR V ^)° > anc^ / ^ *s l ^ e

greatest element in pTr.

In the following we characterize the pT in another way.

LEMMA 3. For any V e £(CR), (/9v)r = />RGoV •

PROOF. Immediate from [10, Theorem 15] and the results of [9, §3].

Before we give another characterization of the p ', we have the following.

COROLLARY 4. For V, W e £(CR),

P\ Tr />w<*RGoV = RGoW.

LEMMA 5. (i) In £/Tr we have that PTTr, p^Tr, pSLTr, /)LNBrr and
pLRBTr form the principal filter of Figure 2.

(ii) The Tr-classes considered in (i) are the intervals

PTTr = [PVLG ' Pj] ' PlJLTr = [PcS ' P\A >

' PlUVTr = L^RGoLNB

r = L^RGoLRB'

(iii) If pe £, then

/>RGoLNB 1P<*P<^

PROOF, (i) Let pLKB
T

r ^eT
r
 f o r s o m e ^ e i!. Let us put /? = pLRB V d.
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PLZ7",

Figure 2

Since Tr is a congruence we have that pTr — 6Tr, where V c LRB.
From [1], [3], [4] or [14] we have that V^ is either one of the varieties
LRB, LNB, SL, LZ or T. Since these varieties form a 5-element lattice
which is dually isomorphic to the lattice of Figure 2, it now suffices to show
that the fully invariant congruences associated with these five varieties are
in different rr-classes. This is obviously true by Corollary 4 and the fact
that RG o LRB, RG o LNB, RG o SL, CS = RG o LZ and RG are different
varieties.

(ii) If p e C and PJJ^ c p, then we have, as in (i) that p = pT, p =
pLZ, p = pSL or p = pLNB . Since by (i) none of these congruences belong to
plMBTr, we conclude that pLRB is the greatest element in its rr-class. In a
similar way one shows that pT, plz, pSL and PJJ^ are the greatest in their
respective 7"r-classes. The remaining statements in (ii) follow from Lemma
3.

(iii) If p e C and p C PlMB, then pTr < p^T, < pLmTr. Since
^RGOLNB *s t n e s m a U e s t element of pLNB, this entails that />RGoLNB % P •

Let pe C and pRGoLNB % p; that is, \ p % RG o LNB. By [15, Theorem
8] the variety V contains a 2-element left zero semigroup with an iden-
tity adjoined. Since this 3-element semigroup generates LRB, we have that
LRB C V , whence p c p^^.

From Lemma 5 it follows that in £/Tr every pTr is comparable with

For p G C we define the relation p0 on the free unary semigroup U(X) by
putting a p0 b if and only if for some c, d e U(X) we have c p d , a = s(c)
and b = s(d). This relation p0 was introduced by Polak in [16, §1].

LEMMA 6. For p e t , with p c pSL we have

Po £PSL> L Z £ V
P * P Tr
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and
p0 = U(X) x U(X) o\,Z<l\popTr pSL.

PROOF. If p0 g pst and LZ c V , then by [16, Lemma 6] Yp is
contained in the variety of £(CR) which is determined by the identity

(3) xyz = (xzy)(xzy)~lxyz,

and by [15, Theorem 8] this variety is exactly RG o LNB. Since LZ c V^
we know that \ p <£ [SL, RG o SL]. Hence

^RGoLNB ^ P ^ PSL ' P & [^RGoSL ' />SlJ '

and by Lemma 5 we can conclude that p Tr pLNB .
If p Tr phNB, then LNB CV^CRGoLNB by Lemma 5, and from this

we have already that LZ c V . Further, by [15, Theorem 8] V satisfies the
identity (3). Hence by [16, Lemma 6] we also have pQ % pSL.

If LZ g V , then by [15, Theorem 9] V consists of semilattices of
right groups. Thus pRGoSL Q p c pSh, which by Lemma 5 implies that
P Tr PSL- Conversely, if p Tr />SL, then pKGoSL C p. By [15, Theorem 9]
the completely regular semigroups which belong to RG o SL are determined
by the fact that their idempotents form a right regular band. Hence LZ %
RGoSL and a fortiori LZ g \ p . The remaining part of the statement is the
content of [16, Lemma 5].

