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Abstract

We study the approximation problem of IEf(XT ) by IEf(Xn
T ), where (Xt) is

the solution of a stochastic differential equation, (Xn
t ) is defined by the Euler dis-

cretization scheme with step T
n , and f is a given function. For smooth f ’s, Talay

and Tubaro have shown that the error IEf(XT )−f(Xn
T ) can be expanded in powers

of 1
n , which permits to construct Romberg extrapolation procedures to accelerate

the convergence rate. Here, we prove that the expansion exists also when f is only
supposed measurable and bounded, under an additional nondegeneracy condition
of Hörmander type for the infinitesimal generator of (Xt): to obtain this result, we
use the stochastic variations calculus.

In the second part of this work, we will consider the density of the law of Xn
T

and compare it to the density of the law of XT .
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1. Introduction

Let (Xt) be the process taking values in IRd, solution to

dXt = b(Xt)dt + σ(Xt)dWt , (1.1)

where (Wt) is a r-dimensional Brownian motion.

The problem of computing the expectation IEf(Xt) on a time interval [0, T ] by a
Monte–Carlo algorithm, (Xt) being a diffusion process, arises from various motivations.
For example, in Random Mechanics, a random dynamical system with a white noise
being given, one wants to get the two first moments of the response of the system, or the
probability that the response reaches a certain level. In numerical analysis, this permits to
solve parabolic or elliptic Partial Differential Equations in situations where deterministic
algorithms become difficult to use or unefficient, especially when the dimension of the
state space is large, when the underlying differential operator is degenerate, or when the
objective is to compute the solution only at a few points. In economy, this permits to
compute option prices based upon a large panel of assets.

The algorithm consists in approximating the unknown process (Xt) by an approxi-
mate process (depending on a parameter denoted by n) Xn

t which can be simulated on a
computer, and in simulating a large number M of independent trajectories of Xn

t , so that
IEf(Xt) is approximated by:

1

M

M∑
i=1

f(Xn
t (ωi)) .

The resulting error of the algorithm depends on the choice of the approximate process
and the two parameters M and n.

The effects of M can be described by the Central–Limit Theorem or large deviation
results; in practice, one estimates the maximum value of the variance of f(Xt) for t in
[0, T ], and then chooses M according to the desired accuracy and the power of the available
computer. A sophisticated variance reduction technique has been developed and analysed
by Nigel Newton in [8]. Generally M must be large,and, as just mentioned, one chooses a
probabilistic technique because the problem is degenerate or high dimensional: therefore,
one takes advantages of simple procedures to approximate (Xt).

A natural mean is to use a time discretization scheme of the stochastic differential
equation whose (Xt) is the solution: T/n represents the discretization step. For example,
the Euler scheme is defined by

Xn
(p+1)T/n = Xn

pT/n + b(Xn
pT/n)

T

n
+ σ(Xn

pT/n)(W(p+1)T/n −WpT/n) . (1.2)

For pT
n
≤ t < (p+1)T

n
, Xn

t is defined by

Xn
t = Xn

pT/n + b(Xn
pT/n)

(
t− pT

n

)
+ σ(Xn

pT/n)(Wt −WpT/n) .
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The effects of n can be measured by the quantity:

|IEf(XT )− IEf(Xn
T )| . (1.3)

Milshtein [6] was the first to show that the schemes built for the quadratic mean con-
vergence, and L2 estimates of the corresponding errors, are not relevant in that context,
since the objective is to approximate the law of (Xt).

Talay ([12] and [13]) and, independently, Milshtein [7], have introduced the appropriate
methodology to analyse the error (1.3): it consists in writing this difference as a sum of
terms involving the solution of a parabolic PDE (this technique will be used also below).
These references provide schemes such that, under smoothness conditions on b, σ, f :

|IEf(XT )− IEf(Xn
T )| ≤ C

nα
, α = 1, 2 .

Several other schemes have then been proposed by Kloeden and Platen [4].

In Talay and Tubaro [14], a more precise result is proven : under the same conditions,
the errors corresponding to these schemes can be expanded in terms of powers of 1

n
, and

formulae for the coefficients of the expansion can be derived. In Protter and Talay [11],
the same result is shown for the Euler scheme applied to stochastic differential equations
driven by general (discontinuous) Levy processes.

Here, we will focus our analysis on the simplest scheme, the Euler scheme: as a
consequence of the existence of the expansion, linear combinations of results obtained
with this scheme and different step-sizes permit to reach any desired convergence rate
(Romberg extrapolation technique: see Talay and Tubaro [14]).

Our objective is to show the existence of the expansion under a much weaker hypothesis
on f than in [14]: we will suppose it measurable and bounded (the boundedness could
be relaxed); for example, f can be the indicatrix function of a domain: our result applies
when one wants to compute probabilities of the type IP [|XT | > K]. In counterpart,
we suppose a nondegeneracy condition which in particular ensures that, for any t >
0 and any x ∈ IRd, the law of the random variable Xt(x) has a smooth density with
respect to the Lebesgue measure (essentially, this condition is the Hörmander condition
for the infinitesimal generator of the process): that condition is less restrictive than the
uniform ellipticity of the generator, and therefore our result applies for dynamical systems
whose solution, representing a pair (position, velocity), cannot have a uniformly elliptic
generator.

