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It is implicit in a result of Kapp and Schneider [3] that, if S is a completely simple semi-
group, then the lattice A(S) of congruences on 5 can be embedded in the product of certain
sublattices. In this paper we consider the problem of embedding A(S) in a product of sub-
lattices, when S is an arbitrary band of groups. The principal tool is the 0-relation of Reilly
and Scheiblich [7]. The class of 0-modular bands of groups is defined by means of a type of
modularity condition on A(S). It is shown that the 0-modular bands of groups are precisely
those for which a certain function is an embedding of A(S) into a product of sublattices. The
problem of embedding the inverse semigroup congruences into a certain product lattice is
also considered.

1. Terminology and preliminary results. A semigroup that is a union of groups is called
a band of groups, provided that Green's ^"-relation is a congruence. It is rather well known
[1, Theorem 4.6] that on any band of groups S (and in fact on any union of groups), the
©-relation is the minimum semilattice congruence, and the ^-classes of S are completely
simple semigroups. The " fine structure " of such semigroups has recently been studied
by Leech [5].

If S is any regular semigroup, then the 0-relation on A(S), first studied by Reilly and
Scheiblich in [7], is defined by (p, T)E0 if and only if pn(Es x Es) = xn(Es x Es). In [7] it
is proved that, if S is an inverse semigroup, then 0 is a complete lattice congruence on A(S).
Scheiblich, in [8], later extended this result to regular semigroups.

The notation in this paper will be that of Clifford and Preston [1], with the exception of
the following list of symbols.

x~': the inverse of x in Hx, in a band of groups.
B(S): the lattice of band congruences on S.

M(S): the lattice of idempotent-separating congruences on S.
£>(S): the lattice of congruences on S that are contained in $).
I(S): the lattice of inverse semigroup congruences on 5.
Y{S): the lattice of semilattice congruences on 5.
A(S): the 0-class of 9.

ls: the universal congruence S x 5.
0s: the diagonal congruence AS2 = {(x, x)\xeS}.
/?: the minimum band congruence on S.
//: the maximum idempotent-separating congruence on 5.
a: the minimum group congruence on S.
S: the minimum inverse semigroup congruence on S.
t\: the minimum semilattice congruence on S.

https://doi.org/10.1017/S0017089500001956 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001956


188 C. SPITZNAGEL

The congruences P, n, and a are discussed in [2], as well as in other places. The congru-
ence 1.1 is discussed in [6]. In [7] it is pointed out that, on any regular semigroup, the idempotent-
separating congruences are precisely those that are contained in 34?. Combining this with
the result of Munn [6] that the congruences contained in 3*f form a sublattice of A(S) with a
greatest and a least element, yields the result that n exists on any regular semigroup, and
that n^3tf.

We have the following characterization of bands of groups, in terms of n and p.

LEMMA 1.1. Let S be any regular semigroup. Then the following statements are equivalent.

(i) S is a band of groups.
(ii) fi = tf = f}.

(iii) ii = p.

Proof. In [2] it is shown that #? £ p. Thus j / £ #C £ P, in any regular semigroup.
Now, if S is a band of groups, Jf is a band congruence; so we must have Jf = /?. Also,
each ^-class contains exactly one idempotent; so 3V is also idempotent-separating. Thus
3ft? = n, and we see that (i) implies (ii). Since /i £ Jtf £ py it is clear that (ii) is equivalent
to (iii). Now, if n = Jf = /?, then 3f is a band congruence. It then follows from [4, Lemma
2.2] that each ^"-class contains an idempotent. So, by [1, Theorem 2.16], S is a union of
groups, and hence a band of groups. Thus (ii) implies (i).

2. The 0-relation and A(S). The following two lemmas are due to Scheiblich in [8].

LEMMA 2.1. Let S be a regular semigroup, and p, T G A(S), such that p separates idem-
potents. Then (p v t, T) G 6.

LEMMA 2.2. If S is a regular semigroup, then 6 is a complete lattice congruence on A(S).

