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Università di Pisa, Italy

andrearomei74@gmail.com

Salvatore Ruggieri

Dipartimento di Informatica
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Abstract—We present a framework for the analysis of cor-
porate governance problems using network science and graph
algorithms on ownership networks. In such networks, nodes
model companies/shareholders and edges model shares owned.
Inspired by the widespread pyramidal organization of corporate
groups of companies, we model ownership networks as layered
graphs, and exploit the layered structure to design feasible and
efficient solutions to three key problems of corporate governance.
The first one is the long-standing problem of computing direct and
indirect ownership (integrated ownership problem). The other two
problems are introduced here: computing direct and indirect div-
idends (dividend problem), and computing the group of companies
controlled by a parent shareholder (corporate group problem). We
conduct an extensive empirical analysis of the Italian ownership
network, which, with its 3.9M nodes, is 30× the largest network
studied so far.

I. INTRODUCTION

Corporate finance is the study of the financing patterns
of companies. There are several agents in the market, with
different objectives. On the one side, shareholders invest their
funds in a company to generate returns. They collectively own
the company and receive annual dividends in proportion to
the shares owned. On the other side, business decisions are
made by the board of directors of the company. The board is
nominated at shareholder meetings with a voting mechanism
typically following the one-share-one-vote rule: voting rights
are proportional to ownership rights (i.e., to shares owned).
Thus, a shareholder owning 51% of shares controls the busi-
ness decisions. The larger the shares owned by the controller
the more sane is the governance: the controller has a clear
interest in that the company generates returns. This guarantees
returns for minority shareholders as well. However, there
exist schemes, such as pyramidal chains of companies [1],
which lead to controlling de-facto a company through minority
shareholdings. This may have negative impacts because the
controller has incentives to divert resources from the company
instead of generating returns for all shareholders [15]. As an
extreme example, a controller which owns only 1% of shares
of a company, but is able to nominate the board of directors
may affect strategic decisions of the business (partnerships,
supply/sell prices, etc.) in favor of other companies owned
100% by the controller, with the effect that the company will
have less profits and then lower dividends. The controller
will loose 1% of the missing returns, but will gain 100% of
them through the other companies owned. This diversion of
resources is at the expenses of the other shareholders, who will
loose 99% of the missing returns. A key element of corporate
governance is then to effectively understand and manage the
separation between ownership, returns and control [12].

The analysis of financing patterns can be conducted using
tools from network science [8]. An ownership network is a
graph where nodes model shareholders and companies, and an
edge between a shareholder and a company is weighed by the
shares of the company owned by the shareholder. We extend
the state-of-the-art of advanced data analysis on ownership
networks both in methods and in empirical investigations.
Regarding methods, we recognize a layered structure of the
ownership network, which follows from the pyramidal orga-
nization of groups of companies. On this ground, we design
fast algorithms able to uncover sub-structures of control and
ownership. We tackle the long-standing integrated ownership
problem (how much shares of a company a shareholder owns
either directly or indirectly), a new model of determining the
group of companies controlled by a same shareholder (the
corporate group problem), and a new problem that we call the
dividend problem (how much yearly dividends of a company a
shareholder receives either directly or indirectly). Solving these
problems is of primary importance for economists, market
control authorities, and policy makers, who are also interested
in (suspicious) outlier cases such as:

integrated ownership vs. dividends: which shareholders re-
ceive from companies lower dividends than their integrated
ownership?

integrated ownership vs. control: which companies are con-
trolled by a shareholder with a minority integrated ownership?

Regarding empirical investigation, we report on the analy-
sis of a large and complete dataset: the network of all Italian
companies, shareholders and shareholdings (1.5M companies,
3.9M nodes, 3.87M edges). Existing empirical studies focused,
in fact, on small and incomplete datasets. Datasets were small
because they were restricted to corporations listed in stock
markets. A fortiori, datasets were also incomplete. Since not
all companies/shareholders were in those datasets, the chain of
shareholders of a company was broken at a certain point. The
empirical investigation confirms a layered structure for the
Italian ownership network, with a small difference between
integrated ownership and dividends, and with a low percentage
of companies controlled by minority shareholders. Summing
up, the interplay among methods, algorithms and empirical
study of a significant case is the main contribution of the paper.

The paper is organized as follows. Section II introduces
ownership graphs and groups of companies. Sections III and
IV recall existing problems and introduce new ones, providing
flat solutions. Section V formalizes the notion of layers and
exploit layers for optimizing flat solutions. Section VI provides
an extensive data analysis of the network of Italian companies.
Section VII summarizes related work and concludes.
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Fig. 1. Ownership graphs: (A) non-canonical; (B) canonical; (C) partnership;
(D) pyramidal.

II. OWNERSHIP GRAPHS AND GROUPS

Companies are owned by shareholders through stocks or
other legal terms of ownership of the company capital. The
percentage of capital of a company owned by a shareholder
is the share owned. Shareholders can be individuals, other
companies, or public institutions.

