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The Lattices of Six-Dimensional Euclidean Space
By W. Plesken* and W. Hanrath

Abstract. The lattices of full rank of the six-dimensional Euclidean space are classified
according to their automorphism groups (Bravais classification). We find 826 types of such
lattices.

I. Introduction. A lattice L in an Euclidean vector space E is given by the Z-span
of some basis of E. Its automorphism group Aut(L) consists of all orthogonal
transformations of E which map L onto itself. Finally, two lattices Lx and L2 in E
are called (Bravais-) equivalent, if there is a linear (not necessarily orthogonal)
transformation <p: E -» E with <p(Lx) = L2 and <p_1 Aut(L2)<p = Aut(L,). Translat-
ing these concepts into the language of matrices by choosing Z-bases of the lattices,
shows that the Bravais types of lattices just defined are in 1-1-correspondence with
the conjugacy classes of certain finite subgroups of GLn(Z), namely of the Bravais
groups, cf., e.g., [1], defined as

B(S) = {g e GLn(Z) | g'Tg = F for all F g S)
for some set S of symmetric real n X «-matrices containing at least one positive
definite matrix (which guarantees the finiteness of B(S)). Dually one assigns to each
finite subgroup G of GLn(Z) the vector space

S(G) = {F e R"x" | F" = F, g'Tg = F for all g e G}.
The lattices of a fixed Bravais type corresponding to a conjugacy class 93 of Bravais
groups can most conveniently be described by S(B) for some representative B e 93:
A lattice L belongs to the Bravais type under consideration if and only if the Gram
matrix F of the bilinear form on E with respect to some Z-basis of L belongs to
S(B) and satisfies B({F}) = B. (Note, the positive definite matrices Fin S(B) with
B({F}) ¥= B, i.e. B({F}) > B, form a subset of measure zero of S(B).) Therefore,
we give our classification by listing representatives B for the conjugacy classes of the
Bravais groups in GL6(Z) and R-bases for the corresponding S(B). These data
together with additional information explained in Section IV can be found on the
microfiches at the end of this issue. The results were obtained by extensive
calculations on the Cyber 175 of the Rechenzentrum der RWTH, Aachen, by
methods mainly developed in [10].

As for the history of the subject and the connections with mathematical crystallog-
raphy, the reader is referred to the survey article [11] or to [1]. Here we only mention
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574 W. PLESKEN AND W. HANRATH

that there are 1, 5, 14, 64, 189, and 826 Bravais types of lattices in 1, 2, 3, 4, 5 resp.
6-dimensional Euclidean space, and that our methods are based on integral represen-
tation theory of finite groups rather than on the geometry of quadratic forms
cultivated by the Russian school, cf. e.g. [15]. Because of the classification of
irreducible Bravais groups of degree 6 in [13] and [10] we may confine ourselves to
reducible groups here (which, however, form 806 of the 826 classes). At the end of
Section V we comment on the combinatorial aspects of the geometry of quadratic
forms.

II. Methods, Review of Known Results, Comments on the Computation. Because of
two basic ideas, the classification of 6- (and probably also 7-) dimensional lattices
comes within the reach of our computational possibilities. The first is the concept of
the Bravais group B(G):= B(S(G)) of a finite unimodular group G due to H.
Zassenhaus, cf. [1]. The second is the centering algorithm, cf. [7], [13], also [9], which
is an effective procedure to split up the Q-class of finite unimodular groups into
Z-classes by producing sublattices of the natural lattices Z"xl on which the groups
under consideration act. (Terminology: G, H < GLn(Z) he in the same Q-class
(Z-class) or are called Q-equivalent (Z-equivalent), in symbols G ~QH(G ~ZH), if
G and H are conjugate under GLn(Q) (GL„(Z)). Note, Q-classes are well understood
by classical representation theory.) As discussed in great detail in [6], the Bravais
classification of finite unimodular groups is highly incompatible with Q-equivalence.
To utilize the convenient Q-classes nevertheless, we define Bravais-minimal groups:
A finite unimodular group G is called Bravais-minimal, if B(H) # B(G) (and hence
B(H) < B(G)) for every proper subgroup H of G. Note, being Bravais-minimal is a
property of Q-classes, whereas being a Bravais group is only a property of Z-classes.
The concepts discussed so far suggest to proceed in a given dimension n roughly as
follows:

(i) Find the Bravais-minimal subgroups of GLn(Z) up to Q-equivalence;
(ii) Split the Q-classes of (i) into Z-classes, find the associated Bravais groups, and

decide which Bravais groups are Z-equivalent.
To use at least some information available from lower dimensions for (most)

reducible Bravais groups, the above strategy is slightly modified and refined by the
use of almost decomposable Bravais groups introduced in [10].

(1.1) Definition. Let G < GLn(Z) be finite (and reducible), denote the natural
ZG-latticeZnXlbyL.