Now suppose that S is a band of groups. It is then the case that 3tf is idempotent-
separating; so we have the following immediate corollary.

COROLLARY 2.3. Let S be a band of groups. Then, for any p G A(S), (p v 3V, p)e 6.

We also note that a congruence T on a regular semigroup is a band congruence if and
only if T contains ft, the minimum band congruence. We therefore have

PROPOSITION 2.4. Let S be a regular semigroup. Then each 6-class of A(S) contains at
most one band congruence. In addition, if S is a band of groups, then each 0-class contains
exactly one band congruence.

Proof. Suppose that a and y are band congruences in the same 0-class. Since ft £ a
and /? £ y, the a- and y-classes are unions of ^-classes. Also, by [4, Lemma 2.2], each jS-class
contains an idempotent. Now suppose that xay. Let e a n d / b e idempotents such that
efix, fPy. Then efixayfif, so that eaf. Hence, since («, y)e9, we have eyf. But then
xPeyfPy, so that xyy. Thus a £ y. Similarly, y £ a, proving the first part. Now, if S is
a band of groups, we have (p v 34?, p)e6 for every peA(S), by Corollary 2.3. Since jS =
/ £ p v / , p v Jijf is a band congruence in the 0-class of p. This completes the proof.
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The following proposition will prove to be useful.

PROPOSITION 2.5. Let S be a band of groups and let p, reA(S). Then (p, t )e0 if and
only if p V / = T V / .

Proof. Suppose that (p, T)e0. Combining this with (p v $V, p) e 0 and (T V 3?, T)e0,
we obtain (p v 3f, x v 3f)eO by transitivity of 0. Hence, since p v 34? and T V 3V are both
band congruences, we have p v / = t v 3f?, by Proposition 2.4. Conversely, if p v 3f =
t v / , then ( p v / , p ) e f l and (T V 3V, x)e9 imply that (p,

In [7] it is proved that the 0-classes of a regular semigroup S are very nice. We now
record this for future reference.

LEMMA 2.6. [7, Theorem 3.4(ii)] Let S be a regular semigroup. Then each 6-class is a
complete modular sublattice ofA(S) (having a greatest and a least element).

The following proposition gives a necessary and sufficient condition for these greatest
elements to be band congruences.

PROPOSITION 2.7. Let S be a regular semigroup. Then the greatest element of each
8-class is a band congruence if and only if S is a band of groups.

Proof. If 5 is a band of groups, then 3V = p\ We have also seen that, if p is any congru-
ence, then (p v 3f, p) e 0. So, if x is the greatest element of the 0-class of p, then 3f £ p v 3V
£ T, which implies that T is a band congruence. Conversely, if the greatest element of each
0-class is a band congruence, then in particular \i, which is the greatest element of the 0-class
of 0s, is a band congruence. But \i £ 3tf £ /?; so we obtain ^ = 3V = p\ whence S is a band
of groups.

The 0-relation is a useful means of viewing A(5), particularly in the case that S is a band
of groups. For example, if S is a band of groups, the 0-class of 0s consists of those con-
gruences that partition the idempotents of S in the same manner as 0s; that is, the 0-class
of 0s is the set of idempotent-separating congruences on S. Its greatest element is /< = if = p\
Similarly, the 0-class of 1S consists of all congruences that identify all idempotents of S; that
is, it is the lattice of group congruences on 5. The greatest element in this 0-class is, of course,
ls, and the least element is a, the minimum group congruence.

The 0-relation, being a congruence, partitions A(S), and, in view of Propositions 2.7
and 2.4, B(S) cross-sections the 0-classes. This naturally leads to the problem of describing
A(S) in terms of B(S) and some other sublattice; for B(S) is isomorphic to A(S/J?) = A(5/^f),
and hence is more accessible than A(S) itself. This problem is considered in the following
section.