A. Ownership graphs

Let N = {1, . . . , N} be the set of IDs of shareholders
and companies. An ownership graph is a weighted directed
graph G = 〈N , E〉 where a directed edge e = (i, j, w) is in
E ⊆ N × N × (0, 1] iff shareholder i owns w > 0 shares
of company j. We write eij = 1 if there exists (i, j, w) ∈
E , and eij = 0 otherwise. The square matrix E such that
Eij = eij for i, j ∈ N is the adjacency matrix of G. Also,
we write wij = w if (i, j, w) ∈ E , and wij = 0 otherwise.
The square matrix W such that Wij = wij is the weighted
adjacency matrix of G. The set of incoming neighbors of node
j is Nin(j) = {i ∈ N | eij = 1}. Analogously, Nout(i) =
{j ∈ N | eij = 1} is the set of outgoing neighbors of i.
For any node j ∈ N , it turns out S =

∑

i∈Nin(j)
wij ≤ 1.

In particular, natural persons and public institutions are not
owned by anybody, hence S = 0. Moreover, if the ownership
graph regards a restricted set of companies (e.g., for a specific
country or industry sector), shareholders that are not in the set
are not part of the graph, hence S < 1 for the companies in the
set which are owned by those shareholders. Finally, missing
data on shareholdings may also lead to S < 1. Nevertheless,
ownership graphs are among the most accurate datasets for
data science analysis, since data has legal and business value.
A path p = 〈i1, . . . , ik〉 is a non-empty sequence of nodes
such that there is an edge (ih, ih+1, wihih+1

) ∈ E for every
h ∈ [1, k − 1]. The path is simple if i1, . . . , ik are distinct

nodes. The weight of the path is weight(p) = Πk−1
h=1wihih+1

.

B. Canonical ownership graphs

Treasury shares are shares owned by the issuing company.
They originates either from stocks withheld by the company or
from buybacks from the market. Treasury shares do not pay a
dividend, have no voting rights, and cannot exceed a maximum
percentage of total capitalization. For instance, if a company
owns 20% of its own shares, the actual value and decision
power of a shareholder owning 60% of the shares is 60%/80%
= 75%. In an ownership graph, edges from a node to itself (self-
links) model treasury shares. We exploit the above argument
to remove those links. Let wjj > 0 be the weight of a self-link
for a node j ∈ N . We re-weigh edges e = (i, j, w) for i 6= j as
e′ = (i, j, w′) where w′ = w/(1−wjj). We call the ownership
graph obtained by removing self-links (j, j, wjj) ∈ E and by
re-weighing the other incoming edges a canonical ownership
graph. Fig. 1 (A) shows an example of an ownership graph
with a self-link on node 3. Fig. 1 (B) is its canonical form.

C. Groups

Groups of companies and their shareholders in an owner-
ship network are typically organized in chains of ownership,
e.g., as in corporate groups. The simplest organization is a
partnership, where a company is owned by shareholders that
own nothing else – see e.g., Fig. 1 (C). When all shareholders
are natural persons associated in doing business, this boils
down to the legal form of partnership businesses. Groups of
companies can be structured in more complex forms than
partnerships. This raises a number of challenging problems
for corporate governance, some of which are introduced in the
next section.

III. PROBLEM STATEMENTS

From a corporate governance perspective, it is important
to know: (integrated ownership problem) how much shares
of a company are owned by a shareholder either directly or
indirectly through other companies; (dividend problem) how
much yearly dividends of a company are received by a share-
holder either directly or indirectly through other companies;
(corporate group problem) what are the groups of companies
controlled by a common parent shareholders.

A. The integrated ownership problem

The total amount of shares oij of a company j owned
by a shareholder i, either directly or indirectly, is essential to
determine the value of j in the portfolio of i. As an example,
node 3 in Fig. 1 (B) directly owns 60% of shares of node 5 and
indirectly owns some additional shares, e.g., 0.6 · 0.4 = 24%
through path 〈3, 4, 5〉. oij is called the integrated ownership of
j by i, and the matrix O with elements Oij = oij is called the
integrated ownership matrix ([3], [8]). Formally, oij is defined
recursively as the value for which:

oij = wij +
∑

k 6=i

oik wkj

namely, oij is the sum of direct ownership (wij) and indirect
ownership through a node k 6= i (oikwkj). Indirect ownership
through i itself is not considered, since this amounts at cycles
of self-ownership. Cycles through other companies are instead
possible because national legislations admit cross ownership1

1Contrarily to treasury shares, cross-owned shares pay a dividend and have voting rights.



between companies. Consider again Fig. 1 (B). Paths from
node 3 to node 5 that pass twice or more from node 3 do
not count, since they involve self-owned shares, e.g., as in
〈3, 2, 3, 5〉. The number of paths that count is, however, infinite,
because the loop between nodes 2 and 4 can be travelled,
e.g., in paths 〈3, (2, 4)n, 5〉 and 〈3, 4, (2, 4)n, 5〉 for n ≥ 1.
Using matrix notation, the integrated ownership matrix O is
the solution of the recurrence relation:

O = (I − diag(O))W +OW (1)

Starting from a canonical ownership graph, the integrated
ownership problem consists of computing, if it exists, the
integrated ownership matrix O.