(i) L = L(G):= © eL, where e runs through the set of primitive central
idempotents of the rational group ring QG. (Note, L is a ZG-lattice in Q"xl
containing L with finite index; note also eQL is a homogeneous component of the
action of G on QL.)

(ii) G is the Z-class of finite unimodular groups defined by the action of G on L.
(Note, G and G lie in the same Q-class.)

(iii) P{G) = [B{H)\H g G} is called the Z-class of almost decomposable Bravais
groups associated with G.

The most important properties of this construction are the following: If G,, G2 are
finite unimodular groups with B(GX) ~ZB(G2), then P(GX) = P(G2). If B is a
Bravais group, then (any) X g P{B) has a subgroup Y with Y - Q B and B(Y) = X.
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Here is the outline of the procedure how we determine the Z-classes of all Bravais
groups defining the same Z-class P of almost decomposable Bravais groups with
given representative B < GL„(Z), cf. also [10].

(i) Find Min(5) = (G < B \ B(G) = B,G Bravais-minimal}.
(ü) Compute for L = Z"xl

Cen(L) =      IJ      CenG(L)   with   CenG(L) = (M | M <ZGL, M(G) = L).
GeMin(B)

(hi) Find a finite set of generators for the normalizer TV = TVGL (Z)(Z?) of B in
GL„(Z) and find representatives M of the orbits of TV on Cen(L) (under the obvious
action).

(iv) Choose a Z-basis for each M in (iii) and compute the action of H(M) = {h g
B | hM <M}onM with respect to this basis. The resulting matrix groups form a set
of representatives of the Z-classes of all Bravais groups B' with P(B') = P.

We now comment on how we performed these steps for n = 6. There is, first of
all, step 0, namely to find the Z-classes of all almost decomposable Bravais groups.
This was done by hand, by means of the family symbol, which we discuss at the
beginning of Section IV.

Step (i) is the most time consuming step since we did it by hand. There is,
however, the possibility of performing this step completely by machine, for instance
by using the Aachen subgroup program in Cayley system; cf., e.g., [5], [3]. But in this
case huge data sets as input for step (ii) would be generated. The point is that some
theoretical insight shows in almost every particular case that a proper subset Min(S)
of Min(ß) suffices to obtain a set

Cèn(L)=     JJ      CenG(L)
GeMin(B)

with the property that each TV-orbit on Cen(L) (to be computed in step (iii)) has a
representative in Cen(L). Therefore it is sufficient to compute representatives for the
orbits under the conjugation action of TV on Min(B). Moreover some detailed
knowledge of the constituent groups of B often admits predictions on CenG(L) for
certain G g Min(B), for instance to the effect that some of the CenG(L) do not
yield any new TV-orbit in Cen(L). This important point will be demonstrated in
Section III by the most instructive and simplest case of Bravais groups with two
constituent groups. This kind of consideration enabled us to choose a subset Min(B)
containing only 2 groups on the average, and at most 12 groups (cf. family XLVI in
Section IV). In some cases we replaced Min(B) by a small set of subgroups H of B
with B{H) < B. In such a case it might happen that the union of TV-orbits on the
resulting lattices (to be computed in step (ii)) properly contains Cen(L). This,
however, is easily checked in step (iv) (namely M g Cen(L) iff B(H(M)) = B).

Step (ii) was done by machine computation with the input from step (i) by using a
modified version of the implementation of the centering algorithm used in [13], [14].
This modified algorithm uses as input generators of the group G coming from step
(i) and the modular constitutents of the natural representation A modulo the prime
divisors of the group order |G|. The output is the finite set CenG(L) in the form of
bases for the sublattices. As in [13], [14] the sublattices are computed successively
starting with L by computing the kernels of epimorphism of the already obtained
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lattices onto simple Z//?ZG-modules for prime divisors p of \G\. For each new lattice
it is checked whether it still belongs to CenG(L). (Note, L' g CenG(L) and
U ^ZGL" ^ZGL, then L" g CenG(L).) This check (which is different from the
original check in [13], [14]) only involves standard operation with integral matrices.
The union Cen(L) resp. Cen(L) was not formally constructed in step (i), but rather
the sequence of the various CenG(L) was used as input for step (iii). In some cases
of groups with only one dimensional constituent groups CenG(L) became so big
that there was not enough central memory available to store all the matrices. In these
cases we partitioned CenG(L) as follows: we chose a set / of nonprimitive orthogo-
nal idempotents of QG, computed CenG(e'L) = {M <ZG e'L \ eM = ee'L for all
primitive central idempotents e of QG) for each e' g / by the same program, and
partitioned CenG(e'L) as U CenG(X), where

0 Xe, Xe, g CenG(e'L)}

and

CenG(A') = [M ^zcX\e'M = e'X for aile' g/}.