The organization of the paper is the following : in the section 2, we recall some results
of the Malliavin calculus that we will use in the sequel, in particular an estimate due to
Kusuoka and Stroock on the derivatives of the density of Xt(x); in the section 3, we state
and comment our main result; the section 4 is devoted to the proof, except two technical
lemmas which are proved in the section 5; in the section 6, we give some extensions of
the result.

In the second part of this work [2], we will consider the density of the law of Xn
T and

compare it to the density of the law of XT .
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Notation. In all the paper, ϕ being a smooth function, the notation ∂x
αϕ(t, x, y) means

that the multiindex α concerns the derivation with respect to the coordinates of x, the
variables t and y being fixed.

When γ = (γij) is a matrix, γ̂ denotes the determinant of γ, and γj denotes the j− th
column of γ.

When V is a vector, ∂V denotes the matrix (∂iVj)
ij.

Finally, we will use the same notation K(·), q, Q, µ, etc, for different functions and
postive real numbers, having the common property to be independent of T and of the
approximation parameter n: typically, they will only depend on L∞-norms of a finite
number of partial derivatives of the coordinates of b and σ and on an integer L to be
defined below (see the hypothesis (HU)).

2. Some basic results of the Malliavin calculus

One can now find several expositions of the Malliavin calculus: see, for example,
Nualart [9] (we use the notation of this book) and Ikeda-Watanabe [3]; a short presentation
on the applications to the existence of a density for the law of a diffusion process can be
found in Pardoux [10].

We only introduce the material necessary to our computations.

We fix a filtered probability space (Ω,F , (Ft), IP ), and a r-dimensional Brownian mo-
tion (Wt) on that space.

For h(·) ∈ L2(IR+, IRr), we denote by W (h) the quantity
∫ T
0 < h(t), dWt >.

Let S be the space of “simple ” functionals of the Wiener process W , i.e. the sub-space
of L2(Ω,F , IP ) of random variables F which can be written under the form

F = f(W (h1), . . . ,W (hn))

for some n, polynomial function f(·) , hi(·) ∈ L2(IR+, IRr).

For F ∈ S, we denote by (DtF ) the IRr-dimensional process defined by

DtF =
n∑

i=1

∂f

∂xi

(W (h1), . . . ,W (hn))hi(t) .

The operator D is closable as an operator from Lp(Ω) to Lp(Ω; L2(0, T )), for any p ≥ 1.
Its domain is denoted by ID1,p, and we define the norm

‖F‖1,p :=
[
IE|F |p + ‖DF‖p

Lp(Ω;L2(0;T ))

]1/p
.

The j-th component of DtF will be denoted by Dj
tF .
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One also defines the k-th order derivative as the the random vector on [0, T ]k × Ω
whose coordinates are defined by

Dj1,...,jk
t1,...,tk F := Djk

tk . . . Dj1
t1 F ,

and we denote by IDN,p the completion of S with respect to the norm

‖F‖N,p :=

[
IE|F |p +

N∑
k=1

IE‖DkF‖p
L2((0;T )k)

]1/p

.

ID∞ will denote the space
⋂

p≥1

⋂
j≥1 IDj,p.

For F ∈ S, one also defines the Ornstein-Uhlenbeck operator L by

LF =
n∑

i=1

∂f

∂xi

(W (h1), . . . ,W (hn))W (hi)−
n∑

i,j=1

∂2f

∂xi∂xj

(W (h1), . . . ,W (hn)) < hi, hj > ,

which is a closable operator. The domain of L includes ID∞.

For F := (F 1, . . . , Fm) ∈ (ID∞)m, we denote by γF the Malliavin covariance matrix
associated to F , i.e. the m×m-matrix defined by

γij
F :=< DF i, DF j >L2(0,T ) .

Definition 2.1. We will say that the random vector F satisfies the nondegeneracy as-
sumption if the matrix γF is a.s. invertible, and the inverse matrix ΓF := γ−1

F satisfies

‖ΓF‖ ∈
⋂
p≥1

Lp(Ω) .

Remark 2.2. The above condition can also be written (we recall that γ̂F denotes the
determinant of γF ):

1

γ̂F

∈
⋂
p≥1

Lp(Ω) .

Our main ingredient is the following integration by parts formula (cf. the section V-9
in Ikeda-Wanabe [3]):

Proposition 2.3. Let F ∈ (ID∞)m satisfy the nondegeneracy condition 2.1, let g be a
smooth function with polynomial growth, and let G in ID∞. Let {Hβ} be the family of
random variables depending on multiindices β of length strictly larger than 1 and with
coordinates βj ∈ {1, . . . ,m}, recursively defined in the following way:

Hi(F, G) = H(i)(F, G)

:= −
m∑

j=1

{
G < DΓij

F , DF j >L2(0,T ) +Γij
F < DG, DF j >L2(0,T ) +Γij

F ·G · LF j
}

,

Hβ(F, G) = H(β1,...,βk)(F, G)

:= Hβk
(F, H(β1,...,βk−1)(F, G)) . (2.1)
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Then, for any multiindex α,

IE[(∂αg)(F )G] = IE[g(F )Hα(F, G)] . (2.2)

We can get the following estimate:

Proposition 2.4. For any p > 1 and any multiindex β, there exist a constant C(p, β) > 0
and integers k(p, β), m(p, β), m′(p, β), N(p, β), N ′(p, β), such that, for any measurable
set A ⊂ Ω and any F, G as above, one has

IE[|Hβ(F, G)|p llA]
1
p ≤ C(p, β) ‖ΓF llA‖k(p,β) ‖G‖N(p,β),m(p,β) ‖F‖N ′(p,β),m′(p,β) . (2.3)

Proof. We apply the Meyer inequality on ‖LF‖p (see the theorem 8.4 of the chapter 5
in Ikeda-Watanabe [3], with k = 2, taking into account the definition 8.2 in the same
chapter):

‖LF‖p ≤ C‖F‖2,p ,

and the equality
DΓij = −

∑
k,l

ΓikΓjlDγkl ;

the result readily follows from the definition (2.1).

