THE LATTICE OF CONGRUENCES ON A BAND OF GROUPS

by C. SPITZNAGEL

(Received 24 April, 1972)
It is implicit in a result of Kapp and Schneider [3] that, if S is a completely simple semigroup, then the lattice $\Lambda(S)$ of congruences on S can be embedded in the product of certain sublattices. In this paper we consider the problem of embedding $\Lambda(S)$ in a product of sublattices, when S is an arbitrary band of groups. The principal tool is the θ-relation of Reilly and Scheiblich [7]. The class of θ-modular bands of groups is defined by means of a type of modularity condition on $\Lambda(S)$. It is shown that the θ-modular bands of groups are precisely those for which a certain function is an embedding of $\Lambda(S)$ into a product of sublattices. The problem of embedding the inverse semigroup congruences into a certain product lattice is also considered.

1. Terminology and preliminary results. A semigroup that is a union of groups is called a band of groups, provided that Green's \mathscr{H}-relation is a congruence. It is rather well known [1, Theorem 4.6] that on any band of groups S (and in fact on any union of groups), the \mathscr{D}-relation is the minimum semilattice congruence, and the \mathscr{D}-classes of S are completely simple semigroups. The " fine structure" of such semigroups has recently been studied by Leech [5].

If S is any regular semigroup, then the θ-relation on $\Lambda(S)$, first studied by Reilly and Scheiblich in [7], is defined by $(\rho, \tau) \in \theta$ if and only if $\rho \cap\left(E_{S} \times E_{S}\right)=\tau \cap\left(E_{S} \times E_{S}\right)$. In [7] it is proved that, if S is an inverse semigroup, then θ is a complete lattice congruence on $\Lambda(S)$. Scheiblich, in [8], later extended this result to regular semigroups.

The notation in this paper will be that of Clifford and Preston [1], with the exception of the following list of symbols.
x^{-1} : the inverse of x in H_{x}, in a band of groups.
$B(S)$: the lattice of band congruences on S.
$M(S)$: the lattice of idempotent-separating congruences on S.
$D(S)$: the lattice of congruences on S that are contained in \mathscr{D}.
$I(S)$: the lattice of inverse semigroup congruences on S.
$Y(S)$: the lattice of semilattice congruences on S.
$\Delta(S)$: the θ-class of \mathscr{D}.
1_{s} : the universal congruence $S \times S$.
0_{s} : the diagonal congruence $\Delta S^{2}=\{(x, x) \mid x \in S\}$.
β : the minimum band congruence on S.
μ : the maximum idempotent-separating congruence on S.
σ : the minimum group congruence on S.
δ : the minimum inverse semigroup congruence on S.
η : the minimum semilattice congruence on S.

The congruences β, η, and σ are discussed in [2], as well as in other places. The congruence μ is discussed in [6]. In [7] it is pointed out that, on any regular semigroup, the idempotentseparating congruences are precisely those that are contained in \mathscr{H}. Combining this with the result of Munn [6] that the congruences contained in \mathscr{H} form a sublattice of $\Lambda(S)$ with a greatest and a least element, yields the result that μ exists on any regular semigroup, and that $\mu \subseteq \mathscr{H}$.

We have the following characterization of bands of groups, in terms of μ and β.
Lemma 1.1. Let S be any regular semigroup. Then the following statements are equivalent.
(i) S is a band of groups.
(ii) $\mu=\mathscr{H}=\beta$.
(iii) $\mu=\beta$.

Proof. In [2] it is shown that $\mathscr{H} \subseteq \beta$. Thus $\mu \subseteq \mathscr{H} \subseteq \beta$, in any regular semigroup. Now, if S is a band of groups, \mathscr{H} is a band congruence; so we must have $\mathscr{H}=\beta$. Also, each \mathscr{H}-class contains exactly one idempotent; so \mathscr{H} is also idempotent-separating. Thus $\mathscr{H}=\mu$, and we see that (i) implies (ii). Since $\mu \subseteq \mathscr{H} \subseteq \beta$, it is clear that (ii) is equivalent to (iii). Now, if $\mu=\mathscr{H}=\beta$, then \mathscr{H} is a band congruence. It then follows from [4, Lemma 2.2] that each \mathscr{H}-class contains an idempotent. So, by [1, Theorem 2.16], S is a union of groups, and hence a band of groups. Thus (ii) implies (i).
2. The θ-relation and $\Lambda(S)$. The following two lemmas are due to Scheiblich in [8].

Lemma 2.1. Let S be a regular semigroup, and $\rho, \tau \in \Lambda(S)$, such that ρ separates idempotents. Then $(\rho \vee \tau, \tau) \in \theta$.

Lemma 2.2. If S is a regular semigroup, then θ is a complete lattice congruence on $\Lambda(S)$.
Now suppose that S is a band of groups. It is then the case that \mathscr{H} is idempotentseparating; so we have the following immediate corollary.

Corollary 2.3. Let S be a band of groups. Then, for any $\rho \in \Lambda(S),(\rho \vee \mathscr{H}, \rho) \in \theta$.
We also note that a congruence τ on a regular semigroup is a band congruence if and only if τ contains β, the minimum band congruence. We therefore have

Proposition 2.4. Let S be a regular semigroup. Then each θ-class of $\Lambda(S)$ contains at most one band congruence. In addition, if S is a band of groups, then each θ-class contains exactly one band congruence.

Proof. Suppose that α and γ are band congruences in the same θ-class. Since $\beta \subseteq \alpha$ and $\beta \subseteq \gamma$, the α - and γ-classes are unions of β-classes. Also, by [4, Lemma 2.2], each β-class contains an idempotent. Now suppose that $x \alpha y$. Let e and f be idempotents such that $e \beta x, f \beta y$. Then $e \beta x \alpha y \beta f$, so that $e \alpha f$. Hence, since $(\alpha, \gamma) \in \theta$, we have $e \gamma f$. But then $x \beta e \gamma f \beta y$, so that $x \gamma y$. Thus $\alpha \subseteq \gamma$. Similarly, $\gamma \subseteq \alpha$, proving the first part. Now, if S is a band of groups, we have $(\rho \vee \mathscr{H}, \rho) \in \theta$ for every $\rho \in \Lambda(S)$, by Corollary 2.3. Since $\beta=$ $\mathscr{H} \subseteq \rho \vee \mathscr{H}, \rho \vee \mathscr{H}$ is a band congruence in the θ-class of ρ. This completes the proof.