LEMMA 7. If p e t with p c pLRB, then pQ — pT'.

PROOF. Let a pT' b for some a, b e U(X). Since p c p^^ we have
that pTr < plxBTr < pslTr, whence pT' c pSh. Therefore c(a) = c{b) [2].
We choose x & c(a) = c(b). Since ax pT' bx, we have by [10, Theorem
15] that (ax)p Z (bx)p in U(X)/p, and so ax(ax)~lbx p bx. Further,
a = s(ax(ax)~ibx) and b = s(bx). Thus a p0 b and we conclude that

PT'QPO-
Let a p0 b. By Lemmas 5 and 6 we have that p0 c pSL, and thus

c(a) = c(b) [2]. By [16, Theorem 3(2)] there exist c, d e U(X) such that
c p d and s(a) = s(c), s(b) = s(d). We define x, y, x , y € X by

{x} = c(«) - c(s(fl)), {y} = c(b) - c(s(b)),

{x'} = c(c) - c(s(c)), {/} = e(d) - c(s(d)).

Since c p d and p c pSL we have that c(c) = c(d) [2]. Thus if c(s(a)) ^
c(s{b)), then x = x e s(b) and y = y e s(a). If c(s(a)) = c(s(Z?)), then we
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can assume that x = x — y = y . In either of the two cases we have from
[2, §5] that

apCR R (s(a)x)pCR = {s(c)x)pCR R (cpCR) p/pCR (dpCR),

R (s(d)y)pCR = (s(b)y)pCR R bpCR

where R stands for Green's £-relation on the free completely regular semi-
group U{X)/pCR. Hence pJPf^ Q P/PCR V % > and> s i n c e

 PQ/PCR
 i s a

congruence on U(X)/pCR by [16, Theorem 3(4)], we have from Theorem 2
that

Pol Pa*. £ (P/PCR
 v R)° = PT'IPan •

and thus pQc pT'. We conclude that po = pT'.

We are now ready for one of the main results of this section.

THEOREM 8. The closure operation p —> pT' is a complete idempotent
endomorphism of C which induces the complete congruence Tr.

PROOF. Let {pt, i e /) be a family of elements of Z . Then

(

since Tr is a complete congruence on L. If for some i e / , p{ %

PLRB ' t n e n ^y Lemma 5, />RGoLNB Q pt so that pfr is one of the relations
pLNB, pSL, pLZ or pT. Using Lemma 5 we can now easily conclude that

<€/ 16/

We now set out to prove (5) in case p{ c pLRB for all / e / . Then

V,e/ Pi ^ PLRB > an(* s o ^ Lemma 7,

( ) (
16/ 16/

Let a (V/e/ Z7,)7' * f ° r some a, b € U(X). By the above there exist c, d €
U(X) such that a = s(c), b = s(d) and c (V, € / P,) d. There exist n e N ,
tf0, . . . , qn € I/(AT) and ^ , . . . , p^ with / , , . . . , /„ € / such that

Thus,
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Again by Lemma 7, (pi)Q = (pt)
T' for j = 1, . . . , n . Hence a (V,€/ p]') b.

We conclude that

( )
16/ 16/

The reverse inclusion holds since Tr is a complete congruence. Therefore
(5) is satisfied.

From (4) and (5) we see that the elements pTf of C form a complete
sublattice. From this the remaining part of the statement of the theorem can
be proved easily.

Because of the anti-isomorphism p —> V^ of £ onto £(CR), the situation
described in Theorem 8 carries over to £(CR). We thus obtain a complete
congruence on £(CR) which we shall again denote by Tr.

THEOREM 9. The relation Tr which is given by

VTrW#RGoV = RGoW (V,W€£(CR))

is a complete congruence on £(CR). For V € £(CR) the Tr-class \Tr is
an interval [YT , V7"'], where \T' = RG o V. The \T (V e £(CR)) form
a complete sublattice of £(CR). The dual closure operation V —> V r w a
complete idempotent endomorphism of £(CR) which induces Tr.

