THE LATTICE OF INTUITIONISTIC FUZZY CONGRUENCES

Kul Hur¹ and Su Youn Jang

Division of Mathematics and Informational Statistic
Wonkwang University, Iksan, Chonbuk, Korea 570-749
kulhur@wonkwang.ac.kr
suyoun123@yahoo.co.kr

Hee Won Kang

Dept. of Mathematics Education Woosuk University Hujong-Ri Samrae-Eup, Wanju-kun Chonbuk, Korea 565-701 khwon@woosuk.ac.kr

Abstract. First, we prove that the set of intuitionistic fuzzy congruences on a semigroup satisfying the particular condition is a modular lattice [Theorem 2.9]. Secondly, we prove that the set of all intuitionistic fuzzy congruences on a regular semigroup contained in $(\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})$ forms a modular lattice [Proposition 3.5]. And also we show that the set of all intuitionistic fuzzy idempotent separating congruences on a regular semigroup forms a modular lattice [Theorem 3.6]. Moreover, we prove that the lattice of intuitionistic fuzzy congruences on a regular semigroup is a disjoint union of some modular sublattices of the lattice [Corollary 3.15]. Finally, we show that the lattice of intuitionistic fuzzy congruences on a group and the lattice of intuitionistic fuzzy normal subgroups satisfying the particular condition are lattice isomorphic [Theorem 4.6].

¹Corresponding author

Mathematics Subject Classification: 03F55, 06B10, 06C05

Keywords: modular lattice, senilattice, intuitionistic fuzzy congruence, intuitionistic fuzzy idempotent separating congruence, intuitionistic fuzzy (normal) subgroup.

1. Introduction

In 1965, Zadeh [33] introduced the concept of fuzzy sets as the generalization of ordinary subsets. After that time, several researchers [1,23,24-27,29,31] have applied the notion of fuzzy sets to congruence. In particular, Das[10] and Yijia[32] investigated the set of all fuzzy congruences in the view of lattice theory.

In 1986, Atanassov[2] introduced the concept of intuitionistic fuzzy sets as the generalization of fuzzy sets. After that time, many researchers [3,5-8,11,12,14-16] applied the notion of intuitionistic fuzzy sets to relation, group theory and topology. Recently, Hur and his colleagues [17-21] studied intuitionistic fuzzy equivalence relations and various intuitionistic fuzzy congruences.

In this paper, first, we prove that the set of intuitionistic fuzzy congruences on a semigroup satisfying the particular condition is a modular lattice [Theorem 2.9]. Secondly, we prove that the set of all intuitionistic fuzzy congruences on a regular semigroup contained in $(\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})$ forms a modular lattice [Proposition 3.5]. And also we show that the set of all intuitionistic fuzzy idempotent separating congruences on a regular semigroup forms a modular lattice [Theorem 3.6]. Moreover, we prove that the lattice of intuitionistic fuzzy congruences on a regular semigroup is a disjoint union of some modular sublattices of the lattice [Corollary 3.15]. Finally, we show that the lattice of intuitionistic fuzzy congruences on a group and the lattice of intuitionistic fuzzy normal subgroups satisfying the particular condition are lattice isomorphic [Theorem 4.6].

2. Preliminaries

In this section, we list some basic concepts and well-known results which are needed in the later sections.

For sets X, Y and $Z, f = (f_1, f_2) : X \to Y \times Z$ is called a *complex mapping* if $f_1 : X \to Y$ and $f_2 : X \to Z$ are mappings.

Throughout this paper, we will denote the unit interval [0,1] as I. And for a lattice, refer to [4,22]. For any ordinary relation R on a set X, we will denote the characteristic function of R as χ_R .

Definition 2.1[2,7]. Let X be a nonempty set. A complex mapping $A = (\mu_A, \nu_A) : X \to I \times I$ is called an intuitionistic fuzzy set (in short, IFS) in X if $\mu_A(x) + \nu_A(x) \leq 1$ for each $x \in X$, where the mapping $\mu_A : X \to I$ and $\nu_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\nu_A(x)$) of each $x \in X$ to A, respectively. In particular, 0_{\sim} and 1_{\sim} denote the intuitionistic fuzzy empty set and the intuitionistic fuzzy whole set in X defined by $0_{\sim}(x) = (0,1)$ and $1_{\sim}(x) = (1,0)$ for each $x \in X$, respectively.

We will denote the set of all IFSs in X as IFS(X).

Definitions 2.2[2]. Let X be a nonempty set and let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be IFSs on X. Then

- (1) $A \subset B$ iff $\mu_A \leq \mu_B$ and $\nu_A \geq \nu_B$.
- (2) A = B iff $A \subset B$ and $B \subset A$.
- (3) $A^c = (\nu_A, \mu_A)$.
- $(4) A \cap B = (\mu_A \wedge \mu_B, \nu_A \vee \nu_B).$
- (5) $A \cup B = (\mu_A \vee \mu_B, \nu_A \wedge \nu_B).$
- (6) $[]A = (\mu_A, 1 \mu_A), <> A = (1 \nu_A, \nu_A).$

Definition 2.3[7]. Let $\{A_i\}_{i\in J}$ be an arbitrary family of IFSs in X, where $A_i = (\mu_{A_i}, \nu_{A_i})$ for each $i \in J$. Then

- (1) $\bigcap A_i = (\bigwedge \mu_{A_i}, \bigvee \nu_{A_i}).$
- $(2) \bigcup A_i = (\bigvee \mu_{A_i}, \bigwedge \nu_{A_i}).$

Definition 2.4[6].Let X be a set. Then a complex mapping $R = (\mu_R, \nu_R)$: $X \times X \to I \times I$ is called an intuitionistic fuzzy relation (in short, IFR) on X if $\mu_R(x,y) + \nu_R(x,y) \le 1$ for each $(x,y) \in X \times X$, i.e., $R \in IFS(X \times X)$.

We will denote the set of all IFRs on a set X as IFR(X).

Definition 2.5[6]. Let $R \in IFR(X)$. Then the inverse of R, R^{-1} is defined by $R^{-1}(x,y) = R(y,x)$ for any $x,y \in X$.

Definition 2.6[6,11]Let X be a set and let $R, Q \in IFR(X)$. Then the composition of R and Q, $Q \circ R$, is defined as follows: for any $x, y \in X$,

$$\mu_{Q \circ R}(x, y) = \bigvee_{z \in X} [\mu_R(x, z) \wedge \mu_Q(z, y)]$$

and

$$\nu_{Q \circ R}(x, y) = \bigwedge_{z \in X} [\nu_R(x, z) \vee \nu_Q(z, y)].$$

Definition 2.7[6]. An Intutionistic fuzzy Relation R on a set X is called an intutionsitic fuzzy equivalence relation (in short, IFER) on X if it satisfies the following conditions:

- (i) it is intutionsitic fuzzy reflexive, i.e., R(x,y) = (1,0) for any $x,y \in X$.
- (ii) it is intutionsitic fuzzy symmetric, i.e., $R^{-1} = R$.
- (iii) it is intutionsitic fuzzy transitive, i.e., $R \circ R \subset R$.

We will denote the set of all IFERs on X as IFE(X).

Definition 2.8[18]. We define two IFRs on a set X, \triangle and ∇ as follows, respectively: for any $x, y \in X$,

$$\triangle(x,y) = \begin{cases} (1,0) & \text{if } x = y, \\ (0,1) & \text{if } x \neq y, \end{cases}$$

and

$$\nabla(x,y) = (1,0).$$

It is clear that \triangle , $\nabla \in IFE(X)$.

Let R be an intuitionistic fuzzy equivalence relation on a set X and let $a \in X$. We define a complex mapping $Ra: X \to I \times I$ as follows: for each

 $x \in X$

$$Ra(x) = R(a, x).$$

Then clearly $Ra \in IFS(X)$. The intuitionistic fuzzy set Ra in X is called an intuitionistic fuzzy equivalence class of R containing $a \in X$. The set $\{Ra : a \in X\}$ is called the intuitionistic fuzzy quotient set of R by X as denoted by X/R.