The following proposition will prove to be useful.
Proposition 2.5. Let S be a band of groups and let $\rho, \tau \in \Lambda(S)$. Then $(\rho, \tau) \in \theta$ if and only if $\rho \vee \mathscr{H}=\tau \vee \mathscr{H}$.

Proof. Suppose that $(\rho, \tau) \in \theta$. Combining this with $(\rho \vee \mathscr{H}, \rho) \in \theta$ and $(\tau \vee \mathscr{H}, \tau) \in \theta$, we obtain $(\rho \vee \mathscr{H}, \tau \vee \mathscr{H}) \in \theta$ by transitivity of θ. Hence, since $\rho \vee \mathscr{H}$ and $\tau \vee \mathscr{H}$ are both band congruences, we have $\rho \vee \mathscr{H}=\tau \vee \mathscr{H}$, by Proposition 2.4. Conversely, if $\rho \vee \mathscr{H}=$ $\tau \vee \mathscr{H}$, then $(\rho \vee \mathscr{H}, \rho) \in \theta$ and $(\tau \vee \mathscr{H}, \tau) \in \theta$ imply that $(\rho, \tau) \in \theta$.

In [7] it is proved that the θ-classes of a regular semigroup S are very nice. We now record this for future reference.

Lemma 2.6. [7, Theorem 3.4(ii)] Let S be a regular semigroup. Then each 0 -class is a complete modular sublattice of $\Lambda(S)$ (having a greatest and a least element).

The following proposition gives a necessary and sufficient condition for these greatest elements to be band congruences.

Proposition 2.7. Let S be a regular semigroup. Then the greatest element of each θ-class is a band congruence if and only if S is a band of groups.

Proof. If S is a band of groups, then $\mathscr{H}=\beta$. We have also seen that, if ρ is any congruence, then $(\rho \vee \mathscr{H}, \rho) \in \theta$. So, if τ is the greatest element of the θ-class of ρ, then $\mathscr{H} \subseteq \rho \vee \mathscr{H}$ $\subseteq \tau$, which implies that τ is a band congruence. Conversely, if the greatest element of each θ-class is a band congruence, then in particular μ, which is the greatest element of the θ-class of 0_{S}, is a band congruence. But $\mu \subseteq \mathscr{H} \subseteq \beta$; so we obtain $\mu=\mathscr{H}=\beta$, whence S is a band of groups.

The θ-relation is a useful means of viewing $\Lambda(S)$, particularly in the case that S is a band of groups. For example, if S is a band of groups, the θ-class of 0_{S} consists of those congruences that partition the idempotents of S in the same manner as 0_{S}; that is, the θ-class of 0_{S} is the set of idempotent-separating congruences on S. Its greatest element is $\mu=\mathscr{H}=\beta$. Similarly, the θ-class of 1_{s} consists of all congruences that identify all idempotents of S; that is, it is the lattice of group congruences on S. The greatest element in this θ-class is, of course, 1_{s}, and the least element is σ, the minimum group congruence.

The θ-relation, being a congruence, partitions $\Lambda(S)$, and, in view of Propositions 2.7 and $2.4, B(S)$ cross-sections the θ-classes. This naturally leads to the problem of describing $\Lambda(S)$ in terms of $B(S)$ and some other sublattice; for $B(S)$ is isomorphic to $\Lambda(S / \beta)=\Lambda(S / \mathscr{H})$, and hence is more accessible than $\Lambda(S)$ itself. This problem is considered in the following section.
3. Embedding $\Lambda(S)$ in a product lattice. In this section it is shown that the lattice $D(S)$ on a band of groups S can be embedded in the product lattice $B(S) \times M(S)$, but that the embedding does not always extend to an embedding of $\Lambda(S)$. A necessary and sufficient condition on $\Lambda(S)$ is then found, under which the natural extension of this map is an embedding of $\Lambda(S)$.

We begin with the following easy lemma, whose proof is omitted.
Lemma 3.1. Let S be a band of groups and let $\rho \in \Lambda(S)$. Then $\rho \wedge \mathscr{H}$ is an idempotentseparating congruence; that is, $(\rho \wedge \mathscr{H}, \mathscr{H}) \in \theta$.

Lemma 3.2. Let S be a band of groups, let $\rho \in \Lambda(S)$ and suppose that $(x, y) \in \rho$. Let $e \in E_{S} \cap H_{x}, f \in E_{S} \cap H_{y}$. Then $(e, f) \in \rho$.

Proof. We have $(e, f) \in \mathscr{H} \circ \rho \circ \mathscr{H} \subseteq \rho \vee \mathscr{H}$. Then, since $(\rho \vee \mathscr{H}, \rho) \in \theta$, by Corollary 2.3, we have $(e, f) \in \rho$.

Proposition 3.3. Let S be a band of groups and let $\psi: \Lambda(S) \rightarrow B(S) \times M(S)$ be defined by $\psi(\rho)=(\rho \vee \mathscr{H}, \rho \wedge \mathscr{H})$. Then ψ is one-to-one.

Proof. Suppose that $\rho, \tau \in \Lambda(S)$ are such that $(\rho \vee \mathscr{H}, \rho \wedge \mathscr{H})=(\tau \vee \mathscr{H}, \tau \wedge \mathscr{H})$. Then, from Proposition 2.5, we have $(\rho, \tau) \in \theta$, and also $\rho \wedge \mathscr{H}=\tau \wedge \mathscr{H}$. Suppose that $(x, y) \in \rho$, and let $e \in E_{S} \cap H_{x}, f \in E_{S} \cap H_{y}$. Then, by Lemma 3.2, we have $(e, f) \in \rho$; and, since $(\rho, \tau) \in \theta$, this implies that $(e, f) \in \tau$. Hence $x=x e \tau x f$, and $y=f y \tau e y$. But ey $\rho f y=$ $y \rho x=x e \rho x f$, so that ey $\rho x f$. Also, ey $\mathscr{H} x f$, since \mathscr{H} is a congruence, and thus ey $(\rho \wedge \mathscr{H}) x f$. Since $\rho \wedge \mathscr{H}=\tau \wedge \mathscr{H}$, we then have ey($\tau \wedge \mathscr{H}) x f$. Thus $x \tau x f(\tau \wedge \mathscr{H}) e y \tau y$, so that $(x, y) \in \tau$. Thus $\rho \subseteq \tau$. Likewise $\tau \subseteq \rho$, and the result follows.