3. Embedding A(S) in a product lattice. In this section it is shown that the lattice
on a band of groups S can be embedded in the product lattice B{S) x M(S), but that the
embedding does not always extend to an embedding of A(S). A necessary and sufficient
condition on A(5) is then found, under which the natural extension of this map is an em-
bedding of A(S).
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We begin with the following easy lemma, whose proof is omitted.

LEMMA 3.1. Let S be a band of groups and let pe A(S). Then p A 3tf is an idempotent-
separating congruence; that is, (p A 3tif, ye) e 6.

LEMMA 3.2. Let S be a band of groups, let peA(S) and suppose that (x,y)ep. Let
e e EsnHx, fe EsnHy. Then (e,f)ep.

Proof. We have ( c , / ) e / o p o / c p v # . Then, since (p v ye, p)ed, by Corollary
2.3, we have (e,f)ep.

PROPOSITION 3.3. Let S be a band of groups and let ip : A(S) -»B(S) x M(S) be defined
by ^(p) = (p v ye, p A ye). Then ifr is one-to-one.

Proof. Suppose that p, r e A(S) are such that ( p / ) p A / ) = ( t v / , t A ye).
Then, from Proposition 2.5, we have (p, T)e0, and also P A / = T A / . Suppose that
(x, ,y)ep, and let esEsr\Hx,feEsr\Hr Then, by Lemma 3.2, we have (<?,/)ep; and, since
(p,x)ed, this implies that (e,f)ex. Hence x = A:erx/, and y = fyxey. But eypfy =
y px = xepxf, so that ej> p x/. Also, ey •Jf x/, since ye is a congruence, and thus ey (p A JF) xf.
Since P A / = T A / , we then have C)>(T A 3V)xf. Thus XTX/(T A ^ e y t j ' , so that
(x, y) e T. Thus p £ T. Likewise r £ p, and the result follows.

We remark that, by this proposition, every congruence p on a band of groups can be
" factored " into a band congruence (namely p v #f), and an idempotent-separating con-
gruence (namely p A Jf). The next proposition shows, to some extent, how the congruence
p can be recovered from this factorization.

PROPOSITION 3.4. Let S be a band of groups and let peA(S). Then p = p v (p A Jf),
where p is the smallest element of the 6-class of p.

Proof. It will suffice to show that \p(p) = i//(p v (p A ^f)), where ij/ is as in Proposition
3.3. By Lemma 3.1, Corollary 2.3, and Lemma 2.2, we have [p v (p A Jf)]Q\p v jf?)6p~0p,
and hence, by Proposition 2.5, p v Jf = [p v (p A Jf)] v Jf. Thus it remains to show that
p A / = [pv(pA Jf)] A JiC. But p, p A & £ p; so we have p v ( p A l ) s p . Thus
[p v (p A j?')] A J ' s p A ^ f . Also, / ) A / g p v ( / ) A ^f), and p A / s / . So we have
p A / s [ p - v ( p A ^f)] A jf. Thus [p v (p A Jf)] A J^ = p A ^ and the result follows.

A more interesting question concerns the problem of when the function \j/ of Proposition
3.3 is an embedding. Needless to say, ty is not always an embedding. It is always A -preserving,
however, as the next proposition shows.

PROPOSITION 3.5. Let S be a band of groups and let ty : A(S) -»B{S) x M(S) be as in
Proposition 3.3. Then i// is A-preserving; that is, ((p A T) V Jtf, (p A T) A Jif) = ((p v 3V) A
(T v 2ff), (p A Jf) A (T A ye)), for each p, TGA(5).

Proof. It is obvious that ( / ) A I ) A / = ( P A / ) A ( I A jf) . For the other equality,
since both (p A T) V ye and (p v j f) A (T V .#") are band congruences, it suffices, by Proposi-
tion 2.4, to show that these congruences are 0-related. But [(p A t ) v / ] 6 ( p A T), (p v 3t)
Op, and (T V ye) 0 x. And, since 6 is a congruence, the last two relations imply that [(p v ye) A
(T v y?))Q{p A T). The result then follows by the transitivity of 0.
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COROLLARY 3.6. Let S be a band of groups. Then B(S) is lattice-isomorphic with A(S)/0.