Result 2.A[18, Theorem 2.15]. Let R be an intuitionistic fuzzy equivalence relation on a set X. Then the followings hold:

- (1) Ra = Rb if and only if R(a, b) = (1, 0) for any $a, b \in X$.
- (2) R(a,b) = (0,1) if and only if $Ra \cap Rb = 0$, for any $a,b \in X$.
- $(3) \bigcup_{a \in X} Ra = 1_{\sim}.$
- (4) There exists the surjection $p: X \to X/R$ defined by p(x) = Rx for each $x \in X$.

Definition 2.9[18]. Let X be a set, let $R \in IFR(X)$ and let $(\lambda, \mu) \in [0, 1) \times (0, 1]$ such that $\lambda + \mu \leq 1$. We define a complex mapping $R_{(\lambda, \mu)} : X \times X \to I \times I$ as follows: for each $y \in X$,

$$R_{(\lambda,\mu)}(x,y) = \begin{cases} (1,0) & \text{if } \mu_R(x,y) > \lambda \text{ and } \nu_R(x,y) < \mu, \\ (0,1) & \text{if } \mu_R(x,y) \le \lambda \text{ and } \nu_R(x,y) \ge \mu. \end{cases}$$

Result 2.B[18, Proposition 2.19]. Let $P, Q \in IFR(X)$. Then

- (1) P = Q if and only if $P_{(\lambda,\mu)} = Q_{(\lambda,\mu)}$ for each $(\lambda,\mu) \in [0,1) \times (0,1]$ with $\lambda + \mu \leq 1$.
 - (2) For each $(\lambda, \mu) \in [0, 1) \times (0, 1]$ with $\lambda + \mu \leq 1$,

$$(P \cap Q)_{(\lambda,\mu)} = P_{(\lambda,\mu)} \cap Q_{(\lambda,\mu)}, (P \cup Q)_{(\lambda,\mu)} = P_{(\lambda,\mu)} \cup Q_{(\lambda,\mu)},$$

$$(P \circ Q)_{(\lambda,\mu)} = P_{(\lambda,\mu)} \circ Q_{(\lambda,\mu)}, (P \vee Q)_{(\lambda,\mu)} = P_{(\lambda,\mu)} \vee Q_{(\lambda,\mu)}.$$

Definition 2.10[18]. Let X be a set, let $R \in IFR(X)$ and let $\{R_{\alpha}\}_{{\alpha} \in \Gamma}$ be the family of all the IFERs on X containing R. Then $\bigcap_{{\alpha} \in \Gamma} R_{\alpha}$ is called the IFER generated by R and denoted by R^e .

It is easily seen that R^e is the smallest intuitionistic fuzzy equivalence relation containing R.

Definition 2.11[18].Let X be a set and let $R \in IFR(X)$. Then the intutionsitic fuzzy transitive closure of R, denoted by R^{∞} , is defined as follows:

$$R^{\infty} = \bigcup_{n \in \mathbb{N}} R^n$$
, where $R^n = R \circ R \circ \cdots \circ R(n \text{ factors})$.

Result 2.C [18, Proposition 3.7]. Let X be a set and let $R, Q \in IFE(X)$. We define $R \vee Q$ as follows: $R \vee Q = (R \cup Q)^{\infty}$, i.e., $R \vee Q = \bigcup_{n \in \mathbb{N}} (R \cup Q)^n$. Then $R \vee Q \in IFE(X)$.

Result 2.D[18, Proposition 3.8]. Let P and Q be any intutionsitic fuzzy equivalence relations on a set X. It $R \circ Q \in IFE(X)$, then $R \circ Q = R \vee Q$, where $R \vee Q$ denotes the least upper bound for $\{P,Q\}$ with respect to the inclusion.

Result 2.E[18, Proposition 3.9].Let X be a set. If $R, Q \in IFE(X)$, then $R \vee Q = (R \circ Q)^{\infty}$.

Result 2.F[18, Corollary 3.9]. Let X be a set. If $R, Q \in IFE(X)$ such that $R \circ Q = Q \circ R$, then $R \vee Q = R \circ Q$.

3. The lattice of intuitionistic fuzzy congruences on a semigroup

Definition 3.1[19]. An IFR R on a groupoid S is said to be:

- (1) intuitionistic fuzzy left compatible if $\mu_R(x,y) \leq \mu_R(zx,zy)$ and $\nu_R(x,y) \geq \nu_R(zx,zy)$, for any $x,y,z \in S$.
- (2) intuitionistic fuzzy right compatible if $\mu_R(x, y) \leq \mu_R(xz, yz)$ and $\nu_R(x, y) \geq \nu_R(xz, yz)$, for any $x, y, z \in S$.
- (3) intuitionistic fuzzy compatible if $\mu_R(x,y) \wedge \mu_R(z,t) \leq \mu_R(xz,yt)$ and $\nu_R(x,y) \vee \nu_R(z,t) \geq \nu_R(xz,yt)$, for any $x,y,z,t \in S$.

Definition 3.2[19]. An IFER R on a groupoid S is called an:

- (1) intuitionistic fuzzy left congruence (in short, IFLC) if it is intuitionistic fuzzy left compatible.
- (2) intuitionistic fuzzy right congruence (in short, IFRC) if it is intuitionistic fuzzy right compatible.
- (3) intuitionistic fuzzy congruence (in short, IFC) if it is intuitionistic fuzzy compatible.

We will denote the set of all IFCs [resp. IFLCs and IFRCs] on a groupoid S as IFC(S) [resp. IFLC(S) and IFRC(S)]. Then it is clear that $\triangle, \nabla \in$ IFC(S).

Result 3.A[19, Lemma 2.14]. Let R and Q be intuitionistic fuzzy compatible relations on a groupoid S. Then $Q \circ R$ is also an intuitionistic fuzzy compatible relation on S.

Result 3.B[19, Theorem 2.15]. Let R and Q be intuitionistic fuzzy congruences on a groupoid S. Then the following conditions are equivalent:

- (1) $Q \circ R \in IFC(S)$.
- (2) $Q \circ R \in IFE(S)$.
- (3) $Q \circ R$ is intuitionistic fuzzy symmetric.
- $(4) Q \circ R = R \circ Q.$

Result 3.C[19, Proposition 2.16]. Let S be a semigroup and let Q, $R \in IFC(S)$. If $R \circ Q = Q \circ R$, then $R \circ Q \in IFC(S)$.

Let R be an intuitionistic fuzzy congruence on a semigroup S and let $a \in S$. The intuitionistic fuzzy set Ra in S is called an *intuitionistic fuzzy congruence* class of R containing $a \in S$ and we will denote the set of all intuitionistic fuzzy congruence classes of R as S/R.

Result 3.D[21, Proposition 2.4]. Let S be a regular semigroup and let $R \in IFC(S)$. If Ra is an idempotent element of S/R, then there exists an idempotent $e \in S$ such that Re = Ra.

For a semigroup S, it is clear that IFC(S) is a partially ordered set by the inclusion relation " \subset ". Moreover, for any $P,Q \in IFC(S)$, $P \cap Q$ is

the greatest lower bound of P and Q in (IFC(S), \subset) but $P \cup Q \notin$ IFC(S) in general(See Example 2.11 in [18]).

Lemma 3.3. Let S be a semigroup and let $P, Q \in IFC(S)$. We define $P \vee Q$ as follows: $P \vee Q = \widehat{P \cup Q}$, i.e., $P \vee Q = \bigcup_{n \in \mathbb{N}} (P \cup Q)^n$. Then $P \vee Q \in IFC(S)$.

proof. By Result 1.C, it is clear that $P \vee Q \in IFE(S)$. Let $x, y, t \in S$. Since P and Q are intuitionistic fuzzy left compatible,

$$\mu_{P\vee Q}(x,y) = \bigvee_{n\in\mathbb{N}} [\mu_P(x,y)\vee\mu_Q(x,y)]^n$$

$$\leq [\mu_P(tx,ty)\vee\mu_Q(tx,ty)]^n = \mu_{P\vee Q}(tx,ty)$$

and

$$\nu_{P \wedge Q}(x, y) = \bigwedge_{n \in \mathbb{N}} [\nu_P(x, y) \wedge \nu_Q(x, y)]^n$$

$$\geq [\nu_P(tx, ty) \wedge \nu_Q(tx, ty)]^n = \nu_{P \wedge Q}(tx, ty).$$

Thus $P \vee Q$ is intuitionistic fuzzy left compatible. Similarly, it can be easily seen that $P \vee Q$ is intuitionistic fuzzy right compatible. Hence $P \vee Q \in IFC(S)$.