We remark that, by this proposition, every congruence ρ on a band of groups can be "factored" into a band congruence (namely $\rho \vee \mathscr{H}$), and an idempotent-separating congruence (namely $\rho \wedge \mathscr{H}$). The next proposition shows, to some extent, how the congruence ρ can be recovered from this factorization.

Proposition 3.4. Let S be a band of groups and let $\rho \in \Lambda(S)$. Then $\rho=\bar{\rho} \vee(\rho \wedge \mathscr{H})$, where $\bar{\rho}$ is the smallest element of the θ-class of ρ.

Proof. It will suffice to show that $\psi(\rho)=\psi(\bar{\rho} \vee(\rho \wedge \mathscr{H}))$, where ψ is as in Proposition 3.3. By Lemma 3.1, Corollary 2.3, and Lemma 2.2, we have $[\bar{\rho} \vee(\rho \wedge \mathscr{H})] \theta[\bar{\rho} \vee \mathscr{H}] \theta \bar{\rho} \theta \rho$, and hence, by Proposition 2.5, $\rho \vee \mathscr{H}=[\bar{\rho} \vee(\rho \wedge \mathscr{H})] \vee \mathscr{H}$. Thus it remains to show that $\rho \wedge \mathscr{H}=[\bar{\rho} \vee(\rho \wedge \mathscr{H})] \wedge \mathscr{H}$. But $\bar{\rho}, \rho \wedge \mathscr{H} \subseteq \rho$; so we have $\bar{\rho} \vee(\rho \wedge \mathscr{H}) \subseteq \rho$. Thus $[\bar{\rho} \vee(\rho \wedge \mathscr{H})] \wedge \mathscr{H} \subseteq \rho \wedge \mathscr{H}$. Also, $\rho \wedge \mathscr{H} \subseteq \bar{\rho} \vee(\rho \wedge \mathscr{H})$, and $\rho \wedge \mathscr{H} \subseteq \mathscr{H}$. So we have $\rho \wedge \mathscr{H} \subseteq[\bar{\rho} \vee(\rho \wedge \mathscr{H})] \wedge \mathscr{H}$. Thus $[\bar{\rho} \vee(\rho \wedge \mathscr{H})] \wedge \mathscr{H}=\rho \wedge \mathscr{H}$, and the result follows.

A more interesting question concerns the problem of when the function ψ of Proposition 3.3 is an embedding. Needless to say, ψ is not always an embedding. It is always \wedge-preserving, however, as the next proposition shows.

Proposition 3.5. Let S be a band of groups and let $\psi: \Lambda(S) \rightarrow B(S) \times M(S)$ be as in Proposition 3.3. Then ψ is \wedge-preserving; that is, $((\rho \wedge \tau) \vee \mathscr{H},(\rho \wedge \tau) \wedge \mathscr{H})=((\rho \vee \mathscr{H}) \wedge$ $(\tau \vee \mathscr{H}),(\rho \wedge \mathscr{H}) \wedge(\tau \wedge \mathscr{H}))$, for each $\rho, \tau \in \Lambda(S)$.

Proof. It is obvious that $(\rho \wedge \tau) \wedge \mathscr{H}=(\rho \wedge \mathscr{H}) \wedge(\tau \wedge \mathscr{H})$. For the other equality, since both $(\rho \wedge \tau) \vee \mathscr{H}$ and $(\rho \vee \mathscr{H}) \wedge(\tau \vee \mathscr{H})$ are band congruences, it suffices, by Proposition 2.4, to show that these congruences are θ-related. But $[(\rho \wedge \tau) \vee \mathscr{H}] \theta(\rho \wedge \tau),(\rho \vee \mathscr{H})$ $\theta \rho$, and $(\tau \vee \mathscr{H}) \theta \tau$. And, since θ is a congruence, the last two relations imply that $[(\rho \vee \mathscr{H}) \wedge$ ($\tau \vee \mathscr{H})] \theta(\rho \wedge \tau)$. The result then follows by the transitivity of θ.

Corollary 3.6. Let S be a band of groups. Then $B(S)$ is lattice-isomorphic with $\Lambda(S) / \theta$.
Proof. By Proposition 2.4, the map $\phi: \Lambda(S) / \theta \rightarrow B(S)$ defined by $\phi\left(\theta^{\mathrm{h}}(\rho)\right)=\rho \vee \mathscr{H}$ is a bijection. (It is well-defined by Proposition 2.5.) Since θ is a lattice congruence, we have $\phi\left(\theta^{\natural}(\rho) \vee \theta^{\natural}(\tau)\right)=\phi\left(\theta^{\natural}(\rho \vee \tau)\right)=(\rho \vee \tau) \vee \mathscr{H}=(\rho \vee \mathscr{H}) \vee(\tau \vee \mathscr{H})=\phi\left(\theta^{\natural}(\rho)\right) \vee \phi\left(\theta^{\natural}(\tau)\right) ;$ and $\phi\left(\theta^{\mathfrak{\natural}}(\rho) \wedge \theta^{\mathfrak{h}}(\tau)\right)=\phi\left(\theta^{\mathfrak{\natural}}(\rho \wedge \tau)\right)=(\rho \wedge \tau) \vee \mathscr{H}=(\rho \vee \mathscr{H}) \wedge(\tau \vee \mathscr{H})=\phi\left(\theta^{\mathfrak{h}}(\rho)\right) \wedge \phi\left(\theta^{\mathfrak{\natural}}(\tau)\right)$, by Proposition 3.5.

We now give a simple example to show that the function ψ of Proposition 3.3 need not be \vee-preserving.

Example 3.7. Let $S=\{e, a, f, b\}$ be the semigroup given by the following table:

-	e	a	f	b
e	e	a	f	b
a	a	e	b	f
f	f	b	f	b
b	b	f	b	f.

