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Abstract. First, we prove that the set of intuitionistic fuzzy con-
gruences on a semigroup satisfying the particular condition is a modular
lattice [Theorem 2.9]. Secondly, we prove that the set of all intuition-
istic fuzzy congruences on a regular semigroup contained in (χH, χHc)
forms a modular lattice [Proposition 3.5]. And also we show that the
set of all intuitionistic fuzzy idempotent separating congruences on a
regular semigroup forms a modular lattice[Theorem 3.6]. Moreover,
we prove that the lattice of intuitionistic fuzzy congruences on a reg-
ular semigroup is a disjoint union of some modular sublattices of the
lattice[Corollary 3.15]. Finally, we show that the lattice of intuitionis-
tic fuzzy congruences on a group and the lattice of intuitionistic fuzzy
normal subgroups satisfying the particular condition are lattice isomor-
phic[Theorem 4.6].
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1. Introduction

In 1965, Zadeh [33] introduced the concept of fuzzy sets as the generalization

of ordinary subsets. After that time,several researchers [1,23,24-27,29,31] have

applied the notion of fuzzy sets to congruence. In particular, Das[10] and

Yijia[32] investigated the set of all fuzzy congruences in the view of lattice

theory.

In 1986, Atanassov[2] introduced the concept of intuitionistic fuzzy sets

as the generalization of fuzzy sets. After that time, many researchers [3,5-

8,11,12,14-16] applied the notion of intuitionistic fuzzy sets to relation, group

theory and topology. Recently, Hur and his colleagues [17-21] studied intuition-

istic fuzzy equivalence relations and various intuitionistic fuzzy congruences.

In this paper, first, we prove that the set of intuitionistic fuzzy congru-

ences on a semigroup satisfying the particular condition is a modular lattice

[Theorem 2.9]. Secondly, we prove that the set of all intuitionistic fuzzy congru-

ences on a regular semigroup contained in (χH, χHc) forms a modular lattice

[Proposition 3.5]. And also we show that the set of all intuitionistic fuzzy

idempotent separating congruences on a regular semigroup forms a modu-

lar lattice[Theorem 3.6]. Moreover, we prove that the lattice of intuitionistic

fuzzy congruences on a regular semigroup is a disjoint union of some modu-

lar sublattices of the lattice[Corollary 3.15]. Finally, we show that the lattice

of intuitionistic fuzzy congruences on a group and the lattice of intuitionistic

fuzzy normal subgroups satisfying the particular condition are lattice isomor-

phic[Theorem 4.6].

2. Preliminaries

In this section, we list some basic concepts and well-known results which are

needed in the later sections.
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For sets X,Y and Z, f = (f1, f2) : X → Y ×Z is called a complex mapping

if f1 : X → Y and f2 : X → Z are mappings.

Throughout this paper, we will denote the unit interval [0, 1] as I . And

for a lattice, refer to [4,22]. For any ordinary relation R on a set X, we will

denote the characteristic function of R as χR.

Definition 2.1[2,7]. Let X be a nonempty set. A complex mapping A =

(μA, νA) : X → I × I is called an intuitionistic fuzzy set (in short, IFS) in

X if μA(x) + νA(x) ≤ 1 for each x ∈ X, where the mapping μA : X → I and

νA : X → I denote the degree of membership (namely μA(x)) and the degree of

nonmembership (namely νA(x)) of each x ∈ X to A, respectively. In particular,

0∼ and 1∼ denote the intuitionistic fuzzy empty set and the intuitionistic fuzzy

whole set in X defined by 0∼(x) = (0, 1) and 1∼(x) = (1, 0) for each x ∈ X,

respectively.

We will denote the set of all IFSs in X as IFS(X).

Definitions 2.2[2]. Let X be a nonempty set and let A = (μA, νA) and

B = (μB , νB) be IFSs on X. Then

(1) A ⊂ B iff μA ≤ μB and νA ≥ νB.

(2) A = B iff A ⊂ B and B ⊂ A.

(3) Ac = (νA, μA).

(4) A ∩ B = (μA ∧ μB, νA ∨ νB).

(5) A ∪ B = (μA ∨ μB, νA ∧ νB).

(6) [ ]A = (μA, 1 − μA), < > A = (1 − νA, νA).

Definition 2.3[7]. Let {Ai}i∈J be an arbitrary family of IFSs in X, where

Ai = (μAi , νAi) for each i ∈ J . Then

(1)
⋂

Ai = (
∧

μAi ,
∨

νAi).

(2)
⋃

Ai = (
∨

μAi ,
∧

νAi).

Definition 2.4[6].Let X be a set. Then a complex mapping R = (μR, νR) :

X × X → I × I is called an intuitionistic fuzzy relation (in short, IFR) on X

if μR(x, y) + νR(x, y) ≤ 1 for each (x, y) ∈ X × X, i.e., R ∈ IFS (X × X).
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We will denote the set of all IFRs on a set X as IFR(X).

Definition 2.5[6]. Let R ∈ IFR(X). Then the inverse of R, R−1 is defined

by R−1(x, y) = R(y, x) for any x, y ∈ X.

Definition 2.6[6,11]Let X be a set and let R, Q ∈ IFR(X). Then the com-

position of R and Q, Q ◦ R, is defined as follows : for any x, y ∈ X,

μQ◦R(x, y) =
∨
z∈X

[μR(x, z) ∧ μQ(z, y)]

and

νQ◦R(x, y) =
∧
z∈X

[νR(x, z) ∨ νQ(z, y)].

Definition 2.7[6].An Intutionistic fuzzy Relation R on a set X is called an

intutionsitic fuzzy equivalence relation (in short, IFER) on X if it satisfies the

following conditions :

(i) it is intutionsitic fuzzy reflexive, i.e.,R(x, y) = (1, 0) for any x, y ∈ X.

(ii) it is intutionsitic fuzzy symmetric, i.e.,R−1 = R.

(iii) it is intutionsitic fuzzy transitive, i.e., R ◦ R ⊂ R.

We will denote the set of all IFERs on X as IFE(X).

Definition 2.8[18].We define two IFRs on a set X, � and 
 as follows,

respectively : for any x, y ∈ X,

�(x, y) =

{
(1, 0) if x = y,

(0, 1) if x �= y,

and


(x, y) = (1, 0).