The following is the immediate result of Result 1.D.

Theorem 3.4.Let P and Q be any intuitionistic fuzzy congruence on a semi-group S. If $P \circ Q$ is an intuitionistic fuzzy congruence on S, then $P \circ Q = P \vee Q$ where $P \vee Q$ denotes the least upper bound for $\{P,Q\}$ with respect to the inclusion.

The following is the immediate result of Result 1.E and Result 2.A. Moreover, this gives another description for $P \vee Q$ of two IFCs P and Q.

Proposition 3.5.Let S be a semigroup. If $P,Q \in IFC(S)$, then $P \vee Q = (P \circ Q)^{\infty}$.

The following is the immediate result of Result 2.F and Proposition 3.5.

Corollary 3.5. Let S be a semigroup. If $P, Q \in IFC(S)$ such that $P \circ Q = Q \circ P$, then $P \vee Q = P \circ Q$.

For a semigroup S, we define two binary operations \vee and \wedge on IFC(S) as follows: for any $P, Q \in IFC(S)$,

$$P \lor Q = \widehat{P \cup Q}$$
 and $P \land Q = P \cap Q$.

Then we obtain the following result from Definition 2.8, Lemma 3.3 and Theorem 3.4.

Theorem 3.6. Let S be a semigroup. Then $(IFC(S), \land, \lor)$ is a complete lattice with \triangle and ∇ as the least and greatest elements of IFC(S).

Proposition 3.7.Let P and Q be any intuitionistic fuzzy congruences on a group G. Then $R \circ Q = Q \circ P$. Hence, by Result 3.C and Corollary 3.5, $P \circ Q = P \vee Q$.

Proof. Let $x, y \in G$. Then

$$\mu_{P \circ Q}(x, y) = \bigvee_{z \in G} [\mu_{Q}(x, z) \wedge \mu_{P(z, y)}]$$

$$= \bigvee_{z \in G} [(\mu_{Q}(y, y) \wedge \mu_{Q}(z^{-1}, z^{-1}) \wedge \mu_{Q}(x, z))$$

$$\wedge (\mu_{P}(z, y) \wedge \mu_{P}(z^{-1}, z^{-1}) \wedge \mu_{P}(x, x)]$$

$$\leq \bigvee_{z \in S} [\mu_{Q}(yz^{-1}x, y) \wedge \mu_{P}(x, yz^{-1}x)]$$

$$\leq \bigvee_{yz^{-1}x \in G} [\mu_{P}(x, yz^{-1}x) \wedge \mu_{Q}(yz^{-1}x, y)]$$

$$= \mu_{Q \circ P}(x, y)$$

$$\begin{array}{lcl} \nu_{P \circ Q}(x,y) & = & \bigwedge_{z \in G} [\nu_Q(x,z) \vee \nu_{P(z,y)}] \\ \\ & = & \bigwedge_{z \in G} [(\nu_Q(y,y) \vee \nu_Q(z^{-1},z^{-1}) \vee \nu_Q(x,z)) \\ \\ & & \vee (\nu_P(z,y) \vee \nu_P(z^{-1},z^{-1}) \vee \nu_P(x,x)] \\ \\ & \geq & \bigwedge_{z \in G} [\nu_Q(yz^{-1}x,y) \vee \nu_P(x,yz^{-1}x)] \end{array}$$

$$\geq \bigwedge_{yz^{-1}x \in G} [\nu_P(x, yz^{-1}x) \vee \nu_Q(yz^{-1}x, y)]$$

= $\nu_{Q \circ P}(x, y)$

Thus $P \circ Q \subset Q \circ P$. Similarly, we have $Q \circ P \subset P \circ Q$. Hence $P \circ Q = Q \circ P$.

Definition 3.8[4]. A lattice (L, \wedge, \vee) is said to be modular if for any $x, y, z \in L$ with $x \leq z$,

$$(x \lor y) \land z = x \lor (y \land z).$$

In any lattice L, it is well-known [4, Lemma I.5] that for any $x,y,z\in L$, if $x\leq z$ [resp. $x\geq z$], then $x\vee (y\wedge z)\leq (x\vee y)\wedge z$ [resp. $x\wedge (y\vee z)\geq (x\wedge y)\vee z$]. The inequality is called the *modular inequality*.

Theorem 3.9. Let S be a semigroup and let A be any sublattice of $(IFC(S), \land, \lor)$ such that $P \circ Q = Q \circ R$ for any $P, Q \in A$. Then A is a modular lattice.

Proof. Let $R, Q, P \in \mathcal{A}$ such that $R \subset P$. Let $x, y \in S$. Then

$$\mu_{(R \vee Q) \wedge P}(x, y) = \mu_{(R \circ Q) \cap P}(x, y) \qquad (By Corollary 2.5)$$

$$= \left(\bigvee_{z \in S} [\mu_Q(x, z) \wedge \mu_R(z, y)] \right) \wedge \mu_P(x, y)$$

$$= \bigvee_{z \in S} [\mu_Q(x, z) \wedge \mu_R(z, y) \wedge \mu_R(z, y) \wedge \mu_P(x, y)]$$

$$\leq \bigvee_{z \in S} [\mu_Q(x, z) \wedge \mu_R(z, y) \wedge \mu_P(z, y) \wedge \mu_P(x, y)] \quad (Since \ R \subset P)$$

$$\leq \bigvee_{z \in S} [\mu_Q(x, z) \wedge \mu_R(z, y) \wedge \mu_P(x, z)] \quad (Since \ P \in IFC(S))$$

$$= \mu_{R \circ (Q \cap P)}(x, y)$$

$$= \mu_{R \vee (Q \wedge P)}(x, y) \quad (By Corollary 2.3)$$

$$\nu_{(R \vee Q) \wedge P}(x, y) = \nu_{(R \circ Q) \cap P}(x, y)$$
$$= \left(\bigwedge_{z \in S} [\nu_Q(x, z) \vee \nu_R(z, y)] \right) \vee \nu_P(x, y)$$

$$= \bigwedge_{z \in S} [\nu_Q(x, z) \vee \nu_R(z, y) \vee \nu_R(z, y) \vee \nu_P(x, y)]$$

$$\geq \bigwedge_{z \in S} [\nu_Q(x, z) \vee \nu_R(z, y) \vee \nu_P(z, y) \vee \nu_P(x, y)]$$

$$\geq \bigwedge_{z \in S} [\nu_Q(x, z) \vee \nu_R(z, y) \vee \nu_P(x, z)]$$

$$= \nu_{R \circ (Q \cap P)}(x, y) = \nu_{R \vee (Q \wedge P)}(x, y).$$

Thus $(R \vee Q) \wedge P \subset R \vee (Q \wedge P)$. It is clear that $R \vee (Q \wedge P) \subset (R \vee Q) \wedge P$ from the modular inequality. So $(R \vee Q) \wedge P = P \vee (Q \wedge P)$. Hence \mathcal{A} is modular.

The following is the immediate result of Proposition 3.7 and Theorem 3.9.

Corollary 3.7 If G is a group, then $(IFC(G), \wedge, \vee)$ is a modular lattice.

4. The lattice of intuitionistic fuzzy congruences on a regular semigroup.

For a semigroup S, S^1 denotes the monoid defined as follows:

$$S^{1} = \begin{cases} S & \text{if } s \text{ has the ideuctity 1,} \\ S \cup \{1\} & \text{otherwise.} \end{cases}$$

Definition 4.1 [13]. The equivalence relations $\mathcal{L}, \mathcal{R}, \mathcal{H}$ and \mathcal{D} on a semigroup S are defined as follows, respectively:

- (1) $\mathcal{L} = \{(a,b) \in S \times S : S^1 a = S^1 b\}.$
- (2) $\mathcal{R} = \{(a,b) \in S \times S : aS^1 = bS^1\}.$
- (3) $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$.
- (4) $\mathcal{D} = \mathcal{L} \vee \mathcal{R}$.