B. The dividend problem

We introduce here a new problem regarding the calculation
of dividends. Dividends are distributed yearly to shareholders
in proportion to the shares they own. In turn, shareholders that
are companies distribute their dividends to their own share-
holders, and so on. The amount of dividends of a company j
that reaches some shareholder i in the chain, however, is not
necessarily proportional to the integrated ownership oij . The
point here is that loops in the dividend payout are broken by
temporal considerations, hence paths cannot contain any cycle.
Consider again Fig. 1 (B). Node 3 receives dividends of node 5
directly (a quota of 0.6) and indirectly through paths 〈3, 4, 5〉 (a
quota of 0.24) and 〈3, 2, 4, 5〉 (a quota of 0.064), for a total of
0.904. Consider paths with loops, e.g., p = 〈3, 4, 2, 4, 5〉. Such
path provides weight(p) = 0.0384 = 3.84% of the dividends
of 5 to node 3, but it requires two fiscal years to be traversed.
In fact, dividends of 5 that reach 4 are partly distributed to
node 2. Part of such dividends is returned back to 4 (and then
to 3) only in the next fiscal year. However, for a shareholder
i it is useful to know the quota dij of dividends of j that may
reach it in one fiscal year. Let δj be the monetary amount of
dividends of company j distributed to shareholders, and νj be
the company value, e.g., its stock market value. The dividend-
price ratio νj/δj is widely adopted by economic analysts as a
measure of the earnings on direct investment of a shareholder.
The extended ratio (oij νj)/(dij δj) of integrated value (oij νj)
over dividend pro-quota (dij δj) is the generalization of the
dividend-price ratio to both direct and indirect investments.

We call the matrix D with elements Dij = dij the dividend
matrix. Formally,

dij =
∑

p∈{〈i,...,j〉 | 〈i,...,j〉 simple path
weight(p) (2)

i.e., dij is the sum of weights of all simple paths from i to j.

Summarizing, starting from a canonical ownership graph,
the dividend ownership problem consists of computing the
dividend matrix D. Such a matrix always exists since the
number of simple paths is bounded by N !. Moreover, for an
acyclic ownership graph, it is readily checked that D = O.

C. The corporate group problem

In the control problem, one is interested in the capacity of
a shareholder of affecting directly or indirectly the decisions
of a company. Assuming that voting rights are proportional
to ownership rights (the so-called one-share-one-vote rule), a
linear threshold model estimates that a shareholder i directly

control a company j if wij > 0.5. i is called the controller (or
the controlling shareholder), and j the controlled company.
The controller has the majority of votes in any decision of
the shareholder meeting of the controlled company. Hence,
it controls the company. Various models have been proposed
for the notion of indirect control (weakest link [7], integrated
control [6], relative majority [8]). We introduce here a new
0/1 model, where i indirectly controls j if it controls, either
directly or indirectly, other companies and altogether they own
more than 50% of the company shares of j. The rationale
is that, in any shareholder meeting of company j, the votes
of i and of the intermediate companies controlled by i con-
verge to the decision wanted by i. The proposed model of
propagation of control is an instance of the Linear Threshold
Model (LTM) propagation [9] over the ownership network.
Starting from such a model, we introduce the problem of
discovering corporate groups. Consider the ownership graph
in Fig. 1 (D). Node 1 directly controls 2, which, in turn,
directly controls node 3. Although node 4 is not directly
controlled, the sum of the shares owned by 1, 2 and 3 is
0.51, thus it is indirectly controlled by node 1 (but not by
node 2 nor 3). The integrated ownership of node 4 by 1 is
o1 4 = 0.06 + 0.6 · 0.2 + 0.6 · 0.6 · 0.25 = 0.27. Thus, indirect
control can be achieved even without an integrated ownership
of the majority of shares. This is an example of a pyramidal
chain of companies (or “Chinese boxes”) used to keep control
of a (large) group through minority shareholdings.

A corporate group is a group of companies controlled by
a same controller, called the parent shareholder. Corporate
groups must be explicitly declared only for specific cases
stated by the law, e.g., for listed companies. Starting from a
canonical shares graph, the corporate group problem consists
of computing all pairs (i,Gi) of parent shareholders i ∈ N
and corporate group Gi of companies controlled by i.

IV. FLAT SOLUTIONS

We will now provide solutions to the three introduced
problem that do not take advantage of any structure of share
graphs. To contrast the approach with the one exploiting a
layered structure, we call the solutions introduced here “flat”.

A. The integrated ownership problem

A solution of the recurrence equation (1) was first provided
by [3] (see also the presentation in [8]) as:

O = diag(V )−1(V − I) where V = (I −W )−1

The matrix V − I can be better understood when stated by
exploiting the Neumann series as:

V − I = (I −W )−1 − I = (
∑

n≥0

Wn)− I =
∑

n≥1

Wn

i.e., V − I is the transitive closure of the weighted adjacency
matrix W . Thus, Vij , for i 6= j, is the sum of the weights of
all paths from i to j, and Vii is the sum of the weights of all
paths from i to i plus 1. The matrix I −W is invertible under
a condition generally satisfied by ownership graphs, namely
that there exist no subset of nodes S ⊆ N totally owned by



Algorithm 1 ShareO()

// transitive closure of W through matrix inversion
1: V ← (I −W )−1

// integrated ownership matrix
2: for i ∈ [1, N ] do
3: J ← {j ∈ [1, N ] | Vij > 0}
4: for j ∈ J do
5: if i 6= j then
6: Oij ← Vij/Vii

7: else
8: Oii ← (Vii − 1)/Vii

themselves, i.e., such that for every j ∈ S ,
∑

i∈S wij = 1 (see
[5]). The elements of O can then be stated as:

Oij =

{

Vij/Vii if i 6= j
(Vii − 1)/Vii otherwise.