Proof. By Proposition 2.4, the map <j>: A(S)/0 -+ B(S) defined by </>(0"(p)) = p v 3? is a
bijection. (It is well-defined by Proposition 2.5.) Since 0 is a lattice congruence, we have
(/>(0"(p) v 0*(T)) = <j>(6*'(p v i)) = (p v t) v / = (/) v 3tf) v (T v 3f) = $(0*(p)) v
and 4>{fi\p) A 0"(T)) = <£(0*(p AT)) = ( / I A T ) V / = ( P V / ) A ( T V J ' ) = <K0*(P)) A

by Proposition 3.5.

We now give a simple example to show that the function \j/ of Proposition 3.3 need not
be v-preserving.

EXAMPLE 3.7. Let 5 = {e, a, f b} be the semigroup given by the following table:

e

a

f

b

e

e

a

f

b

a

a

e

b

f

f

f

b

f

b

b

b

f

b

S is then in fact a semilattice of the groups {e, a} and {/, b}. It is not hard to show that S
has exactly five congruences; the classes of the three non-trivial congruences are listed below:

a: {e,f},{a,b};
X: {e,a},{f,b};
a: {e}, {a}, {fb}.

The congruence a is the minimum group congruence and a is the Rees congruence associated
with the ideal {/, b}. We note that \j/(a) = (a v 3tf,o A 3#) = (ls, 0s), and î (a) = (a v 3P,
a A / ) = (^", a), so that iK<r) v î (a) = (ls, a). But ty{a v a) = i/>(ls) = (ls, 3^); so we
see that \j/ is not v -preserving.

We now turn our attention to a portion of A(S) on which $ is v -preserving. Let 5 be a
band of groups, and consider the function # : D(S) -> B(S) x M(S) defined by $(p) = (pv Jf,
p A Jff). That is, $ is the restriction to £»(S) of the function i/f of Proposition 3.3. It follows
immediately from Propositions 3.3 and 3.5 that $ is one-to-one and A-preserving. The
restriction $ behaves better than ij/, however, in the following sense.

PROPOSITION 3.8. Let S be a band of groups, and define $ : D(S) -> B(S) x M(S) by
\ji(p) = ( ) ) v / l / ) A 3tf). Then $ is v -preserving; that is, ((p v t ) v / , ( p v t ) A / ) =
((p v / ) v ( t v X), ( P A / ) V ( T A tf))for each p, ieD{S).

Proof. It is clear that ( p v T ) v / = ( p v / ) v ( t v 3V). For the other equality, we
note that ( / > A # ) V ( I A Jf) is the smallest congruence containing p A 3V and I A /
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But (/; v i) A / is certainly such a congruence. Hence we have (p A JP) V (T A 3tF) £
(p v T) A #P. On the other hand, suppose that (x, y) e (p v T) A ^f. Then xStfy, and

00

(x, y) e p v r = (J (p o T)". Thus there exist a positive integer n and elements x,, x\ {i =

1,...,«) of S such that

xpxlxx'1px2xx'2p...pxnix'n = y.

Furthermore, since p , T S 0 , all of the xf and x\ are in DX = Dr Now let e be the idempotent
in Hx = /fy. Then

x = exepeXi exex[ep...pexnexex'ne = eye = y.

But Dx = Dj, is a completely simple semigroup, and so, for each /, ex( e, ex,' e e eZ), e = //,.
00

Thus we in fact have (x, y)e{J [(p A / ) O ( I A 3^)]" = ( / > A / ) V ( I A ^f), completing the
n = l

proof.
As a corollary, we now have

THEOREM 3.9. Let S be a band of groups. Then D(S) is lattice-isomorphic with a sublattice
of the product lattice B(S) x M(S); specifically, $ : D(S) -> 5(5) x Af(S) is an embedding.

Since a completely simple semigroup has the property that 2 = ls, and thus D(S) = A(5),
the following corollary is obvious.