The $\mathcal{L}-,\mathcal{R}-,\mathcal{H}-$ and $\mathcal{D}-$ classes of S contains the element a will, as usual, be denoted by La, Ra, Ha and Da, respectively. The set of all $\mathcal{L}-$ classes [resp. $\mathcal{R}-$ classes] of S can be partially ordered as follows: for any $a, b \in S$,

$$La \leq Lb$$
 if and only if $S^1a \subset S^1b$

$$Ra \le Rb$$
 if and only if $aS^1 \subset bS^1$.

Definition 4.2[20]. Let R be an intuitionistic fuzzy relation on a semigroup S. We define a complex mapping $R^{\circ} = (\mu_{R^{\circ}}, \nu_{R^{\circ}}) : S \times S \to I \times I$ as follows: for any $x, y \in S$,

$$R^{\circ}(x,y) = (\bigwedge_{s,t \in S^{1}} \mu_{R}(sxt,syt), \bigvee_{s,y \in S^{1}} \nu_{R}(sxt,syt)).$$

It is clear that $R^{\circ} \in IFR(S)$.

Result 4.A[20, Proposition 3.3]. Let S be a semigroup and let $R, Q \in IFR(S)$. Then:

- (1) $R^{\circ} \subset R$.
- (2) $(R^{\circ})^{-1} = (R^{-1})^{\circ}$.
- (3) If $R \subset Q$, then $R^{\circ} \subset Q^{\circ}$.
- $(4) (R^{\circ})^{\circ} = R^{\circ}.$
- $(5) (R \cap Q)^{\circ} = R^{\circ} \cap Q^{\circ}.$
- (6) $R = R^{\circ}$ if and only if R is intuitionistic fuzzy left and right compatible.

Result 4.B[20, Theorem 3.4]. Let S be a semigroup and let $R \in IFE(S)$. Then R° is the largest intuitionistic fuzzy congruence on S contained in R.

Result 4.C[20, Theorem 3.6]. Let S be a regular semigroup. If $P, Q \in \sum (\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})$, then $P \circ Q = Q \circ P$, where $\sum (\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c}) = \{T \in IFC(S) : T \subset (\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})\}$.

Definition 4.3[20]. Let S be a regular semigroup and let $R \in IFC(S)$. Then R is called an intuitionistic fuzzy idempotent separating congruence (in short, IFISC) if $Re \neq R_f$ whenever $e \neq f$, i.e., $Re = R_f$ implies e = f for any $e, f \in E_S$.

We will denote the set of all IFISCs on S by IFISC(S).

Result 4.D[20, Theorem 4.7]. Let S be a regular semigroup and let $T \in IFC(S)$. Then $T \in IFISC(S)$ if and only if $T \in \sum (\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})$.

Proposition 4.4.Let S be a semigroup and let $R \in IFE(S)$ and let $\sum(R) = \{T \in IFC(S) : T \subset R\}$. Then $\sum(R)$ is a sublattice of IFC(S) with the greatest

element R° and the least element \triangle .

proof. It is clear that $\Delta \in \operatorname{IFC}(S)$ and $\Delta \subset R$. Thus $\Delta \in \Sigma(R)$. So $\Sigma(R) \neq \phi$. Let $P,Q \in \Sigma(R)$. Then, by Result 3.A(1) and Result 3.B, $P \wedge Q \subset R$ and $P \vee Q \subset R^{\circ} \subset R$. Thus $P \wedge Q, P \vee Q \in \Sigma(R)$. Hence $\Sigma(R)$ is a sublattice of $\operatorname{IFC}(S)$ with the greatest element R° and the least element Δ .

Proposition 4.5.Let S be a regular semigroup. Then $\sum (\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})$ is a modular sublattice of IFC(S) with the greatest element $(\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})^{\circ}$ and the least element \triangle .

Proof. By Proposition 4.4, $\sum (\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})$ is a sublattice of IFC(S) with the greatest element $(\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})^{\circ}$ and the least element \triangle . Hence, by Result 4.C and Theorem 3.9, $\sum (\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})$ is a modular sublattice of IFC(S).

The following is the immediate result of Proposition 4.5 and Result 4.D.

Theorem 4.6.Let S be a regular semigroup. Then IFISC(S) is a modular sublattice of IFC(S) with the greatest element $(\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})^{\circ}$ and the least element \triangle .

Lemma 4.7.Let S be a semigroup and let $P,Q \in IFC(S)$ such that $Q \subset P$. We define a complex mapping $P/Q = (\mu_{P/Q}, \nu_{P/Q}) : S/Q \times S/Q \to I \times I$ as follows: for any $x, y \in S$,

$$P/Q(Qx, Qy) = (\mu_P(x, y), \nu_P(x, y)).$$

Then P/Q is an intuitionistic fuzzy congruence on S/Q.

Proof. It is clear that $P/Q \in IFR(S/Q)$ from the definition of P/Q. Let $x \in S$. Then $P/Q(Qx,Qx) = (\mu_P(x,x),\nu_P(x,x)) = (1,0)$. Thus P/Q is intuitionistic fuzzy reflexive. It is clear that P/Q is intuitionistic fuzzy symmetric from the definition of P/Q. Now let $x, y \in S$. Then

$$\mu_{P/Q}(Qx, Qy) = \mu_P(x, y) \ge \mu_{P \circ P}(x, y) = \bigvee_{z \in S} [\mu_P(x, z) \land \mu_P(z, y)]$$

$$= \bigvee_{z \in S} [\mu_{P/Q}(Qx, Qz) \wedge \mu_{P/Q}(Qz, Qy)]$$

$$= \mu_{P/Q \circ P/Q}(Qx, Qy)$$

$$\nu_{P/Q}(Qx, Qy) = \nu_P(x, y) \le \nu_{P \circ P}(x, y) = \bigwedge_{z \in S} [\nu_P(x, z) \lor \nu_P(z, y)]$$

$$= \bigwedge_{z \in S} [\nu_{P/Q}(Qx, Qz) \lor \nu_{P/Q}(Qz, Qy)]$$

$$= \nu_{P/Q \circ P/Q}(Qx, Qy).$$

Thus $P/Q \circ P/Q \subset P/Q$, i.e., P/Q is intuitionistic fuzzy transitive. So $P/Q \in IFE(S/Q)$.

Let $x, y, z, t \in S$. Then

$$\mu_{P/Q}(Qx*Qz,Qy*Qt) = \mu_{P/Q}(Qxz,Qyt) = \mu_{P}(xz,yt)$$

$$\geq \mu_{P}(x,y) \wedge \mu_{P}(z,t)$$

$$= \mu_{P/Q}(Qx,Qy) \wedge \mu_{P/Q}(Qz,Qt)$$

and

$$\begin{array}{rcl} \nu_{P/Q}(Qx*Qz,Qy*Qt) & = & \nu_{P/Q}(Qxz,Qyt) = \nu_P(xz,yt) \\ \\ & \leq & \nu_P(x,y) \vee \nu_P(z,t) \\ \\ & = & \nu_{P/Q}(Qx,Qy) \vee \nu_{P/Q}(Qz,Qt). \end{array}$$

Thus P/Q is intuitionistic fuzzy compatible. Hence $P/Q \in IFC(S/Q)$.

Lemma 4.8. Let S be a semigroup, let $T \in IFC(S)$ and let $IFC_T(S) = \{P \in IFC(S) : T \subset P\}$. Then there exists an order preserving bijection $\Phi : IFC_T(S) \to IFC(S/T)$.