It is clear that �, 
 ∈ IFE(X).

Let R be an intuitionistic fuzzy equivalence relation on a set X and let

a ∈ X. We define a complex mapping Ra : X → I × I as follows : for each
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x ∈ X

Ra(x) = R(a, x).

Then clearly Ra ∈ IFS(X). The intuitionistic fuzzy set Ra in X is called an

intuitionistic fuzzy equivalence class of R containing a ∈ X. The set {Ra :

a ∈ X} is called the intuitionistic fuzzy quotient set of R by X as denoted by

X/R.

Result 2.A[18, Theorem 2.15].Let R be an intuitionistic fuzzy equivalence

relation on a set X. Then the followings hold :

(1) Ra = Rb if and only if R(a, b) = (1, 0) for any a, b ∈ X.

(2) R(a, b) = (0, 1) if and only if Ra ∩ Rb = 0∼ for any a, b ∈ X.

(3)
⋃

a∈X Ra = 1∼.

(4) There exists the surjection p : X → X/R defined by p(x) = Rx for each

x ∈ X.

Definition 2.9[18]. Let X be a set, let R ∈ IFR(X) and let (λ, μ) ∈ [0, 1)×
(0, 1] such that λ+μ ≤ 1. We define a complex mapping R(λ,μ) : X×X → I×I

as follows : for each y ∈ X,

R(λ,μ)(x, y) =

{
(1, 0) if μR(x, y) > λ and νR(x, y) < μ,

(0, 1) if μR(x, y) ≤ λ and νR(x, y) ≥ μ.

Result 2.B[18, Proposition 2.19].Let P,Q ∈ IFR(X). Then

(1) P = Q if and only if P(λ,μ) = Q(λ,μ) for each (λ, μ) ∈ [0, 1)× (0, 1] with

λ + μ ≤ 1.

(2) For each (λ, μ) ∈ [0, 1) × (0, 1] with λ + μ ≤ 1,

(P ∩ Q)(λ,μ) = P(λ,μ) ∩ Q(λ,μ), (P ∪ Q)(λ,μ) = P(λ,μ) ∪ Q(λ,μ),

(P ◦ Q)(λ,μ) = P(λ,μ) ◦ Q(λ,μ), (P ∨ Q)(λ,μ) = P(λ,μ) ∨ Q(λ,μ).

Definition 2.10[18].Let X be a set, let R ∈ IFR(X) and let {Rα}α∈Γ be the

family of all the IFERs on X containing R. Then
⋂

α∈Γ Rα is called the IFER

generated by R and denoted by Re.
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It is easily seen that Re is the smallest intuitionistic fuzzy equivalence

relation containing R.

Definition 2.11[18].Let X be a set and let R ∈ IFR(X). Then the intu-

tionsitic fuzzy transitive closure of R, denoted by R∞, is defined as follows

:

R∞ =
⋃
n∈�

Rn, where Rn = R ◦ R ◦ · · · ◦ R(n factors).

Result 2.C [18, Proposition 3.7].Let X be a set and let R, Q ∈ IFE(X). We

define R ∨ Q as follows: R ∨ Q = (R ∪ Q)∞, i.e., R ∨ Q =
⋃

n∈�(R ∪ Q)n.

Then R ∨ Q ∈ IFE(X).

Result 2.D[18, Proposition 3.8].Let P and Q be any intutionsitic fuzzy equiv-

alence relations on a set X. It R ◦ Q ∈ IFE(X), then R ◦ Q = R ∨ Q, where

R ∨ Q denotes the least upper bound for {P,Q} with respect to the inclusion.

Result 2.E[18, Proposition 3.9].Let X be a set. If R, Q ∈ IFE(X), then

R ∨ Q = (R ◦ Q)∞.

Result 2.F[18, Corollary 3.9].Let X be a set. If R, Q ∈ IFE(X) such that

R ◦ Q = Q ◦ R, then R ∨ Q = R ◦ Q.

3. The lattice of intuitionistic fuzzy congruences on a
semigroup

Definition 3.1[19].An IFR R on a groupoid S is said to be:

(1) intuitionistic fuzzy left compatible if μR(x, y) ≤ μR(zx, zy) and νR(x, y) ≥
νR(zx, zy), for any x, y, z ∈ S.

(2) intuitionistic fuzzy right compatible if μR(x, y) ≤ μR(xz, yz) and νR(x, y) ≥
νR(xz, yz), for any x, y, z ∈ S.

(3) intuitionistic fuzzy compatible if μR(x, y) ∧ μR(z, t) ≤ μR(xz, yt) and

νR(x, y) ∨ νR(z, t) ≥ νR(xz, yt), for any x, y, z, t ∈ S.

Definition 3.2[19].An IFER R on a groupoid S is called an:
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(1) intuitionistic fuzzy left congruence (in short, IFLC) if it is intuition-

istic fuzzy left compatible.

(2) intuitionistic fuzzy right congruence (in short, IFRC) if it is intuition-

istic fuzzy right compatible.

(3) intuitionistic fuzzy congruence (in short, IFC) if it is intuitionistic

fuzzy compatible.

We will denote the set of all IFCs [resp. IFLCs and IFRCs] on a groupoid

S as IFC(S) [resp. IFLC(S) and IFRC(S)]. Then it is clear that �,
 ∈
IFC(S).

Result 3.A[19, Lemma 2.14].Let R and Q be intuitionistic fuzzy compatible

relations on a groupoid S. Then Q◦R is also an intuitionistic fuzzy compatible

relation on S.

Result 3.B[19, Theorem 2.15].Let R and Q be intuitionistic fuzzy congruences

on a groupoid S. Then the following conditions are equivalent :

(1) Q ◦ R ∈ IFC(S).

(2) Q ◦ R ∈ IFE(S).

(3) Q ◦ R is intuitionistic fuzzy symmetric.

(4) Q ◦ R = R ◦ Q.

Result 3.C[19, Proposition 2.16].Let S be a semigroup and let Q, R ∈ IFC(S).

If R ◦ Q = Q ◦ R, then R ◦ Q ∈ IFC(S).