Also, CenG( X) was computed by the same program.
Step (iii) has one part which was done by hand, namely to find finitely many

generators for the normalizer TV of B in GL„(Z), and a machine part, namely to find
the orbits on Cen(L). Though not all of Cen(L) came as input from step (ii) and
some lattices (in the form of matrices describing different bases of the same lattice)
more than once, the latter part was routine work. We overcame possible storage
shortage by using an important invariant of the TV-orbits, which was available from
the output of (ii) in the form of elementary divisors of the matrices describing the
lattice bases: if M, M' g Cen(L) lie in the same TV-orbit, then L/M and L/M' are
isomorphic abelian groups. As for the generators of TV, we employed the methods of
[2] and [8]. In some cases of infinite normalizers we need not bother to find
generators for the full group TV, since it turned out that the orbits under a proper
subgroup of TV, generators of which were cheaply available, were already dis-
tinguished by the invariant just mentioned.

Step (iv) again is routine with the input of (iii): Schreier-generators, cf., e.g., [2],
for the stabilizer H(M) of the representative lattice M of step (iii) are formed
successively and are checked for redundancy. The resulting generators are trans-
formed, thus yielding generators for the desired Bravais group.

III. Examples. The Bravais groups B with natural representation A: B -> GL„(Q):
g ■-» g equivalent to mxLx + m2A2, mx, m2 G N and A,, A2 inequivalent irreducible
rational representations of B form a good example to demonstrate the procedure of
Section II. Clearly an almost decomposable Bravais group with this property is
Z-equivalent to

Bx © B2 := {diag(glt g2) \ g, g B, for i = 1,2},

where Bx and B2 are suitable Bravais groups of degree m, ■ degree(A,) for i = 1 resp.
2. Denote the natural lattice of B{ by L, and by mi the projection of Lx © L2 onto L,
(/' = 1,2). By Section II or by [10] clearly every Bravais group B having Bx © B2 as

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LATTICES OF SIX-DIMENSIONAL EUCLIDEAN SPACE 577

its associated almost decomposable Bravais group (i.e. Bx ® 52 g P(B)), arises from
a subgroup LoîLx © L2 with the following properties:

(i) \BX\ ■ \B2\ ■ (Lx ®L2)^L^LX® L2;
(ii) irx(L) = Lx and tr2(L) = L2;
(iii) B = {g g Bx © B2\ gL = L} has 5j © B2 as its Bravais group;
(iv) the action of B on L yields the Z-class of Bravais groups containing B.

We analyze this in the spirit of [9, Chapter II]: L is a subdirect product of Lx and
L2; namely, with A := Z^ © L2/L (called amalgamating factor module) we have
¿-module epimorphisms tp,: L, -» ^ such that

L = ker<Pl©(p2= {(/1,/2)gL1 © L21 <px(lx) = <p2(/2)}.

This subdirect product structure imposes a subdirect product structure on B (or B):
Let /Y, = {g g 5¿ I gkercp, = kertp,} for / = 1,2. The natural action of //, on L,
induces via the embedding of L, into Lx © L2 and the natural epimorphism of
Lx © L2 onto ^4 an action of H¡ on A for ¿ = 1,2. The description of B as subdirect
product is given by

B = {diag(g1; g2) | g, g H,, gxa = g2a for all a g A}.

(We do not claim that all elements of Ht turn up as components of elements of B,
though they usually do in small dimensions.)

This analysis shows how a good knowledge of Bx, B2, the subgroups of Bx and B2,
and their actions on Lx and L2 helps to find the Bravais groups B with Bx © ¿J2 g
P(B); namely one has to watch out for the following situation:

Find subgroups Hl of Bt for i = 1,2 satisfying
(i) £(//,) = £„/ = 1,2;
(ii) There are //,-sublattices L\ of finite index in L¡ with
(a) Lx/L'x = L2/L'2 as abelian groups,
(ß) the actions of Hi on LJL^ are compatible in the sense that there is an

isomorphism <p: Lx/L'x -* L2/L2 with <p~lHxy = H2, where H¡ is the image of H¡ in
Aut(L¡/L'¡) induced by the action of H¡ on L¡/L'¡ for / = 1,2.

(y) In case both Ht act faithfully on L,/L-, conjugation by <¡p (defined in (ß)) does
not transform the irreducible constituent of the T/j-character afforded by Lx onto
the irreducible constituent of the //^-character afforded by L2.

In such a situation, the Bravais group depends only on L'x, L2 and tp and is given
as described above. (The other conditions only make sure that B(B) = Bx ® B2 in
the terminology used above.) It is not necessary to say anything about the action of
the normalizer of Bx® B2, since our point was, how to avoid finding Min^ © B2)
in the last chapter.