Proof. We define a mapping $\Phi : \operatorname{IFC}_T(S) \to \operatorname{IFC}(S/T)$ as follows : for each $P \in \operatorname{IFC}_T(S)$,

$$\Phi(P) = P/T.$$

Then, by Lemma 4.7, Φ is well-defined. Let $P, Q \in IFC_T(S)$ such that $P \subset Q$ and let $x, y \in S$. Then

$$\mu_{\Phi(P)}(Tx, Ty) = \mu_{P/T}(Tx, Ty) = \mu_{P}(x, y)$$

$$\leq \mu_{Q}(x, y) = \mu_{Q/T}(Tx, Ty) = \mu_{\Phi(Q)}(Tx, Ty)$$

$$\nu_{\Phi(P)}(Tx, Ty) = \nu_{P/T}(Tx, Ty) = \nu_{P}(x, y)$$

$$\geq \nu_{Q}(x, y) = \nu_{Q/T}(Tx, Ty) = \nu_{\Phi(Q)}(Tx, Ty).$$

Thus $\Phi(P) \subset \Phi(Q)$. So Φ is an order preserving mapping. It is clear that Φ is surjective. For any $P, Q \in \mathrm{IFC}_T(S)$, suppose $\Phi(P) = \Phi(Q)$ and let $x, y \in S$. Then P/T(Tx, Ty) = Q/T(Tx, Ty). Thus P(x, y) = Q(x, y). So Φ is injective. Hence Φ is an order preserving bijection. \blacksquare

The following result is straigh forward to verify.

Theorem 4.9.Let S be a semigroup and let $T \in IFC(S)$. If $P, Q \in IFC_T(S)$, then $(P \wedge Q)/T = P/T \wedge Q/T$ and $(P \vee Q)/T = P/T \vee Q/T$. Hence $IFC_T(S)$ and IFC(S/T) are lattice isomorphic.

Lemma 4.10. Let S be a semigroup and let $C \subset IFC(S)$ such that $T = \bigcap C \in C$. If $C/T = \{P/T : P \in C\}$ is a sublattice [resp. a sublattice of commuting intuitionistic fuzzy congruences] of IFC(S/T), then C is a sublattice [resp. a sublattice of commuting intuitionistic fuzzy congruences] of IFC(S).

Proof. Suppose \mathcal{C}/T is a sublattice of IFC(S/T). Let $P,Q \in \mathcal{C}$. Since \mathcal{C}/T is a sublattice of IFC(S/T), $P/T \wedge Q/T$, $P/T \vee Q/T \in \mathcal{C}/T$. Since $P,Q \in IFC_T(S)$, by Theorem 4.9, $P/T \wedge Q/T = (P \wedge Q)/T$ and $P/T \vee Q/T = (P \vee Q)/T$. Let $\Phi : IFC_T(S) \to IFC(S/T)$ be the order preserving bijection defined in Lemma 4.8. Then $\Phi \mid_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}/T$ is an order preserving bijection. Thus $P \wedge Q, P \vee Q \in \mathcal{C}$. Hence \mathcal{C} is a sublattice of IFC(S).

Suppose \mathcal{C}/T is a sublattice of commuting intuitionistic fuzzy congruences of IFC(S/T). Let $P,Q \in \mathcal{C}$ and let $x,y \in S$. Then

$$\begin{array}{lll} (P \circ Q)(x,y) & = & (\bigvee_{z \in S} [\mu_Q(x,z) \wedge \mu_P(z,y)], \bigwedge_{z \in S} [\nu_Q(x,z) \vee \nu_P(z,y)]) \\ \\ & = & (\bigvee_{z \in S} [\mu_{Q/T}(Tx,Tz) \wedge \mu_{P/T}(Tz,Ty)], \bigwedge_{z \in S} [\nu_{Q/T}(Tx,Tz) \vee \nu_{P/T}(Tz,Ty)]) \\ \\ & = & (P/T \circ Q/T)(Tx,Ty) = (Q/T \circ P/T)(Tx,Ty) \\ \\ & = & (\bigvee_{z \in S} [\mu_{P/T}(Tx,Tz) \wedge \mu_{Q/T}(Tz,Ty)], \bigwedge_{z \in S} [\nu_{P/T}(Tx,Tz) \vee \nu_{Q/T}(Tz,Ty)]) \\ \\ & = & (\bigvee_{z \in S} [\mu_P(x,z) \wedge \mu_Q(z,y)], \bigwedge_{z \in S} [\nu_P(x,z) \vee \nu_Q(z,y)]) \end{array}$$

$$= (Q \circ P)(x, y).$$

Thus $P \circ Q = Q \circ P$. Hence \mathcal{C} is a sublattice of commuting intuitionistic fuzzy congruences of IFC(S).

Remark 4.11. From Lemma 4.9 it is immediate that if C is a sublattice [resp. a sublattice of commuting intuitionistic fuzzy congruences] of IFC(S), then C /T is a sublattice [resp. a sublattice of commuting intuitionistic fuzzy congruences] of IFC(S/T).

The following is the immediate result.

Proposition 4.12.Let S be a semigroup and let $IFCo(S) = \{R \in IFC(S) : R(x,y) \in \{(0,1),(1,0)\} \text{ for any } x,y \in S\}$. Then IFCo(S) is a sublattice of IFC(S).

The following is the immediate result of Proposition 4.12 and Result 2.B.

Proposition 4.13.Let S be a semigroup. Then $R \in IFC(S)$ if and only if $R_{(\lambda,\mu)} \in IFCo(S)$ for each $(\lambda,\mu) \in [0,1) \times (0,1]$ with $\lambda + \mu \leq 1$.

Lemma 4.14. Let S be a regular semigroup and let $Ro = \{(P,Q) \in IFCo(S) \times IFCo(S) : P(e,f) = Q(e,f) \text{ for any } e,f \in E_S\}$. Then

- (1) Ro is an equivalence relation on IFCo(S).
- (2) Each Ro- class is a sublattice of IFCo(S) of commuting intuitionistic fuzzy congruences.

Proof. The proof of (1) is clear.

(2) Let \mathcal{A} be an Ro- class, let $T = \bigcap_{P \in \mathcal{A}} P$, let $Q \in \mathcal{A}$ and let $e, f \in E_S$. Then Q(e, f) = P(e, f) for each $P \in \mathcal{A}$ and $T(e, f) = (\bigwedge_{P \in \mathcal{A}} \mu_P(e, f), \bigvee_{P \in \mathcal{A}} \nu_P(e, f)) = P(e, f)$. Thus $T \in \mathcal{A}$. So \mathcal{A} has the least element T.

Suppose there exist idempotents f_1 and f_2 in S/T such that $\mu_{Q/T}(f_1, f_2) > 0$ and $\nu_{Q/T}(f_1, f_2) < 1$. By Result 3.D, there exist idempotents e_1, e_2 in S such that $f_1 = Te_1$ and $f_2 = Te_2$. Then

$$\mu_Q(e_1, e_2) = \mu_{Q/T}(Te_1, Te_2) = \mu_{Q/T}(f_1, f_2) > 0$$

$$\nu_Q(e_1, e_2) = \nu_{Q/T}(Te_1, Te_2) = \nu_{Q/T}(f_1, f_2) < 1.$$

Since $Q(e_1, e_2) = T(e_1, e_2)$, $\mu_T(e_1, e_2) > 0$ and $\nu_T(e_1, e_2) < 1$. Since $T \in IFCo(S)$, $T(e_1, e_2) = (1, 0)$. By Result 2.A(1), $f_1 = Te_1 = Te_2 = f_2$. So Q/T is intuitionistic fuzzy idempotent separating.