COROLLARY 3.10. Let S be a completely simple semigroup. Then h{S) is lattice-isomorphic
with a sublattice of the product lattice B(S) x M(S); specifically, ty : A(S)->B(S) x M(S) is
an embedding.

We shall now find a necessary and sufficient condition on A(5), where S is an arbitrary
band of groups, under which ip is actually an embedding.

Recall that an arbitrary lattice L is called modular if, whenever a, b, ceL with a ^ b,
then a A (C V b) = (a A C) V b. It is well known that a lattice L is modular if and only if the
conditions a^.b, a A c = b A C, and a v c = 4 v c, for elements a, b,ceL, imply that a = 6.
This motivates the following definition.

DEFINITION 3.11. Let L be a lattice, and £ a lattice congruence on L. We say that L is
t-modular if the conditions a ^ b, (a,b)e(, a A C = b A c, and a v c = b v c, for elements
a, b,ceL, imply that a = ft.

For convenience, if 5 is a semigroup, and C is a lattice congruence on A(5), we agree to
call S t,-modular, provided that A(5) is (-modular. Since 9 is a lattice congruence on A(S),
we may speak of ̂ -modularity of S. It is in this specialization of the above definition that we
are interested.

As examples, we note that all bands are 0-modular; for all their congruences are band
congruences, and so the 0-classes are trivial. All groups are 0-modular, for the lattice of
congruences on a group consists of a single 0-class, which is in fact modular, by Lemma 2.6.
Of course, not all bands of groups are 0-modular, as Example 3.7 readily shows. We shall
see shortly that the class of 0-modular bands of groups is particularly interesting.
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We begin with a technical lemma.

LEMMA 3.12. Let S bead-modular band of groups. Then,foranyp,reA(S),pv[(pAJf)
v (T A 3V)] = p v [(p v T) A 3V\.

Proof. We first note that ( P A / ) V ( T A / ) S ( P V I ) A tf, since ( / > A / ) V ( T A 3f)
is the smallest congruence containing p A 34? and T A SV, and since (p v T) A JP is such a
congruence. Thus /) v [(p A / ) v (T A #?)] s p v [(p v t) A / ] . Now note that p v
[(p A / ) v (t A ^f)] = [p v 0 A Jf)] V ( I A / ) = ( > V ( I A ^ ) . Now p v (T A Jf) and
p v [(p v T) A Jf] are 0-related, for, by Lemma 3.1, (T A JF) 0 (p v T) A Jf, and then, by
Lemma 2.2, [p v (T A Jtf)] 0 p v [(p v T) A &]. Thus, by 0-modularity, it will suffice to
show that T v [p v (T A Jf)] = T V [p v [(p v T) A Jif ]] and T A [p v (T A ^f)] = T A [p v
[(p v T) A ^f ]]. Now we have already seen that p v (T A J?) £ p v [(p v T) A ^f ]. Thus
T V p C T V [ p v ( T A $f)) S T V [p V [(p V T) A Jf ]] £ T V [p V (p V t)] = T V (p V T) =
T v p, implying the first equality above. For the other equality, we have T A [p v (T A 3tif)] £
T A [p v [(p v T) A ^f]] £ T A [p v •#"]. Hence it suffices to show that T A [p v ^f] £
T A [p v (T A Jf)]. For this, it is sufficient to show that x A (p v jf) c p v (T A ^f); for
then T A (p v ^f) = T A [T A (p v ^f)] £ T A [p v (T A ^f)]. So suppose that (x, y) e
T A (p v ^f). Let eeEsnHx, feEsnHy and geEsr\Hxr Since (x, ̂ )ep v Jf, we have
(e, / ) e p v f̂, by Lemma 3.2. Hence, since (p, p v J^)e6, we have (e, f)ep. Thus e =
eepefjVxyJVg, so that (e, g)ep v jfiC. Again, since (p,/)V#)efl , we have (e, #)ep, and
hence also (/, g) e p, by the transitivity of p. Moreover, using the fact that the ©-class Dg

is completely simple, we have gxgJPgyg. Thus x = exepgxg(i A Jf) gygpfyf = y, so
that (x, j>)ep v (T A Jf). This completes the proof.