Let R be an intuitionistic fuzzy congruence on a semigroup S and let a ∈ S.

The intuitionistic fuzzy set Ra in S is called an intuitionistic fuzzy congruence

class of R containing a ∈ S and we will denote the set of all intuitionistic fuzzy

congruence classes of R as S/R.

Result 3.D[21, Proposition 2.4].Let S be a regular semigroup and let R ∈
IFC(S). If Ra is an idempotent element of S/R, then there exists an idempo-

tent e ∈ S such that Re = Ra.

For a semigroup S, it is clear that IFC(S) is a partially ordered set by

the inclusion relation ” ⊂ ”. Moreover, for any P,Q ∈ IFC(S), P ∩ Q is
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the greatest lower bound of P and Q in (IFC(S),⊂ ) but P ∪ Q �∈ IFC(S) in

general(See Example 2.11 in [18]).

Lemma 3.3.Let S be a semigroup and let P,Q ∈ IFC(S). We define P ∨Q as

follows: P ∨Q = ̂P ∪ Q, i.e., P ∨Q =
⋃

n∈�(P ∪Q)n. Then P ∨Q ∈ IFC(S).

proof. By Result 1.C, it is clear that P ∨Q ∈ IFE(S). Let x, y, t ∈ S. Since

P and Q are intuitionistic fuzzy left compatible,

μP∨Q(x, y) =
∨
n∈�

[μP (x, y) ∨ μQ(x, y)]n

≤ [μP (tx, ty) ∨ μQ(tx, ty)]n = μP∨Q(tx, ty)

and

νP∧Q(x, y) =
∧
n∈�

[νP (x, y) ∧ νQ(x, y)]n

≥ [νP (tx, ty)∧ νQ(tx, ty)]n = νP∧Q(tx, ty).

Thus P ∨ Q is intuitionistic fuzzy left compatible. Similarly, it can be easily

seen that P∨Q is intuitionistic fuzzy right compatible. Hence P ∨Q ∈ IFC(S).

�

The following is the immediate result of Result 1.D.

Theorem 3.4.Let P and Q be any intuitionistic fuzzy congruence on a semi-

group S. If P ◦Q is an intuitionistic fuzzy congruence on S, then P ◦Q = P∨Q

where P ∨ Q denotes the least upper bound for {P,Q} with respect to the in-

clusion.

The following is the immediate result of Result 1.E and Result 2.A. More-

over, this gives another description for P ∨ Q of two IFCs P and Q.

Proposition 3.5.Let S be a semigroup. If P,Q ∈ IFC(S), then P ∨ Q =

(P ◦ Q)∞.

The following is the immediate result of Result 2.F and Proposition 3.5.
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Corollary 3.5.Let S be a semigroup. If P,Q ∈ IFC(S) such that P ◦Q = Q◦P ,

then P ∨ Q = P ◦ Q.

For a semigroup S, we define two binary operations ∨ and ∧ on IFC(S) as

follows : for any P,Q ∈ IFC(S),

P ∨ Q = ̂P ∪ Q and P ∧ Q = P ∩ Q.

Then we obtain the following result from Definition 2.8, Lemma 3.3 and The-

orem 3.4.

Theorem 3.6.Let S be a semigroup. Then (IFC(S),∧,∨) is a complete lattice

with � and 
 as the least and greatest elements of IFC(S).

Proposition 3.7.Let P and Q be any intuitionistic fuzzy congruences on a

group G. Then R ◦ Q = Q ◦ P . Hence, by Result 3.C and Corollary 3.5,

P ◦ Q = P ∨ Q.

Proof. Let x, y ∈ G. Then

μP◦Q(x, y) =
∨
z∈G

[μQ(x, z) ∧ μP (z,y)]

=
∨
z∈G

[(μQ(y, y) ∧ μQ(z−1, z−1) ∧ μQ(x, z))

∧(μP (z, y) ∧ μP (z−1, z−1) ∧ μP (x, x)]

≤
∨
z∈S

[μQ(yz−1x, y) ∧ μP (x, yz−1x)]

≤
∨

yz−1x∈G

[μP (x, yz−1x) ∧ μQ(yz−1x, y)]

= μQ◦P (x, y)

and

νP◦Q(x, y) =
∧
z∈G

[νQ(x, z) ∨ νP (z,y)]

=
∧
z∈G

[(νQ(y, y) ∨ νQ(z−1, z−1) ∨ νQ(x, z))

∨(νP (z, y) ∨ νP (z−1, z−1) ∨ νP (x, x)]

≥
∧
z∈G

[νQ(yz−1x, y) ∨ νP (x, yz−1x)]
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≥
∧

yz−1x∈G

[νP (x, yz−1x) ∨ νQ(yz−1x, y)]

= νQ◦P (x, y)

Thus P ◦Q ⊂ Q ◦P . Simlarly, we have Q ◦P ⊂ P ◦Q. Hence P ◦Q = Q ◦P .

�

Definition 3.8[4].A lattice (L,∧,∨) is said to be modular if for any x, y, z ∈ L

with x ≤ z,

(x ∨ y) ∧ z = x ∨ (y ∧ z).

In any lattice L, it is well-known [4, Lemma I.5] that for any x, y, z ∈ L, if

x ≤ z [resp. x ≥ z], then x∨(y∧z) ≤ (x∨y)∧z [resp. x∧(y∨z) ≥ (x∧y)∨z].

The inequality is called the modular inequality.

Theorem 3.9.Let S be a semigroup and let A be any sublattice of (IFC(S),∧,∨)

such that P ◦ Q = Q ◦ R for any P,Q ∈ A. Then A is a modular lattice.

