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1. Introduction. The algebra corresponding to the 77-valued logic de-
scribed by E. L. Post [7] in 1921 was first developed by P. C. Rosenbloom
[9] in 1942. Rosenbloom's axioms are based on a minimum of undefined
operations and are therefore quite complicated. This complexity also hinders
his development of the theory. In this paper, a set of axioms for Post algebras
is presented which makes use of a greater number of operations, as well as
certain constants. These operations Co, ■ ■ ■ , Cn-i are generalized comple-
mentation operators, where 77 is the order of the Post algebra. The axioms,
given in terms of these operators, are very simple. In addition, the simplicity
of the operations makes a large part of the theory much more transparent.
Another striking feature of the development is the role played by the under-
lying Boolean algebra of the Post algebra. The existence of this Boolean alge-
bra has been known for a long time, but this fact has not been as fully ex-
ploited as in this approach. It will be shown, for example, that the repre-
sentation theory for Post algebras follows immediately from the correspond-
ing theory for Boolean algebras. No further use of the Axiom of Choice is
needed. In addition many properties of a Post algebra, such as completeness,
infinite distributivity, and the atomistic property, are fully mirrored by the
corresponding properties for the underlying Boolean algebra.

The notation is explained in §2. §3 presents the axioms, and various theo-
rems and remarks concerning the arithmetic and structure of the algebra.
§4 discusses Post functions and their reduction to a given form. Examples are
given in §5. The representation theory is described in §6, and §7 discusses
completeness properties of infinite Post algebras.

2. Notation. The usual lattice notation is employed. The supremum of
x and y is denoted by xVy, and the infimum of x and y is denoted by xAy,
or more briefly, by xy. The symbols Vx< and Ax,- denote, respectively, the
supremum and infimum of the x,- over a specified index set. The symbols
Vl; Xi and Ai; Xi emphasize that the supremum or infimum is taken in the
lattice P. If x has a complement, it is denoted by {x}~ or, if convenient, by x.

3. Formulation. Let 77 be a fixed integer satisfying 77 2:2. Let L he a dis-
tributive lattice with zero 0 and unit u, and satisfying the following condi-
tions :

Axiom 1. For every element x£P there exist 77 elements C0(x), Ci(x), • • • ,
C_i(x) which are pairwise disjoint and whose supremum is u; that is,
C,-(x)Cy(x) =0 for i?*j and VJTo1 C,(x) =u.

Presented to the Society, June 20, 1959; received by the editors April 24, 1959.

300

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE LATTICE THEORY OF POST ALGEBRAS 301

Axiom 2. There exist n fixed elements of L, denoted 0 = e0, ei, • • • , en-i,
en-i = u with the properties:

2a. The elements form a chain, with e,-_i^e,- for 1 ̂ i^n — 1.
2b. If xGL and xei=0, then x = 0.
2c. If xGL and, for some i, x\/e.-i=e.-, then x = e,-.
Axiom 3. For every xGL, x= V?r0X «»C,(x); that is,

x = aCi(x) V e2d(x) V • ■ ■ V e„-2C„_2(x) V Cn-i(x).

It will be shown in §6 that L is a Post algebra and, conversely, every Post
algebra is such a lattice. The remaining work in this section is an exposition
of fundamental consequences.

Lemma 1. IfxGL andxe, = 0for someiin the range l^i^n — 1, thenx = 0.

Proof. If xe< = 0, then (xe,)ei = 0. Hence xei=0 by Axiom 2a and x = 0
by Axiom 2b.

Lemma 2. If xGL and if x\/ei = ejfor some i andj, with i <j, then x=c,-.

Proof. If x\/ei = ej, then *V«»V«y-i = CyV«y-ii and xVc?y-i = ey by Axiom
2a. Hence x = e}- by Axiom 2c.

It is well known that the complemented elements of a distributive lattice
form a sublattice which is a Boolean algebra. This leads to the following
definition.

Definition 1. Let B be the Boolean algebra of complemented elements
of L.

Theorem 1. If xGL, then xGB if and only if x = Ci(y) for some i and some
yGL.

Proof. If x = d(y), then x = V,v< Cj(y) by Axiom 1. On the other hand,
suppose x has a complement x. Then xtken-i\/Cn-i(x) from Axiom 3, so
en-i\/x\/C„-i(x) =u. Hence x\fCn-i(x)=u, by Lemma 2, and therefore
x^Cn-i(x). Since x^C„_i(x) by Axiom 3, it follows that x = C„_i(x).

Lemma 3. If bGB and bet = bej for some i and j with i<j, then 6 = 0.

Proof. Using Axiom 2a, ej = efb\/efb = efb\/eib^efb\Jei%.ej, so that oef\Jei
= ej. Hence lej = ej by Lemma 2. Thus bej = b(lef) =0, and, by Lemma 1, 6 = 0.

Theorem 2. (Uniqueness Theorem). The C,(x) are unique. That is,
for any given xGL, there is only one sequence of elements C0(x), Ci(x), • • • ,
C„_i(x) satisfying Axiom 1 and Axiom 3.