We now state another classical result, which concerns the solutions of stochastic dif-
ferential equations considered as functionals of the driving Wiener process. [A, A′] will
denote the Lie brackett of two vector fields A and A′.

Definition 2.5. Let us denote by A0, A1, . . . , Ar the vector fields defined by

A0(x) =
d∑

i=1

bi(x)∂i ,

Aj(x) =
d∑

i=1

σij(x)∂i , j = 1, . . . , r .

For a multiindex α = (α1, . . . , αk) ∈ {0, 1, . . . r}k, define the vector fields Aα
i (1 ≤ i ≤ r)

by induction: A∅
i = Ai and, for 0 ≤ j ≤ r, A

(α,j)
i := [Aj, Aα

i ].

The Hörmander condition is said to hold at the point x if the vector space spanned by
all the vector fields Aα

i , 1 ≤ i ≤ r and α multiindex, at the point x, is IRd.

Theorem 2.6. Assume that the coefficients b and σ are infinitely differentiable, with
bounded derivatives of order strictly larger than 1. Then, for all x, all t > 0 and i =
1, . . . , d, X i

t(x) belongs to ID∞.
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Besides, suppose that the Hörmander condition holds at some point x. Let γt(x) denote
the Malliavin covariance matrix corresponding to Xt(x), and Γt(x) its inverse.

Then, for any t > 0, one has

‖Γt(x)‖ ∈
⋂
p≥1

Lp(Ω) ,

and the random vector Xt(x) has an infinitely differentiable density pt(x, ·).

Actually, Kusuoka and Stroock [5] give an exponential bound for pt(x, ·) in terms of
the following quadratic forms:

VL(x, η) :=
r∑

i=1

∑
|α|≤L−1

< Aα
i (x), η >2 .

Set
VL(x) = 1 ∧ inf

‖η‖=1
VL(x, η) . (2.4)

The exponential bounds require some smoothness conditions on b and σ, and are valid for
x in the set {x ∈ IRd : VL(x) > 0}; as we will apply this estimate for x = Xn

t , we assume

(UH) CL := infx∈IRd VL(x) > 0 for some integer L.

(C) The functions b and σ are C∞ functions, whose derivatives of any order are bounded
(but b and σ are not supposed bounded themselves).

Under the conditions (C) and (UH), and a corresponding L being fixed (the smallest
one, for example), the corollary 3.25 in Kusuoka and Stroock asserts: for any integers m, k
and any multiindices α and β such that 2m+ |α|+ |β| ≤ k, there exist an integer M(k, L),
a non decreasing function K(T ) and real numbers C, q,Q depending on L, T, m, k, α, β
and on the bounds associated to the coefficients of the stochastic differential equation and
their derivatives up to the order M(k, L), such that the following inequality holds1:

|∂m
t ∂α

x ∂β
y pt(x, y)| ≤ K(T )(1 + ‖x‖Q)

tq(1 + ‖y − x‖2)k
e
−C

(‖x−y‖∧1)2

t(1+‖x‖)2 , ∀0 < t ≤ T . (2.5)

The same theorem provides the following estimate for Γt(x): for any p ≥ 1, for some
constants C, µ one has

‖Γt(x)‖p ≤ K(t)
1 + ‖x‖µ

tdL
. (2.6)

Remark 2.7. The rate of degeneracy of pt(x, y) as t → 0 is controlled by that of Γt(x);
(2.6) gives an upper bound of order 1/tdL; the lower bound 1/tL−1 is proved in the theorem
5.1 in Bally [1].

1The constant γ0 of the statement of Kusuoka and Stroock is equal to 1 under (C).
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3. Our main result

We denote by L the second-order differential operator

L :=
d∑

i=1

bi(x)∂i +
1

2

d∑
i,j=1

(σσ∗)ij(x)∂ij . (3.1)

Consider a measurable bounded function f and u(t, x) := IEf(XT−t(x)) which solves: ∂u
∂t + Lu = 0 , 0 ≤ t < T ,

u(T, ·) = f(·) .
(3.2)

Denote by a the matrix σσ∗. Let Ψ(t, x) be defined by

Ψ(t, x) =
1

2

d∑
i,j=1

bi(x)bj(x)∂iju(t, x) +
1

2

d∑
i,j,k=1

bi(x)ajk(x)∂ijku(t, x)

+
1

8

d∑
i,j,k,l=1

aij(x)akl(x)∂ijklu(t, x) +
1

2

∂2

∂t2
u(t, x)

+
d∑

i=1

bi(x)
∂

∂t
∂iu(t, x) +

1

2

d∑
i,j=1

aij(x)
∂

∂t
∂iju(t, x) . (3.3)

Theorem 3.1. Let f be a measurable and bounded function. Under the hypotheses (UH)
and (C), the Euler scheme error satisfies

IEf(XT (x))− IEf(Xn
T (x)) = −Cf (T, x)

n
+

Qn(f, T, x)

n2
; (3.4)

the terms Cf (T, x) :=
∫ T
0 IEΨ(s, Xs(x))ds and Qn(f, T, x) have the following property:

there exists an integer m, a non decreasing function K(T ) depending on the coordinates
of a and b and on their derivatives up to the order m, and positive real numbers q, Q such
that

|Cf (T, x)|+ supn|Qn(f, T, x)| ≤ K(T )‖f‖∞
1 + ‖x‖Q

T q
.