Let us justify this result. For i 6= j, the sum of weights of
all paths from i to j can be split into the sum of those that
do not cycle through i plus those that first cycle on i and
then do not. Hence, Vij = Oij + (Vii − 1)Oij , which once
solved, yields Oij = Vij/Vii. For i = j, the sum of all paths
is Vii−1 = Oii+(Vii−1)Oii, which once solved, yields Oii =
(Vii−1)/Vii – this quantity is the amount of shares self-owned
by i either directly (if the graph is not canonical2) or indirectly.
ShareO() shown as Alg. 1 formalizes the computation of the
non-zero cells of the integrated ownership matrix.

B. The dividend problem

Since cycles are not to be taken into account in computing
indirect dividends, the dividend problem can be reduced to
computing all simple paths between pairs of nodes in a graph.
The all-pairs simple paths problem is solved by the Rubin’s
algorithm [14] by computing a matrix R such that Rij is the
set of all simple paths from i to j. The dividend problem can
then be solved by aggregating weights along all simple paths
from i to j. According to equation (2):

Dij =
∑

p∈Rij

weight(p)

Rubin’s algorithm is a smart generalization of the Floyd-
Warshall algorithm for the all-pairs shortest path problem. We
instantiate it in the procedure ShareD() shown as Alg. 2.
Rij actually stores pairs (p, w) where p is a simple path and
w = weight(p) is the weight of the simple path. The algorithm
initializes Rij with paths of length 1, namely the ownership
graph edges (lines 1-3). Then it constructs simple paths from
i to j passing from an intermediate node k (lines 3-8). Given
two simple paths (p1, w1) from i to k, and (p2, w2) from k to
j, they can be appended to form a simple path p1 · p2 from i
to j when k is the only shared node, namely if p1 ∩ p2 = {k}
(line 7). The weight of the new path is w1 · w2 (line 8). The
dividend matrix Dij is computed at lines 9-12 by summing up
all weights of simple paths in Rij . For the sample graph of
Fig. 1 (B), it turns out that:

O =









0 1 1 1 1
0 0.43 0.25 0.55 0.37
0 1 0.25 1 1
0 0.67 0.17 0.37 0.50
0 0 0 0 0









D =









0 0.57 0.75 0.57 0.68
0 0 0.25 0.55 0.37
0 0.76 0 0.76 0.90
0 0.60 0.15 0 0.49
0 0 0 0 0









2Strictly speaking, the solution does not require the ownership graph to be canonical.

However, canonization will be useful later on when considering graph layers.

Algorithm 2 ShareD()

// initialization
1: for i, j ∈ [1, N ], wij > 0 do
2: Rij ← {(〈i, j〉, wij)}

// Rubin’s algorithm
3: for k ∈ [1, N ] do
4: I ← {i ∈ [1, N ] | Rik 6= ∅}
5: J ← {j ∈ [1, N ] | Rkj 6= ∅}
6: for i ∈ I, j ∈ J do
7: for (p1, w1) ∈ Rik, (p2, w2) ∈ Rkj , p1 ∩ p2 = {k} do
8: Rij ← Rij ∪ {(p1 · p2, w1 · w2)}

// dividend matrix
9: for i ∈ [1, N ] do

10: J ← {j ∈ [1, N ] | Rij 6= ∅}
11: for j ∈ J do
12: Dij ←

∑

(p,w)∈Rij
w

Company 3 owns directly or indirectly all shares of companies
2, 4 and 5, and 25% of its own shares. This makes the 75% of
shares owned by shareholder 1 to actually weigh as 100% of
integrated ownership, i.e., integrated ownership ends up with
re-weighing edges (as we did in canonization) to take into
account cross-ownership. Notice that, due to cycles, dividends
are not necessarily proportional to integrated ownership.

C. The corporate group problem

The solution procedure ShareG() shown as Alg. 3 adopts
a pattern similar to the previous ones. It first computes a
control matrix C such that Cij = 1 if i controls j (lines 1–
4). Parent shareholders i are those not controlled by anyone3

(i.e., such that for all k, Cki = 0), and the corporate group
Gi consists of the column indexes j such that Cij = 1 (lines
5–6). According to our model of indirect control, the set of
companies controlled by i is obtained through an invocation
Control(i) to the LTM-like algorithm [9] of propagation of
control shown in Alg. 4. In such algorithm, C is the set of
controlled nodes (“activated” in the terminology of LTM) and
S is the set of candidate nodes, corresponding to the frontier of
a visit of the graph. If the sum of incoming edges from nodes
in C is greater than 0.5 then a candidate node j is added to
the control set (lines 5), and its outgoing edges not yet in the
control set are added to the candidate set (line 6). The visit of
the graph continues while there are candidate nodes (line 3).

D. Computational complexities

The procedure ShareD() has the same complexity of
matrix inversion, which is O(N3) using a naı̈ve approach
based on Gauss-Jordan elimination.