Proof. Suppose there is another such sequence, say Co'(x), Ci'(x), • • • ,
C„'_i(x). By Axiom 3, TtZl ekCk(x) = VJlJ etCk'(x). Thus if i 9* j, then
Ci(x)C<(x)TtZlekCk(x) = Ci(x)Cj(x)VlZletC£(x), and, by Axiom 1,
eid(x)Cj (x)=ejCi(x)C'j (x).  Since  Ci(x)Cj (x)G-B,  Lemma  3  shows  that
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dix)Cj ix) =0. The result now follows from Axiom 1, for using the fact that
u=TtZ10 Ckix), lor every j, C/ (x) = Cj (x) V^J C*(x), and C/(x) = C/(x)Cy(x).
Likewise u = VJZJ Cf ix), so that C,-(x) = C,(x) V^=5 Cf ix) = C3(x)C/ (x). There-
fore Cy(x) = CJ ix) tor each/, and the proof is complete.

Theorem 3. For each i in the range OSiSn — 1,

Cn-lidix))   =   Ciix),
CjiCiix)) = 0, for 0 < j < n - 1,

and
CoiClx)) = V Ckix) = {dix)}-.

kfH

Proof. For given i, the 77 elements V*^ C4(x), 0, 0, • • • , 0, C<(x) are pair-
wise disjoint and their supremum is u, so that Axiom 1 is satisfied. Axiom 3
is satisfied since C<(x) =ei0V • • ■ \/en-20\f Ciix). Hence the result follows by
the uniqueness theorem.

Corollary. If bEB, then C0ib)=b, Cjib) =0 for 0<j<n-l, and C„_i(6)
= o.

Proof. This follows from Theorem 1.

Theorem 4. If i^j, then Ciie/)=0, and C,-(e,-)=w. The elements eit i
= 0, 1, •••,77 —1 are distinct and unique.

Proof. The first part of the theorem is again an immediate consequence of
the uniqueness theorem. If ip^j and e,- = e,-, then C,-(e.) =u and C,-(«y) = Cjief)
= u, contradicting Axiom 1. If there is another sequence of elements
0, e{, • ■ • , ef-2, u satisfying Axiom 2 and Axiom 3, then for every x£P
x = Vtlo1 ef Ckix), so that for x = e,-, 7 = 1, 2, • • • , 77 — 2, e,- = e,'. Thus the ele-
ments eit i = 0, 1, • • • , « — 1 are both unique and distinct.

Theorem 5. The lattice L is pseudo-complemented; that is, if xEL, there
exists x*EL such that xy = 0 if and only if y Sx*.

Proof. It is clear that x* = Co(x), for by Axiom 3 and Axiom 1 xCo(x) =0,
and xy = 0 if ySCoix). Conversely, if xy = 0, then ekCkix)y = 0 for each k,
since yVJl} ekCkix) =0. Hence C*(x)y = 0 for each k^l by Lemma 1. Thus
yVJU G(x)=y{C0(x)}- = 0, and ySCoix).

Theorem 6. If &,£P and x = V"lI e,-o,-, then x = VJIi1 e^VyT/ bf), and
n-l n-1

Coix) = A bj,     Ciix) = bi   A   lj for i = 1, • ■ ■ , n - 2,
J-l 3-i+l

and C„_i(x) =bn-\.
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Proof. If x=VjZl ejbh then
n—1  /    j       \ n—1      /»— 1     \

x= V(  V«,)6y = Vj V6y).
y_i \ i-i   / i-i    \ j-i   f

It is clear that
n—1  /       / n—1      \ \ n—1

V (bi[   A  5,-)) V bn-i = V 6, for 0 < k < n - 1.
i-k V   \y=»+i // >=*

For brevity, let c< = 6j(A"ri1+1 8,-), 0<i<n — 1, and set c„_i = 6„_i. Then
n—1        / n—1     \ n—1        / n—1     \ n—1        /    J        \ n—1

X =   V di    V iy)   =   V eA    V Cy)  =   V Cjl    V e<)   =   V fiyCy.
,=l     \ j—i    /        i—i     \ j—i    /       y=i     \ i—l    /       y_i

Since the w elements AjTi 8,-, Ci, • • • , cn-i are pairwise disjoint and their
supremum is u, the uniqueness theorem yields the final result.

The following definition and consequent theorems are preliminary to the
work of §7. They are also used to give simple proofs of Theorem 10 and
Theorem 12.

Definition 2. Let L\(x) = VyT,1 Gy(x), i = l, 2, • • • , n-l.
Clearly Di(x) ^Dj(x)GB for all xGL and all i and/ in the range ll^i^j

2a*»—1. Axiom 3 and Theorem 6 show that x = V "Ji1e,P<(x). The following
theorem is another consequence of Theorem 6.

Theorem 7. 7/ 6,-^6yGP /or a// i awci j in the range l^i^j^n — 1, then
bi=Di(x), where x = VjTi1 e,-6,-.

Proof. Using Theorem 6, Dk(x) = T,ll Cy(x) = V£i &y = 6*.

Theorem 8. For eacA * = 1, 2, • • • , n~ 1 and for every xGL and yGL,
Di(xVy)=Di(x)VDi(y).

Proof. Since Di(x)^D,(x)GB and Dt(y) ^D,(y)GB for all i and j in
the range l£»£/g»-l, L>,(x)VL>,(y)^L>y(x) VL>y(y)GP. Since

x V y =  V e,-Pi(x) V V eiDi(y) = "v *(/><(*) V Dt(y)),
i-l i—l i-l

the result follows from Theorem 7.

