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1. In the present note let f(¢) satisfy the following conditions
1 1

At +1) = A0, f At)dt =0 and f Ft)dt < + oo,
0 0

and let {#n,} be a lacunary sequence of positive integers, that is,
11 Nierr/me > q >1.

Then the sequence of functions {f(n;t)}, although themselves not independent,
exhibits the properties of independent random variables (c.f.[2]). In [1]
S.Izumi proved that under certain smoothness condition of f(¢), { f(2%¢)} obeys
the law of the iterated logarithm. Further M. Weiss proved that this law holds
for lacunary trigonometric series.

THEOREM of WEISs ([4]). Let {n,} satisfy (1.1) and {a,} be an arbitrary

sequence of real numbers for which

N 1/2

BN:(%Z@%) — + oo and aNzo(,\/m), as N — + oo,

k=1

Then we have, for almost all t,

— 1 ul
}}El 2Bilog o8By g agcos 2mn(t + a) = 1.

However, there exist a sequence {n,} satisfying (1. 1) and a trigonometric
polynomial f(¢) such that {f(m;t)}] does not obey the law of the iterated
logarithm. In [ 3] it is shown that if {n,} satisfies (1. 1) and f{¢¥) is a function
of Lipa, 0 <a =1, then there exists a constant C such that

e 1

m N Toglog N

=C, a.e. in t.

z; S (i)

The purpose of this note is to prove the following

THEOREM. Let f(t) be a function of Lip a,0 < a =1, and {n;} satisfy

1. 2 N1/ M— + 0, as k— + oo,
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Then we have, for almost all t,

— 1 d _
m N Toglog N~ 2=/ u) = IF1%

2. From now on let f{¢) and {n,} satisfy the conditions of the theorem.
Further, without loss of generality we may assume that the Fourier series of
f(t) contains cosine terms only and

2.1 N1/ > 3, for k= 1.

These assumptions are introduced solely for the purpose of shortening the
formulas. Let us put

oo N
2. 2) Sty ~ > aycos 2kt and  Sy(t) = > aycos 2mrkt.

k=1 k=1

Since f(¢) is a function of Lip «, we have for some constant A

2. 3) &) — Sx(t)] < AN~* log N,
2. 3) i aip < AN,
(2. 37 )] <A and |Sx(p)] < A.

LEMMA 1. If a positive number N\ satisfies the condition
(2. 4) M/ M < log M,
then there exists an integer M,, not depending on N, such that

1 N+M ]
f exp jl N Y flmd) I dt < 2 exp 2\ |If DM, for M > M,.
0 k=41
PROOF. We define m, L and U/(¢) as follows;
(2. 5) mt =M< (m+ 1),
(2. 5) m2L + 2) = M < m(2L + 4),
and
(+1)m
(2 5”) Ul(t) = Z SMI/a(nN.,.kt).
k=lm+1

Then we can easily see that

o wepnlirli= | [ pwal
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N+ (2L+1)
M2 flwt)— 22 U@
k=N+1 =0
N+M @L+2)m
=M 2 S| +8 20 | fnwext) — Su'/*(ny.xt)
k=(2L+2)m+N+1 k=1
= AN2m + log MV*) = O (M *log M) = o(1), as M — + oo,
Hence if M > M, for some M,, it is seen that
W1 N+M } 2 2L+1
(2. 6) jexp{h Zf(nkt)jdt< JZfexp{)\ZU,(t)}dt
o k=N+1 0 1=0
o 1 L 1/2 1 L 1/2
=2 [ f exp { 20 Uy () } dt } [ f exp { 223 Uuﬂ(t)}dt} )
0 =0 0 =0

From (2. 3”) and (2. 4) we obtain

A l\l/[<aLx|U2l(t)l < AAm = O(M?log M) = o(1),

L
MO U@ < NAML = O (M"log’M) = o(1), as M—oo,

1=0

By the above relations and the inequality e* = (1 + 2z + 2%/2)e*” for |z| <
we have, for M > M,,

rofm

’

L 3 L
2.7 exp { 2 Uw(t)} <2 II (1 + 28 UL(e) + 22°U3@0)3.
=0 =0
Let us put
+)m k-1
(2. 8) W@)= > > > aa,cos2m(ngns — nart,
k=lm+2 j=lm+1 (r,8)
and
M]/oz
2. 8) V(&) = 20U, (t) + A2 { 2Ut) — m Z ai — 2W () } ,
k=1

where > denotes the summation over all (7, s) which belong to
)

(2' 8”) {(r7 S); lnk+Ns - nj+1‘7r| _S_. Mym+ N 0 < S, r é Ml/a}.