The procedure ShareD() requires up to O(N3) operations.
An operation (lines 7–8) consists of O(P ) intersections of
simple paths, where P is the total number of simple paths
between any pair of nodes. Each intersection is O(N), since a
simple path has length at most N . Summarizing, ShareD() is
O(N4P ). The number P of simple paths can be exponential in
N , e.g., for a clique of N nodes it is N !. This makes ShareD()
exponential in N in the worst case.

3We assume there exists no pair of companies that control each other.



Algorithm 3 ShareG()

// control matrix
1: for i ∈ [1, N ] do
2: C ← Control(i)
3: for j ∈ C do
4: Cij ← 1

// corporate groups
5: for i ∈ [1, N ] such that Cki = 0 for all k ∈ [1, N ] do
6: Gi ← {j ∈ [1, N ] | Cij = 1}

Algorithm 4 Control(i)

1: C ← {i}
2: S ← Nout(i)
3: while S 6= ∅ do
4: j ← pop S
5: if

∑

k∈Nin (j)∩C
wkj > 0.5 then

6: C ← C ∪ {j}
7: S ← S ∪Nout(j) \ C

8: return C \ {i}

The procedure ShareG() is O(N4). In fact, there are N
LTM visits. A call Control(i) amounts to a loop of O(N)
steps. Each step performs the summation at line 5, which takes
O(N), for O(N) nodes in the set S .

The worst case complexities of the three procedures would
prevent us from using them for generic graphs. However,
on the one side the worst cases regard dense graphs, whilst
ownership networks are very sparse. Memory occupation can
take advantage of such sparsity by using sparse data structures.
On the other side, we will discuss below how to exploit
the layered structure of ownership graphs to further restrict
the usage of the flat algorithms to a tiny sub-graph of the
ownership graph.

V. LAYERS IN OWNERSHIP GRAPHS

We present a structural model of ownership graphs based
on layers, and exploit it to revise the algorithms of the previous
section. The model builds on a pervasive pattern observed in
corporate groups of companies, namely pyramidal organization
[1]. At top level, there is a parent shareholder owning a some
companies in the group, which in turn own other companies
at deeper layers and so on.

A. Layers

Consider Fig. 2 (left), where nodes are assigned to layers.
Layer k = 1 consists of nodes with no incoming edge, such as
node 1. These nodes are either individuals (owned by nobody),
public institutions (owned solely by the State), or companies
whose shareholders are not part of the data (e.g., companies
established abroad). At layers k ≤ 2, there are nodes having
all their incoming edges from nodes at layers < k, such as
node 2 in the example. Then there is a layer κ = 3 which
includes nodes that may be involved in loops within the layer,
as the one between 3 and 4. Finally, layer k = 4 again satisfies
the property that incoming edges are from layers < k. Let us
formalize the definition of layers.

A partition of the nodes N into K sets L1, . . . ,LK , called
layers, is a layered partition if, for k ∈ [1,K], all nodes

3
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Fig. 2. Layers in ownership graphs.

in Lk have all incoming edges from nodes in lower layers
L1, . . . ,Lk−1 except for at most one κ ∈ [1,K] for which
all nodes in Lκ have all incoming edges from nodes in layers
L1, . . . ,Lκ. Layer κ, if it exists, is called the recursive layer.

The definition is closely related to bow-tie structures,
already observed in ownership graphs [8]. See Fig. 2 (right).
Layers 1, . . . , κ − 1 (top layers) resemble the IN component
of the bow-tie, layer κ is the analogous of the strongly
connected component (SCC), and layers κ+1, . . . ,K (bottom
layers) resemble the OUT component. Notice that Lκ is not
necessarily strongly connected, as e.g., in Fig. 2 (left).

The procedure ExtractLayers(), shown in Alg. 5, com-
putes a layered partition through two topological sort algo-
rithms. The first one (lines 1–14) starts from nodes that have
no incoming edge, i.e., layer L1. For every node in the layer, it
marks as deleted the outgoing edge towards node j (line 11),
and adds j to the next layer if it has no unmarked incoming
edges. The set V contains the nodes not yet assigned to layers.
At the end of the first topological sort, V contains the recursive
layer and the bottom layers. The second topological sort (lines
16–28) visits such nodes bottom-up starting from those that
have no outgoing edges (layer LK). At the end of the second
topological sort, the unvisited nodes are those of the recursive
layer (line 29). The procedure has linear complexity since it
visits nodes and edges only once. Moreover, it returns a layered
partition with the smallest recursive layer.