S is then in fact a semilattice of the groups $\{e, a\}$ and $\{f, b\}$. It is not hard to show that S has exactly five congruences; the classes of the three non-trivial congruences are listed below:

$$
\begin{aligned}
\sigma & :\{e, f\},\{a, b\} ; \\
\mathscr{H} & :\{e, a\},\{f, b\} ; \\
\alpha & :\{e\},\{a\},\{f, b\} .
\end{aligned}
$$

The congruence σ is the minimum group congruence and α is the Rees congruence associated with the ideal $\{f, b\}$. We note that $\psi(\sigma)=(\sigma \vee \mathscr{H}, \sigma \wedge \mathscr{H})=\left(1_{s}, 0_{s}\right)$, and $\psi(\alpha)=(\alpha \vee \mathscr{H}$, $\alpha \wedge \mathscr{H})=(\mathscr{H}, \alpha)$, so that $\psi(\sigma) \vee \psi(\alpha)=\left(1_{s}, \alpha\right)$. But $\psi(\sigma \vee \alpha)=\psi\left(1_{S}\right)=\left(1_{s}, \mathscr{H}\right)$; so we see that ψ is not v-preserving.

We now turn our attention to a portion of $\Lambda(S)$ on which ψ is v-preserving. Let S be a band of groups, and consider the function $\tilde{\psi}: D(S) \rightarrow B(S) \times M(S)$ defined by $\tilde{\psi}(\rho)=(\rho \vee \mathscr{H}$, $\rho \wedge \mathscr{H})$. That is, $\tilde{\psi}$ is the restriction to $D(S)$ of the function ψ of Proposition 3.3. It follows immediately from Propositions 3.3 and 3.5 that ψ is one-to-one and \wedge-preserving. The restriction $\tilde{\psi}$ behaves better than ψ, however, in the following sense.

Proposition 3.8. Let S be a band of groups, and define $\tilde{\psi}: D(S) \rightarrow B(S) \times M(S)$ by $\tilde{\psi}(\rho)=(\rho \vee \mathscr{H}, \rho \wedge \mathscr{H})$. Then $\tilde{\psi}$ is \vee-preserving; that is, $((\rho \vee \tau) \vee \mathscr{H},(\rho \vee \tau) \wedge \mathscr{H})=$ $((\rho \vee \mathscr{H}) \vee(\tau \vee \mathscr{H}),(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H}))$ for each $\rho, \tau \in D(S)$.

Proof. It is clear that $(\rho \vee \tau) \vee \mathscr{H}=(\rho \vee \mathscr{H}) \vee(\tau \vee \mathscr{H})$. For the other equality, we note that $(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H})$ is the smallest congruence containing $\rho \wedge \mathscr{H}$ and $\tau \wedge \mathscr{H}$.

But $(\rho \vee \tau) \wedge \mathscr{H}$ is certainly such a congruence. Hence we have $(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H}) \subseteq$ $(\rho \vee \tau) \wedge \mathscr{H}$. On the other hand, suppose that $(x, y) \in(\rho \vee \tau) \wedge \mathscr{H}$. Then $x \mathscr{H} y$, and $(x, y) \in \rho \vee \tau=\bigcup_{n=1}^{\infty}(\rho \circ \tau)^{n}$. Thus there exist a positive integer n and elements $x_{i}, x_{i}^{\prime}(i=$ $1, \ldots, n$) of S such that

$$
x \rho x_{1} \tau x_{1}^{\prime} \rho x_{2} \tau x_{2}^{\prime} \rho \ldots \rho x_{n} \tau x_{n}^{\prime}=y .
$$

Furthermore, since $\rho, \tau \subseteq \mathscr{D}$, all of the x_{i} and x_{i}^{\prime} are in $D_{x}=D_{y}$. Now let e be the idempotent in $H_{x}=H_{y}$. Then

$$
x=\operatorname{exe} \rho e x_{1} \text { e } \tau e x_{1}^{\prime} e \rho \ldots \rho e x_{n} e \tau e x_{n}^{\prime} e=e y e=y
$$

But $D_{x}=D_{y}$ is a completely simple semigroup, and so, for each i, $e x_{i} e, e x_{i}^{\prime} e \in e D_{x} e=H_{x}$. Thus we in fact have $(x, y) \in \bigcup_{n=1}^{\infty}[(\rho \wedge \mathscr{H}) \circ(\tau \wedge \mathscr{H})]^{n}=(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H})$, completing the proof.

As a corollary, we now have
Theorem 3.9. Let S be a band of groups. Then $D(S)$ is lattice-isomorphic with a sublattice of the product lattice $B(S) \times M(S)$; specifically, $\psi: D(S) \rightarrow B(S) \times M(S)$ is an embedding.

Since a completely simple semigroup has the property that $\mathscr{D}=1_{S}$, and thus $D(S)=\Lambda(S)$, the following corollary is obvious.

Corollary 3.10. Let S be a completely simple semigroup. Then $\Lambda(S)$ is lattice-isomorphic with a sublattice of the product lattice $B(S) \times M(S)$; specifically, $\psi: \Lambda(S) \rightarrow B(S) \times M(S)$ is an embedding.

We shall now find a necessary and sufficient condition on $\Lambda(S)$, where S is an arbitrary band of groups, under which ψ is actually an embedding.

Recall that an arbitrary lattice L is called modular if, whenever $a, b, c \in L$ with $a \geqq b$, then $a \wedge(c \vee b)=(a \wedge c) \vee b$. It is well known that a lattice L is modular if and only if the conditions $a \geqq b, a \wedge c=b \wedge c$, and $a \vee c=b \vee c$, for elements $a, b, c \in L$, imply that $a=b$. This motivates the following definition.

Definition 3.11. Let L be a lattice, and ζ a lattice congruence on L. We say that L is ζ-modular if the conditions $a \geqq b,(a, b) \in \zeta, a \wedge c=b \wedge c$, and $a \vee c=b \vee c$, for elements $a, b, c \in L$, imply that $a=b$.

For convenience, if S is a semigroup, and ζ is a lattice congruence on $\Lambda(S)$, we agree to call $S \zeta$-modular, provided that $\Lambda(S)$ is ζ-modular. Since θ is a lattice congruence on $\Lambda(S)$, we may speak of θ-modularity of S. It is in this specialization of the above definition that we are interested.

As examples, we note that all bands are θ-modular; for all their congruences are band congruences, and so the θ-classes are trivial. All groups are θ-modular, for the lattice of congruences on a group consists of a single θ-class, which is in fact modular, by Lemma 2.6. Of course, not all bands of groups are θ-modular, as Example 3.7 readily shows. We shall see shortly that the class of θ-modular bands of groups is particularly interesting.