PROOF. Immediate from Lemma 3, Corollary 4 and Theorem 8.
If V e £(CR), then RGo V is the greatest element Vr' in the Tr-class of

V. As in [9, Proposition 6.4] one can derive a set of denning identities for
VTr from a set of denning identities for V. The fully invariant congruence
associated with \ T is (py) ' and is given by either Lemma 5 or Lemma 7.

Obviously the notions and results obtained so far in this section have their
left-right duals. The congruence on L or £(CR) which is the dual of Tr

will be denoted by Tt. The dual closure operation V —> V r is the other
complete endomorphism of £(CR) referred to in the title of this section.
The relation T = T{C\Tr is again a complete congruence and the T-classes
are intervals

pT=[pT,pT], YT=[YT,YT] (peC, Ve£(CR)),

where
pT = pTypTr, pT = pT'npT', V7. = V

r ^ 7 " =LGoVnRGoV = G
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LZ°(RZ°LRB) , '

LZ ° (RZ ° LNB)

RZ° (LZ° RRB)

RZ°(LZ°RNB)

RZ ° LRB

RZ°LNB

where the last equality stems from [9]. From this it also follows that the
relation T on £(CR) can be denned by

V r \ V « G o V = GoW.
The variety Vr was denoted by V(/v) in [13] and by V+ in [19]. Using
[9, Proposition 6.4] or [19, Theorem 3.9] we can derive a set of denning
identities for \T from a set of denning identities for V.

EXAMPLE 10. If V and W are band varieties then from Theorem 9 and its
dual we have that

VTrW *> RZoV = RZoW,
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Therefore
varieties.

T —
This

V

7} n :
yields

Francis Pastijn

7} W <*

vrw

Tr induces
a subdirect

LZ o V = LZ c

«• v = w.

the equality on
decomposition

>W

the
of

lattice
£(B).

[11]

£(B) of band
According to

Theorem 9, the V r (V e £(B)) form a complete sublattice of £(B) which
is isomorphic to £(B)/(r r | £ ( B ) ) . Using the above and the results of [1], [3]
or [4] we find that this lattice consists of the elements T, LZ, SL, B and
the elements of the chain Cr which can be defined recursively as follows (see
Figure 3):

(i) LNB,LRB,LZoRNB,LZoRRB are in Cr,
(ii) if V G Cr, then LZo (RZo V) e Cr,
(iii) Cr is the smallest sublattice of £(B) satisfying (i) and (ii).

Therefore C(B)/(Tr\C(B)) is isomorphic to the lattice of Figure 4. By left-
right duality, also •C(B)/(7}|£(B)) is isomorphic to the lattice of Figure 4.
Hence by the above £(B) is a subdirect product of two copies of the lattice
of Figure 4.

Figure 4
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3. A complete congruence on £(CR)

If p is any regular semigroup and p a congruence on S, then we put

kerp = {x e S\(x, x2) e p}.

For any p, 6 e £ we shall put

p K 6 «• kerip/p^) = ker(0//>CR).

From [13, Theorem 4.5] the AT-class pK of p is an interval [pK, pK], and
for p,0eC,

(6) p c 6 => pK c 0K, pK c 6K.

THEOREM 11. The relation K is a complete congruence on £..

PROOF. By (6), p —> pK is a closure operation which induces K on £ ,
and therefore K is infinitely V-compatible. Dually, by (6) p —• pK is a
dual closure operation which induces K on £ , and therefore K is infinitely
n-compatible.

THEOREM 12. £/K is a complete arguesian lattice.

PROOF. For a, b e U{X) we have that a pSL b if and only if c(a) = c(b).
Further PSL/pCR is exactly Green's P-relation on the free completely regular
semigroup U(X)/pCR. Hence (a/9CR) D (bpcu) if and only if c(a) = c{b)
(see also [2]). Let y be the set of finite subsets of X. By the above we
may denote the P-classes of U(X)/pCR by DY, Y e y , where DY consists
of the a/>CR for which c(a) = Y. For each such Y we choose a maximal
subgroup GY of DY .