The above remarks are helpful to understand some of the phenomena reflected in
the table in Section IV: If there is just one Z-class of Bravais groups associated with
a Z-class of almost decomposable Bravais groups (namely this class itself), then Lx
and L2 have no common epimorphic image compatible with actions of sufficiently
big subgroups Hi of B¡ (cf., e.g., families XL, XLI, XLIV, LI etc.). If all Bravais
groups associated with some almost decomposable Bravais group B are rationally
equivalent to B (and not to a proper subgroup) then the amalgamating factor
module A = Lx/L'x = L2/L2 is centralized by Bx and B2 (cf., e.g., families II-VI
etc.). We leave it as a quick exercise to the reader to prove with the help of the above
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remarks and the normalizer action (step (iv) of Section II) that there are 1 + k
Z-classes of Bravais groups with (-/„, diag(-/A., /„_*)) ( = VA) as associated almost
decomposable Bravais group 1 < k < n/2. (Ik denotes the k X &-unit matrix.)

We close the section with a curious example at the other extreme of what was
discussed above. (In the terminology of Definition (II.1) all eL ¥= 0 instead of just
two of them.)

(III.l) Example. Let G be a finite group, p: G -» GL|G!(Z) the left regular
representation of G. Assume that G is generated by elements of order 2. Then
B(p(G)) = \-/|G|> p(G))- Moreover p(G) is Bravais-minimal.

Proof. p(G) consists of permutation matrices. Hence S(p(G)) contains 1^ and
/|G|, the latter being the |G| X |G|-matrix with all entries equal to 1. Hence B(p(G))
consists, up to sign, of permutation matrices. For these the transposed is equal to the
inverse. Let p' denote the right regular representation of G. Then the (permutation)
matrices in B(p(G)) centralize p'(g) for every involution g g G. But p(G) is the
centralizer of p'(G) in the group of \G\ X | G ¡-permutation matrices. Hence the first
claim follows. The second statement follows since p\H has more Q-irreducible
constituents (multiplicities counted) as p has for every proper subgroup H of G.
Hence B{p{H)) < B(p(G)), cf., e.g., [9].   Q.E.D.

IV. A Symbol for Crystal Families, Results in Six Dimensions. The list at the end
of this section gives a survey of the six-dimensional lattices resp. Bravais groups as
they are distributed into crystal families. The latter are the equivalence classes of the
join of the following two equivalence relations on the set of finite unimodular
groups: Q-equivalence and "having the same Bravais group", cf., e.g., [6]. As already
derivable from [4] and [10] there are altogether 91 crystal famililes in six dimensions.
It is useful to have informative names or symbols for crystal families. We describe
how such a symbol can be put together from "atomic symbols". To this end we have
to recall the definition of the generalized Bravais groups B,{G) for finite subgroups
G of GL„(Z)from[8]:

V,(G) = { X G R"x" | g'rXg = X for all g g G}
and

B,{G)= [g g GLn(Z) I g'rXg = Xfor all Xe V,(G)}.
The generalized Bravais groups G (= Br(G)) give rise to the definition of the strict
crystal families, which we define in exactly the same way as crystal families a few
lines above with the words "Bravais group" replaced by "generalized Bravais
group". The symbol for the crystal family is a slight generalization of the decomposi-
tion scheme of a crystal family used in [10]: Let A: G -> GL„(Q) be the natural
representation of some group G in a crystal family g and assume A splits into
pairwise rationally inequivalent, Q-irreducible representations A, of G with positive
multiplicities mt, i.e., A ~Q +sj=xm¡Ar Order the A, in such a way that the degrees
n¡ of A, satisfy nx > • • • > ns with n¡ = nl+x implying m¡ > mi+v The decomposi-
tion scheme of G and—since it is a family invariant—of \} was defined by the
(mx +  ■ ■ ■ + mj-tuple

«i,_. ._■,»! ,  n2^.1^n2 ,..., nL,...,ns
m¡ m2 ms
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with the bar over n¡ omitted in case mi■ = 1. To define a family symbol we modify
the above tuple by replacing n, by a symbol of the crystal family of A,(G) in case
m, = 1 and by a symbol for the generalized crystal family in case m, > 1. Of course
we have to assume that the A, defined above are in addition integral, which is
certainly possible. To make the symbol unique, one has to put some ordering on
those strict and ordinary crystal families of each degree which consist of irreducible
groups. That the family symbol is well defined and determines its family uniquely,
once the "atomic symbols" for the irreducible strict and ordinary families are
defined, follows easily from [8].