B. Exploiting layers

The recursive layer is the hard-to-analyse sub-graph of
the ownership graph. Later on we will see that, for a real
large graph, it is only a small fraction of the overall graph.
This makes it worth devising solutions to the problems of
this paper that take advantage of the layered structure of
ownership graphs. Consider first the dividend problem. The
key observation is that Dij for a node i at layer k 6= κ can be
computed from cells Dhj where h, j are at layer > k. In fact,
for j in a layer ≤ k, we have that Dij = 0 since there is no
path from i to j. For j in a layer > k, we have that:

Dij = wij +
∑

h∈Nout (i)
wih ·Dhj (3)

where h ∈ Nout(i) is in a layer > k. The equation above
can be intuitively read as follows: i owns wij dividends of j



Algorithm 5 ExtractLayers()

1: V = {1 . . . N}
2: for i ∈ V do
3: e[i] = |Nin(i)|

4: L1 ← {i ∈ [1, N ] | e[i] = 0}
5: k ← 1
6: while Lk 6= ∅ do
7: V = V \ Lk

8: Lk+1 ← ∅
9: for i ∈ Lk do

10: for j ∈ Nout(i) do
11: e[j]← e[j]− 1
12: if e[j] = 0 then
13: Lk+1 ← Lk+1 ∪ {j}

14: k ← k + 1
15: κ← k

16: for i ∈ V do
17: e[i] = |Nout(i)|

18: M1 ← {i ∈ V | e[i] = 0}
19: h← 1
20: while Mh 6= ∅ do
21: V = V \Mh

22: Mh+1 ← ∅
23: for j ∈Mh do
24: for i ∈ Nin(j) do
25: e[i]← e[i]− 1
26: if e[i] = 0 then
27: Mh+1 ←Mh+1 ∪{i}

28: h← h+ 1
29: Lκ ← V // recursive layer
30: K ← κ+ h− 1
31: return L1, . . . ,Lκ,Mh−1, . . . ,M1

Algorithm 6 LayeredShareG()

1: L1, . . . ,Lκ, . . . ,LK ← ExtractLayers()
2: V ← {1 . . . N}
3: for k ∈ [1, κ− 1] do
4: for i ∈ Lk ∩ V do
5: Gi ← Control(i)
6: V ← V \ Gi
7: for i ∈ Lκ ∩ V do
8: C ← Control(i)
9: for j ∈ C do

10: Cij ← 1

11: for i ∈ Lκ ∩ V such that Cki = 0 for all
k ∈ Lκ ∩ V do

12: Gi ← {j ∈ [1, N ] | Cij = 1}
13: V ← V \ Gi
14: for k ∈ [κ+ 1,K] do
15: for i ∈ Lk ∩ V do
16: Gi ← Control(i)
17: V ← V \ Gi

directly, and wih · Dhj indirectly through the directly owned
company h. Consider now layer κ. First, we have to run the flat
procedure ShareD() on Lκ to compute dividends, since cross-
ownerships (a.k.a., loops) are present. The resulting matrix D
does not include values for cells Dij where i ∈ Lκ and j is
in L = Lκ+1 ∪ . . . ∪ LK . We first compute the intermediate
values:

D′ij = wij +
∑

h∈Nout (i)∩L

wih ·Dhj

namely the dividends as if κ were non-recursive. Then, we
calculate for i in layer κ and j in layer > κ:

Dij = D′ij +
∑

h∈Lκ
Dih ·D′hj (4)

Intuitively, dividends of j can reach i either through simple
paths connecting i to layers > κ (D′ij) or through simple
paths that first transverse the recursive layer up to a node h
(Dih) and then pass to layers > κ (D′hj). Summarizing, the
layered procedure for solving the dividend problem consists of
three steps: (step 1) compute layers through ExtractLayers();
(step 2) run the procedure ShareD() for layer κ to compute
the dividend matrix of nodes in such a layer; (step 3) com-
pute bottom-up the rows of the matrix for nodes in layers
K, . . . , κ + 1, κ, κ − 1, . . . , 1 by using equations (3–4). For
lack of space, we do not report the pseudo-code of the layered
algorithm. The worst case complexity is the same of the flat
version – this occurs when the recursive layer is the whole
graph. As we will see later on, however, the recursive layer is
orders of magnitude smaller than the whole ownership graph.
Since for non-recursive layers the layered approach has time
complexity linear in the number of nodes and edges, and space
complexity linear in the number of edges (matrix R from
ShareD() is computed only for the recursive layer), this makes
the layered approach efficient for sparse graphs.

Similar arguments can be adopted for integrated ownership
and ShareO(), where the analogous of the equations (3,4)
allow to speed up the computation of the intermediate matrix
V = (I −W )−1. The layered approach results, in practice, in
a (double topological) re-ordering of rows of I − W so that
it is upper triangular for all rows except for the nodes in the

recursive layer. However, the size of this matrix is the same
as the output O, hence there is no substantial gain in memory
occupation, as for the dividend matrix.

An analogous approach for the ShareG() procedure would
adopt a bottom-up layered computation of matrix C. We
provide instead a top-down solution as the LayeredShareG()
procedure shown in Alg. 6. It proceeds top-down from layer 1
to K. At each layer < κ (lines 1–6), the procedure computes
the group controlled by a shareholder i in the layer and
it removes the companies of the group from the set V of
nodes to be visited. Thus, shareholder i is necessarily a parent
shareholder (otherwise, it is controlled by a company in some
previous layer, hence it is not in V), and the group Gi is the
corporate group of i. Similarly for layers > κ (lines 14–17).
For layer κ, the approach of ShareG() must be necessarily
adopted (lines 7–13).

VI. EMPIRICAL ANALYSIS

In this section, we analyse a real ownership graph that
is 30× the largest network studied so far in the literature
[8]. Our goal is twofold. The first one is a network science
goal: studying the characteristics of the network in terms of
degree distributions and layered structure. The second one is a
data-driven corporate governance goal: investigating the cases
of critical conditions of the market where integrated owner-
ships differ from dividends, and where control is achieved
without owning the majority of integrated ownership. Finally,
we provide running times of the layered and flat version of
algorithms, showing how the former ones run very fast.