Let p e £ . Since

1UT(P/PCR) = ker(/?//>CR) n ker(psjpcil)

= ksr({p/pCR)n(pSL/pcj)
it follows that

kerp/pCR= U {^T(P/PCK)\DY).
Yey

We remark that for every Yey, ker(p/pCR)\D is completely determined
by ker(p/pCR)\Gr = NY(p) (see e.g. in [8]).

Let M(GY) be the lattice of normal subgroups of GY . Then

, p - (NY(p), Y e l / ) ,
rey
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is a well-defined mapping which induces K on t . One readily sees that for
Y e y, p,d e £,we have NY(p n 0) = Ny(p) n A^(0), so that y/ is a
n-homomorphism.

By (7) and the fact that K is a congruence, we have for p , 6 e £, that

ker(/> V 6)/pCR = ker((p/pCR n PSL/PCR) V (0/*>CR
 n

whence for every Y e y ,

n PsJPcu) v
 (^ /^CR

 n
 PSJPCR))\DY

) ! ^ )
 V

and it follows that

NY(pvd) = teT((p/pCR)\DY V ^ ^

From the results [8] concerning the description of congruences on completely
simple semigroups, we have that

= NY(p) NY(0).

Hence NY(pV 0) = NY(p)NY(6) and we conclude that y/ is a V-homomor-
phism.

By the above Z/K can be isomorphically embedded into Y[Yen N(GY),
which is an arguesian lattice. Hence, C/K is itself arguesian. Because of the
antisomorphism / ) -»V of £ onto £(CR), the situation described so far
in this section carries over to £(CR). The complete congruence on £(CR)
we obtain in this way will again be denoted by K.

THEOREM 13. The relation K which is given by

V K W o RB o (SL V V) = RB o (SL V W)

is a complete congruence on £(CR). For V e .C(CR), the K-class VK is an
interval [\K, \K] where \K = RB o (SL V V).

PROOF. Immediate from Theorem 11 and [9, Theorem 5.1, Proposition
6.1].

In [9, Corollary 6.5] a set of defining identities for V* = RB o (SL V V)
is derived from a set of defining identities for V. From [9, Proposition 7.2]
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we know that V* is, in Reilly's notation [19], (SL V V)p . The variety V*
was denoted by V. .mm in [13]. We now point out the connection between
the above results and the results of [16].

Obviously, if p e L , then pK is the fully invariant congruence associated

with (V ) . More details are given by the following.

THEOREM 14. For p e C, the relation pK can be defined inductively by

a pKb «• a (pnpSL) b, s(a) pK s{b), d(a) pK d(b) {a, be U(X)).

PROOF. Let 6 be denned inductively by

adb o a (p n pSh) b, s(a) pK s(b), d(a) pK &(b).

By [16, Theorem 1(1)], 6 e £. Obviously 6 C p, hence ker(0//>CR) C
ker(/>//>CR). If b e ker(/?//?CR) then

fls(b) siHbf') d(b) d{b(bylb {pnPsL) b(bfl, s(b) = siHbf') , d(b) = d{b(byl),

hence b 6 b(b)~l and so b e ker(8/pCR). We conclude that ker(/j//?CR) =
ker(0/^CR), whence p K 6 and pK c 6 c p.

Let a, b € £/(JT), such that a(a)~l 6 b(b)~l. Then

s(a(a)-1) pK

and by [2, §5]
(a(a)~l)pCR Z (s(a(a)~1)x)pCR,

(b(b)-l)pCR k (s(b(b)-l)x)pCR

in U(X)/pCR, with {x} = c(a) - c(s(a)) = c(6) - c(s(ft)). We infer that

{a{a)-l)pK k (b(bfl)pK

in U(X)/pK. This result and its dual now entails that a(a)~l pK b(by].
Since pK CO we can now conclude that

a{a)~x pK b(b)~l o a{a)~x 6 b(b)~l.

In view of [10, Corollary 7] we can now conclude that 6 = pK .

From Theorems 11 and 14 now follows Theorem 1(3), (4) of [16]. Our
relation K is denoted by p in [16].