For these atomic symbols we have adopted the convention of writing the degree
with an index - if necessary. Hence 1 and 3 are the symbols of the (unique)
irreducible 1- resp. 3-dimensional crystal families. Since these families coincide with
the strict families in these dimensions no new names are necessary for the strict
families. In dimension 2, we have two irreducible families which we denote by 2X and
22, the first containing a dihedral group of order 8 as Bravais group (square lattices),
the second a dihedral group of order 12 (hexagonal lattices). (Note, now the symbols
of all 3-dimensional lattices are quickly derived: (1,1,1), (1,1,1), (1,1,1), (2lsl),
(22,1), (3).) Each of the families 2, and 22 splits into two strict families which are
given the symbol 2,, 2r and 22, 22< respectively. The groups in 2r and 22< are all
cyclic, namely of order 4 in the first and of orders 3 and 6 in the second case. No
confusion between the strict family 2, and the ordinary family 2, can arise, since the
first (atomic) symbol only occurs underneath a bar in the family symbol, and the
second, never. For the symbols of the six-dimensional families we do not need the
symbols for the strict irreducible families in dimensions 4, 5, and 6, but only for the
ordinary ones. In dimension 4 we picked 4,, 42, 43 for the three families containing
absolutely irreducible groups, namely groups isomorphic to the wreath product
C2 \ S4 in the first, Dx2 \ S2 in the second and C2 X S¡ in the third case. 4r, 42. and
4y are the atomic symbols for the families containing Q- but not C-irreducible
groups; family 4X, contains a dihedral group of order 16, family 42. one of order 24,
and 4y one of order 20. Finally 5X and 52 are the symbols for the irreducible
5-dimensional families: 5X contains a C2 \ S5 and 52 a C2 X S6. The symbols for the
irreducible 6-dimensional families can be read from the table.

We now have a convenient terminology to explain how to find the almost
decomposable Bravais groups, as promised in Section II. With the atomic symbols
for the irreducible crystal families in dimensions smaller or equal to 6, and for the
strict irreducible families in dimensions less than 4, it is a combinatorial task to
enumerate the symbols for the 6-dimensional families. The almost decomposable
Bravais groups in a family whose symbol does not have a bar are completely
decomposable and direct products of irreducible Bravais groups B¡, namely Bx ©
• • • © Bs in the terminology of Section III. It is clear that the Bravais groups in
families whose symbol has only bars above the l's, are completely decomposable.
For the other families, we have to employ the methods and results of [9] to see that
the only 6-dimensional families with almost decomposable Bravais groups which are
not completely decomposable are the ones with symbol (3,3) or involving 2X, 2X as a
partial symbol. By means of [9] one can also write down the Z-classes of almost
decomposable Bravais groups in these cases.
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In the following table of six-dimensional Bravais groups which can also be used as
a guide to the microfiche included in this issue, the family symbol explained at the
beginning of this chapter is given in the second column. This symbol does not
appear on the microfiche, but only the family number of column one. Column 3 lists
the dimensions of the spaces S(G) of quadratic forms fixed by the groups G in the
family. The number of Z-classes and the isomorphism types of the almost decom-
posable Bravais groups in the family are given in columns 4 and 5. The conventions
for the isomorphism types are as follows: exponents give the number of isomorphic
direct factors, C„, D2n, S„, An denote cyclic, dihedral, symmetric or alternating
groups of order n,2n resp. of degree n, \ denotes wreath products, W(Dn), W(E6),
rV(F4) denote the Weyl groups of the root systems Dn, E6 and FA. The last column
gives the number of Z-classes of Bravais groups of the family in the form rx(r{) +
■ ■ ■ + rs(r¿), where the r¡ is the number of Z-classes of Bravais groups associated
with the z'th Z-class of almost decomposable Bravais groups in the family (in some
order), and r[ counts those Z-classes among these, the groups of which are Q-equiva-
lent to a proper subgroup of the associated almost decomposable Bravais group; (r/)
is omitted if r[ = 0.

On the attached microfiche, representatives B of the Z-classes of Bravais groups
are given by generating matrices, their orders, and R-bases of the corresponding
space S(B) of quadratic forms. They are ordered by families, inside a family
according to associated almost decomposable Bravais groups. Bases for the repre-
sentative lattices in Cen(L) (cf. Section II) which define the Bravais groups via the
associated almost decomposable Bravais groups are given in the form of matrices,
together with the inverses and elementary divisors of these matrices (the latter being
a helpful invariant for recognition). In case the Bravais group B is Q-equivalent to a
proper subgroup B of its associated almost decomposable Bravais group, generators
of B are also given.

6-DIMENSIONAL BRAVAIS GROUPS

f amily
number

family
symbol

number
of para-
meters

numb, of
Z-cl. of
a.d.Br.gr.

isom.types of
a.d.Bravais gr.

number of
Z-classes
of Bravais
groups

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

(1,1,1,1,1,1)

(1,1,1,1,1,1)

(1,1,1,1,1,1:

(1,1,1,1,1,1)

(1,1,1,1,1,1)

(21#1,1,1,1)

<22,1,1,1,1)

(1,1,1,1,1,1)

(T7T,T7T,T7T)
(1,1,1,1,1,1)

(2r ,2V  ,2V )
1^2*  '2*  '2*

21

16

1 3

1 2

1 2

11

11

10

9

9

9

9

v'2

D0xC_

D12*C2

1

2

3

4

6

2

2(1)

1 2

1 2

19(1)

1

1
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6-DIMENSIONAL BRAVAIS GROUPS
family
number