Proof. Let R, Q, P ∈ A such that R ⊂ P . Let x, y ∈ S. Then

μ(R∨Q)∧P (x, y) = μ(R◦Q)∩P (x, y) (By Corollary 2.5)

= (
∨
z∈S

[μQ(x, z) ∧ μR(z, y)]) ∧ μP (x, y)

=
∨
z∈S

[μQ(x, z) ∧ μR(z, y) ∧ μR(z, y) ∧ μP (x, y)]

≤
∨
z∈S

[μQ(x, z) ∧ μR(z, y) ∧ μP (z, y) ∧ μP (x, y)] (Since R ⊂ P )

≤
∨
z∈S

[μQ(x, z) ∧ μR(z, y) ∧ μP (x, z)] (Since P ∈ IFC(S))

= μR◦(Q∩P )(x, y)

= μR∨(Q∧P )(x, y) (By Corollary 2.3)

and

ν(R∨Q)∧P (x, y) = ν(R◦Q)∩P (x, y)

= (
∧
z∈S

[νQ(x, z) ∨ νR(z, y)]) ∨ νP (x, y)
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=
∧
z∈S

[νQ(x, z) ∨ νR(z, y) ∨ νR(z, y) ∨ νP (x, y)]

≥
∧
z∈S

[νQ(x, z) ∨ νR(z, y) ∨ νP (z, y) ∨ νP (x, y)]

≥
∧
z∈S

[νQ(x, z) ∨ νR(z, y) ∨ νP (x, z)]

= νR◦(Q∩P )(x, y) = νR∨(Q∧P )(x, y).

Thus (R ∨ Q) ∧ P ⊂ R ∨ (Q ∧ P ). It is clear that R ∨ (Q ∧ P ) ⊂ (R ∨Q) ∧ P

from the modular inequality. So (R ∨ Q) ∧ P = P ∨ (Q ∧ P ). Hence A is

modular. �

The following is the immediate result of Proposition 3.7 and Theorem 3.9.

Corollary 3.7If G is a group, then (IFC(G), ∧,∨) is a modular lattice.

4. The lattice of intuitionistic fuzzy congruences on a
regular semigroup.

For a semigroup S, S1 denotes the monoid defined as follows :

S1 =

{
S if s has the ideuetity 1,

S ∪ {1} otherwise.

Definition 4.1 [13].The equivalence relations L,R,H and D on a semigroup

S are defined as follows, respectively :

(1) L = {(a, b) ∈ S × S : S1a = S1b}.
(2) R = {(a, b) ∈ S × S : aS1 = bS1}.
(3) H = L ∩R.

(4) D = L ∨ R.

The L−,R−,H− and D− classes of S containg the element a will, as

usual, be denoted by La, Ra, Ha and Da, respectively. The set of all L−
classes [resp.R− classes] of S can be partially ordered as follows : for any

a, b ∈ S,

La ≤ Lb if and only if S1a ⊂ S1b

and
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Ra ≤ Rb if and only if aS1 ⊂ bS1.

Definition 4.2[20].Let R be an intuitionistic fuzzy relation on a semigroup

S. We define a complex mapping R◦ = (μR◦ , νR◦) : S × S → I × I as follows :

for any x, y ∈ S,

R◦(x, y) = (
∧

s,t∈S1

μR(sxt, syt),
∨

s,y∈S1

νR(sxt, syt)).

It is clear that R◦ ∈ IFR(S).

Result 4.A[20, Proposition 3.3].Let S be a semigroup and let R, Q ∈ IFR(S).

Then :

(1) R◦ ⊂ R.

(2) (R◦)−1 = (R−1)◦.
(3) If R ⊂ Q, then R◦ ⊂ Q◦.
(4) (R◦)◦ = R◦.
(5) (R ∩ Q)◦ = R◦ ∩ Q◦.
(6) R = R◦ if and only if R is intuitionistic fuzzy left and right compatible.

Result 4.B[20, Theorem 3.4].Let S be a semigroup and let R ∈ IFE(S). Then

R◦ is the largest intuitionistic fuzzy congruence on S contained in R.

Result 4.C[20, Theorem 3.6].Let S be a regular semigroup. If P,Q ∈ ∑
(χH, χHc),

then P ◦ Q = Q ◦ P , where
∑

(χH, χHc) = {T ∈ IFC(S) : T ⊂ (χH, χHc)}.

Definition 4.3[20].Let S be a regular semigroup and let R ∈ IFC(S). Then

R is called an intuitionistic fuzzy idempotent separating congruence (in short,

IF ISC) if Re �= Rf whenever e �= f , i.e., Re = Rf implies e = f for any

e, f ∈ ES.

We will denote the set of all IFISCs on S by IFISC(S).

Result 4.D[20, Theorem 4.7].Let S be a regular semigroup and let T ∈ IFC(S).

Then T ∈ IFISC(S) if and only if T ∈ ∑
(χH, χHc).

Proposition 4.4.Let S be a semigroup and let R ∈ IFE(S) and let
∑

(R) =

{T ∈ IFC(S) : T ⊂ R}. Then
∑

(R) is a sublattice of IFC(S) with the greatest
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element R◦ and the least element �.

proof. It is clear that � ∈ IFC(S) and � ⊂ R. Thus � ∈ ∑
(R). So∑

(R) �= φ. Let P,Q ∈ ∑
(R). Then, by Result 3.A(1) and Result 3.B,

P ∧ Q ⊂ R and P ∨ Q ⊂ R◦ ⊂ R. Thus P ∧ Q, P ∨ Q ∈ ∑
(R). Hence

∑
(R)

is a sublattice of IFC(S) with the greatest element R◦ and the least element

�. �

Proposition 4.5.Let S be a regular semigroup. Then
∑

(χH, χHc) is a modular

sublattice of IFC(S) with the greatest element (χH, χHc)◦ and the least element

�.

Proof. By Proposition 4.4,
∑

(χH, χHc) is a sublattice of IFC(S) with the

greatest element (χH, χHc)◦ and the least element �. Hence, by Result 4.C

and Theorem 3.9,
∑

(χH, χHc) is a modular sublattice of IFC(S). �

The following is the immediate result of Proposition 4.5 and Result 4.D.

Theorem 4.6.Let S be a regular semigroup. Then IFISC(S) is a modular

sublattice of IFC(S) with the greatest element (χH, χHc)◦ and the least element

�.

Lemma 4.7.Let S be a semigroup and let P,Q ∈ IFC(S) such that Q ⊂ P .

We define a complex mapping P/Q = (μP/Q, νP/Q) : S/Q × S/Q → I × I as

follows : for any x, y ∈ S,

P/Q(Qx, Qy) = (μP (x, y), νP (x, y)).