4. A subdirect decomposition of £(CR)

We are now able to prove one of the main results of this paper.
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THEOREM 15. The mapping

[15]

^ ; ve£(CR),
is an isomorphism of £(CR) onto a subdirect product of £,{CR)/Tl, C(CR)/K
and C(CR)/Tr.

PROOF. The above considered map i// is certainly a homomorphism by
Theorems 9 and 13. Further,

\V/ = wv/ o py{Ttr\Kr\Tr) pw

**• P\ = Pw by [10, Theorem 26]

«• V = W.

We conclude that y/ is injective.

Theorem 15 corresponds with Theorem 26 of [10] and is, by Lemma 7
and Theorem 14, concordant with Theorem 3(3) of [16].

5. On the modularity of £(CR)

Let A be the poset of Figure 5 and let A be the ordinal sum of the poset of
Figure 6 and £(CR)/K. Then A is a complete arguesian lattice by Theorem

(0,0) = (1,0)

(0,1),

(0,2)

(0,3)

(0,4)

d.D

(1.2)

Figure 5
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Figure 6

12. Hence the poset of all isotone mappings of A into A forms a com-
plete arguesian lattice F . We shall show that £(CR) can be isomorphically
embedded into the lattice F .

For V e £(CR) we put

V(0,0) = V(l ,0) = VvSL,

V(0 ,w+l ) =

For V e £(CR) and (i,n), i = 0, 1, n e N, we put

s if i = 0, « > 1 and V(0, n) = LNB,

d if / = 1 , « > 1 andV(l, / i ) = RNB,
T if n> 1 a n d V ( / , n ) = S L ,

V(/, n)K otherwise.

By Lemmas 6 and 7, the last theorem of [16] can be reformulated as
follows.

RESULT 16 [16]. The mapping V —> £v is an order isomorphism of the
interval [SL, CR] into the lattice F of isotone mappings of A. into A.

LEMMA 17. 77ie mapping V
[SL.CR] into F .

w an injective homomorphism of

PROOF. Let V, W € [SL, CR]. We must show that

(8) ^vw(i,n) = ^(i,n)\/^(i,n)

and

(9) iyny,(i,n)=iy(i,n)A^(i, n)

for all (/, n).
Obviously (8) and (9) are satisfied if n = 0 by Theorem 13. We next

assume that n > 0 and we verify (8) and (9) in case i = 0. We have that

V(0, n) = V(l , ft - W(0, n) = W(l, » - 1),. ,
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where both V(0, n) and W(0, n) contain SL. According to Lemma 5, the
following cases can occur:

(i) S L = V ( 0 , / I ) C V ( 1 , / I - l ) C R G o S L and then fv(O,«) = t,

(ii) LNB = V(0, n) c V(l , n - 1) c RGoLNB and then £v(0, n) = s,

(iii) LRB C V ( 0 , n ) C V ( l , « - l ) and then fv(0, n) = V(0,

(a) SL = W(0, n) c W(1 , n - l ) C R G o S L and then ^w(0, n) = t,
(b) LNB = W(0, «) C W(l, n - 1) C RG o LNB and then £w(0, ri) =
(c) LRB c W(0, » ) C W ( 1 , » - 1) and then <Jw(0, n) = W(0, n)K.

This leaves us with nine possible cases to consider.
By Theorem 9 and its dual we have that

(10) v(i

and

(11) V(i

for / = 0, 1 and k > 1.
Assume first that (iii) and (c) hold. Then

LRB C V(0, B)nW(0, n) = (VnW)(0, «),

and
LRB C V(0, n)VW(0, n) = (VvW)(0, n).

It follows that
^v(0, n) A <^w(0, n) = V(0, n)K n W(0, n)K

= (V(0,n)n\V(0,n))K (by Theorem 13)
= ( ( V n W ) ( 0 , « p (by (10))
= ZVnfV(0,n)

and similarly (8) holds.