Theorem 9. ^4 necessary and sufficient condition that x^y is that P,(x)
^Dt(y) for each i = l, ■ • • ,n — l.

Proof. If xgy, then x\/y=y and D'i(x)\JD,-(y) = D<(y) by Theorem 8;
that is, Dt(x)^Di(y) tor each i=l, 2, • • • , k —1. Conversely, if L\(x)
^Di(y) for each i = l, 2, ■ ■ ■ , n — 1, then
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n-l n-I

x = V CiDiix) S V etDiiy) = y.
i-l l-l

Theorem 10 (Duality theorem). The lattice L is dually isomorphic with
itself under the mapping /3(x) = VjTi1 ef {P„_,(x)} ~. If L' denotes the dual lat-
tice and Ci, ei are the operators and elements of Axiom 1 and Axiom 2 for V,
while D'i are the operators of Definition 2 for L', then

il) e'i  = en-i-i,

(2) C'iix) = {Cn-i-iix))-,

and
(3) D'iix) = Dn-iix).

Proof. Since {Pn-t(*)}-^ {Pn-y(x)}~£P for all i and j in the range
ISiSjSn — 1, Theorem 7 yields
(4) DMx)) = {Dn-iix)}-.

This shows that

(5) fiifiix)) = x,
and it follows from Theorem 9 that x Sy if and only if /3(x) <zfiiy). Hence the
dual lattice L' is isomorphic with the lattice P, and in particular P' is a dis-
tributive lattice satisfying Axioms 1,2, and 3.

Since {P„_,(x)}- = VyTo"1 Cy(x) and
n—l       /n—i—1 \ n— 2 /n—j—1     \ n— 2

V eA   V   C,(*)) =  V Cjix)(   V   *) = V Cjix)en-j-i
i-i    \ j-o /      y-o V »-i      /      y-o

it follows that
(6) Pix) =\ eiCn-i-iix).

t-i

Hence e/=/3(e.) =e„_,-_i by Theorem 4, and (1) is proven. Then by the
uniqueness theorem C<(/3(x)) = C„_,_i(x). If bEB, then by the Corollary of
Theorem 3 Ciifiib)) = Cn_,_i(&) =0 for 1^7^n-2 and C„_i(/3(t>)) = C0(&) =5.
Thus (6) yields /3(o) = 5. Note also that the set of complemented elements of
P' is identical with the set B of complemented elements of P. Now fiidix))
= Ciifiix)) by the isomorphism, so that C/(x) =/3(Ci(/3(x))) = { C,(/3(x))}-
= {C„_,--i(x)}- for 7 = 0, 1, • • • , 77 —1, and (2) is proven. Similarly, using
(4), Diix)=fiiDiifiix))) = {DiiBix))}-=Dn-iix), and this completes the
proof.

Since /3(xVy) =/3(x)/3(y) and fiixy) =fiix)\ffi(y), it is now easy to obtain
the dual form of Axiom 3. In particular, x=/3(/?(x)) =^(V"Z} ejC„_,-_i(x)), so
that
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n-l n-l

x = A (f3(ei) V j8(G_«_i(*))) =  A («*-«-i V {C_«-i(*)}-);
t-1 i-l

thatis,x={Co(x)}-(eiV{Ci(x)}-) • • • (e„_2V [Cn-i(x)}-).

Theorem 11. For each i = l, 2, • • • , n — 1 and for every xGL and yGL,
Di(xy)=Di(x)Di(y).

Proof. This is an easy consequence of Theorem 8 and the duality theorem.
Specifically, for each i=l, 2, ■ ■ • , n — 1, by Theorem 8, P„_,(j8(x)V^(y))
=Pn_,-(/3(x))VL>n-,-(p,(y)). That is, Dn-Mxy))=Dn-Mx))VDn-i(r3(y)), so
that by (4) of Theorem 10, {P.-(xy) }"= (P,-(x) }~V |P,(y)}", and so P,(xy)
= Di(x)Di(y).

Theorem 12. Phe following identities are valid for each i = 0, 1, • • • ,n — 1.

(1) d(x V y) = C,(*) V Cy(y) V d(y) V Cj(x).
y-o y-o

(2) C,(*y) = d(x)"V Cy(y) V C{(y) V Cy(x).y-t y=»
Proof. These identities are obtained easily through the use of the preced-

ing theorems. Specifically,

d(x V y) = Di(x V y){Dm(x Vy)]~
= (P,-(x) V ZMy)){2W*)H2Wy)}-
= C,(x) {Z?f+1(y)}- V C<(y) {D^x) ] -

= d(x) V Cy(y) V d(y) V Cy(*).
y-o y-o

Similarly,

d(xy) = Di(xy)[Di+i(xy)}-
= Di(x)Di(y)([Di+i(x)]- V { Di+i(y)]-)
= Ci(x)Di(y)VCi(y)Di(x)

= Ci(x)\ d(y) V Ci(y)\ C,(x).
j—i }—i

A more general form of this theorem is given by Theorem 25 in §7.
4. Post functions. The reduction of a Post function to a given form may

well be a ponderous chore. It should be noted that the work of this section on
canonical expansions and simplifications of Post functions is of an extremely
facile nature.