The expansion (3.4) was first obtained by Talay and Tubaro in [14]. No nondegeneracy
assumption of Hörmander type was necessary, but in counterpart the function f(·) was
supposed smooth enough; in that context, one obtains a bound of type

|Cf (T, x)|+ supn|Qn(f, T, x)| ≤ K(T )
∑
|α|≤6

‖∂x
αf‖∞ .

Besides, when f is smooth, the analysis shows that the simulation of Brownian paths is
unnecessary to get the existence of the expansion: the algorithm may involve appropriate
discrete lawed random variables as well (see [14]). In our context, this property does not
remain true. This has no practical incidence: the simulation of the increments of the
Wiener process can efficiently be performed.
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4. Proof of Theorem 3.1

The proof of the preceding theorem is based upon the two following technical lemmas,
which are interesting by themselves. Their statements suppose that the hypotheses of the
theorem 3.1 hold.

Lemma 4.1. Let the function u be defined by (3.2). Then, for any multiindex α and
for any smooth function with polynomial growth g, there exist a non decreasing function
K(T ) and positive constants q, Q, uniform with respect to n and T , such that

∀t ∈ [0, T ] , |IE[g(Xt(x))∂αu(t,Xt(x))]| ≤ K(T )‖f‖∞
1 + ‖x‖Q

T q
, (4.1)

and

∀t ∈
[
0, T − T

n

]
, |IE[g(Xn

t (x))∂αu(t,Xn
t (x))]| ≤ K(T )‖f‖∞

1 + ‖x‖Q

T q
. (4.2)

Lemma 4.2. Let γ et λ be multiindices, let g and gγ be smooth functions with polynomial
growth. Set

ϕ(θ, ·) := gγ(·)∂γPT−θf(·) .

There exist a non decreasing function K(T ) and positive constants q, Q, uniform with
respect to n and T , such that

∀θ ∈
[
0, T − T

n

]
, ∀t ∈

[
0, θ − T

n

]
,

∣∣∣IE [
g(Xn

t (x))∂λPθ−tϕ(θ, ·)(z)Bz=Xn
t (x)

]∣∣∣ ≤ K(T )‖f‖∞
1 + ‖x‖Q

T q
. (4.3)

Lemma 4.3. For some integer q and some non decreasing function K(T ), one has that

|IEf(Xn
T (x))− IE(PT/nf)(Xn

T−T/n(x))| ≤ K(T )

n2
‖f‖∞(1 + ‖x‖Q) . (4.4)

For a while, we admit the lemmas 4.1,4.2,4.3 which will be proven in the section 5.

We start with an easy other lemma.

Lemma 4.4. It holds that

IEf(Xn
T (x))− IEf(XT (x)) =

T 2

n2

n−2∑
k=0

IEΨ

(
kT

n
, Xn

kT/n(x)

)
+

n−1∑
k=0

Rn
k , (4.5)

where
Rn

n−1 := IEf(Xn
T (x))− IE(PT/nf)(Xn

T−T/n(x)) ,
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and for k < n− 1, Rn
k can be explicited under a sum of terms, each of them being of the

form

IE
[
ϕ\

α(Xn
kT/n(x))

∫ (k+1)T/n

kT/n

∫ s1

kT/n

∫ s2

kT/n
(ϕ]

α(Xn
s3

(x))∂αu(s3, X
n
s3

(x))

ϕ†
α(XkT/n)

∫ (k+1)T/n

kT/n

∫ s1

kT/n

∫ s2

kT/n
ϕ[

α(Xs3)∂αu(s3, Xs3))ds3ds2ds1

]
,(4.6)

where |α| ≤ 6, and the ϕ\
α’s, ϕ]

α’s, ϕ[
α’s are products of functions which are partial deriva-

tives up to the order 3 of the aij’s and bi’s.

Proof. We follow [14], just changing the presentation.

For a fixed z in IRd, we define the differential operator Lz by

Lzg(·) :=
d∑

i=1

bi(z)∂ig(·) +
1

2

d∑
i,j=1

aij(z)∂ijg(·) .

We note that, for z = Xn
kT/n(x), Lz is the infinitesimal generator of the diffusion process(

Xn
t (x), kT

n
≤ t < (k+1)T

n

)
.

As u(t, ·) = PT−tf(·) = IEf(XT−t(·)), one has

IEf(Xn
T (x))− IEf(XT (x)) = IEu(T, Xn

T (x))− u(0, x) =
∑

k≤n−1

δn
k

with

δn
k := IE

[
u

(
(k + 1)T

n
, Xn

(k+1)T/n(x)

)
− u

(
kT

n
, Xn

kT/n(x)

)]
. (4.7)

The Itô formula implies

δn
k = IE

∫ (k+1)T
n

kT
n

(
∂tu(t,Xn

t (x)) + Lzu(t,Xn
t (x))Bz=Xn

kT/n
(x)

)
dt ,

from which, using (3.2), one gets

δn
k = IE

∫ (k+1)T
n

kT
n

(
−Lu(t,Xn

t (x)) + Lzu(t,Xn
t (x))Bz=Xn

kT/n
(x)

)
dt .