We begin with a technical lemma.
Lemma 3.12. Let S be a θ-modular band of groups. Then, for any $\rho, \tau \in \Lambda(S), \rho \vee[(\rho \wedge \mathscr{H})$ $\vee(\tau \wedge \mathscr{H})]=\rho \vee[(\rho \vee \tau) \wedge \mathscr{H}]$.

Proof. We first note that $(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H}) \subseteq(\rho \vee \tau) \wedge \mathscr{H}$, since $(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H})$ is the smallest congruence containing $\rho \wedge \mathscr{H}$ and $\tau \wedge \mathscr{H}$, and since $(\rho \vee \tau) \wedge \mathscr{H}$ is such a congruence. Thus $\rho \vee[(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H})] \subseteq \rho \vee[(\rho \vee \tau) \wedge \mathscr{H}]$. Now note that $\rho \vee$ $[(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H})]=[\rho \vee(\rho \wedge \mathscr{H})] \vee(\tau \wedge \mathscr{H})=\rho \vee(\tau \wedge \mathscr{H})$. Now $\rho \vee(\tau \wedge \mathscr{H})$ and $\rho \vee[(\rho \vee \tau) \wedge \mathscr{H}]$ are θ-related, for, by Lemma 3.1, $(\tau \wedge \mathscr{H}) \theta(\rho \vee \tau) \wedge \mathscr{H}$, and then, by Lemma 2.2, $[\rho \vee(\tau \wedge \mathscr{H})] \theta \rho \vee[(\rho \vee \tau) \wedge \mathscr{H}]$. Thus, by θ-modularity, it will suffice to show that $\tau \vee[\rho \vee(\tau \wedge \mathscr{H})]=\tau \vee[\rho \vee[(\rho \vee \tau) \wedge \mathscr{H}]]$ and $\tau \wedge[\rho \vee(\tau \wedge \mathscr{H})]=\tau \wedge[\rho \vee$ $[(\rho \vee \tau) \wedge \mathscr{H}]]$. Now we have already seen that $\rho \vee(\tau \wedge \mathscr{H}) \subseteq \rho \vee[(\rho \vee \tau) \wedge \mathscr{H}]$. Thus $\tau \vee \rho \subseteq \tau \vee[\rho \vee(\tau \wedge \mathscr{H})] \subseteq \tau \vee[\rho \vee[(\rho \vee \tau) \wedge \mathscr{H}]] \subseteq \tau \vee[\rho \vee(\rho \vee \tau)]=\tau \vee(\rho \vee \tau)=$ $\tau \vee \rho$, implying the first equality above. For the other equality, we have $\tau \wedge[\rho \vee(\tau \wedge \mathscr{H})] \subseteq$ $\tau \wedge[\rho \vee[(\rho \vee \tau) \wedge \mathscr{H}]] \subseteq \tau \wedge[\rho \vee \mathscr{H}]$. Hence it suffices to show that $\tau \wedge[\rho \vee \mathscr{H}] \subseteq$ $\tau \wedge[\rho \vee(\tau \wedge \mathscr{H})]$. For this, it is sufficient to show that $\tau \wedge(\rho \vee \mathscr{H}) \subseteq \rho \vee(\tau \wedge \mathscr{H})$; for then $\tau \wedge(\rho \vee \mathscr{H})=\tau \wedge[\tau \wedge(\rho \vee \mathscr{H})] \subseteq \tau \wedge[\rho \vee(\tau \wedge \mathscr{H})]$. So suppose that $(x, y) \in$ $\tau \wedge(\rho \vee \mathscr{H})$. Let $e \in E_{S} \cap H_{x}, f \in E_{S} \cap H_{y}$ and $g \in E_{S} \cap H_{x y}$. Since $(x, y) \in \rho \vee \mathscr{H}$, we have $(e, f) \in \rho \vee \mathscr{H}$, by Lemma 3.2. Hence, since $(\rho, \rho \vee \mathscr{H}) \in \theta$, we have $(e, f) \in \rho$. Thus $e=$ ee ρ ef \mathscr{H} xy $\mathscr{H} g$, so that $(e, g) \in \rho \vee \mathscr{H}$. Again, since $(\rho, \rho \vee \mathscr{H}) \in \theta$, we have $(e, g) \in \rho$, and hence also ($f, g) \in \rho$, by the transitivity of ρ. Moreover, using the fact that the \mathscr{D}-class D_{g} is completely simple, we have $\operatorname{gxg} \mathscr{H}$ gyg. Thus $x=\operatorname{exe} \rho g x g(\tau \wedge \mathscr{H}) \operatorname{gyg} \rho f y f=y$, so that $(x, y) \in \rho \vee(\tau \wedge \mathscr{H})$. This completes the proof.

Proposition 3.13. Let S be a θ-modular band of groups. Then the function $\psi: \Lambda(S) \rightarrow$ $B(S) \times M(S)$ defined by $\psi(\rho)=(\rho \vee \mathscr{H}, \rho \wedge \mathscr{H})$ is \vee-preserving; that is,

$$
((\rho \vee \tau) \vee \mathscr{H},(\rho \vee \tau) \wedge \mathscr{H})=((\rho \vee \mathscr{H}) \vee(\tau \vee \mathscr{H}),(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H}))
$$

for each $\rho, \tau \in \Lambda(S)$.
Proof. It is obvious that $(\rho \vee \tau) \vee \mathscr{H}=(\rho \vee \mathscr{H}) \vee(\tau \vee \mathscr{H})$. For the other equality, we have already noted in the proof of Lemma 3.12 that $(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H}) \subseteq(\rho \vee \tau) \wedge \mathscr{H}$. Also, both $(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H})$ and $(\rho \vee \tau) \wedge \mathscr{H}$ are contained in \mathscr{H}, and are therefore θ related. Thus, by θ-modularity, it will suffice to show that $\rho \vee[(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H})]=\rho \vee$ $[(\rho \vee \tau) \wedge \mathscr{H}]$, and $\rho \wedge[(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H})]=\rho \wedge[(\rho \vee \tau) \wedge \mathscr{H}]$. The first of these equalities is the content of Lemma 3.12. Also, since $\rho \wedge \mathscr{H} \subseteq(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H})$, we have $\rho \wedge \mathscr{H}=\rho \wedge(\rho \wedge \mathscr{H}) \subseteq \rho \wedge[(\rho \wedge \mathscr{H}) \vee(\tau \wedge \mathscr{H})] \subseteq \rho \wedge[(\rho \vee \tau) \wedge \mathscr{H}]=[\rho \wedge(\rho \vee \tau)] \wedge \mathscr{H}$ $=\rho \wedge \mathscr{H}$, from which the second equality follows.