Definition 3. A Post function of m variables is a function which can be
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obtained from the constant functions P,(xi, • • • , xm) =e,- and identity func-
tions Ijixi, • ■ • , xm)=Xj by a finite number of the operations V, A, Co,
Ci, • • • , Cn—l.

Theorem 13. If f is a Post function of m variables Xi, • • • , xm, then

fixi, ■ ■ ■ ,xm) =      V    /(«,•„ • • • , e,-m)Ctl(xi) • • • Cijxm).
0£ijin—l

Proof. There are nm terms of the form C,-I(xi)C,-2(x2) ■ ■ ■ Cimixm), and
these are called the fundaments of the 777 variables. It follows from Axiom 1
that

(1) distinct fundaments are disjoint, and
(2) the supremum of all the fundaments is u; in fact, the infimum of two

distinct fundaments must include an infimum of the form C,-(xy)C*(xy) =0,
where i^k for some/, and

m    / n—l \ m

V        CtliXi)  ■  •  • Cimixm)   =   A  (     V    C.-.(xy) ) =   A   (77)   =  77.
OsySn— 1 /—1 \  ij=0 / ;'=1

It follows from (2) that the theorem is true for the constant functions
Eit and using Axiom 3, for the identity functions lj. It is clear that if / and g
satisfy the theorem, then/Vg satisfies the theorem. Using (1), it is also clear
that/g satisfies the theorem.

Now suppose/is a Post function satisfying the theorem. Each of the terms
/(e.-j, • • • , eim) is equal to one of the ey, OSjSn — 1, by Axiom 2a and Theo-
rem 4. Therefore

n-l

/(xi, • • • , xm) = V ekTk,
*=o

where Pi = VC,-1(xi) • • • C,m(xm), the supremum being extended over all
(tii • • • . im) for which/(e.-j, • • • , eim) =ek. Using (1) and (2), the uniqueness
theorem shows that Ci(/(xi, • • • , xm)) = Tk. But

V      Ckifieh, • • • , O)Cn(xi) • • • Cimixm) = Tk,
O^tysn— 1

by Theorem 4. Hence C*(/(xi, • • • , xm)) satisfies the theorem. This completes
the proof.

Theorem 14. If f is a Post function of m variables, then

fixi, ■•-,xm)=      A      ifieh, ■■■, eim) V {Chixi)}- V • • • V {C,„(xra)}-).
0s*ys»—1

Proof. The statement follows from the preceding theorem and the duality
theorem.

The 77m terms of the form {C.-^xi) }~V • • • V {C,-n(xm)}~ are called the
dual fundaments. The infimum of all the dual fundaments is 0, and the
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supremum of two distinct dual fundaments is u—these properties following
from the duality theorem applied to (1) and (2) of Theorem 13.

The canonical forms provide a starting point for the simplification of
Post functions. The simplification of such functions is greatly aided by con-
temporary work on the analogous problem in Boolean algebra. In particular,
methods described by W. V. Quine [8], the Harvard Computation Labora-
tory [2], M. Karnaugh [4], and R. H. Urbano and R. K. Mueller [ll] can
all be easily modified to apply to the more general case of simplification of the
lattice theoretic Post functions defined above.

The simplification and manipulation of these functions is further eased
by the fact that the fundaments and dual fundaments are composed of ele-
ments belonging to the Boolean algebra B. Such elements are therefore sub-
ject to familiar identities. As a specific illustration, consider the case n = 3 and
the simplifications of the function

f(x, y) = Co(x) V Ci(x)C2(y) V Ci(x)d(y) V eiCi(y)
= C0(x) V \Co(x)}-Ci(y) V eiCi(y)
= C0(x) V Ci(y) V eiCi(y)
= C0(x) V y-

Let/ be a function in canonical form, such as/= V"-o £»C,(/), where each
Ci(f) is expressed as a supremum of fundaments. It is possible, then, to
simplify/by inspection. More systematically, each C,(f) can be simplified by
the modified form of one of the methods mentioned above. The resulting
form for / then provides a simplification in terms of the variables e, and
Ci(xf), i = 0, ■ ■ ■ , n — 1 and j = l, ■ • • , m. It a simplification is required
which allows presence of the variables xj,j=l, ■ • • , m, then this form must
be further manipulated, with Axiom 3, to provide a final simplification.

The exact modifications required for each of the above methods are obvi-
ous, and need not be elaborated here. The Boolean fundaments are replaced
with the fundaments defined herein, and the work in general is effected to
the base n instead of the base 2.

In Boolean algebra the above methods achieve varying degrees of suc-
cess, and their relative merits in Post algebra are approximately the same.
The "visual recognition" advantage of Karnaugh's map method is empha-
sized if the final form is to be expressed utilizing the variables Xi, • • • , xm-
The topological method such as outlined by Urbano and Mueller has aroused
some recent interest [l0]. The figure in the following section illustrates the
cube associated with simplifications of Post functions in three variables.