Now, for each $P \in IFCo(S/T)$, we define a complex mapping $P' = (\mu_{P'}, \nu_{P'})$: $S \times S \to I \times I$ as follows: for any $x, y \in S$,

$$P'(x, y) = P(Tx, Ty).$$

Then clearly $P' \in \operatorname{IFCo}(S)$ and $T \subset P'$. Suppose P is intuitionistic fuzzy idempotent separating and $\mu_{P'}(e,f) > 0$, $\nu_{P'}(e,f) < 1$ for any $e, f \in E_S$. Then $\mu_P(Te,T_f) = \mu_{P'}(e,f) > 0$ and $\nu_P(Te,T_f) < 1$. Since P is intuitionistic fuzzy idempotent separating, $Te = T_f$. Thus T(e,f) = (1,0). Since $T \subset P', 1 = \mu_T(e,f) \leq \mu_{P'}(e,f)$ and $0 = \nu_T(e,f) \geq \nu_{P'}(e,f)$. Thus T(e,f) = P'(e,f) for any $e, f \in E_S$. So $P' \in \mathcal{A}$ and thus P'/T = P. Hence $\mathcal{A}/T = \{Q/T : Q \in \mathcal{A}\}$ is just the subset of $\operatorname{IFCo}(S/T)$ of idempotent separating intuitionistic fuzzy congruences, i.e., $\mathcal{A}/T = \operatorname{IFCo}(S/T) \cap \operatorname{IFISC}(S/T)$. By Proposition 4.12 and Theorem 4.6, \mathcal{A}/T is a sublattice of $\operatorname{IFC}(S/T)$. Furthermore, by Result 4.C and Result 4.D, \mathcal{A}/T is a sublattice of $\operatorname{IFC}(S/T)$ of commuting intuitionistic fuzzy congruences. By Lemma 4.10, \mathcal{A} is a sublattice of commuting intuitionistic fuzzy congruences. But $\mathcal{A} \subset \operatorname{IFCo}(S)$. Hence \mathcal{A} is a sublattice of $\operatorname{IFCo}(S)$ of commuting intuitionistic fuzzy congruences. But $\mathcal{A} \subset \operatorname{IFCo}(S)$. Hence \mathcal{A} is a sublattice of $\operatorname{IFCo}(S)$ of commuting intuitionistic fuzzy congruences. This complete the proof.

Theorem 4.15.Let S be a regular semigroup and let $R = \{(P,Q) \in IFC(S) \times IFC(S) : P(e,f) = Q(e,f) \text{ for any } e,f \in E_S\}$. Then

- (1) R is an equivalence relation on IFC(S).
- (2) Each R- class is a modular sublattice of IFC(S).

Proof. The proof of (1) is clear.

(2) Let \mathcal{A} be an R- class, let $T=\bigcap \mathcal{A}$, and let $P \in \mathcal{A}$. Let $e, f \in E_S$. Then clearly P(e, f) = Q(e, f) for each $Q \in \mathcal{A}$. Thus P(e, f) = T(e, f). So $T \in \mathcal{A}$ and thus T is the least element of \mathcal{A} . Let $P, Q \in \mathcal{A}$ and let $e, f \in E_S$. Then clearly $(P \cap Q)(e, f) = T(e, f)$, i.e., $P \cap Q = T$. Since $T \in \mathcal{A}$, $P \cap Q \in \mathcal{A}$ for any $P, Q \in \mathcal{A}$. Now let $P, Q \in \mathcal{A}$, let $e, f \in E_S$ and let $(\lambda, \mu) \in [0, 1) \times (0, 1]$ with $\lambda + \mu \leq 1$. Then T(e, f) = P(e, f) = Q(e, f). Thus, by Result 2.B(1),

 $T_{(\lambda,\mu)}(e,f) = P_{(\lambda,\mu)}(e,f) = Q_{(\lambda,\mu)}(e,f)$. So there exists an Ro- class $\mathcal{A}o$ such that $T_{(\lambda,\mu)}, P_{(\lambda,\mu)}, Q_{(\lambda,\mu)} \in \mathcal{A}o$. By Result 2.B(2) and Lemma 4.14, $(P \vee Q)_{(\lambda,\mu)} = P_{(\lambda,\mu)} \vee Q_{(\lambda,\mu)} \in \mathcal{A}o$. Then $(P \vee Q)_{(\lambda,\mu)}(e,f) = (P_{(\lambda,\mu)} \vee Q_{(\lambda,\mu)})(e,f) = T_{(\lambda,\mu)}(e,f)$. Thus $(P \vee Q)(e,f) = T(e,f)$. So $P \vee Q \in \mathcal{A}$. Hence \mathcal{A} is a sublattice of IFC(S). Also, by Result 2.B(2) and Lemma 4.14, $(P \circ Q)_{(\lambda,\mu)} = P_{(\lambda,\mu)} \circ Q_{(\lambda,\mu)} = Q_{(\lambda,\mu)} \circ P_{(\lambda,\mu)} = (Q \circ P)_{(\lambda,\mu)}$. Then $P \circ Q = Q \circ P$. Hence, by Result 2.B(1) and Theorem 3.9, \mathcal{A} is a modular sublattice of IFC(S). \blacksquare

Corollary 4.15. Let S be a regular semigroup. Then

- (1) IFC(S) is a disjoint union of some modular sublattices of IFC(S).
- (2) If S is a group, then IFC(S) is a modular lattice.

Proof. (1) It is clear form Theorem 4.15.

(2) Suppose S is a group. Then $E_S = \{e\}$, where e is the identity of S. Let $P, Q \in IFC(S)$. Then P(e, e) = Q(e, e) = (1, 0). Thus $R = IFC(S) \times IFC(S)$ and each R-class is IFC(S). Hence, by Theorem 4.15, IFC(S) is a modular lattice. \blacksquare

5. Relationship between intuitionistic fuzzy normal subgroups and intuitionistic fuzzy congruences

Definition 5.1[14]. Let (X, \cdot) be a groupoid and let $A, B \in IFS(X)$. Then the intuitionistic fuzzy product of A and B, $A \circ B$ is defined as follows: for any $x \in X$

$$(A \circ B)(x) = \begin{cases} (\bigvee_{yz=x} [\mu_A(y) \wedge \mu_B(z)], \bigwedge_{yz=x} [\nu_A(y) \vee \nu_B(z)]), \\ (0,1) & \text{if } x \text{ is not expressible as } x = yz. \end{cases}$$

Definition 5.2[14]. Let (X, \cdot) be a groupoid and let $A \in IFS(X)$. Then A is called an intuitionistic fuzzy subgroupoid (in short, IFGP) of X if for any $x, y \in X$,

$$\mu_A(xy) \ge \mu_A(x) \wedge \mu_A(y)$$
 and $\nu_A(xy) \le \nu_A(x) \vee \nu_A(y)$.

We will denote the set of all IFGPs of a groupoid X as IFGP(X). Then it is

clear that 0_{\sim} and $1_{\sim} \in IFGP(X)$.

Definition 5.3[15]. Let G be a group and let $A \in IFGP(G)$. Then A is called an intuitionistic fuzzy subgroup (in short, IFG) of G if $A(x^{-1}) \ge A(x)$, i.e., $\mu_A(x^{-1}) \ge \mu_A(x)$ and $\nu_A(x^{-1}) \le \nu_A(x)$, for each $x \in G$.

We will denote the set of all IFGs of G as IFG(G).

Result 5.A[15, Proposition 3.4]. Let A be an IFG of a group G. Then $A \circ A = A$.

Result 5.B[15, Proposition 3.5]. Let A and B be any two IFGs of a group G. Then the following conditions are equivalent:

- (1) $A \circ B \in IFG(G)$.
- (2) $A \circ B = B \circ A$.

Definition 5.4[15]. Let G be a group and let $A \in IFG(G)$. Then A is said to be normal if A(xy) = A(yx) for any $x, y \in G$.

We will denote the family of all intuitionistic fuzzy normal subgroups of a group G as IFNG(G). In particular, we will denote the set $\{N \in \text{IFNG}(G) : N(e) = (1,0)\}$ as IFN(G).

Result 5.C[15, Proposition 4.4]. Let G be a group and let $A, B \in IFNG(G)$. Then $A \circ B \in IFNG(G)$.

Result 5.D[19, Proposition 3.18]. Let G be a group and let $R \in IFC(G)$. We define the complex mapping $A_R = (\mu_{A_R}, \nu_{R_A}) : G \to I \times I$ as follows: for each $a \in G$,

$$A_R(a) = R(a, e) = Re(a).$$

Then $A_R \in IFN(G)$.

Definition 5.5[16]. Let G be a group, let $A \in IFG(G)$ and let $x \in G$. We define two complex mappings

$$Ax = (\mu_{Ax}, \nu_{Ax}) : G \to I \times I$$

$$xA = (\mu_{xA}, \nu_{xA}) : G \to I \times I$$

as follows, respectively: for each $g \in G$,

$$Ax(g) = A(gx^{-1})$$
 and $xA(g) = A(x^{-1}g)$.