Denote

In
k (t) := Lzu(t,Xn

t (x))Bz=Xn
kT/n

(x) − Lzu

(
kT

n
, Xn

kT/n(x)

)
Bz=Xn

kT/n
(x)

10



and

Jn
k (t) := Lzu

(
kT

n
, Xn

kT/n(x)

)
Bz=Xn

kT/n
(x) − Lu(t,Xn

t (x))

= Lu

(
kT

n
, Xn

kT/n(x)

)
− Lu(t,Xn

t (x)) .

We have:

δn
k = IE

∫ (k+1)T
n

kT
n

(In
k (t) + Jn

k (t))dt .

We now consider In
k (t) and Jn

k (t) as smooth functions of the process (Xn
t ) and recursively

apply the Itô formula, using the fact that the function u solves (3.2), so that Lu solves a
similar PDE.

We can deduce the following corollary (note that this upper bound in terms of ‖f‖∞
was stated nowhere else in the literature before, even for smooth functions f (to our
knowledge); but we do not focus on it, since our objective is a stronger statement):

Corollary 4.5. There exist a non decreasing function K(T ) and constants q, Q such that:

|IEf(Xn
T (x))− IEf(XT (x))| ≤ K(T )‖f‖∞

T q
(1 + ‖x‖Q)

1

n
. (4.8)

Proof. We apply the lemma 4.3, and for k < n−1, we apply the estimates of the lemma 4.1
to Ψ(kT

n
, Xn

kT/n(x)) and Rn
k .

Before ending our proof, we make an easy remark.

We recall that ∂x
αϕ(t, x, y) means that the multiindex α concerns the derivation with

respect to the coordinates of x, the variables t and y being fixed. As u(t, x) = PT−tf(x),
one has

∂x
αu(t, x) =

∫
∂x

αpT−t(x, y)f(y)dy .

Now we use the estimate (2.5) and get, for some k ≥ |α| ≥ 1:

|∂x
αpT−t(x, y)| ≤ K(T − t)

(T − t)q
(1 + ‖x‖Q)

1

(1 + ‖y − x‖2)k
,

so that

|∂x
αu(t, x)| ≤ K(T )

‖f‖∞
(T − t)q

(1 + ‖x‖Q) . (4.9)

Now we are in position to prove (3.4).
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The expansion (4.5) can be rewritten under the following form:

IEf(Xn
T (x))− IEf(XT (x)) =

T 2

n2

n−2∑
k=0

IEΨ

(
kT

n
, XkT/n(x)

)

+
T 2

n2

n−2∑
k=0

IE

[
Ψ

(
kT

n
, Xn

kT/n(x)

)
−Ψ

(
kT

n
, XkT/n(x)

)]

+
n−1∑
k=0

Rn
k . (4.10)

For any k such that k
n
≤ 1

2
, we apply the inequalities (4.8) (with Ψ(kT/n, ·) instead of

f(·)) and (4.9) (to upper bound ‖Ψ(kT/n, ·)‖∞):∣∣∣∣∣IEΨ

(
kT

n
, Xn

kT/n(x)

)
− IEΨ

(
kT

n
, XkT/n(x)

)∣∣∣∣∣ ≤ K(T )

nT q
‖f‖∞(1 + ‖x‖Q) . (4.11)

For k
n
≥ 1

2
, one applies the expansion (4.5), substituting the function fn,k(x) :=

Ψ(kT
n

, ·) to f(·). Set un,k(t, x) := PkT/n−tfn,k(x) and denote by Ψn,k(t, ·) the function
defined in (3.3) with un,k instead of u; then one has that

IEΨ

(
kT

n
, Xn

kT/n(x)

)
− IEΨ

(
kT

n
, XkT/n(x)

)
=

T 2

n2

k−2∑
j=0

IEΨn,k

(
jT

n
, Xn

jT/n(x)
)

+
k−1∑
j=0

Rn,k
j ,

where the Rn,k
j ’s are sums of terms of type (4.6) with un,k instead of u. We apply the

lemma 4.2 to upper bound the right hand-side.

Combining this estimate with (4.11), we get (for a new function K(·) and new con-
stants):

T 2

n2

n−2∑
k=0

∣∣∣∣∣IEΨ

(
kT

n
, Xn

kT/n(x)

)
− IEΨ

(
kT

n
, XkT/n(x)

)∣∣∣∣∣ ≤ K(T )

n2T q
‖f‖∞(1 + ‖x‖Q) .

We proceed similarly to upper bound

∣∣∣∣∣
n−2∑
k=0

Rn
k

∣∣∣∣∣, and we apply the lemma 4.3 to upper

bound
∣∣∣Rn

n−1

∣∣∣.
Finally, using Itô’s formula and the estimate (4.1), we get∣∣∣∣∣∣Tn

∑
k≤n−1

IEΨ

(
kT

n
, XkT/n(x)

)
−
∫ T

0
IEΨ (s, Xs(x)) ds

∣∣∣∣∣∣ ≤ K(T )

n
‖f‖∞(1 + ‖x‖Q) .

We note that (4.1) also ensures that
∫ T
0 IE|Ψ (s, Xs(x)) |ds is finite.

That ends the proof of the theorem 3.1.
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5. Proof of Lemmas 4.1, 4.2 and 4.3

We first state a technical lemma.