Then V(¢) is a sum of cosine terms whose frequencies are in the interval
[Pumer + 1,2 MY*n4nymsn]. By (2.1) and (2.5) we can find an integer M, such
that M > M, implies

2 —9j~1
Notm+N Jme=2-n

s 1>].
ZMI/an(2j+1)m+N> 2M1/a >3 ' for >'7
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Hence if u, € [mmiv + 1, 2MY*ngiymen] and 1=10, <10, <...<l, </, then
we have

-1 -1

s
Uy — Z uzlj > Uy — Z Usj = Notmrn — 2M= Z Rjr1ym+ N

J=1 J=1 Jj=1
-1
> Norm+ N < 1- Z 3j_l > > 2_1 Notm+ v > Oy for M> MO'
j=1

If u’s are integers, then the above relation implies

1

s
f COS 21 uy,t H cos 2muyt dt = 0, for M > M,.
0

J=1

Therefore, we have
1 8
(2. 9) f Vo) I Vo)t = o, for M > M,
0 Jj=1
On the other hand if 2 > j > Im, then (2. 1) implies that the (7,5)-set in (2.8")

is contained in {(r,s); |sm.n/n5.n — | < 37!, 1 =s}. Therefore we have, by

(2. 3) and (2. 1),

Z'“f“slé{iai}w{ = aﬁ}mév’z‘uan@—’“ﬂ)

a

%) $=1 T2 N/ ) s
=2 A (T ) geo-rn
- Ny
Therefore if we put
(2.10) B, = sup [W.(®)],
then we have
’ _ vare, ) Crym k-1 e
(2.10) B=2 IfIAMax(n./m)* 3> 3 3

k=lm+2 j=lm+1

= Bm lk\/ILax (np—1/ 1), for some constant B > 0.
>im
Ml/a
Since m Y ai = 2ml|| f ||>, we obtain from (2.8") and (2.10)
k=1

{1+20 Ut + 22U} = (1 + V@) + 28°m(| £1I? + B)}.
By (2. 7), (2. 9) and the above relation we have, for M > M,,

fl exp{ ZAZL U, (2) } dt <s2 1 ﬁ {1+ V@) + 28°m( f1I* + By)}dt

0 =0
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L L
=2 IL {1 +2vm(I fIP + B} =2 exp{ 2 2:m(ll f11® + B) } )
1=0 1=0
and in the same way

fl exp { 2n Z Usn(t) } dt < \/7 €xXp { Z 2M°m(| fI1? + Bair) } .

From the above relations and (2. 6) we can see that for M > M,

k=N+1

f exp{ xS find) }dt <2 exp{ lz Al 12 + B }

On the other hand (2. 5°), (1. 2) and (2.10") imply that if M > M, for some
M, then

m 2 (LFIP + B)

2L+1

=MIfI*+ Bm 3 %%X(nk-l/nk)“ <2zMIf1*,
=0 m

The last two relations prove the lemma.

3. LEMMA 2. If a positive number ¥(M) satisfies
CABY Y(M) < @2l fIl log M),

then for M > M,, M, is the same as in Lemma 1, we have

= 2e7VUNZ

{ S font) = 21 £ VIR | |

k=N+1

PROOF. If we put A = || fI)~! "¥(M) M"/Q, then A\ satisfies the con-
dition (2. 4). Hence by Lemma 1 and Tchebyschev’s inequality we have

{ > flond) = 20 £ | o MK }

k=N+1
= ZeXP{Z(MIf 1M — 27 || £ 1| &/ My(M) Jl 2p= 40N/
LEMMA 3. We have, for almost all t

lim T ~/2m+llog Lf(""t)/znf”

PROOF. If m > m, for some m,, then 2™ > M, and ¥(2™) = 2(1 + &)log m

*) We consider #’s within the interval [0,1].
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satisfies (3. 1) for any fixed & > 0. Therefore we have, by Lemma 2,

2

m>me

{ t: > fmd) =2 F1Il V/2™'(A + E)log m } =2 3> m WL + oo,

m>mg

Since € is arbitrary, Borel-Cantelli’s lemma completes the proof.