Then P/Q is an intuitionistic fuzzy congruence on S/Q.

Proof. It is clear that P/Q ∈ IFR(S/Q) from the definition of P/Q. Let

x ∈ S. Then P/Q(Qx, Qx) = (μP (x, x), νP(x, x)) = (1, 0). Thus P/Q is intu-

itionistic fuzzy reflexive. It is clear that P/Q is intuitionistic fuzzy symmetric

from the definition of P/Q. Now let x, y ∈ S. Then

μP/Q(Qx, Qy) = μP (x, y) ≥ μP◦P (x, y) =
∨
z∈S

[μP (x, z) ∧ μP (z, y)]



224 Kul Hur, Su Youn Jang and Hee Won Kang

=
∨
z∈S

[μP/Q(Qx, Qz) ∧ μP/Q(Qz, Qy)]

= μP/Q◦P/Q(Qx, Qy)

and

νP/Q(Qx, Qy) = νP (x, y) ≤ νP◦P (x, y) =
∧
z∈S

[νP (x, z) ∨ νP (z, y)]

=
∧
z∈S

[νP/Q(Qx, Qz)∨ νP/Q(Qz, Qy]

= νP/Q◦P/Q(Qx, Qy).

Thus P/Q◦P/Q ⊂ P/Q, i.e., P/Q is intuitionistic fuzzy transitive. So P/Q ∈
IFE(S/Q).

Let x, y, z, t ∈ S. Then

μP/Q(Qx ∗ Qz, Qy ∗ Qt) = μP/Q(Qxz, Qyt) = μP (xz, yt)

≥ μP (x, y) ∧ μP (z, t)

= μP/Q(Qx, Qy) ∧ μP/Q(Qz, Qt)

and

νP/Q(Qx ∗ Qz, Qy ∗ Qt) = νP/Q(Qxz, Qyt) = νP (xz, yt)

≤ νP (x, y) ∨ νP (z, t)

= νP/Q(Qx, Qy)∨ νP/Q(Qz, Qt).

Thus P/Q is intuitionistic fuzzy compatible. Hence P/Q ∈ IFC(S/Q). �

Lemma 4.8.Let S be a semigroup, let T ∈ IFC(S) and let IFCT(S) = {P ∈
IFC(S) : T ⊂ P}. Then there exists an order preserving bijection Φ : IFCT (S) →
IFC(S/T ).

Proof. We define a mapping Φ : IFCT (S) → IFC(S/T ) as follows : for each

P ∈ IFCT(S),

Φ(P ) = P/T.

Then, by Lemma 4.7, Φ is well-defined. Let P,Q ∈ IFCT (S) such that P ⊂ Q

and let x, y ∈ S. Then

μΦ(P )(Tx, T y) = μP/T (Tx, T y) = μP (x, y)

≤ μQ(x, y) = μQ/T (Tx, T y) = μΦ(Q)(Tx, T y)
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and

νΦ(P )(Tx, T y) = νP/T (Tx, T y) = νP (x, y)

≥ νQ(x, y) = νQ/T (Tx, T y) = νΦ(Q)(Tx, T y).

Thus Φ(P ) ⊂ Φ(Q). So Φ is an order preserving mapping. It is clear that Φ is

surjective. For any P,Q ∈ IFCT (S), suppose Φ(P ) = Φ(Q) and let x, y ∈ S.

Then P/T (Tx, T y) = Q/T (Tx, T y). Thus P (x, y) = Q(x, y). So Φ is injective.

Hence Φ is an order preserving bijection. �

The following result is straigh forward to verify.

Theorem 4.9.Let S be a semigroup and let T ∈ IFC(S). If P,Q ∈ IFCT (S),

then (P ∧Q)/T = P/T ∧Q/T and (P ∨Q)/T = P/T ∨Q/T . Hence IFCT (S)

and IFC(S/T ) are lattice isomorphic.

Lemma 4.10.Let S be a semigroup and let C⊂ IFC(S) such that T =
⋂ C ∈ C.

If C/T = {P/T : P ∈C} is a sublattice [resp. a sublattice of commuting

intuitionistic fuzzy congruences ] of IFC(S/T ), then C is a sublattice [resp. a

sublattice of commuting intuitionistic fuzzy congruences ] of IFC(S).

Proof. Suppose C/T is a sublattice of IFC(S/T ). Let P,Q ∈C. Since C/T is a

sublattice of IFC(S/T ), P/T ∧Q/T, P/T ∨Q/T ∈C/T . Since P,Q ∈ IFCT (S),

by Theorem 4.9, P/T∧Q/T = (P∧Q)/T and P/T∨Q/T = (P∨Q)/T . Let Φ :

IFCT (S) → IFC(S/T ) be the order preserving bijection defined in Lemma 4.8.

Then Φ |C : C→C/T is an order preserving bijection. Thus P ∧ Q, P ∨ Q ∈C.

Hence C is a sublattice of IFC(S).

Suppose C/T is a sublattice of commuting intuitionistic fuzzy congruences

of IFC(S/T ). Let P,Q ∈C and let x, y ∈ S. Then

(P ◦ Q)(x, y) = (
∨
z∈S

[μQ(x, z) ∧ μP (z, y)],
∧
z∈S

[νQ(x, z) ∨ νP (z, y)])

= (
∨
z∈S

[μQ/T (Tx, T z) ∧ μP/T (Tz, T y)],
∧
z∈S

[νQ/T (Tx, T z)∨ νP/T (Tz, T y)])

= (P/T ◦ Q/T )(Tx, T y) = (Q/T ◦ P/T )(Tx, T y)

= (
∨
z∈S

[μP/T (Tx, T z)∧ μQ/T (Tz, T y)],
∧
z∈S

[νP/T (Tx, T z)∨ νQ/T (Tz, T y)])

= (
∨
z∈S

[μP (x, z) ∧ μQ(z, y)],
∧
z∈S

[νP (x, z) ∨ νQ(z, y)])
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= (Q ◦ P )(x, y).