5. Examples. If p is a fixed prime, let R be a p-ring with unit. The ring
R is a commutative ring of characteristic p such that xp=x for every xGR-
A ring theoretic function/(x, y) in R is determined by the p2 values otf(i,j),
where i = 0, 1, • • • , p — 1 and/ = 0, 1, • ■ • ,p — l. Yet M(x, y) and m(x, y) be
those ring theoretic functions for which  M(i, j)=max(i, j) and m(i, j)
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= min(7, j), where i = 0, 1, • • • , p — 1 and j = 0, 1, • • • , p — 1. Thus, for
example, in the case p = 3,

M{x,y) = x + y + x2-y + 2-x-y + x2-y2 + x-y2,

mix, y) = 2-x2-y + x-y + 2-x2-y2 + 2-x-y2,

where the operations involved are the ring operations of addition and multi-
plication.

It is now a straightforward task to show that if n=p, then R forms a
lattice P, where x\/y = Mix, y),xy = mix,y), e{ = i and Ciix) = JJ[y^„_,- (x+/),
i = 0, 1, • - • , p — 1, the lattice theoretic functions on the left being given in
terms of the ring theoretic functions on the right.

Another important example is that of a lattice of 77-valued functions
which assume the values 0, 1, • • • , 77 — 1 on a set S, ordered in the usual way,
and containing the 77 constant functions e,- of value i and for each / the 77
functions C(/), i = 0, ■ • • , n — l, where C,(/) is that function which has the
value 77 —1 on those points of 5 where/ has the value i, and the value 0 on
the other points of S. It is easily verified that Axioms 1, 2, and 3 are satisfied.

The figure on the following page is a Hasse diagram of the free 3-ring with
one generator. The points are identified according to the ordering noted
above. It is clear that this is also the lattice of all 3-valued functions on a
three point set. The eight darkened points in the diagram are the points of B.

6. Representation theory. The work of this section shows, among other
things, that the lattice P is equivalent to a Post algebra of order 77. This
equivalence can of course be proved by tedious calculations which do not
make use of the representation theorems.

Definition 4. If B is represented as a Boolean algebra of subsets of a set
S, where the image olbEB is given by X(o) C^, then an n-valued P-measurable
function on S is an 77-valued function on 5 with the property that for each
i = 0, 1, • • • , 77 — I there exists bfEB such that/_1(7*) =X(&i).

Theorem 15. If B is represented as a Boolean algebra of a certain class of
subsets of a set S, then L is isomorphic with the set of all n-valued B-measurable
functions on S.

Proof. If the image of bEB is given hy\ib)ES, then for x£P, let x cor-
respond to the function/ such that/=i on X(C,(x)) for each 7 = 0, 1, ■ • • ,
77 — I. This correspondence is one-to-one, for if x^y, then C<(x) ?■*C<(y) for
some i, and X(G\(x)) ̂ X(C<(y)).

Now let/ be the function corresponding to x£P and let g he the function
corresponding to yEL. Suppose iSj and PE^iCiix)), P£X(Cy(y)). Then
PGX(Cy(y)C,(x)), and therefore PGX(Cy(xVy)) by Theorem 12. Hence x\/y
corresponds to/Vg = max(/(P), g(P)) for each PES.

Finally, the correspondence is onto the set of all 77-valued P-measurable
functions on S. For let/be such a function. Then there exists btEB such that
X(6.) =/_1(i) for each 7 = 0, !,-••, n — l. Since X(o,)P\X(oy) = 0, the empty
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JC1+X+& v^N. /    \

< f2+2.*+2;*»  / N. /OlOs. /       ̂ V     +*+   -Vf

t(2 ■*+!**        \><1   ,-  \v"0^ >vX^ *f*}»

NtV*+2-*» >/^ ^^2*+2a*

set, for *Vj, and \yfZl X(6.) =5, 6<6y = 0 for »Vj and V?~01bi = u. Let
x= V?Ji eH>iGL. By the uniqueness theorem Cj(x) =6,- for i = 0, 1, • • • , n— 1,
so that / is the function corresponding to x.

Theorem 16. Phe lattice L is isomorphic with the set of all continuous n-
valued functions on a totally disconnected compact Hausdorff space.

Proof. This follows from the preceding theorem. It is known that B can
be represented as the algebra of open and closed sets in its representation
space, and in this case the re-valued P-measurable functions are exactly the
continuous re-valued functions.

In particular, gj corresponds to the constant function of value i, i
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= 0, 1, • • • , 77—1, and, if x corresponds to/, then C.-(x) corresponds to the
function C,(/) which has the value 77 — 1 on those points of .S for which f = i,
and has the value 0 on the other points of 5. This, together with the latter
example of the preceding section, leads to the following theorem.

Theorem 17. The lattice L is a Post algebra of order n, and any Post algebra
of order n is such a lattice.

Proof. P. C. Rosenbloom [9] based his axiom system for Post algebras
on the operation of "prime," which is defined for 77-valued functions on a set
S as follows. If/ is such a function, then/(/) is that function which, if/ has
the value i at PES, has the value 7+1 at P if 7 = 0, 1, • • • , 77 — 2, and has
the value 0 if / has the value 77 — 1 at P.