PROPOSITION 3.13. Let S be a 9-modular band of groups. Then the function \\i: A(5) -»
5(S) x M(S) defined by î (p) = (p v / , p A / ) w v -preserving; that is,

((p VI)V/,(PVT)A/) = ((p v#)v(tv ^), (PA/)V(TA 3f))

for each p , x e A ( S ) .

Proof. It is obvious that ( p v x ) v / = ( p v / ) v ( i v ^f). For the other equality,
we have already noted in the proof of Lemma 3.12 that ( p A / j v ^ A / J c f p y t j A / .
Also, both (p A 3^) v (T A Jf) and (p v x) A / are contained in 3V, and are therefore 0-
related. Thus, by 0-modularity, it will suffice to show that p v [(p A / ) v (i A ^f)] = p v
[(p v T) A #\ and p A [(p A tf) v (T A Iff)] = p A [(p v T) A jf]. The first of these
equalities is the content of Lemma 3.12. Also, since P A / C ( P A / ) V ( T A ^f), we have
P A / = P A ( P A ^ ) C P A [ ( P A / ) V ( T A 3f)] £ p A [(p v T) A Je\ = [p A (p v T)] A tf
= p A Jf, from which the second equality follows.

Combining Propositions 3.3, 3.5, and 3.13, we obtain

THEOREM 3.14. Let S be a Q-modular band of groups. Then the function \j/: A(5)->
B(S) x M(S) defined by \p(p) = ( p v / , p A i 1 ) is an embedding.

The converse of this theorem is also true.

THEOREM 3.15. Let S be a band of groups, and suppose that \p : A(S) -»B(S) x M(S) as
defined above is an embedding. Then S is 9-modular.
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Proof. Let p £ x be 0-related congruences, and suppose that a is a congruence such that
p v a = x v a and p A a. = x A a. Clearly p A 3ff ^x A 3/C; and, since ^ is an embedding,
we have (p A / ) v (a A / ) = (p v a) A / = (t v a) A / = (t A / ) v (a A 3V). Also,
( p A / ) A ( a A / ) = ( p A a ) A / = ( t A c [ ) A / = ( t A ^ A ( o : A ^f). Hence, since, by
Lemma 2.6, the 0-class of Jf is a modular sublattice of A(S), we conclude that p A / =
T A / . Also, since p0r, we have p v Jf = x v ^f, by Proposition 2.5. Since ^ is one-to-one,
we conclude that p = x. Thus 5 is 0-modular.

The above two theorems characterize 0-modular bands of groups as being those whose
lattice of congruences can be naturally embedded in a certain product lattice. The class of
0-modular bands of groups is studied further in [9].

4. The inverse semigroup congruences. In this final section, we study the connection
between the 0-relation and the sublattice I(S) of inverse semigroup congruences on a band of
groups S.

PROPOSITION 4.1. Let S be a band of groups, and let xe Y(S). Let p be a congruence
9-related to x. Then p e /(S).

Proof. It will suffice to show that S/p is a semilattice of groups. (See Exercise 2 on page
129 in [1].) Write S = (J Sa, where the Sx are the x-classes of S. Since 9 = r\ s x, each Sa

SES/I

is a union of ©-classes, and is hence a regular subsemigroup of 5. Since x is a semilattice
congruence (and thus a fortiori a band congruence), it follows from Propositions 2.7 and 2.4
that x is the greatest element of its 0-class. In particular then, p £ x. Since p £ x, it follows
that the sets p*[Sa] are disjoint subsemigroups of Sjp. Now, since 5 is a semilattice of the 5(

and p" is a homomorphism, it follows that S/p is a semilattice of the p*[SJ. Moreover,
since (p, x)e6, p identifies all the idempotents in the r-class 5a. Hence p*[Sx] is a group, and
it follows that S/p is an inverse semigroup.