Thus P ◦Q = Q ◦P . Hence C is a sublattice of commuting intuitionistic fuzzy

congruences of IFC(S). �

Remark 4.11.From Lemma 4.9 it is immediate that if C is a sublattice [resp.a

sublattice of commuting intuitionistic fuzzy congruences ] of IFC(S), then C /T

is a sublattice [resp.a sublattice of commuting intuitionistic fuzzy congruences

] of IFC(S/T ).

The following is the immediate result.

Proposition 4.12.Let S be a semigroup and let IFCo(S) = {R ∈ IFC(S)

: R(x, y) ∈ {(0, 1), (1, 0)} for any x, y ∈ S}. Then IFCo(S) is a sublattice of

IFC(S).

The following is the immediate result of Proposition 4.12 and Result 2.B.

Proposition 4.13.Let S be a semigroup. Then R ∈ IFC(S) if and only if

R(λ,μ) ∈ IFCo(S) for each (λ, μ) ∈ [0, 1) × (0, 1] with λ + μ ≤ 1.

Lemma 4.14.Let S be a regular semigroup and let Ro = {(P,Q) ∈ IFCo(S)

× IFCo(S) : P (e, f) = Q(e, f) for any e, f ∈ ES}. Then

(1) Ro is an equivalence relation on IFCo(S).

(2) Each Ro− class is a sublattice of IFCo(S) of commuting intuitionistic

fuzzy congruences.

Proof. The proof of (1) is clear.

(2) Let A be an Ro− class, let T =
⋂

P∈A P , let Q ∈A and let e, f ∈ ES.

Then Q(e, f) = P (e, f) for each P ∈A and T (e, f) = (
∧

P∈AμP (e, f),
∨

P∈A νP (e, f)) =

P (e, f). Thus T ∈A. So A has the least element T .

Suppose there exist idempotents f1 and f2 in S/T such that μQ/T (f1, f2) >

0 and νQ/T (f1, f2) < 1. By Result 3.D, there exist idempotents e1, e2 in S such

that f1 = Te1 and f2 = Te2. Then

μQ(e1, e2) = μQ/T (Te1, T e2) = μQ/T (f1, f2) > 0
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and

νQ(e1, e2) = νQ/T (Te1, T e2) = νQ/T (f1, f2) < 1.

Since Q(e1, e2) = T (e1, e2), μT (e1, e2) > 0 and νT (e1, e2) < 1. Since T ∈
IFCo(S), T (e1, e2) = (1, 0). By Result 2.A(1), f1 = Te1 = Te2 = f2. So Q/T

is intuitionistic fuzzy idempotent separating.

Now, for each P ∈ IFCo(S/T ), we define a complex mapping P ′ = (μP ′ , νP ′) :

S × S → I × I as follows : for any x, y ∈ S,

P ′(x, y) = P (Tx, T y).

Then clearly P ′ ∈ IFCo(S) and T ⊂ P ′. Suppose P is intuitionistic fuzzy

idempotent separating and μP ′(e, f) > 0, νP ′(e, f) < 1 for any e, f ∈ ES. Then

μP (Te, Tf) = μP ′(e, f) > 0 and νP (Te, Tf) < 1. Since P is intuitionistic fuzzy

idempotent separating, Te = Tf . Thus T (e, f) = (1, 0). Since T ⊂ P ′, 1 =

μT (e, f) ≤ μP ′(e, f) and 0 = νT (e, f) ≥ νP ′(e, f). Thus T (e, f) = P ′(e, f) for

any e, f ∈ ES. So P ′ ∈A and thus P ′/T = P . Hence A/T = {Q/T : Q ∈ A}
is just the subset of IFCo(S/T ) of idempotent separating intuitionistic fuzzy

congruences, i.e., A/T = IFCo(S/T )∩ IFISC(S/T ). By Proposition 4.12 and

Theorem 4.6, A/T is a sublattice of IFC(S/T ). Furthermore, by Result 4.C and

Result 4.D, A/T is a sublattice of IFC(S/T ) of commuting intuitionistic fuzzy

congruences. By Lemma 4.10, A is a sublattice of commuting intuitionistic

fuzzy congruences. But A⊂ IFCo(S). Hence A is a sublattice of IFCo(S) of

commuting intuitionistic fuzzy congruences. This complete the proof. �

Theorem 4.15.Let S be a regular semigroup and let R = {(P,Q) ∈ IFC(S)

× IFC(S) : P (e, f) = Q(e, f) for any e, f ∈ ES}. Then

(1) R is an equivalence relation on IFC(S).

(2) Each R− class is a modular sublattice of IFC(S).

Proof. The proof of (1) is clear.

(2) Let A be an R− class, let T =
⋂A, and let P ∈A. Let e, f ∈ ES.

Then clearly P (e, f) = Q(e, f) for each Q ∈A. Thus P (e, f) = T (e, f). So

T ∈A and thus T is the least element of A. Let P,Q ∈A and let e, f ∈ ES.

Then clearly (P ∩Q)(e, f) = T (e, f), i.e., P ∩Q = T . Since T ∈A, P ∩Q ∈A
for any P,Q ∈A. Now let P,Q ∈A, let e, f ∈ ES and let (λ, μ) ∈ [0, 1)× (0, 1]

with λ + μ ≤ 1. Then T (e, f) = P (e, f) = Q(e, f). Thus, by Result 2.B(1),
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T(λ,μ)(e, f) = P(λ,μ)(e, f) = Q(λ,μ)(e, f). So there exists an Ro− class Ao such

that T(λ,μ), P(λ,μ), Q(λ,μ) ∈Ao. By Result 2.B(2) and Lemma 4.14, (P∨Q)(λ,μ) =

P(λ,μ)∨Q(λ,μ) ∈Ao. Then (P∨Q)(λ,μ)(e, f) = (P(λ,μ)∨Q(λ,μ))(e, f) = T(λ,μ)(e, f).

Thus (P ∨ Q)(e, f) = T (e, f). So P ∨ Q ∈A. Hence A is a sublattice of

IFC(S). Also, by Result 2.B(2) and Lemma 4.14, (P ◦Q)(λ,μ) = P(λ,μ)◦Q(λ,μ) =

Q(λ,μ) ◦ P(λ,μ) = (Q ◦ P )(λ,μ). Then P ◦ Q = Q ◦ P . Hence, by Result 2.B(1)

and Theorem 3.9, A is a modular sublattice of IFC(S). �

Corollary 4.15.Let S be a regular semigroup. Then

(1) IFC(S) is a disjoint union of some modular sublattices of IFC(S).