XIII

XIV

XV

XVI

XVII

XVI11

XIX

XX

XXI

XXII

XXIII

XXIV

XXV

XXVI

XXVII

XXVIII

XXIX

XXX

XXXI

XXXII

XXXIII

XXXIV

XXXV

XXXVI

XXXVII

XXXVIII

XXXIX

XL

XLI

XLII

XLIII

XLIV

XLV

XLVI

XLVII

family
symbol

(1,1,1,1,1,1:

number
of para-
meters

(2.,,1,1,1,1)

(22,1,1,1,1)

(T7T,1,1,1,1)

(21,T7T,T7T)
(22,T7T,T7T)

(2-, ,2., ,1,1)-v
(22   ,22,  ,1,1)

(3,1,1,1)

(1,1,1,1,1,1)

(2.,.1,1,1,1)

(22,' r, i , i )
(2., ,2., ,1,1)

(22, ,22, ,1,1)

(21,21,1,1)

(22,22,1,1)

(21,21,21)

2 '    2 '    2

(2.,,1,1,1,1)

(22,1,1,1,1)

(21,21,1,1)

(22,22,1 ,1)

(21,21,T7T)

(22,22,T7T)

(21,22,T7T)

(21,,21,,21)

\ ¿ yt   t ¿ -)\      2

(2V  ,2V ,22)

(22, ,22, ,2X)

(3,T7T,1)

(4r ,T7T)
(42,,T7T)

(43, ,T7T)

(21,21,1,D

(22,22,1,1)

7

7

7

7

7

7

6

6

6

6

e

6

6

6

6

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

numb,   of        isom.types  of
Z-cl.   of       a.d.Bravais  gr .
a.d.Br.gr.

D„*C,

D12"C2

D12«C2

VC2
C    xCL6   ^2

(c2.s3)xc2

D12.C2-

VC2

C   xC
6      2

D0«C

D12XC2

D8

D12

D„*C_

D12XC2

D8«C22

D12xc22

D„2xC,

D12    .C2

D8XD12XC2

C6XD12

C4XD12

C6XD8

(c2^s3) xc2z

D16XC2

D24xC2

D20XC2

2        2D8   XC2

2        2D12   XC2

number  of
Z-classes
of   Bravais
groups

39(2)

8(1)

6(4)

57(8)

11 (2)

6(3)

3

3(2)

3(1)+2+1

49 (1 3)

35(8)

19(13)

7(1)

4(2)

3 + 4+2

3(2)+2(1)

1+1+1

1+1

46(16)

22(14)

8(2)+11 (1)+7(2)

4(2)+6(4)

10(4)

8(7)

4(2)

3(1)

3(2)

1

1

11(4)+7+2

2

1

2(1)

32(17)

18(16)
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6-DIMENSIONAL BRAVAIS GROUPS

family
number

family
symbol

number
of para-
meters

numb, of   isom.types of    number of
Z-cl. of   a.d.Bravais gr.  Z-classes
a.d.Br.gr. of Bravais

groups

XLVIII  (21,22,1,1)

IL

L

<21,21,21)

LI

LII

LIII

LIV

LV

LVI

LVII

(22,22,22)

(21,21,22)

(22,22,2l)

(3,1,1,1)

(4r ,1,D
<42. ,1,1)

(43, ,1,1)

(41,T7T)

LVI 11   (42,1,1)

LIX

LX

LXI

LXII

LXIII

LXIV

LXV

LXVI

LXVII

LXVI 11  (4., ,2

(43,1,1)

(21,21,21)

\  £.  ~,    Z  — I    Z y  )

(2r2r22)
(21(22,22)

(3,2^1)

(3,22,1)

(377)

(4r ,2.,)

LXIX

LXX

(43. ,2,)

(4r,22)
LXXI (42, , 22)

LXXII (43, ,22)

LXXIII  (41,1,1)

D8«D12«C2

°122

D8xD12

D12xD8

(c^s3)>c2;

D16XC22

D24XC22

(c2.s4)xc2,

W(F.)«C.

(D12^S2)xC2,

(C2x (D6^S2) )»C.

(c2xs5)xc2

"12
2

D0    «D

D8xD12

12
2

(C2^S3)xDgxC2

(C2^S3)xD1 2>C2

C2"S3

D16XD8

D24xD8

"16 12

D24XD12

D20xD12

(c2-vs4)xc2:

W(F4)xC22

13(8)

4(2)+4(1)+4(2)

3(2)+3(2)

1+1+1

1+1

23(1 1 )+1 2 + 4

6(1)

2

4(2)

2 + 3(2)

2(1)+2(1)

2(1)+1

11 (7)

9(8)

3(1)

3(2)

10(4)+6+2

3(1)+4(2)+2(1)

9 = 1 + . . .+1

3(1)

2(1)

1

1

2(1)

1

6(1)+6(4)

LXXIV        (4   ,1,1)

LXXV    (43,1,1)

LXXVI   (62, )

LXXVII  (6  )

(D12^S2)xC2 ,

(C2x (Dg-^S2) )«C2'

(c2xs5)xc22

'36

28

6(4)+4(2)

6(4)+2

1

1
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6-DIMENSIONAL BRAVAIS GROUPS

family family
number symbol

LXXVIII    (3,3)

LXXIX (41,2r

LXXX <42»2i)

LXXXI (43,2..)