Lemma 5.1. Under the above hypotheses, for any p > 1 and j ≥ 1, there exist an integer
Q and a non decreasing function K(t) such that

sup
n≥1

‖Xn
t (x)‖j,p < K(t)(1 + ‖x‖Q)

and

sup
n≥1

‖Xt(x)−Xn
t (x)‖j,p <

K(t)√
n

(1 + ‖x‖Q) .

Proof. We just have to mimic the classical computations giving estimates for ‖Xt(x)‖j,p.
For example, let us show how we can proceed for j = 1. Let ηn(t) denote pT

n
, where the

integer p is such that pT
n
≤ t < (p+1)T

n
. We remark that, for t− θ > T

n
, Dk

θX
n
t (x) satisfies:

Dk
θX

n
t (x) = σ(Xn

ηn(θ)(x)) +
r∑

l=1

∫ t

ηn(θ)+T/n
∂σl(X

n
ηn(s)(x))Dk

θX
n
ηn(s)(x)dWs

+
∫ t

ηn(θ)+T/n
∂b(Xn

ηn(s)(x))Dk
θX

n
ηn(s)(x)ds .

Under (C), a classical use of Gronwall’s lemma permits to get

sup
n≥1

sup
0≤t≤T

‖Xn
t (x)‖1,p < K(T )(1 + ‖x‖Q).

For other values of j and for the difference Xt(x)−Xn
t (x), we proceed in the same way.

5.1. Proof of Lemma 4.1.We only prove the part (4.2), the part (4.1) being
treated with the same arguments.

5.1.1. Small t.We first consider the case 0 ≤ t ≤ T
2
. As T − t ≥ T/2, the inequal-

ity (4.9) yields (4.2).

5.1.2. Large t.Now, let us treat the situation T
2
≤ t ≤ T − T

n
. The preceding

argument cannot be used, since for θ → T the measure pT−θ(x, y)dy converges weakly to
the Dirac measure at point x.

The principle of the rest of the proof is the following: in order to get rid of the
derivatives of u(t, x), we will use Malliavin’s integration by parts formula with respect
to the functional Xn

t (x), which is expected non degenerated (with a high probability) for

13



t ≥ T/2 because Xn
t (x) approximates Xt(x); estimates on the Lp-norm of the inverse of

the Malliavin covariance matrix of Xn
t (x), Γn

t
2, can be directly obtained under a uniform

ellipticity condition but, under (UH) only, we are led to compare ‖Γn
t ‖p and ‖Γt‖p (where

Γt denotes the inverse of the Malliavin covariance matrix of Xt(x)) and we will use a
localization argument:

• let Ω0 be the set of events where |γ̂n
t − γ̂t| is larger than Cγ̂t; to prove that IP (Ω0)

is small, we will use two facts: first, (Xn
t (x)) is a “good” approximation of (Xt(x));

second, the ‖γ̂−1
t ‖p’s are finite;

• on the complementary set of Ω0, |γ̂n
t − γ̂t| is small, which (roughly speaking) means

that the Malliavin covariance matrix of Xn
t (x) behaves like that of Xt(x) (see (2.6)),

which allows integrations by parts of type 2.2 with a good control of the Lp-norms
of the variables Hα.

Let φ ∈ C∞b (IR) such that φ(x) = 1 for |x| ≤ 1
4
, φ(x) = 0 for |x| ≥ 1

2
and 0 < φ(x) < 1

for |x| ∈ (1
4
, 1

2
).

Set

rn
t :=

(γ̂n
t − γ̂t)

γ̂t

.

One has

IE[g(Xn
t (x))∂x

αu(t,Xn
t (x))] = IE[g(Xn

t (x))∂x
αu(t,Xn

t (x))(1− φ(rn
t ))]

+ IE[g(Xn
t (x))∂x

αu(t,Xn
t (x))φ(rn

t )]

=: A + B .

To upper bound |A|, we use (4.9):

|A| ≤ K(T )
‖f‖∞

(T − t)q
IE|1− φ(rn

t )| . (5.1)

Since 1− φ(rn
t ) = 0 for |rn

t | ≤ 1
4
, one has

IE|1− φ(rn
t )| ≤ IP

[
|rn

t | ≥
1

4

]
= IP

[
|γ̂n

t − γ̂t| ≥
γ̂t

4

]

≤ IP
[
γ̂t ≤

1

n1/4

]
+ IP

[
|γ̂n

t − γ̂t| ≥
1

4n1/4

]
= IP

[
γ̂−1

t ≥ n1/4
]
+ IP

[
|γ̂n

t − γ̂t| ≥
1

4n1/4

]
.

2In the sequel, γn
t (resp. γt) will denote the Malliavin covariance matrix of Xn

t (x) (resp. Xt(x)); note
that, in order to simplify the notation, we systematically drop the dependancy on x except for Xn

t and
Xt theirselves.
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Thus, for any p ≥ 1, one has

IE|1− φ(rn
t )| ≤ n−p/4IE|γ̂t|−p + (4n1/4)pIE|γ̂n

t − γ̂t|p .

But (see the lemma 5.1): ‖Xt(x)−Xn
t (x)‖1,p ≤ K(t)(1 + ‖x‖Q)n−1/2, so that

‖γ̂n
t − γ̂t‖p ≤ (1 + ‖x‖Q)K(t)n−1/2 .