(2) If S is a group, then IFC(S) is a modular lattice.

Proof. (1) It is clear form Theorem 4.15.

(2) Suppose S is a group. Then ES = {e}, where e is the identity of S. Let

P,Q ∈ IFC(S). Then P (e, e) = Q(e, e) = (1, 0). Thus R = IFC(S) × IFC(S)

and each R−class is IFC(S). Hence, by Theorem 4.15, IFC(S) is a modular

lattice. �

5. Relationship between intuitionistic fuzzy normal
subgroups and intuitionistic fuzzy congruences

Definition 5.1[14]. Let (X, ·) be a groupoid and let A, B ∈ IFS(X). Then

the intuitionistic fuzzy product of A and B, A ◦ B is defined as follows : for

any x ∈ X

(A ◦ B)(x) =

{
(
∨

yz=x[μA(y) ∧ μB(z)],
∧

yz=x[νA(y) ∨ νB(z)]),

(0, 1) if x is not expressible as x = yz.

Definition 5.2[14].Let (X, ·) be a groupoid and let A ∈ IFS(X). Then A is

called an intuitionistic fuzzy subgroupoid (in short, IFGP) of X if for any

x, y ∈ X,

μA(xy) ≥ μA(x) ∧ μA(y) and νA(xy) ≤ νA(x) ∨ νA(y).

We will denote the set of all IFGPs of a groupoid X as IFGP(X). Then it is
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clear that 0∼ and 1∼ ∈ IFGP(X).

Definition 5.3[15].Let G be a group and let A ∈ IFGP(G). Then A is called

an intuitionistic fuzzy subgroup (in short, IFG) of G if A(x−1) ≥ A(x), i.e.,

μA(x−1) ≥ μA(x) and νA(x−1) ≤ νA(x), for each x ∈ G.

We will denote the set of all IFGs of G as IFG(G).

Result 5.A[15, Proposition 3.4].Let A be an IFG of a group G. Then A◦A =

A.

Result 5.B[15, Proposition 3.5].Let A and B be any two IFGs of a group G.

Then the following conditions are equivalent :

(1) A ◦ B ∈ IFG(G).

(2) A ◦ B = B ◦ A.

Definition 5.4[15].Let G be a group and let A ∈ IFG(G). Then A is said to

be normal if A(xy) = A(yx) for any x, y ∈ G.

We will denote the family of all intuitionistic fuzzy normal subgroups of

a group G as IFNG(G). In particular, we will denote the set {N ∈ IFNG(G)

: N(e) = (1, 0)} as IFN(G).

Result 5.C[15, Proposition 4.4].Let G be a group and let A, B ∈ IFNG(G).

Then A ◦ B ∈ IFNG(G).

Result 5.D[19, Proposition 3.18].Let G be a group and let R ∈ IFC(G). We

define the complex mapping AR = (μAR
, νRA

) : G → I × I as follows : for each

a ∈ G,

AR(a) = R(a, e) = Re(a).

Then AR ∈ IFN(G).

Definition 5.5[16].Let G be a group, let A ∈ IFG(G) and let x ∈ G. We

define two complex mappings

Ax = (μAx, νAx) : G → I × I
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and

xA = (μxA, νxA) : G → I × I

as follows, respectively : for each g ∈ G,

Ax(g) = A(gx−1) and xA(g) = A(x−1g).

Then Ax [resp.xA] is called the intuitionistic fuzzy right [resp.left] coset of G

determined by x and A.

It is clear that if A ∈ IFNG(G), then the intuitionistic fuzzy left coset

and the intuitionistic fuzzy right coset of A on G coincide and in this case,

we call intuitionistic fuzzy coset instead of intuitionistic fuzzy left coset or

intuitionistic fuzzy right coset.

We denote as C(G) the set of all congruences on a group G. As C(G)

a complate description of the congruences on a group in terms of its normal

subgroups can be seen in many books, for example, in A.Rosenfeld [30] and

J.M.Howie [13]. There can read as follows : There exists a lattice isomorphism

of N(G) onto C(G). In this section, we shall obtain the similar result using

intuitionistic fuzzy sets, where N(G) denotes the set of all normal subgroups

of G.

Lemma 5.6.Let G be a group and let A ∈ IFN(G). We define the complex

mapping RA = (μRA
, νRA

) : G×G → I×I as follows : for each (a, b) ∈ G×G,

RA(a, b) = A(ab−1).

Then RA ∈ IFC(G).

Proof. From the definition of RA, it is clear that RA ∈ IFR(G). Moreover, RA

is intuitionistic fuzzy reflexive and intuitionistic fuzzy symmetric. Let a, b ∈ G.

Then

μRA◦RA
(a, b) =

∨
t∈G

[μRA
(a, t) ∧ μRA

(t, b)]

=
∨
t∈G

[μA(at−1) ∧ μA(tb−1)]

≤
∨
t∈G

μA((at−1)(tb−1)) (Since A ∈ IFG(G))

= μA(ab−1) = μRA
(a, b)
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and

νRA◦RA
(a, b) =

∧
t∈G

[νRA
(a, t) ∨ νRA

(t, b)] =
∧
t∈G

[νA(at−1) ∨ νA(tb−1)]

≥
∧
t∈G

νA((at−1)(tb−1)) = νA(ab−1) = νRA
(a, b).

Thus RA ◦ RA ⊂ RA. So RA is intuitionistic fuzzy transitive. Hence RA ∈
IFE(G).