The lattice of functions described in the example of the preceding section
is clearly closed under the operation of prime, since

/(') = eiCo if) V e2Ci if) V   • • • V en-2Cn^ if) V C_2 (/).
Conversely, a lattice of 77-valued functions on a set 5 which is closed under
the operation of prime must also include the constant functions e< and the
functions C<(/), 7 = 0, 1, • • • , n — l. This follows from the easily verified
formulas

(n-l \(i+l)

V/«M for any/,

and

Ciif) = (    V    /«>)    ,

where /«> is defined inductively by/(j'+1) = (/0))(/).
Since P. C. Rosenbloom [9] and L. I. Wade [12] have shown that Rosen-

bloom's axioms for Post algebras of order n describe lattices of 77-valued
functions closed under prime, the stated equivalence then follows.

Hence results obtained so far are equally valid for Post algebras of order
77. Thus, in particular, Theorem 15 led to the representation of Post algebras
given by Theorem 16. The following theorem gives a further result along
these lines.

Theorem 18. The lattice L is complete and atomistic if and only if L is
isomorphic with the set of all n-valued functions on a set S.

Proof. It is clear from Theorem 16 that the set E of elements less than or
equal to ei is isomorphic with B under the correspondence b—>eib. If P is
complete and atomistic, then E is complete and atomistic, and hence is iso-
morphic with the class of all subsets of the set of all atoms of P. Hence B is
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isomorphic with the class of all subsets of a set 5, every re-valued function
on 5 is P-measurable, and the result follows by Theorem 15. The converse is
obvious.

In what follows, all prime ideals are nonzero and proper.

Theorem 19. Every maximal chain of properly ascending prime ideals in
L consists of exactly n — 1 prime ideals, and every prime ideal is a member of
exactly one such chain.

Proof. The proof of Kaplansky's Theorem [3] shows that every prime
ideal of the representation space given by Theorem 16 is associated with
exactly one point of the representation space. That is, if 5 denotes now the
totally disconnected compact Hausdorff space, P is a prime ideal of L, and
/ and g are continuous re-valued functions on S, then there exists exactly one
point pGS with the property that if / is a member of P and if g^f in some
neighborhood Np of p, then g is also a member of P. However g^f at p ii
and only if gSf in some neighborhood Np, for if g(p)=i and f(p) =j, let
Np = g~l(i)r\f~l(j), and the converse is obvious. Hence every prime ideal is of
the form Ppi = \f\f(p) ^i-1 ], where *=1, 2, • • • , re-1 and pGS. More-
over, if p and po are different points of S, then there exists bGB with poGM°)
and pGX(6), where X(6) is the open and closed subset of 5 which is the image
of 6. Therefore if 6 corresponds to the function /, then f(p) = re — 1 and
/(po) =0, since pG\(Cn-i(b)) =\(b) and p0GA(C0(6)) =X(8). Hence PPoi<tPPJ
for py^po and any i = l, 2, • ■ • , n—1 and/=l, 2, • • • , re —1. This completes
the proof.

It follows from this argument that

[et] =   fl   (Pp({+i) — Ppi), i = 0, 1, ■ ■ ■ , n — 1,
pes

where Pj,o stands for the empty set and Pj,n stands for the entire set of func-
tions in the representation space. For it is clear that e.-GP^.+i)— Ppi for
each pGS, i = 0, 1, • • • , n — 1. Now, for any i(p), suppose that

/ G H (Pj,(i(P)+i) — Ppi(p))    and   g G H (Ppaw+v — PPnPi) -
PeS pes

Then, if fi$g, there exists a prime ideal P which contains g but not/. By
Theorem 19 the prime ideal P is of the form P=PPoio for some poGS and
some io=l, 2, ■ • • , n — 1. This contradicts

/G   Pp0CJ(P0)+l)   _   Pp<>i(P0)        alld       g  G   Pj>o(»'(Po)+D   _   Ppo'iPo)-

Hence there is at most one element in Dpes (PpwP)+i) — Ppnvf) for any i(p).
Thus, in particular, for the constant values of i(p), [et] =rij,es (PPa+i)— Ppi)
for each i = 0, 1, ■ ■ ■ , n—1.

These remarks lead to the following characterization of finite Post alge-
bras of order n.
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Theorem 20. Let Ld be a finite distributive lattice in which every maximal
chain of properly ascending prime ideals consists of exactly n—l prime ideals,
and every prime ideal is a member of exactly one such chain. Then LD is a Post
algebra of order n.

Proof. Denote the chains of prime ideals by PpiCP^C ■ ■ • CPf(n-i),
where p ranges over some index set S. Let Ppo denote the empty set 0 and
Pvn denote the entire set Pd. Then for every prime ideal PELd there exists
one and only one pES and i such that P=Ppi.

For any xELD and any pES there exists iip, x) =i such that

X E Pp(i+1)  —  Ppi-

Hence xGDpgs (Pp(icP,x)+i)—Ppi(p.z))- Since such an intersection has at most
one point, by the remarks preceding this theorem,

{x} = 0 iPpim) - Ppi).
pes

If yELD and jip, y)=j, so that {y} =DpSs iPpU+i)—Ppj), it is easy to see
that

(1) {x\/y}   =     C\    (Pp(m«(,-,y)+l)  —  Pp(max(»,j))),
pes

and

(2) \Xy}   =     H     (Pp (mtn«,y)+l)  — Pp(mln(t'.y))),
pes

since the element at the left is contained in each of the sets in the intersection
at the right.

On the other hand, if Pd is finite, then for any iip), Clpes (Pp(«p»+i)~ PpHpf)
7^0. To prove this, note the following lemma.