Then Ax [resp. xA] is called the intuitionistic fuzzy right [resp. left] coset of G determined by x and A.

It is clear that if $A \in IFNG(G)$, then the intuitionistic fuzzy left coset and the intuitionistic fuzzy right coset of A on G coincide and in this case, we call *intuitionistic fuzzy coset* instead of intuitionistic fuzzy left coset or intuitionistic fuzzy right coset.

We denote as C(G) the set of all congruences on a group G. As C(G) a complate description of the congruences on a group in terms of its normal subgroups can be seen in many books, for example, in A.Rosenfeld [30] and J.M.Howie [13]. There can read as follows: There exists a lattice isomorphism of N(G) onto C(G). In this section, we shall obtain the similar result using intuitionistic fuzzy sets, where N(G) denotes the set of all normal subgroups of G.

Lemma 5.6.Let G be a group and let $A \in IFN(G)$. We define the complex mapping $R_A = (\mu_{R_A}, \nu_{R_A}) : G \times G \to I \times I$ as follows: for each $(a, b) \in G \times G$,

$$R_A(a,b) = A(ab^{-1}).$$

Then $R_A \in IFC(G)$.

Proof. From the definition of R_A , it is clear that $R_A \in IFR(G)$. Moreover, R_A is intuitionistic fuzzy reflexive and intuitionistic fuzzy symmetric. Let $a, b \in G$. Then

$$\mu_{R_A \circ R_A}(a, b) = \bigvee_{t \in G} [\mu_{R_A}(a, t) \wedge \mu_{R_A}(t, b)]$$

$$= \bigvee_{t \in G} [\mu_A(at^{-1}) \wedge \mu_A(tb^{-1})]$$

$$\leq \bigvee_{t \in G} \mu_A((at^{-1})(tb^{-1})) \quad \text{(Since } A \in \text{IFG}(G))$$

$$= \mu_A(ab^{-1}) = \mu_{R_A}(a, b)$$

$$\nu_{R_A \circ R_A}(a, b) = \bigwedge_{t \in G} [\nu_{R_A}(a, t) \vee \nu_{R_A}(t, b)] = \bigwedge_{t \in G} [\nu_A(at^{-1}) \vee \nu_A(tb^{-1})]$$

$$\geq \bigwedge_{t \in G} \nu_A((at^{-1})(tb^{-1})) = \nu_A(ab^{-1}) = \nu_{R_A}(a, b).$$

Thus $R_A \circ R_A \subset R_A$. So R_A is intuitionistic fuzzy transitive. Hence $R_A \in IFE(G)$.

We can easily see that R_A is intuitionistic fuzzy compatible. Therefore $R_A \in IFC(G)$.

Proposition 5.7. Let G be a group and let $A, B \in IFG(G)$. Then

$$R_B \circ R_A = R_{A \circ B}$$

Proof. Let $(a,b) \in G$. Then

$$\begin{array}{lll} (R_{B} \circ R_{A})(a,b) & = & (\mu_{R_{B} \circ R_{A}}(a,b), \nu_{R_{B} \circ R_{A}}(a,b)) \\ & = & (\bigvee_{z \in G} [\mu_{R_{A}}(a,z) \wedge \mu_{R_{B}}(z,b)], \bigwedge_{z \in G} [\nu_{R_{A}}(a,z) \vee \nu_{R_{B}}(z,b)]) \\ & = & (\bigvee_{z \in G} [\mu_{A}(az^{-1}) \wedge \mu_{B}(zb^{-1})], \bigwedge_{z \in G} [\nu_{A}(az^{-1}) \vee \nu_{B}(zb^{-1})]) \\ & = & (\bigvee_{az^{-1} = x, zb^{-1} = y} [\mu_{A}(x) \wedge \mu_{B}(y)], \bigwedge_{az^{-1} = x, zb^{-1} = y} [\nu_{A}(x) \vee \nu_{B}(y)]) \\ & = & (\bigvee_{ab^{-1} = xy} [\mu_{A}(x) \wedge \mu_{B}(y)], \bigwedge_{ab^{-1} = xy} [\nu_{A}(x) \vee \nu_{B}(y)]) \\ & = & (\mu_{A \circ B}(ab^{-1}), \nu_{A \circ B}(ab^{-1})) \\ & = & (\mu_{R_{A \circ B}}(a,b), \nu_{R_{A \circ B}}(a,b)) = R_{A \circ B}(a,b). \end{array}$$

Hence $R_B \circ R_A = R_{A \circ B}$.

Theorem 5.8.Let G be a group. Then $(IFC(G), \circ)$ is a semilattice (i.e., a commutative idempotent semigroup).

Proof. Let $H, K \in IFC(G)$ and let $(a, b) \in G \times G$. Then

$$(K \circ H)(a,b) = (\mu_{K \circ H}(a,b), \nu_{K \circ H}(a,b))$$

$$= (\bigvee_{z \in G} [\mu_{H}(a, z) \wedge \mu_{K}(z, b)], \bigwedge_{z \in G} [\nu_{H}(a, z) \vee \nu_{K}(z, b)])$$

$$= (\bigvee_{z \in G} [\mu_{H}(az^{-1}, e) \wedge \mu_{K}(e, z^{-1}b)], \bigwedge_{z \in G} [\nu_{H}(az^{-1}, e) \vee \nu_{K}(e, z^{-1}b)])$$

$$(By Lemma 3.1)$$

$$= (\bigvee_{z \in G} [\mu_{K}(e, z^{-1}b) \wedge \mu_{H}(az^{-1}, e)], \bigwedge_{z \in G} [\nu_{K}(e, z^{-1}b) \vee \nu_{H}(az^{-1}, e)])$$

$$= (\bigvee_{z \in G} [\mu_{K}(a, az^{-1}b) \wedge \mu_{H}(az^{-1}b, b)], \bigwedge_{z \in G} [\nu_{K}(a, az^{-1}b) \vee \nu_{H}(az^{-1}b, b)])$$

$$(By Lemma 3.1)$$

$$= (\bigvee_{t \in G} [\mu_{K}(a, t) \wedge \mu_{H}(t, b)], \bigwedge_{t \in G} [\nu_{K}(a, t) \vee \nu_{H}(t, b)])$$

$$(t = az^{-1}b)$$

$$= (\mu_{H \circ K}(a, b), \nu_{H \circ K}(a, b)) = (H \circ K)(a, b).$$

Thus $K \circ H = H \circ K$. So, by Result 3.B, $H \circ K \in IFC(G)$. On the other had, we can easily see that $R \circ R = R$ for each $R \in IFC(G)$. Hence $(IFC(G), \circ)$ is a semilattice.

The following result follows from Results 5.A, 5.B and 5.C.

Proposition 5.9.Let G be a group. Then $(IFN(G), \circ)$ is a semilattice.

Theorem 5.10.Let G be a group. Then there exists a bijection $\alpha: IFC(G) \to IFN(G)$ such that $\alpha(R \circ S) = \alpha(R) \circ \alpha(S)$ and $\alpha(R \wedge S) = \alpha(R) \cap \alpha(S)$ for any $R, S \in IFC(G)$. Hence $\alpha: (IFC(G), \wedge, \circ) \to (IFN(G), \cap, \circ)$ is a lattice isomorphism.

Proof. We define two mappings $\alpha : IFC(G) \rightarrow IFN(G)$ and $\beta : IFN(G) \rightarrow IFC(G)$ respectively, as follows:

$$\alpha(R) = Re$$
 for each $R \in IFC(G)$

and

$$\beta(N)(a,b) = N(ab^{-1})$$
 for each $N \in IFN(G)$ and any $a,b \in G$.

By Result 5.D and Lemma 5.6, α and β are well-defined.