On the other hand, under our nondegeneracy assumption, one has (see (2.6))

sup
T
2
≤t≤T

‖γ̂−1
t ‖p < K(T )

1 + ‖x‖µ

T dL
.

As a consequence, for any p > 0 there exists an increasing function K(·) and an integer
Q such that

IE|1− φ(rn
t )| ≤ K(T )(1 + ‖x‖Q)n−p/4 1

T pdL
, (5.2)

from which and (5.1), remembering that for t ≤ T − T
n
, (T − t)−q ≤ Cnq, one gets

|A| ≤ ‖f‖∞nq−p/4K(T )(1 + ‖x‖Q)
1

T pdL
. (5.3)

To obtain the desired result, it remains to choose p = 4q.

We now treat B. We want to apply the proposition (2.3). As Xn
t may not satisfy the

nondegeneracy condition, we make a slight modification: we change the time interval for
[0, T + ε] with ε > 0, and on [0, T + ε] we set

Xn,ε
t := Xn

t + εWT+ε .

Then Xn,ε
t satisfies the nondegeneracy condition 2.1 for all ε > 0 and all t ∈ [0, T + ε].

In order to simplify the notation, we continue to write Xn instead of Xn,ε. In the
computations which follow, the Sobolev norms below are computed for the time interval
[0, T + ε]. It must be understood that, at the end, we make ε tend to 0: the constants
which appear in these computations can be chosen uniform w.r.t. ε.

The proposition (2.3) implies:

B = IE[u(t,Xn
t (x))Hn

α ]

where Hn
α := Hα(Xn

t (x), g(Xn
t (x))φ(rn

t )). First, we observe that Hn
α is a sum of terms,

each one being a product which includes a partial derivative of φ evaluated at point rn
t .

From the definition of φ it follows that Hn
α = Hn

α ll[0,1/2](|rn
t |). On |rn

t | ≤ 1
2

one has
3
2
γ̂t ≥ γ̂n

t ≥ 1
2
γ̂t and therefore

Hn
α = Hn

α ll[ 3
2
γ̂t≥γ̂n

t ≥
1
2
γ̂t]

.
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Consequently,
|B| ≤ C‖f‖∞ IE|Hn

α ll[γ̂n
t ≥

1
2
γ̂t]
| .

We apply (2.3) and obtain, for some integers k,N,N ′:

|B| ≤ C‖f‖∞
∥∥∥Γn

t ll[γ̂n
t ≥

1
2
γ̂t]

∥∥∥
k
‖Xn

t (x)‖N,m ‖g(Xn
t (x))φ(rn

t )‖N ′,m′

≤ K(T )‖f‖∞ ‖Γt‖k
1 + ‖x‖µ

tdL
≤ K(T )‖f‖∞

1 + ‖x‖µ

tdL
.

As T
2
≤ t < T we obtain

B ≤ K(T )‖f‖∞
1 + ‖x‖µ

T dL
.

5.2. Proof of Lemma 4.2.For θ ≤ T
2
, the derivatives of the function ϕ(θ, ·) can

be uniformly bounded in θ (remember (4.9)); thus, to get (4.3) one can simply use the
lemma 4.1 with ϕ(θ, ·) instead of f(·) and Pθ−tϕ(θ, ·) instead of u(t, ·) = PT−tf(·).

For θ ≥ T
2

and θ − t ≥ T
4
, one can note that

∂λPθ−tϕ(θ, ·)(z) =
∫

gγ(y)
∫

f(y′)∂y
γpT−θ(y, y′)dy′ ∂z

λpθ−t(z, y)dy ; (5.4)

an integration by parts w.r.t. y and the inequality (4.9) give the result.

Consider now the case where θ ≥ T
2

and θ− t ≤ T
4
; in that case, t ≥ T

4
and, in order to

get rid of the explosion of the upper bounds for the derivatives of ϕ(θ, ·), we are going to
use the law of Xn

t (x): this argument is similar to what we have done for the lemma 4.1,
but here it is unsufficient because we must deal with ∂γPT−θf instead of f . In any case,
we start as in the subsection 5.1.2:

IE
[
g(Xn

t (x))∂λPθ−tϕ(θ, ·)(z)Bz=Xn
t (x)

]
= IE

[
(1− φ(Xn

t (x)))g(Xn
t (x))∂λPθ−tϕ(θ, ·)(z)Bz=Xn

t (x)

]
+IE

[
φ(rn

t )g(Xn
t (x))∂λPθ−tϕ(θ, ·)(z)Bz=Xn

t (x)

]
=: Ã + B̃ . (5.5)

We upper bound |Ã| by using (5.4), (4.9) and (5.2): we obtain an estimate similar to
the right hand-side of (5.3).

Now consider B̃. First, we apply the proposition 2.3 again 3, and get

B̃ = IE[Pθ−tϕ(θ, ·)(Xn
t (x))Hn

λ (t)] .

3As in the preceding proof, we should introduce Xn,ε. We omit this detail.
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We now use a probabilistic representation of Pθ−tϕ(θ, ·), based upon a process (X̃t) which
is a weak solution of (1.1) independent of (Xt); we denote by (Ω̃, F̃ , ĨP ) the probability
space on which (X̃t) is defined, and ĨE the expectation under ĨP . Applying the proposi-
tion 5.2 below, one gets:

Pθ−tϕ(θ, ·) = ĨEϕ(θ, X̃θ−t(·))
= ĨE[gγ(X̃θ−t(·))(∂γu)(θ, X̃θ−t(·))]
=

∑
ρ

ĨE[gγ(X̃θ−t(·))∂γ{u(θ, X̃θ−t(·))}Q̃ρ
t (·)] .