Assume next that (iii) and (b) hold. Then again

LRBC V(0, n)V\V(0, n) = ( W W ) ( 0 , n),

whence

£ v (° , n) V <^w(0, n) = V(0 , f l ) ^Vs = V(0, ri)K

= Y(0,n)KVW(0,n)K
(since W(0, n)K is the least element of £(CR)/K)

= (V(0, n) V W(0, n))K (by Theorem 13)

= ((WW)(0,/i))tf- (by (11))
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Further,

and therefore

£v(°, n) A £w(0, n) = V(0, n)K A s = s = £ v n w (0 , «).

The remaining cases can be treated in a similar way. We conclude that (8)
and (9) hold for all n if / = 0. The case i — 1 can be handled in a dual
way.

THEOREM 18. £(CR) is an arguesian lattice.

PROOF. It follows from Lemma 17 that [SL, CR] is arguesian. From [7,
Proposition 3.5] we know that

£(CR) - [SL, CR] x [T, SL], V — ( W SL, Vn SL)

is an injective homomorphism. Thus £(CR) is arguesian.

Since £(CR) is arguesian, it follows that £(CR) is modular. The modu-
larity of several particular sublattices of £(CR) was established in [1], [3],
[4], [5], [7], [17], [18].

References

[1] A. P. Birjukov, 'Varieties of idempotent semigroups', Algebra i Logika 9 (1970), 255—
273. (in Russian).

[2] A. H. Clifford, 'The free completely regular semigroup on a set', J. Algebra 59 (1979),
434-451.

[3] C. F. Fennemore, 'All varieties of bands I', Math. Nachr. 48 (1971), 237-252, II, Math.
Nachr. 48(1971), 253-262.

[4] J. A. Gerhard, 'The lattice of equational classes of idempotent semigroups', J. Algebra
15(1979), 195-224.

[5] J. A. Gerhard and M. Petrich, 'All varieties of regular orthogroups', Semigroup Forum
31 (1985), 311-351.

[6] G. Gratzer, General lattice theory, Birkhauser, Basel, 1978.
[7] T. E. Hall and P. R. Jones, 'On the lattice of varieties of bands of groups', Pacific J.

Math. 91 (1980), 327-337.
[8] J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
[9] P. R. Jones, 'Mai' cev products of varieties of completely regular semigroups', / . Austral

Math. Soc. (Series A) 42 (1987), 227-246.
[10] F. Pastijn, Congruences on regular semigroups—A survey, in Proceedings of the 1984

Marquette Conference on Semigroups, (K. Byleen, P. Jones, F. Pastijn, eds.), Marquette
University, 1985, pp. 159-175

[11] F. Pastijn and M. Petrich, 'Congruences on regular semigroups', Trans. Amer. Math.
Soc. 295 (1986), 607-633.

https://doi.org/10.1017/S1446788700030214 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030214


42 Francis Pastijn [19]

[12] F. Pastijn and M. Petrich, 'The congruence lattice of a regular semigroup', / Pure Appl.
Algebra 53 (1988), 93-123.

[13] F. Pastijn and P. G. Trotter, 'Lattices of completely regular semigroup varieties', Pacific
J.Math 119 (1985), 191-214.

[14] M. Petrich, Lectures in semigroups, Wiley, London, 1977.
[15] M. Petrich, 'The structure of completely regular semigroups', Trans. Amer. Math. Soc.

189(1974), 211-236.
[16] L. Polak, 'On varieties of completely regular semigroups I', Semigroup Forum 32 (1985),

97-123.
[17] V. V. Rasin, 'On the varieties of Cliffordian semigroups', Semigroup Forum 23 (1981),

201-220.
[18] V. V. Rasin, 'Varieties of orthodox Clifford semigroups', Izv. Vyssh. Uchebn. Zaved.

Mat. 26 (1982), 82-85 (in Russian).
[19] N. R. Reilly, 'Varieties of completely regular semigroups', J. Austral. Math. Soc. (Series

A) 38 (1985), 372-393.

Department of Mathematics, Statistics
and Computer Science,
Marquette University,
Milwaukee, Wisconsin 53233
U.S.A.

https://doi.org/10.1017/S1446788700030214 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030214