We show that $\alpha \circ \beta = id_{IFN(G)}$ and $\beta \circ \alpha = id_{IFC(G)}$. Let $R \in IFC(G)$ and let $a, b \in G$. Then

$$[(\beta \circ \alpha)(R)](a,b) = [\beta(\alpha(R))](a,b) = \beta(Re)(a,b)$$

=
$$R_e(ab^{-1}) = R(e, ab^{-1})$$

= $R(b, a)$ (Since R is intuitionistic fuzzy right compatible)
= $R(a, b)$. (Since R is intuitionistic fuzzy symmetric)

Thus $(\beta \circ \alpha)(R) = R$. So $\beta \circ \alpha = id_{IFC(G)}$. Now let $N \in IFN(G)$ and let $a \in G$. Then

$$[(\alpha \circ \beta)(N)](a) = [\alpha(\beta(N))](a) = (\beta(N))_e(a) = \beta(N)(e, a)$$
$$= N(ea^{-1}) = N(a^{-1}) = N(a).$$

Thus $(\alpha \circ \beta)(N) = N$. So $\alpha \circ \beta = id_{IFN(G)}$. Hence α is bijective.

Now, we show that $\alpha(R \circ S) = \alpha(R) \circ \alpha(S)$ and $\alpha(R \wedge S) = \alpha(R) \cap \alpha(S)$ for any $R, S \in IFC(G)$. Let $R, S \in IFC(G)$ and let $a \in G$. Then

$$[\alpha(R \circ S)](a) = (R \circ S)e(a) = (R \circ S)(e, a).$$

Thus

$$\mu_{R \circ S}(e, a) = \bigvee_{z \in G} [\mu_S(e, z) \wedge \mu_R(z, a)] = \bigvee_{z \in G} [\mu_S(e, z) \wedge \mu_R(e, az^{-1})]$$
(Since R is intuitionistic fuzzy right compatible)
$$= \bigvee_{z \in G} [\mu_{Se}(z) \wedge \mu_{Re}(az^{-1})] = \bigvee_{z \in G} [\mu_{Re}(az^{-1}) \wedge \mu_{Se}(z)]$$

$$= \bigvee_{a = bz} [\mu_{Re}(b) \wedge \mu_{Se}(z)] = \mu_{Re \circ Se}(a) = \mu_{\alpha(R) \circ \alpha(S)}(a)$$

and

$$\nu_{R \circ S}(e, a) = \bigwedge_{z \in G} [\nu_{S}(e, z) \vee \nu_{R}(z, a)] = \bigwedge_{z \in G} [\nu_{S}(e, z) \vee \nu_{R}(e, az^{-1})]
= \bigwedge_{z \in G} [\nu_{R}(e, az^{-1}) \vee \nu_{S}(e, z)] = \bigwedge_{a = bz} [\nu_{Re}(b) \vee \nu_{Se}(z)]
= \nu_{Re \circ Se}(a) = \nu_{\alpha(R) \circ \alpha(S)}(a).$$

So $\alpha(R \circ S) = \alpha(R) \circ \alpha(S)$. On the other hand,

$$\mu_{\alpha(R \wedge S)}(a) = \mu_{(R \cap S)e}(a) = \mu_{R \cap S}(e, a) = \mu_{R}(e, a) \wedge \mu_{S}(e, a)$$
$$= \mu_{Re}(a) \wedge \mu_{Se}(a) = \mu_{Re \cap Se}(a) = \mu_{\alpha(R) \cap \alpha(S)}(a)$$

$$\nu_{\alpha(R \wedge S)}(a) = \nu_{(R \cap S)_e}(a) = \nu_{R \cap S}(e, a) = \nu_{R}(e, a) \vee \nu_{S}(e, a)
= \nu_{Re}(a) \vee \nu_{Se}(a) = \nu_{Re \cap Se}(a) = \nu_{\alpha(R) \cap \alpha(S)}(a).$$

So $\alpha(R \wedge S) = \alpha(R) \cap \alpha(S)$. Hence α is a lattice isomorphism. This completes the proof. \blacksquare

The following is the immediate result of Corollary 3.9 and Theorem 5.10.

Corollary 5.10. (IFN(G), \cap , \circ) is a modular lattice.

References

- [1] F.A.Al-Thukair, Fuzzy congruence pairs of inverse semigroups, Fuzzy sets and systems 56(1993), 117-122.
- [2] K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986),87-96.
- [3] Baldev Banerjee and Dhiren Kr. Basnet, Intuitionistic fuzzy subrings and ideals, J.Fuzzy Math. 11(1)(2003),139-155.
- [4] G.Birkhoff, Lattice Theory, (AMS Colloquium Publication Vol.XXV, 1967).
- [5] R.Biswas, Intuitionistic fuzzy subgroups, Mathematical Forum x(1989),37-46.
- [6] H.Bustince and P.Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems 78(1996),293-303
- [7] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88(1997),81-89.
- [8] D. Çoker and A.Haydar Es, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3(1995),899-909.
- [9] A.H.Clifford and G.B.Preston, The Algebraic Theory of Semigroup, Vol.1, Math. Surveys, New York. (1961)
- [10] P.Das, Lattice of fuzzy congruences in inverse semigroups, Fuzzy Sets and Systems 91(1997),399-408.
- [11] G.Deschrijver and E.E.Kerre, On the composition of intuitionistic fuzzy relations, Fuzzy Sets and Systems 136(2003), 333-361.
- [12] H.Gürçay, D. Çoker and A.Haydar Es, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5(1997), 365-378.
- [13] J.M Howie, An Introduction to Semigroup Theory (Academic Press, New York, 1976).
- [14] K.Hur, S.Y.Jang and H.W.Kang, Intuitionistic fuzzy subgroupids, International Journal of Fuzzy Logic and Intelligent Systems 3(1) (2003), 72-77.

- [15] K.Hur, H.W.Kang and H.K.Song, Intuitionistic fuzzy subgroups and subrings, Honam Mathematical J.25(2)(2003),19-41.
- [16] K.Hur, S.Y.Jang and H.W.Kang, Intuitionistic fuzzy normal subgroups and intuitionistic fuzzy cosets, Honam Math.J.26(4)(2004), 559-587.
- [17] ______, Intuitionistic fuzzy congruences on a lattice, J.Appl.Math. Computing 18(1-2)(2005), 465-486.
- [18] K.Hur, S.Y.Jang and Y.S.Ahn, Intuitionistic fuzzy equivalence relations, honam mathematical J. 27(2)(2005), 163-181.
- [19] K.Hur, S.Y.Jang and Y.B.Jun, Intuitionistic fuzzy congruences, Far East J.Math.Sci. 17(1)(2005), 1-29.
- [20] K.Hur, S.Y.Jang and H.W.Kang, Intuitionstic fuzzy congruences contained in $(\chi_{\mathcal{H}}, \chi_{\mathcal{H}^c})$ and intuitionistic fuzzy idempotent separating congruences, To submit.
- [21] ______, Some intuitionistic fuzzy congruences, Iranian J. of fatty systems, To appear.
- [22] P.T.Johstone, Stone Spaces (Cambridge University Press, 1982).
- [23] J.P.Kim and D.R.Bae, Fuzzy congruences in groups, Fuzzy Sets and Systems 85(1997), 115-120.
- [24] ______, T^* -pure Archimedean semigroups, Comment. Math. Univ. St. Pauli 31 (1982), 115-128.
- [25] ______, Fuzzy congruence and fuzzy normal subgroups, Inform.Sci.66(1992), 235-243.
- [26] ______, Fuzzy congruences on T^* -pure semigroups, Inform.Sci.84(1995), 239-246.
- [27] ______, Fuzzy congruences on inverse semigroups, Fuzzy Sets and Systems 87(1997), 335-340.
- [28] S.J.Lee and E.P.Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc. 37(1)(2000),63-76.
- [29] V.Murali, Fuzzy congruence relations, Fuzzy Sets and Systems 41(1991), 359-369.
- [30] A.Rosenfeld, An Introduction to Algebraic Structures (Holden-Day, Sen Fransisco, 1968).
- [31] M.Samhan, Fuzzy congruences on semigroups, Inform.Sci.74(1993), 165-175.
- [32] T.Yijia, Fuzzy congruences on a regular semigroup, Fuzzy sets and Systems 117 (2001), 447-453.

[33] L.A.Zadeh, Fuzzy sets, Inform. and Control 8(1965), 338-353.

Received: April 6, 2005