Thus,

B̃ =
∑
ρ

IE
[
Hn

λ (t)ĨE
[
gγ(X̃θ−t(z))∂z

γ

{
u(θ, X̃θ−t(z))Q̃ρ

t (z)
}
Bz=Xn

t (x)

]]
=

∑
ρ

ĨEIE
[
Hn

λ (t)
[
gγ(X̃θ−t(z))∂z

γ

{
u(θ, X̃θ−t(z))Q̃ρ

t (z)
}
Bz=Xn

t (x)

]]
;

we fix ω̃ and use the integration by parts formula (2.2) with F (ω) = Xn
t (x, ω): for some

random variable H̃n
λ,γ,ρ(θ, t, x), one has:

B̃ =
∑
ρ

ĨEIE
[
u(θ, X̃θ−t(z))Bz=Xn

t (x)H̃
n
λ,γ,ρ(θ, t, x)

]
.

We now conclude as at the end of the subsection 5.1.2.

In the above proof, we have used the

Proposition 5.2. Let X̃t(·, ω̃) denote a version of class C∞ of the stochastic flow y →
X̃t(y, ω̃); let Ỹt(·, ω̃) denote its Jacobian matrix and Z̃t(·, ω̃) the inverse matrix of Ỹt(·, ω̃).

For any multiindex γ, there exists processes (Q̃ρ
t ) such that: for any smooth real func-

tion F , for any y ∈ IRd,

(∂γF )(X̃t(y)) =
∑

|ρ|≤|γ|
Q̃ρ

t (y)∂ρ{F ◦ X̃t(·, ω̃)}(y) a.s. , (5.6)

and Q̃ρ
t (y) is a polynomial function of the coordinates of Z̃t(y, ω̃).

Proof. We proceed by induction. For |γ| = 1, we observe that

∇F ◦ X̃t(·, ω̃) = Ỹt(·, ω̃)× (∇F )(X̃t(·)) ;

it now remains to multiply the two sides of the equality by Z̃t(·, ω̃).

Suppose that the relation (5.6) holds for |γ| ≤ k; as

∇(∂γF ◦ X̃t(·, ω̃)) = Ỹt(·, ω̃)× (∇∂γF )(X̃t(·)) ,

a multiplication of the two sides of that equality by Z̃t(y, ω̃) and (5.6) (for |γ| ≤ k) imply
that (5.6) also holds for |γ| = k + 1.
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5.3. Proof of Lemma 4.3.The proof of the lemma 4.1 cannot apply to treat
δn
n−1 (defined in (4.7)) because the last argument before (5.3) cannot be used. We still

localize by introducing φ, but we do it at once: set

A∗ := |IE[(f(Xn
T (x))− PT/nf(Xn

T−T/n(x))) (1− φ(rn
T/2))]| ,

B∗ := |IE[(f(Xn
T (x))− PT/nf(Xn

T−T/n(x))) φ(rn
T/2)]|

= |IE[(u(T, Xn
T (x))− u(T − T/n,Xn

T−T/n(x)))φ(rn
T/2)]| .

Clearly (remember (5.2)):

A∗ ≤ 2‖f‖∞ IE|1− φ(rn
T/2)| ≤

K(T )

T qn2
‖f‖∞(1 + ‖x‖Q) .

To treat the term B∗, we proceed as in the proof of the lemma 4.4 to express δn
k as an

integration of In
k (t) and Jn

k (t), and we apply the arguments used in the subsection 5.1.2,
especially the integration by parts formula (2.2) with F = Xn

t (x).

6. Extensions

In the theorem 3.1, the boundedness hypothesis on f can be relaxed: the preceding
technique can be improved to treat the case of functions f which are measurable and have
a polynomial growth, i.e such that

∀x , ‖f(x)‖ ≤ Cf (1 + ‖x‖qf )

for some Cf and qf ; then in all the estimates of the proof, ‖f‖∞ must be replaced by
a constant C depending on Cf and qf ; indeed, instead of upper bounding quantities of
type ‖f(Xn

t (x))‖Lp(Ω) by ‖f‖∞, one can use that IE‖Xn
t (x)‖p can be upper bounded by

C(1 + ‖x‖q), where the constants C and q are uniform in n.

One can also show the existence of an expansion up to any order: as in [14], instead of
bounding the In

k ’s of the expansion (4.5), one can apply the technique used at the end of
the proof of the theorem 3.1 and make appear an integral of type 1

n2

∫ T
0 IEΨ1 (s, Xs(x)) ds

(for some appropriate function Ψ1); this operation makes appear a new remaining term
for which one applies the lemmas 4.1 and 4.3.

Finally, the result can be extended to other schemes. The numerical benefit is less
clear, since they involve derivatives of the coefficients and therefore require a larger com-
putational effort than the Euler scheme (they also may lead to larger coefficients of T

ni in
the expansion of the error).
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7. Conclusion

We have proved that the error corresponding to the approximation of IEf(XT ) by
IEf(Xn

T ), Xn
T being given by the Euler scheme, can be expanded in terms of 1

n
when f is

a bounded and measurable function, under an hypothesis of uniform hypoellipticity.

It now remains to give estimates on the convergence rate of the density of Xn
T to the

density of XT (when they do exist). This will done in the second part of this work, in
preparation [2].
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