The converse of this proposition is also true.

PROPOSITION 4.2. Let S be a band of groups, and let peI(S). Then there is some con-
gruence T e 7(5) such that (p, T) e 9.

Proof. Sjp is an inverse semigroup which is a union of groups; that is, 5/p is a semi-
lattice of groups. Let Y = (Slp)l@s/p be the structure semilattice of S/p, and let (j> denote
@s/i> '• Sjp -* Y. Let x be the congruence on S determined by (j)op*. Then clearly x is a semi-
lattice congruence. Moreover, we have (T, p)eO. For, if e, feEs, then ep/clearly implies
exf. And conversely, if exf, then $°p'(e) = $°pXf)\ but, since the ^-classes of 5/p are
groups, (j> is an idempotent-separating homomorphism, and so we must have pV) = P*(f)'>
that is, epf

As an immediate corollary, we now deduce

THEOREM 4.3. Let S be a band of groups. Then the Q-saturation of Y(S) is I(S); that is,
the inverse semigroup congruences on S are precisely those that are 6-related to some semilattice
congruence.

a
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We now give an alternative characterization of the inverse semigroup congruences on a
band of groups.

PROPOSITION 4.4. Let S be a band ofgroups. Then a congruence p is an inverse semigroup
congruence if and only if p v 9 = p v 3V.

Proof. Suppose that p v 9 = p v JP. Since (p, p v J^f) e 9, we have (p, p v 9) e 9.
But t| = S g p v S , s o that p v 9 is a semilattice congruence. It then follows from Proposi-
tion 4.1 that p is an inverse semigroup congruence. To prove the converse, we first note that
p°3) = po^f. For certainly p o # c po9. On the other hand, if (x, y)ep<>9, say xpz9y,
let y be the inverse of z"1 in Hy Since S/p is an inverse semigroup, we have uniqueness of
inverses in Sip, and thus p"(y') = p"(z); that is, zpy'. Thus xp / . J f ,y, so that (x, y)epojV.

00 CO

We thus have p o j f = p <> 0 . Hence p v ^ = JJ (p o 9)" = (J (p o jf)" = p v / , completing

the proof.

We now have the following corollary.
COROLLARY 4.5. Let S be a band of groups. Then 5, the minimum inverse semigroup

congruence on S, is the least element of the 9-class of Q).

Proof. Since Q) = n is an inverse semigroup congruence, we must have 5 £ Si. Hence,
by Proposition 4.4, i S v / = 5 v @ = l But (5, 5 v tf)e6; so (5, 9) e0. But, by
Proposition 4.1, every congruence in the 0-class of Si is an inverse semigroup congruence.
Hence 5 must be the least element of this 0-class, since it is to be contained in all inverse
semigroup congruences.

A natural question to ask at this point is whether one obtains an embedding theorem
for /(S) similar to Theorem 3.9. The answer is that one does not, as is illustrated by the semi-
group of Example 3.7. We shall show that ^-modularity of the semigroup S/<5 is a necessary
and sufficient condition for such a result.

Now let S be an arbitrary semigroup. If p, ye A(S) and y £ p, then the relation p/y
on S/y defined by p/y= {(y\x), y*(y))\(x,y)ep} is a congruence. Moreover, the lattice
y v A(S) is isomorphic with A(S/y) under the map y v T -> (y v t)/y. In particular, if y £ p, x,
then (p A T)/V = (p/y) A (t/y) and (p v r)/y = (p/y) v (r/y). These facts are readily verified, as
is pointed out in [7].

We now have

LEMMA 4.6. Let S be a band of groups. Then J^s/S = Si/5.