A. The Italian ownership graph

The Italian Business Register records information on all
Italian companies. Data include legal and financial informa-
tion, and it is kept up-to-date by the companies themselves,
since the register is recognized by law as the official source
of information about companies. We had a unique access to
a complete 2012 snapshot of the register. We computed the
Italian ownership graph by considering all legal forms of
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Fig. 3. Degree and WCC size distributions of the Italian canonical ownership graph.

Fig. 4. The “lungs” subgraph.

companies (partnerships, stock companies, and limited com-
panies) apart from sole proprietorship/individual businesses.
All shareholders were included, apart from two cases. The
first one concerns non-Italian companies owning shares of an
Italian company: the non-Italian company is in the register
as a shareholder, but its own shareholders are not included
(because the company is registered abroad). The second case
regards shareholders of floating stocks of companies listed
in the Italian stock exchange: they are not managed by the
Business Register.

The ownership graph. The ownership graph includes
3.904M nodes, of which 1.496M are companies, and 3.867M
edges, of which only 2,768 (less than 0.08%) are self-links.
The non-zero in-degree and out-degree distributions of the
canonical ownership graph are shown in Fig. 3 (left, center).
Data is fitted4 by truncated power laws (with parameter λ close
to 0). The mean of non-zero in-degrees is 2.78 (less than 3
shareholders per company on average), and the mean of non-
zero out-degree is 1.45 (less than one and a half company
owned by a shareholder on average).

The company with the highest in-degree has 1524 share-
holders. It is a Limited Liability Consortium supplying road
haulage services in the business of transportation of goods
for third parties. Shareholders of the consortium include truck
owners and drivers. The second (resp. the third) topmost in-
degree company is a service provider company with 1371
(resp. 1200) shareholders, which are small and medium firms

4We use the methods and software from [2] for fitting heavily tailed distributions. The

distribution with the best loglikelihood ratio is selected among power laws, truncated

power laws, exponentials, stretched exponentials, and log-normals.

to which the company provides fiscal assistance services
(resp. job training services).

There are 6 shareholders with the highest out-degree: each
owns 234 other companies. There are also 6 other shareholders
with the second highest out-degree of 225. These two cases
are plotted as clear outliers in Fig. 3 (center). A subgraph
of the ownership graph containing those 12 companies is
shown in Fig. 4. We call it the “lungs” subgraph. Each of 6
highest out-degree companies owns shares of the same 234
companies in the left lung. Similarly, each of the other 6
companies owns shares of the same other 225 companies in
the right lung. The 12 companies (nodes in red) are owned by
the same 7 companies (nodes in yellow). Such 7 companies
are non-Italian. This outlier group (7 foreign companies, 12
parent companies, >460 owned companies) definitely deserves
further scrutiny by legal, taxation, and economy experts.

The non-partnership graph. The distribution of weakly
connected components (WCCs) in the canonical ownership
graph is shown in Fig. 3 (right). There are 586,568 WCCs.
456,521 are partnerships (refer to Sect. II-C). On average, a
WCC includes 6.66 nodes, 2.55 of which are companies. The
giant component (not shown in Fig. 3 (right)) includes 1.55M
nodes, 632K of which are companies. We removed partnership
WCCs from the canonical ownership graph, since they repre-
sent a common subgraph pattern, whose ownership, dividend
and control matrices are trivial to compute and analyse. The
resulting graph includes 2.474M nodes and 2.894M edges. We
call it the non-partnership graph.

The layered structure. There are K = 29 layers in the non-
partnership graph, with layer κ = 16 as the recursive layer.
The layer sizes, shown in Fig. 5 (left), range from 1.538M
nodes of layer 1 (individuals and foreign companies) to 3
nodes of layer 15 and to 1 node of layers 17 and 18. The
recursive layer has 2,370 nodes nodes, which is only 0.1% of
the total. The size distribution of top layers (1-15) is fitted by
an exponential distribution e−β with parameter β = 0.84. This
can be interpreted as follows: the probability of having a chain
of company ownership decay exponentially with the length of
the chain. The size of bottom layers (17-29) is fitted by an
exponential distribution with β = −0.72.

The heat map in Fig. 5 (center) shows how edges from a
node at layer k are distributed among the layers ≥ k. 79%
of edges are directed towards the next layer, and 89.7% stay
within the next two layers. The statement that the recursive
layer is the hard-to-analyse sub-graph is supported by Fig. 5
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Fig. 5. Non-partnership graph stats. Left: layer sizes. Center: layer heat map. Right: average number of reachable nodes dk from nodes in layers ≥ k.

(right), which shows the average number dk of nodes reachable
from any node in the sub-network of layers ≥ k. Reading the
plot from right to left, dk increases from layer k = 29 up to
the recursive layer k = 16, then it decreases up to layer k =
2, and finally increases for layer k = 1. The recursive layer
includes loops, which cause higher connectedness. Layers 2
to 15 include the ending points of chains of companies, thus
reducing the average number of reachable nodes. Finally, nodes
in layer 1 are starting points of chains, and they cannot be
ending points, hence d1 is greater than d2.