LXXXII      (4V22)

LXXXIII       (42,22)

LXXXIV (43,22)

LXXXV (S-,1)

LXXXVI (5-,1)

LXXXVTI (64, )

LXXXVIII (6.,)

LXXXIX  (62)

XC      (6 3)

XCI     (64)

number
of para-
meters

numb, of  isom.types of
Z-cl. of   a.d.Bravais gr.
a.d.Br.gr.

(W
(C2^S4)xD8,

W(F4)XD8

(D12^S2)xD8,

(C.x (n ^S.))x

(C2xS5)xD8

(C2^S4)«D12,

W(F4)xD12

(D12^S2)xD12,

(C2x (Dg^S2))x

(C2xS5)xD12

(c2.s5)xc2

(c2xs6)«c2

C2XA5

(C2.S3).S2,W(D6)

D121S3,C2-W(E6) ,

D12XS4

J12

number  of
Z-classes
of   Bravais
groups

4 (2)+2 + 1+5(3) +
2(1)+5(4)

3(1)+3(2)

3(2)+1

1+2(1)

1+1

3(2)+3(2)

1 +1

2 + 1+3(1)

4(2)+1+2(1)+2

1+1+1

6 = 1 + . . . + 1

5=1 + . . .+1

C2xS7,C2xPGL(2,7)    3 = 1+1+1

c2xs5 3 = 1+1+1

V. Concluding Remarks. One of the most interesting questions in our context is,
how much the orders of the Bravais groups within a crystal family differ, or, slightly
more restricted, how much symmetry one might lose if one passes from the natural
lattice L of an almost decomposable Bravais group B to a sublattice (in Cen(L))
belonging to a Bravais group associated with B. Certainly, the example at the end of
Section III shows that the difference might become tremendously big if one is willing
to go to sufficiently big dimensions. The biggest index we found in dimension 6 is 48
in families (3,3) and (43,2,). In checking these tables we found a mistake in [9,
Theorem V.3(ii)]. The subgroup of GL6(Z) given there is not a maximal finite
subgroup of GL6(Z), not even a Bravais group as one might check from the attached
microfiche under family (3,3). In fact family (3,3) does not seem to contain a
maximal finite subgroup of GL6(Z), the constituent groups of which are not
maximal finite in GL3(Z). However, the phenomenon to be demonstrated in Theo-
rem V.3(ii) of [9] certainly exists: There are maximal finite reducible subgroups of
GL„(Z), the ^-dimensional constituent groups of which are not maximal finite in
GLk(Z) for some k.
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(V.l) Example. In the 7-dimensional crystal family with symbol (42,3) there are
maximal finite subgroups of GL7(Z), the 4-dimensional constituent groups are not
maximal finite in GL4(Z).

Proof. Let Bx be the Bravais group with

«*-((l ïM-î D)
and B2 the Bravais group with

sw'((¡ l il).or sw=((i î il);
Denote the natural lattices by Lx and L2. Our maximal finite subgroup will be a
Bravais group B with Bj © #2 as associated almost decomposable Bravais group.
The Z?2-lattice L2 has a factor module M, which is a 2-dimensional Z/2Z-vector
space. Bx has a subgroup //, with B(HX) = 5n, namely

*-((1 ?)•(? -M« îWï ïMî D< '))•
such that L, viewed as an Hx -lattice has a factor module N isomorphic to M as
abelian group. Both, Hx and Bx, induce the full GL2(Z/2Z)-action on N resp. M.
Taking the subdirect product L of Lx and L2 with M and ,/V identified (as
amalgamating factor module) and taking the corresponding subdirect product of Hx
and B2, as described in Section II, yields a Bravais group B with Hx as constituent
group. Clearly Hx is not maximal finite in GL4(Z), since it is of index 6 in Bx.
However, B is maximal finite in GL7(Z). Namely, one only has to check that B is not
contained in an irreducible maximal finite subgroup of GL7(Z). The spaces of forms
for these groups are generated by integral primitive matrices, the elementary divisors
only involve powers of 2, cf. [13]. But in S(B) there are no nonsingular integral
matrices with this property, since there is always a 3 involved in the elementary
divisors (coming from (J, ?) ® (_2 "2)).    Q.E.D.

Our tables do not give immediate insight about inclusions of Bravais groups and
therefore one might wish more information of this kind to gain some insight into the
geometry of the space of quadratic forms in six dimensions. How a combinatorial
aspect of the geometric picture might be approached is the last topic of this paper.