Proof. Suppose that 8\x) Si 15 5\y). Then x9y, so that 5\x)Ss/i 8"(j). But 5/5 is
an inverse semigroup; that is, S/5 is a semilattice of groups. Hence &is/s = J^s/i, and we
thus have S\x)3^sli8\y). Conversely, suppose that 8\x)3^sls5\y). Then Q\x) = (Si 18)"
(8\x)) J^s/3 (Si 18)* (8\y)) = 9\y). But Sf9 is a semilattice; so its ^f-relation is trivial.
Hence we get S>\x) = 3>Xy); that is, xSly. Thus <5'(;c) ®/<5 <5"(j), and the result follows.
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PROPOSITION 4.7. Let S be a band ofgroups such that Sj8 is Q-modular. Then the function
$ : I(S) -> Y(S) x A(S) defined by $(p) = (p v 9, p A 9) is an embedding.

Proof. We first note that the function \p is indeed well-defined; for p v 9 contains the
minimum semilattice congruence 9, and is thus itself a semilattice congruence. And, by
Corollary 4.5, p A 9 Q p A 8 = 869 since p is an inverse semigroup congruence. Since
S/8 is 0-modular, the function \j/: A(S/5) -»B(SI$) x Af(S/<5) defined by <Kp/<5) = (p/<5 v 3/esli,
p\8 A 3VS/S) is an embedding. Now, by Lemma 4.6, we have pj8 v J?s/S = p/<5 v Sljd =
(p v 9)18, and likewise p/<5 A 34?S/5 = (p A ®)/<5. But 7(5) = 8 v A(S) is isomorphic to

A(S/(5), under the isomorphism p -> p/<5. Thus the composition p -»p/5 —» ((p v
(p A S)j8) -* (p v Si, p A ®) is an embedding. This completes the proof.

Before proving the converse of this proposition, we need the following lemma.

LEMMA 4.8. Let S be any regular semigroup, and p, x, <xe A(S) such that a. £ p, T.

pdT if and only if p/a 0 t/a.

Proof. We note first that, by [4, Lemma 2.2], i?s/a = {a*(e) | ee£ s } . Hence, if p0r, we
have a"(e) p/a a"(/)<*-ep/«*>eT/oa"(e) r/a a*(/), so that pja.Qija.. Conversely, if p/a0r/a,
then e p / o a ' ( e ) p / a a \ / ) *>^(c) T / « a ' ( / ) O « T / , and so pQx.

PROPOSITION 4.9. £ef S be a band of groups, and suppose that the function \ji: I(S) ->
Y(S) x A(iS) defined by \j/(p) = (p v Si, p A Si) is an embedding. Then S\b is Q-modular.

Proof. Suppose that pj8 s x/5, pj8 6 xj8, and that, for some a/5 e A(S/5), pj8 v a/5 =
T/<5 v a/<5 and p/<5 A a/5 = T/<5 A a/5. We then have (p v a)/<5 = ( t v a)/<5, so that p v a =
T v a; and likewise, p A a = x A a. Then, since $ is v-preserving, we have
(p A ®) v (a A 9) = (p v a) A 9 = (T V a) A S) = (T A SI) V (a A 2). Moreover, (p A Si)
A (a A 2i) = (p A a) A 2 = (T A a) A SI = (T A Si) A (a A Si). Also, p/<5 £ T/<5 implies p £ t,
so that P A S S T A ® . NOW p A S, X A SJ, and a. A Si are inverse semigroup congruences
contained in S, and are hence in A(S). But A(S) is modular by Lemma 2.6; so we have
p A 9 = x A 9. Also, since p/SBx/S, we have p 0 t , by Lemma 4.8, and hence, by
Propositions 2.5 and 4.4, p v S = / » v / = t v / = i v l Since $ is one-to-one, we
conclude that p = x, and hence p/5 = x / 5, completing the proof.

Combining Propositions 4.7 and 4.9, we immediately deduce

THEOREM 4.10. Let S be a band of groups. Then $ : / ( £ ) - • Y(S) x A(5) defined by
= (p v 9, p A 9) is an embedding if and only if SI8 is Q-modular.

This paper is a portion of the author's doctoral dissertation, written at the University
of Kentucky. I would like to express to my adviser, Dr Carl Eberhart, my appreciation
of his many helpful suggestions and comments.
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