LEMMA 4 . We have, for almost all t,

2"+ N
,,,,,, <
lim Max e 3 fimt) =611,

PROOF. Let m be a positive integer such that

1 1 9
m/2} it - -~
(3. 2) 2m2 > M, 2{1+(log )}<16

and, for any fixed &€ > 0,
3. 3) 2m — 1) + 2(1 + &) logm < 2l f |l log 2?2, m > [ = [m/2].
Further let X, (¢) be the positive part of the function

l
N+2

3. 4) X0 = M%x[ S fld); Ne (72t + 2% 7 =0,1,..., 2" — 1] } .
k=N+1
Then we have, by (2. 37),
MmN m—1 m-—1
(3. 5) Max > o ft) = > X)) < A2+ 3 X (2).
™ k=2m 41 1=0 1=[m/2}

Putting
V(2 = 2(m — 1) + 2(1 + &)logm, for m > 1 =1[m/2],
then (3. 2), (3. 3) and Lemma 2 imply, for any positive integer N,

é 26_(’" —l),n—(l +e).

(3. 6) H t; Z Sut) = 211 f | &/ 29(2") }

k=N+1

Therefore if we put
EL = {t§ Xl(t) = 2”f | N/EZ‘P'(ZL)},
then we have, by (3. 4) and (3. 6),

IELl _S_ 2(m—l+1)m-(1+s)e—(m—l),

and

m>m, L=m/?]
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m—1

Further if ¢ € U E,, then we have

t={m/2]

S XO=20f1 3 NI .

I={m/2] t=[m/2]

Since (3. 2) implies

2(2Y) 1 3
2‘—“:1%?“)<\/ <1+logm><7f’ for I <m,

we have

E NI < 4N/ T (2 < 34/TT F (1 + E)logm).

1=[m/2)

From the last two relations and (3. 5) it is seen that

2"+ N m-—1
Max 3 flmt) < A2™ + 6| f || /27T + (1 + &)logm}, fort €\ ) E.
<2 pmgman 1=[m/2]

The above relation and (3. 7) complete the proof.

From Lemma 3 and Lemma 4 we have, for almost all ¢,

1 N
3. 8) lim VN Toglog N kzﬂf(nkt) =8| fI.

N—roo

4. Since (3. 8) can be proved under the conditions (1. 2), (2. 3), (2. 3')
and (2. 3”), we can also prove that for any fixed M >0 and almost all ¢

.1 In N g g N 2 () — Sulnt)) = 81£®) = Sulo).
Considering — { f(t) — Sx{¢)}, we have for almost all ¢
4. 2) B o Tog N 2 ) — Silmt)

= — lim 5N 1;gllog 7 %;1 {ft) — Sulnit)}

n—>o0

= — 81.f(t) — Sul®)ll.
On the other hand from (1. 2) we can take N, = N, (M) such that

Ner/Mny, > (M + 1)/ M, for £ = N,.

Hence Y Swu{nt)is a lacunary trigonometric series and it is easily seen that if
k2N,
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a, # 0 for some m = M, then this series satisfies the conditions of the theorem
of Weiss stated in §1. Therefore we obtain, for almost all ¢,

e 1 il
4. 3) lim V2N Toglog N ESu(nkt) = Sult)ll.

From (4. 1), (4. 2) and (4. 3) we have, for almost all ¢,

4 9 I N o Tog N~ ) — ISW@)] |= BIfE) — S0yl

Since || f(z) — Silt)l >0 as M — + oo, (4. 4) proves the theorem.
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