Lemma 4. If pi^p2, piES and p2ES, then (Ppi(,+i)— Ppli)r\PPtk?*0 for
any 7 = 0, 1, • • ■ , n—l and any k = 1, 2, • • • , 77.

Proof. If Pp^i+i)—Pp,<CP—Ppj*, then taking the complement of both
sides, Pp2*CPpX.-U(P— Ppi«+d). so that

Pj>i(»'+i) C\ Ppik C Ppx«+i) Pi (Ppi» W (L — Ppi«+i))) = Ppit.
Hence PPii'DPpi'i+i) or PP1i'DPP,k, contradicting the hypotheses of the theorem.

Now let Sm be a set of cardinality 777, where SmES. Since LD is finite, 5
itself is finite. Now for any iip)=i and any Sm, flpesm (Pp«+i)— Pp<)y£0- It
follows easily from Lemma 4 that this statement is true for m = 2, so suppose
it is true for m = k. The set Sk+i has k + 1 distinct subsets of the form Sk,
Ski, Sk2, • • • , Sk(k+i), each of these being obtained by deleting a particular
point of Sk+i. Let XjEClpesn (Pp(,-+i)— Ppi) and let uk= VJ,t\ (AjVmXy). Then
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it is straightforward to verify that WfcGfiyeSt+i (Ppd+D ~ Ppi)- Hence
fW (PPwp)+i)-PPi(P))^0 tor any i(p).

The theorem itself now follows, for it is easy to verify, using (1) and (2),
that Axioms 1,2, and 3 are satisfied, where

{*} = n (pp(1+d - Ppi),
pes

and

(Cy(x)} =      n      (l - Pp(n-i)) r\     n     ppl.
«e*V/+i)--P|>/ ^Pptj+D-Ppj

In the case where Lo is infinite, it need not be true that

ll (Pp(i(P)+i) — PPi(p)) ^ 0
pes

tor arbitrary i(p), where now 5 also is infinite. C. C. Chang and A. Horn
have proved a corresponding theorem for the case of an infinite lattice, the
additional assumption being a hypothesis which requires the existence of the
d, i = 0, 1, • • • , re — 1.

7. Completeness properties. This section is devoted to certain results on
infinite Post algebras. The proofs are dependent, in large part, on the formu-
lation in §2.

Theorem 21. If biGB and either of the quantities

V   b{, V   6.-
B-.iel L-,iei

exists, then the other exists and the two are equal.

Proof. If 6 = Vfl;,e/ 6,- exists let yGL and y^6,- for all iGP Then Cn-i(y)
^Cn_i(6,) =bf for all iGI by Theorem 9 and the Corollary of Theorem 3.
Hence Cn-i(y)^b, and y ^ C„_i(y) ^6.

Conversely, if r=VL-,iei bf exists, then likewise C„_i(r) ^ Cn_i(6<) =6,- for
all iGP Hence C„_i(r)^r. Since r^C„_i(r), r = Cn-i(r)GB.

Corollary. If 6,-GP and either of the quantities

A   bit A   bi
BHer L;iei

exists, then the other exists and the two are equal.

Proof. This follows from the duality theorem.

Theorem 22.Ifx = Vf-.teiXiexists, wherextGLforalliGl,then\'B-.ieiP]j(xi)
exists and D,(x) = Vsj.er Dj(xf) for each j=l, 2, • • • , n — 1. Conversely, if
Vb;,-gj Dj(xf) exists for each j = l, 2, • • • , re — 1, where XiGLfor all iGI, then
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VL-.iei Xi exists and is equal to the element x which is determined by the formulas
Djix) = VB;,er Djix/). The dual statements are also true.

Proof. If x= V£;,e/ Xi exists, then x^x,- for all iEI, so that Py(x) =sPy(x,-)
for all iEI and each j' = l, 2, • • • , 77 — 1, by Theorem 9. Secondly, suppose
that w^Djix/) lor some fixed j=l, 2, • • • , 77 —1 and all iEI- Let w'
= C„_i(w)V«y-i. Then it follows from Theorem 12, and from Theorem 3 and
Theorem 4, that Cn-iiw') = Cn-iiw), and also that C,iw')=0 for i=j, j + 1,

■ ■ ■ ,77 — 2. Hence

Djiw') =V diw') =C_i(»).
<—i

It is clear from Axiom 3 that, for each iEI, XiSej-A/Djix/). Since w^Dj(x/),
Cn-i(w)>1Cn-i(Dj(xi))=Dj(x/) by Theorem 9 and Theorem 3. Hence x,-
Sej-i\/Cn^(w)=w' for all t£I. Thus xSw', and Py(x) ^Py(w') = C»_i(h/)

For the converse Vb;,-sj P*(x,) ^ V^j.-er Py(x,)GP for all 7 and & in the
range 1 SkSjSn — 1, so that

V   Py(x.) = Py(x),   where   x = V ey(   V   Py(x<) J,
B;ie7 y=i     \B,ieI /

by Theorem 7. Hence Djix) ^Djix/) tor all iEI and each j = 1,2, ■ - ■ ,77 — 1,
and by Theorem 9, x^x,- for all iEI- If y ^x< for all iEI, then Py(y) ^Py(x,-)
for all iEI and each j=l, 2, ■ ■ • , n — l, so that Py(y)SiPy(x) for each
j = l, 2, - - - , n—l, and by Theorem 9 again, y^x.