Combining Propositions 3.3,3.5, and 3.13, we obtain
Theorem 3.14. Let S be a θ-modular band of groups. Then the function $\psi: \Lambda(S) \rightarrow$ $B(S) \times M(S)$ defined by $\psi(\rho)=(\rho \vee \mathscr{H}, \rho \wedge \mathscr{H})$ is an embedding.

The converse of this theorem is also true.
Theorem 3.15. Let S be a band of groups, and suppose that $\psi: \Lambda(S) \rightarrow B(S) \times M(S)$ as defined above is an embedding. Then S is θ-modular.

Proof. Let $\rho \subseteq \tau$ be θ-related congruences, and suppose that α is a congruence such that $\rho \vee \alpha=\tau \vee \alpha$ and $\rho \wedge \alpha=\tau \wedge \alpha$. Clearly $\rho \wedge \mathscr{H} \subseteq \tau \wedge \mathscr{H}$; and, since ψ is an embedding, we have $(\rho \wedge \mathscr{H}) \vee(\alpha \wedge \mathscr{H})=(\rho \vee \alpha) \wedge \mathscr{H}=(\tau \vee \alpha) \wedge \mathscr{H}=(\tau \wedge \mathscr{H}) \vee(\alpha \wedge \mathscr{H})$. Also, $(\rho \wedge \mathscr{H}) \wedge(\alpha \wedge \mathscr{H})=(\rho \wedge \alpha) \wedge \mathscr{H}=(\tau \wedge \alpha) \wedge \mathscr{H}=(\tau \wedge \mathscr{H}) \wedge(\alpha \wedge \mathscr{H})$. Hence, since, by Lemma 2.6, the θ-class of \mathscr{H} is a modular sublattice of $\Lambda(S)$, we conclude that $\rho \wedge \mathscr{H}=$ $\tau \wedge \mathscr{H}$. Also, since $\rho \theta \tau$, we have $\rho \vee \mathscr{H}=\tau \vee \mathscr{H}$, by Proposition 2.5. Since ψ is one-to-one, we conclude that $\rho=\tau$. Thus S is θ-modular.

The above two theorems characterize θ-modular bands of groups as being those whose lattice of congruences can be naturally embedded in a certain product lattice. The class of θ-modular bands of groups is studied further in [9].
4. The inverse semigroup congruences. In this final section, we study the connection between the θ-relation and the sublattice $I(S)$ of inverse semigroup congruences on a band of groups S.

Proposition 4.1. Let S be a band of groups, and let $\tau \in Y(S)$. Let ρ be a congruence θ-related to τ. Then $\rho \in I(S)$.

Proof. It will suffice to show that S / ρ is a semilattice of groups. (See Exercise 2 on page 129 in [1].) Write $S=\bigcup_{\alpha \in S / \tau} S_{\alpha}$, where the S_{α} are the τ-classes of S. Since $\mathscr{D}=\eta \subseteq \tau$, each S_{α} is a union of \mathscr{D}-classes, and is hence a regular subsemigroup of S. Since τ is a semilattice congruence (and thus a fortiori a band congruence), it follows from Propositions 2.7 and 2.4 that τ is the greatest element of its θ-class. In particular then, $\rho \subseteq \tau$. Since $\rho \subseteq \tau$, it follows that the sets $\rho^{\natural}\left[S_{\alpha}\right]$ are disjoint subsemigroups of S / ρ. Now, since S is a semilattice of the S_{a} and ρ^{\natural} is a homomorphism, it follows that S / ρ is a semilattice of the $\rho^{\natural}\left[S_{\alpha}\right]$. Moreover, since $(\rho, \tau) \in \theta, \rho$ identifies all the idempotents in the τ-class S_{α}. Hence $\rho^{\natural}\left[S_{\alpha}\right]$ is a group, and it follows that S / ρ is an inverse semigroup.

The converse of this proposition is also true.
Proposition 4.2. Let S be a band of groups, and let $\rho \in I(S)$. Then there is some congruence $\tau \in Y(S)$ such that $(\rho, \tau) \in \theta$.

Proof. S / ρ is an inverse semigroup which is a union of groups; that is, S / ρ is a semilattice of groups. Let $Y=(S / \rho) / \mathscr{D}_{S / \rho}$ be the structure semilattice of S / ρ, and let ϕ denote $\mathscr{D}_{S / \rho}^{\natural}: S / \rho \rightarrow Y$. Let τ be the congruence on S determined by $\phi \circ \rho^{\natural}$. Then clearly τ is a semilattice congruence. Moreover, we have $(\tau, \rho) \in \theta$. For, if $e, f \in E_{S}$, then $e \rho f$ clearly implies $e \tau f$. And conversely, if $e \tau f$, then $\phi \circ \rho^{\natural}(e)=\phi \circ \rho^{\natural}(f)$; but, since the \mathscr{D}-classes of S / ρ are groups, ϕ is an idempotent-separating homomorphism, and so we must have $\rho^{\natural}(e)=\rho^{\natural}(f)$; that is, $e \rho f$.

As an immediate corollary, we now deduce
Theorem 4.3. Let S be a band of groups. Then the θ-saturation of $Y(S)$ is $I(S)$; that is, the inverse semigroup congruences on S are precisely those that are θ-related to some semilattice congruence.

We now give an alternative characterization of the inverse semigroup congruences on a band of groups.

Proposition 4.4. Let S be a band of groups. Then a congruence ρ is an inverse semigroup congruence if and only if $\rho \vee \mathscr{D}=\rho \vee \mathscr{H}$.