Let S'(G) denote the subset of all positive definite matrices in 5(G) for any finite
unimodular group G and call the sets S of the form S = S'(G) Bravais manifolds.
The intersection of two Bravais manifolds is either empty or again a Bravais
manifold. Hence the set 93 „ of all Bravais manifolds of finite subgroups of GL„(Z)
together with the empty set is a semigroup with respect to intersection. The
conjugation action of GL„(Z) on the set 93 ¡, of Bravais groups of degree n is similar
to the action on 93 „ \ {<f>} via 5 -» g'rSg for g e GL„(Z) and S e 93„ \ {</>}. For the
sake of clarity, we describe the construction we are going to suggest first in an
abstract context.

(V.2) Remark. Let M, ° be a semigroup and G a group acting as an automorphism
group on M. Assume

(i) For each m e M there are only finitely many x, y e M with x ° y = m;
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(ii) M/G is finite, i.e., G has only finitely many orbits on M.
Then there is a ring with Z-basis (b0 \ O e M/G) of cardinality |Af/G| such that

bopo-t =     E
03 £ M/G

a(Ox, 02, 03)b0    for all Ox, 02 e M/G,

where a(0i, 02, 03) = ¡{(m,, w2) e O, X 02 \ mx ° m2 = ra3}| for some fixed m3 e
03. This ring (together with its distinguished basis) is called a (M, °, G)-ring.

Proof. The proof is a slight modification of the proof of Theorem (II.2) in [12].
(The semigroup ring of M has to be replaced by a bigger ring.)   Q.E.D.

From the inclusion reverting bijection between the (finite) Bravais groups and the
Bravais manifolds one sees that (i) of (V.2) is satisfied for 33 „, n, and (ii) follows
from the Jordan-Zassenhaus Theorem. Hence the (93„, n, GL„ (Z))-ring exists. In
order not to burden our description with trivial information, we will rather work
with the quotient ring 93 „ of the (93„, n, GLn(Z))-ring just described by the ideal
consisting of the integral multiples of the basis vector corresponding to the empty set
in 93 „. Call this quotient ring 33 „ also the (93„, n, GLn (Z))-ring.

(V.3) Proposition. The (93„, n, GLn(Z))-ring 33„ is isomorphic to the ring direct
sum ®f_x Z of k = k(n) copies ofZ where k(n) is the number ofZ-classes of Bravais
groups of degree n. More precisely, let Bx,...,Bk be representatives of the Z-classes of
n-dimensional Bravais groups. Then the basis vector b¡ of 33 „ corresponding to the
GLn{Z)-orbit of S'{B¡) is mapped onto (aiX,.. .,aik) e e*=1 Z with atj = |{ B < Bj \ B
~zB,}\forl ^ij^k.

Proof. The proof follows from the Galois correspondence between 93 „\ {<#)} and
33 J, and a modification (analogous to the proof of (V.2)) of the proof of Theorem
(III.l) of [12].   Q.E.D.

As an example we present the matrix (a,- •) for 933:

1   1
1   0

1

O

1111
3   10  0
0  2   3   3
10  0  0

1   0  0
1   0

1

1   1
3  0
2   5
1 0
1 0
0 1
0 1
1  0

1

1 1
1   0
6 3
0 0
3 0
0 0
0 0
0  0
0  0
1  0

1

1   1   1
3  0  0
6  9  9
1 0 0
3 0 0
0 1 3
0 3 1
3  0  0
0   3   3
0  0  0
4  4  4
1 0 0

1 0
1
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The Bravais groups (resp. manifolds) are ordered by families: (1,1,1), (1,1,1),
(1,1,1), (2X, 1), (22,1), (3) such that the almost decomposable Bravais group comes
first in each reducible family. Within (1,1,1) the second Bravais group is decom-
posable and the last two are indecomposable such that the index of the natural
lattice L in the associated decomposable lattice L (see Definition (II.1)) is 2 for the
third and 4 for the last. Within family (3) the ordering is given by the following
sequence of Bravais manifolds: {al3 \ a > 0}, {a(I3 + J3) \ a > 0), {a(4/3 - J3)\a
> 0} with /j, /j e Z3x3 the unit- resp. all-1-matrix. (Hence in crystallographic
notation the ordering is: triclinic; monoclinic P and C; orthorombic P, C, F, and /;
tetragonal P and /; hexagonal P and R; cubic P, F, and /.) This matrix (o,- ■) stores
all information on $3: The rows represent the distinguished Z-basis of 3S3 and have
to be multiplied componentwise. For instance, multiplying the second and third row
and writing the product again as a linear combination of the rows shows: b2b3 = 2bi
+ 4b& thus giving all possible types of intersections of Bravais manifolds of different
monoclinic types with multiplicities counted: e.g., a two-dimensional Bravais mani-
fold of primitive tetragonal type can be obtained in 4 ways as intersection of
four-dimensional Bravais manifolds of the two different monoclinic types. We think
that the matrix (a, ) for some higher dimensions than 3 is still in the range of
computational possibilities and could support the geometric study of Bravais mani-
folds.
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