We can easily see that RA is intuitionistic fuzzy compatible. Therefore

RA ∈ IFC(G). �

Proposition 5.7.Let G be a group and let A, B ∈ IFG(G). Then

RB ◦ RA = RA◦B

Proof. Let (a, b) ∈ G. Then

(RB ◦ RA)(a, b) = (μRB◦RA
(a, b), νRB◦RA

(a, b))

= (
∨
z∈G

[μRA
(a, z) ∧ μRB

(z, b)],
∧
z∈G

[νRA
(a, z) ∨ νRB

(z, b)])

= (
∨
z∈G

[μA(az−1) ∧ μB(zb−1)],
∧
z∈G

[νA(az−1) ∨ νB(zb−1)])

= (
∨

az−1=x,zb−1=y

[μA(x) ∧ μB(y)],
∧

az−1=x,zb−1=y

[νA(x) ∨ νB(y)])

= (
∨

ab−1=xy

[μA(x) ∧ μB(y)],
∧

ab−1=xy

[νA(x) ∨ νB(y)])

= (μA◦B(ab−1), νA◦B(ab−1))

= (μRA◦B
(a, b), νRA◦B

(a, b)) = RA◦B(a, b).

Hence RB ◦ RA = RA◦B. �

Theorem 5.8.Let G be a group. Then (IFC(G), ◦) is a semilattice (i.e., a

commutative idempotent semigroup).

Proof. Let H,K ∈ IFC(G) and let (a, b) ∈ G × G. Then

(K ◦ H)(a, b) = (μK◦H(a, b), νK◦H(a, b))
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= (
∨
z∈G

[μH(a, z) ∧ μK(z, b)],
∧
z∈G

[νH(a, z) ∨ νK(z, b)])

= (
∨
z∈G

[μH(az−1, e) ∧ μK(e, z−1b)],
∧
z∈G

[νH(az−1, e) ∨ νK(e, z−1b)])

(By Lemma 3.1)

= (
∨
z∈G

[μK(e, z−1b) ∧ μH(az−1, e)],
∧
z∈G

[νK(e, z−1b) ∨ νH(az−1, e)])

= (
∨
z∈G

[μK(a, az−1b) ∧ μH(az−1b, b)],
∧
z∈G

[νK(a, az−1b) ∨ νH(az−1b, b)])

(By Lemma 3.1)

= (
∨
t∈G

[μK(a, t) ∧ μH(t, b)],
∧
t∈G

[νK(a, t) ∨ νH(t, b)]) (t = az−1b)

= (μH◦K(a, b), νH◦K(a, b)) = (H ◦ K)(a, b).

Thus K ◦H = H ◦K. So, by Result 3.B, H ◦K ∈ IFC(G). On the other had,

we can easily see that R ◦ R = R for each R ∈ IFC(G). Hence (IFC(G), ◦) is

a semilattice. �

The following result follows from Results 5.A, 5.B and 5.C.

Proposition 5.9.Let G be a group. Then (IFN(G),◦) is a semilattice.

Theorem 5.10.Let G be a group. Then there exists a bijection α : IFC(G)

→ IFN(G) such that α(R ◦ S) = α(R) ◦ α(S) and α(R ∧ S) = α(R) ∩ α(S)

for any R, S ∈ IFC(G). Hence α : (IFC(G),∧, ◦) → (IFN(G),∩, ◦) is a lattice

isomorphism.

Proof. We define two mappings α : IFC(G)→IFN(G) and β : IFN(G) →
IFC(G) respectively, as follows :

α(R) = Re for each R ∈ IFC(G)

and

β(N)(a, b) = N(ab−1) for each N ∈ IFN(G) and any a, b ∈ G.

By Result 5.D and Lemma 5.6, α and β are well-defined.

We show that α ◦ β = idIFN(G) and β ◦α = idIFC(G). Let R ∈ IFC(G) and

let a, b ∈ G. Then

[(β ◦ α)(R)](a, b) = [β(α(R))](a, b) = β(Re)(a, b)
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= Re(ab−1) = R(e, ab−1)

= R(b, a) (Since R is intuitionistic fuzzy right compatible)

= R(a, b). (Since R is intuitionistic fuzzy symmetric)

Thus (β ◦ α)(R) = R. So β ◦ α = idIFC(G). Now let N ∈ IFN(G) and let

a ∈ G. Then

[(α ◦ β)(N)](a) = [α(β(N))](a) = (β(N))e(a) = β(N)(e, a)

= N(ea−1) = N(a−1) = N(a).

Thus (α ◦ β)(N) = N . So α ◦ β = idIFN (G). Hence α is bijective.

Now, we show that α(R ◦ S) = α(R) ◦ α(S) and α(R ∧ S) = α(R) ∩ α(S)

for any R, S ∈ IFC(G). Let R, S ∈ IFC(G) and let a ∈ G. Then

[α(R ◦ S)](a) = (R ◦ S)e(a) = (R ◦ S)(e, a).

Thus

μR◦S(e, a) =
∨
z∈G

[μS(e, z) ∧ μR(z, a)] =
∨
z∈G

[μS(e, z) ∧ μR(e, az−1)]

(Since R is intuitionistic fuzzy right compatible)

=
∨
z∈G

[μSe(z) ∧ μRe(az−1)] =
∨
z∈G

[μRe(az−1) ∧ μSe(z)]

=
∨

a=bz

[μRe(b) ∧ μSe(z)] = μRe◦Se(a) = μα(R)◦α(S)(a)

and

νR◦S(e, a) =
∧
z∈G

[νS(e, z) ∨ νR(z, a)] =
∧
z∈G

[νS(e, z) ∨ νR(e, az−1)]

=
∧
z∈G

[νR(e, az−1) ∨ νS(e, z)] =
∧

a=bz

[νRe(b) ∨ νSe(z)]

= νRe◦Se(a) = να(R)◦α(S)(a).

So α(R ◦ S) = α(R) ◦ α(S). On the other hand,

μα(R∧S)(a) = μ(R∩S)e(a) = μR∩S(e, a) = μR(e, a) ∧ μS(e, a)

= μRe(a) ∧ μSe(a) = μRe∩Se(a) = μα(R)∩α(S)(a)

and

να(R∧S)(a) = ν(R∩S)e(a) = νR∩S(e, a) = νR(e, a) ∨ νS(e, a)

= νRe(a) ∨ νSe(a) = νRe∩Se(a) = να(R)∩α(S)(a).
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So α(R∧S) = α(R)∩α(S). Hence α is a lattice isomorphism. This completes

the proof. �

The following is the immediate result of Corollary 3.9 and Theorem 5.10.

Corollary 5.10. (IFN(G), ∩, ◦) is a modular lattice.
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