The dual statements are equally valid. This follows from the duality theo-
rem, where it is shown that P/(x) =P„_y(x) for each/ = l, 2, ■ ■ • , n — l.

Theorem 23. The lattice L is complete if and only if B is complete.

Proof. If P is complete then B is complete by Theorem 21. If B is com-
plete then P is complete by Theorem 22.

The infinite distributive law y V.er x*= V.er yx,- is valid in any Boolean
algebra whenever V,-e/ x,- exists. This law is also valid in any complete pseudo-
complemented lattice. Hence, by Theorem 5, this law (and its dual) is valid
in P whenever P is complete. That is, if the Post algebra P is complete, then
P is a topological lattice [l, p. 146]. However the next theorem shows that
this infinite distributivity law holds in any Post algebra L.

Theorem 24. The infinite distributive law y Vjer x, = V,-G/ yx< is valid in
any Post algebra L whenever x = Vier x< exists. The dual statement is also true.

Proof. By Theorem 22, for each / = 1, 2   • • • , 77— 1, Py(x) = Ybj.-sj Py(x<).
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Thus

Dj(y)Dj(x) = Dj(y)    V   DAj*} =    V   Py(y)Py(x,-),
B;iel B;iel

since the law is valid in any Boolean algebra. Hence, by Theorem 11, Dj(yx)
= V' B-,iei Dj(yxi) for each/ = l, • • • , re —1, and yx=VL-,iei y%i by Theorem
22. The duality theorem yields the dual result.

Theorem 25. // x= Vi6/X< exists, then the following generalized rules of
simplification, stated in recursive form, are valid.

Cn-l(x)   =    V   Cn-l(Xi).
iel

(1) / n_1 \
Ck(x) = V (   A   {Cj(x)]-)Ck(xi)       for k = n- 2,n - 3, ■■■ ,1,0.

iei \y=*+i /

Dually, if y = Aiei yi exists, then

C0(y) = V Co(yi).
iei

(2) /i_1 \
Ck(y) = V ( A [C^-jCkbi), for k = 1, 2, ■ ■ ■ , n - 2, n - 1.

iei \ y-o /

Proof. The first statement follows from Theorem 6 and Theorem 22.
Specifically, C„_i(x) =Dn-i(x), and for k<n — 1,

Ck(x) = Dk(x){Dk+i(x)}-

= ( V Dk(xi)\ | V Dk+i(xi)\

= ( V Dk(xi)\( A [Dk+i(xi)]-\

Hence, by the infinite distributivity law,

Ck(x) = V (Dk(xi) A {Dk+i(xi)]A
iei \ iei /

=  V (Ck(xi) A {Dk+i(xi)}-)
iei \ iei /

= V Ck(xi)[Dk+i(x)]~
iel

=   y(Ck(xi)     A      {Cy(x)}-Y
iei \ y-*+l /
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The second statement follows by the duality theorem, where it is shown
that Ci (x) = { Cn-i-i(x)}-. Applying this to (1) yields

[Co(y)}-= A {Co(yi)}-,
iei

{C„_,_i(y)}- = A ( V   C„_y_i(y) V {Cn-k-i(yi)}-)
iei \]-k+l /

for k = n — 2, n — 3, • • • , 1, 0.

Then (2) follows from this by taking complements.

Theorem 26. The normal completion [l, p. 58] Lx of a Post algebra is also
a Post algebra. Furthermore Bn, the normal completion of B, is the Boolean
algebra of complemented elements of LN.

Proof. The lattice L can be represented as the set of re-valued P-measura-
ble functions on the representation space of B; that is, the set of functions /
such that/_1(i) for each i = 0, 1, • • • , re — 1 is an open and closed set. It is
well known that Bn is isomorphic with the algebra of regular open sets in the
representation space of B [l, p. 177]. Let Ln be the set of re-valued Bn-
measurable functions on the representation space of B; that is, the set of
functions/such that/_1(i) for each i = 0, 1, ■ • • , n — lis a regular open set.
Then LGLn and, since Bn is complete, Ln is complete by Theorem 23.

Now for any xGLn it will be shown that there exist XiGL, iGI, such
that x = VLN-,iei x^ Then by the duality theorem it will follow that there exist
ytGL, iGI, such that x = ALN-,iei Vi, and this will complete the proof that
Ln is the normal completion of L. If xGLn, there exist C,(x)GBn, where
j = 0, 1, • • • , re —1, with x = VyJj1 eyCy(x). Since BN is the normal completion
of B, there exist XjiGB such that VBN-,iei *y< = Cj(x)GBN, tor each
/= 1, 2, • • • , re— 1. For each i the quantities x(„_i),-, • • • , xn, xu, A"-i *y< are
pairwise disjoint and their supremum is u. Hence, by the uniqueness theorem,
if Xt = VyJj1 ejXn, then Cy(x,-)=Xy< for each j=l, 2, • • ■ , n — 1 and all iGP
Now each of the quantities VBN-iei P>s(xi) exist for j = l, 2, ■ • ■ , n — 1, so
that Theorem 22 yields x = V^LN-,iei x^
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