Proof. Suppose that $\rho \vee \mathscr{D}=\rho \vee \mathscr{H}$. Since $(\rho, \rho \vee \mathscr{H}) \in \theta$, we have $(\rho, \rho \vee \mathscr{D}) \in \theta$. But $\eta=\mathscr{D} \subseteq \rho \vee \mathscr{D}$, so that $\rho \vee \mathscr{D}$ is a semilattice congruence. It then follows from Proposition 4.1 that ρ is an inverse semigroup congruence. To prove the converse, we first note that $\rho \circ \mathscr{D}=\rho \circ \mathscr{H}$. For certainly $\rho \circ \mathscr{H} \subseteq \rho \circ \mathscr{D}$. On the other hand, if $(x, y) \in \rho \circ \mathscr{D}$, say $x \rho z \mathscr{D} y$, let y^{\prime} be the inverse of z^{-1} in H_{y}. Since S / ρ is an inverse semigroup, we have uniqueness of inverses in S / ρ, and thus $\rho^{\mathfrak{k}}\left(y^{\prime}\right)=\rho^{\natural}(z)$; that is, $z \rho y^{\prime}$. Thus $x \rho y^{\prime} \mathscr{H} y$, so that $(x, y) \in \rho \circ \mathscr{H}$. We thus have $\rho \circ \mathscr{H}=\rho \circ \mathscr{D}$. Hence $\rho \vee \mathscr{D}=\bigcup_{n=1}^{\infty}(\rho \circ \mathscr{D})^{n}=\bigcup_{n=1}^{\infty}(\rho \circ \mathscr{H})^{n}=\rho \vee \mathscr{H}$, completing the proof.

We now have the following corollary.
Corollary 4.5. Let S be a band of groups. Then δ, the minimum inverse semigroup congruence on S, is the least element of the θ-class of \mathscr{D}.

Proof. Since $\mathscr{D}=\eta$ is an inverse semigroup congruence, we must have $\delta \subseteq \mathscr{D}$. Hence, by Proposition 4.4, $\delta \vee \mathscr{H}=\delta \vee \mathscr{D}=\mathscr{D}$. But $(\delta, \delta \vee \mathscr{H}) \in \theta$; so $(\delta, \mathscr{D}) \in \theta$. But, by Proposition 4.1, every congruence in the θ-class of \mathscr{D} is an inverse semigroup congruence. Hence δ must be the least element of this θ-class, since it is to be contained in all inverse semigroup congruences.

A natural question to ask at this point is whether one obtains an embedding theorem for $I(S)$ similar to Theorem 3.9. The answer is that one does not, as is illustrated by the semigroup of Example 3.7. We shall show that θ-modularity of the semigroup S / δ is a necessary and sufficient condition for such a result.

Now let S be an arbitrary semigroup. If $\rho, \gamma \in \Lambda(S)$ and $\gamma \subseteq \rho$, then the relation ρ / γ on S / γ defined by $\rho / \gamma=\left\{\left(\gamma^{\natural}(x), \gamma^{\natural}(y)\right) \mid(x, y) \in \rho\right\}$ is a congruence. Moreover, the lattice $\gamma \vee \Lambda(S)$ is isomorphic with $\Lambda(S / \gamma)$ under the map $\gamma \vee \tau \rightarrow(\gamma \vee \tau) / \gamma$. In particular, if $\gamma \subseteq \rho, \tau$, then $(\rho \wedge \tau) / \gamma=(\rho / \gamma) \wedge(\tau / \gamma)$ and $(\rho \vee \tau) / \gamma=(\rho / \gamma) \vee(\tau / \gamma)$. These facts are readily verified, as is pointed out in [7].

We now have
Lemma 4.6. Let S be a band of groups. Then $\mathscr{H}_{S / \delta}=\mathscr{D} / \delta$.
Proof. Suppose that $\delta^{\natural}(x) \mathscr{D} / \delta \delta^{\natural}(y)$. Then $x \mathscr{D} y$, so that $\delta^{\natural}(x) \mathscr{D}_{S / \delta} \delta^{\natural}(y)$. But S / δ is an inverse semigroup; that is, S / δ is a semilattice of groups. Hence $\mathscr{D}_{S / \delta}=\mathscr{H}_{S / \delta}$, and we thus have $\delta^{\natural}(x) \mathscr{H}_{s / \delta} \delta^{\natural}(y)$. Conversely, suppose that $\delta^{\natural}(x) \mathscr{H}_{s / \delta} \delta^{\natural}(y)$. Then $\mathscr{D}^{\natural}(x)=(\mathscr{D} / \delta)^{\natural}$ $\left(\delta^{\mathfrak{h}}(x)\right) \mathscr{H}_{S / \mathscr{G}}(\mathscr{D} / \delta)^{\mathfrak{h}}\left(\delta^{\natural}(y)\right)=\mathscr{D}^{\mathrm{h}}(y)$. But S / \mathscr{D} is a semilattice; so its \mathscr{H}-relation is trivial. Hence we get $\mathscr{D}^{\natural}(x)=\mathscr{D}^{\natural}(y)$; that is, $x \mathscr{D} y$. Thus $\delta^{\natural}(x) \mathscr{D} / \delta \delta^{\natural}(y)$, and the result follows.

Proposition 4.7. Let S be a band of groups such that S / δ is θ-modular. Then the function $\hat{\psi}: I(S) \rightarrow Y(S) \times \Delta(S)$ defined by $\hat{\psi}(\rho)=(\rho \vee \mathscr{D}, \rho \wedge \mathscr{D})$ is an embedding.

Proof. We first note that the function $\hat{\psi}$ is indeed well-defined; for $\rho \vee \mathscr{D}$ contains the minimum semilattice congruence \mathscr{D}, and is thus itself a semilattice congruence. And, by Corollary 4.5, $\rho \wedge \mathscr{D} \theta \rho \wedge \delta=\delta \theta \mathscr{D}$ since ρ is an inverse semigroup congruence. Since S / δ is θ-modular, the function $\psi: \Lambda(S / \delta) \rightarrow B(S / \delta) \times M(S / \delta)$ defined by $\psi(\rho / \delta)=\left(\rho / \delta \vee \mathscr{H}_{S / \delta}\right.$, $\left.\rho / \delta \wedge \mathscr{H}_{S / \delta}\right)$ is an embedding. Now, by Lemma 4.6, we have $\rho / \delta \vee \mathscr{H}_{S / \delta}=\rho / \delta \vee \mathscr{D} / \delta=$ $(\rho \vee \mathscr{D}) / \delta$, and likewise $\rho / \delta \wedge \mathscr{H}_{S / \delta}=(\rho \wedge \mathscr{D}) / \delta$. But $I(S)=\delta \vee \Lambda(S)$ is isomorphic to $\Lambda(S / \delta)$, under the isomorphism $\rho \rightarrow \rho / \delta$. Thus the composition $\rho \rightarrow \rho / \delta \xrightarrow{\psi}((\rho \vee \mathscr{D}) / \delta$, $(\rho \wedge \mathscr{D}) / \delta) \rightarrow(\rho \vee \mathscr{D}, \rho \wedge \mathscr{D})$ is an embedding. This completes the proof.

Before proving the converse of this proposition, we need the following lemma.
Lemma 4.8. Let S be any regular semigroup, and $\rho, \tau, \alpha \in \Lambda(S)$ such that $\alpha \subseteq \rho, \tau$. Then $\rho \theta \tau$ if and only if $\rho / \alpha \theta \tau / \alpha$.

Proof. We note first that, by [4, Lemma 2.2], $E_{S / \alpha}=\left\{\alpha^{\natural}(e) \mid e \in E_{S}\right\}$. Hence, if $\rho \theta \tau$, we have $\alpha^{\natural}(e) \rho / \alpha \alpha^{\natural}(f) \Leftrightarrow e \rho f \Leftrightarrow e \tau f \Leftrightarrow \alpha^{\natural}(e) \tau / \alpha \alpha^{\natural}(f)$, so that $\rho / \alpha \theta \tau / \alpha$. Conversely, if $\rho / \alpha \theta \tau / \alpha$, then $e \rho f \Leftrightarrow \alpha^{\natural}(e) \rho / \alpha \alpha^{\natural}(f) \Leftrightarrow \alpha^{\natural}(e) \tau / \alpha \alpha^{\natural}(f) \Leftrightarrow e \tau f$, and so $\rho \theta \tau$.

Proposition 4.9. Let S be a band of groups, and suppose that the function $\hat{\psi}: I(S) \rightarrow$ $Y(S) \times \Delta(S)$ defined by $\hat{\psi}(\rho)=(\rho \vee \mathscr{D}, \rho \wedge \mathscr{D})$ is an embedding. Then S / δ is θ-modular.

Proof. Suppose that $\rho / \delta \subseteq \tau / \delta, \rho / \delta \theta \tau / \delta$, and that, for some $\alpha / \delta \in \Lambda(S / \delta), \rho / \delta \vee \alpha / \delta=$ $\tau / \delta \vee \alpha / \delta$ and $\rho / \delta \wedge \alpha / \delta=\tau / \delta \wedge \alpha / \delta$. We then have $(\rho \vee \alpha) / \delta=(\tau \vee \alpha) / \delta$, so that $\rho \vee \alpha=$ $\tau \vee \alpha$; and likewise, $\rho \wedge \alpha=\tau \wedge \alpha$. Then, since $\hat{\psi}$ is \vee-preserving, we have $(\rho \wedge \mathscr{D}) \vee(\alpha \wedge \mathscr{D})=(\rho \vee \alpha) \wedge \mathscr{D}=(\tau \vee \alpha) \wedge \mathscr{D}=(\tau \wedge \mathscr{D}) \vee(\alpha \wedge \mathscr{D})$. Moreover, $(\rho \wedge \mathscr{D})$ $\wedge(\alpha \wedge \mathscr{D})=(\rho \wedge \alpha) \wedge \mathscr{D}=(\tau \wedge \alpha) \wedge \mathscr{D}=(\tau \wedge \mathscr{D}) \wedge(\alpha \wedge \mathscr{D})$. Also, $\rho / \delta \subseteq \tau / \delta$ implies $\rho \subseteq \tau$, so that $\rho \wedge \mathscr{D} \subseteq \tau \wedge \mathscr{D}$. Now $\rho \wedge \mathscr{D}, \tau \wedge \mathscr{D}$, and $\alpha \wedge \mathscr{D}$ are inverse semigroup congruences contained in \mathscr{D}, and are hence in $\Delta(S)$. But $\Delta(S)$ is modular by Lemma 2.6 ; so we have $\rho \wedge \mathscr{D}=\tau \wedge \mathscr{D}$. Also, since $\rho / \delta \theta \tau / \delta$, we have $\rho \theta \tau$, by Lemma 4.8, and hence, by Propositions 2.5 and 4.4, $\rho \vee \mathscr{D}=\rho \vee \mathscr{H}=\tau \vee \mathscr{H}=\tau \vee \mathscr{D}$. Since $\hat{\psi}$ is one-to-one, we conclude that $\rho=\tau$, and hence $\rho / \delta=\tau / \delta$, completing the proof.

Combining Propositions 4.7 and 4.9 , we immediately deduce
Theorem 4.10. Let S be a band of groups. Then $\hat{\psi}: I(S) \rightarrow Y(S) \times \Delta(S)$ defined by $\hat{\psi}(\rho)=(\rho \vee \mathscr{D}, \rho \wedge \mathscr{D})$ is an embedding if and only if S / δ is θ-modular.

This paper is a portion of the author's doctoral dissertation, written at the University of Kentucky. I would like to express to my adviser, Dr Carl Eberhart, my appreciation of his many helpful suggestions and comments.

REFERENCES

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Amer. Math. Soc. Mathematical Surveys No. 7 (Providence, R.I., 1961).
2. J. M. Howie and G. Lallement, Certain fundamental congruences on a regular semigroup, Proc. Glasgow Math. Assoc. 7 (1966), 145-159.
3. K. M. Kapp and H. Schneider, Completely O-simple semigroups (New York, 1969).
4. G. Lallement, Congruence et équivalences de Green sur un demi-group régulier, C. R. Acad. Sci. Paris, Série A, 262 (1966), 613-616.
5. J. Leech, The structure of bands of groups; to appear.
6. W. D. Munn, A certain sublattice of the lattice of congruences on a regular semigroup, Proc. Cambridge Philos. Soc. 60 (1964), 385-391.
7. N. R. Reilly and H. E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967), 349-360.
8. H. E. Scheiblich, Certain congruence and quotient lattices related to completely 0 -simple and primitive regular semigroups, Glasgow Math. J. 10 (1969), 21-24.
9. C. Spitznagel, θ-modular bands of groups, Trans. Amer. Math. Soc.; to appear.

University of Kentucky

Lexington, Kentucky 40506

AND

John Carroll University
Cleveland, Ohio 44118