B. Ownership, dividends, and groups

The solutions of the integrated ownership, dividend, and
corporate group problems allow for the analysis of the cases
of interests for corporate governance discussed in the intro-
duction. In addition, we sketch an approach for the discovery
of family business groups.

Integrated ownership vs. dividends. Observe that d1 = 4.72
in Fig. 5 (right): on average, a shareholder reaches/owns less
than 5 companies either directly or indirectly. As a result, O
and D are sparse matrices, with only 11.683M non-zero entries
– less than five times the number of nodes. Let us consider the
case when the difference Oij−Dij is large. Fig. 6 (left) shows
the distribution of Oij − Dij (notice that such a difference
cannot be negative). There are only 42 · 103 pairs (i, j) with
non-zero difference, which is 0.36% of the non-zero entries
of O, and only 100 pairs with a difference greater than 0.4.
The network of Italian companies has, for most of it, a sane
structure where shareholders receive dividends proportional to
their ownership rights. Pairs with large difference should be
subject to further scrutiny. An example sub-graph, shown in
Fig. 7 (a), includes shareholder A and company D with a
difference of 0.92. In fact, A receives dividends of D from
the simple paths 〈 A, B, D 〉 and 〈 A, B, C, D 〉, for a total of
0.1 0.6 + 0.1 0.5 0.4 = 0.08. Due to cross-ownerships of B-C
and C-D, the three companies B, C, D are totally owned by
A, hence integrated ownership of D by A is 1. The difference
is then 0.92. It is worth noting that, in theory, A does not
control D, which is instead controlled by B which, in turn, is
controlled by C. Nevertheless, the structure of the group clearly
shows that, due to cross-ownership, A is the de-facto parent
controller of the group. Our analysis was able to unveil this
case. Whether hiding the actual controller is a wanted effect
(and why) should be part of further investigation.

Integrated ownership vs. control. 1.96 M corporate groups
were found in the non-partnership graph. Only 318,956 groups

are non-empty, i.e., Gi 6= ∅. The other groups consists of
shareholders not controlled by and not controlling anybody
– they can be either individuals or companies that are widely
held. The size of a corporate group is |Gi∪{i}|, i.e., the number
of controlled companies plus one (the parent shareholder). The
size distribution is shown in Fig. 6 (center). A power law fits
the log-space binned distribution. The average size of a non-
empty corporate group is 1.66, i.e., a parent shareholder that
controls at least one company on average actually controls
less than two companies. An example corporate group of size
115 is shown in Fig. 7 (b). The parent shareholder, shown
in yellow, is a credit securitization company. It owns the
majority of shares of 114 controlled companies. The structure
of the corporation is thus flat (horizontal in the terminology of
[1]): one controlling shareholder, many controlled companies.
In a sense, the structure is a “reverse partnership” – the
visualization in Fig. 7 (b) recalls a “sunburst”. Let us consider
now the case of interest for corporate governance in which
the parent shareholder controls a company with an integrated
ownership lower than the majority of shares. Fig. 6 (right) plots
the number of pairs (i, j) such that i is a parent shareholder,
j ∈ Gi is controlled by i, and the integrated ownership of j by
i is at most s, i.e., Oij ≤ s. There are only 10,590 pairs (equal
to 1.98% of the total) such that Oij is lower or equal than 50%.
They appear in 6,228 distinct corporate groups. Again, we can
conclude that the network of Italian companies has, for most
of it, a sane structure regarding the natural requirement that
the controller owns, either directly or indirectly, the majority
of shares of the controlled company. The pairs for which
this does not hold should be subject to further analysis by
corporate governance experts. Our analysis can provide them
with analytical tools for ranking pairs according to some
criteria. For instance, one could look at corporate groups with
high percentage of companies controlled via minority shares.
The corporate group shown in red in Fig. 7 (c) is one such
example. It is structured in 6 layers. The parent shareholder A
(an individual) owns the majority of shares of the controlled
company C (a financial real estate), but not the majority of
shares of the other 7 controlled companies. For instance, A
has an integrated ownership of only 0.8 · 0.6 = 48% shares of
D, and 0.48 · 0.29 + 0.8 · 0.27 = 35.5% shares of G.

Family business groups. Companies can be organized in
different structures than corporate groups. For instance, our
definition of corporate groups does not account for family
business groups. Such groups are not controlled by a single
parent shareholder, but rather by a small number of parent
shareholders. This typically occurs when those shareholders
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Fig. 7. Sample subgraphs: (a) high ownership-dividend difference; (b) “sunburst” corporate group; (c) a layered corporate group; (d) a family business group.

are family members who inherited their shares from relatives.
In order to discover family corporate groups, we proceed with
a rather general approach, which may be applied to discover
groups organized with a-priori unknown schemes. First, a
clustering algorithm is run over the graph of the integrated
ownership matrix O. The intuition is that companies with
similar property of shares should fall within a same cluster.
We cluster integrated ownership rather than simply ownership,
because the degree of indirect ownership is not explicitly
taken into account by a graph clustering algorithm on the
input of the ownership graph. In experiments, we adopted
the Markov Cluster Algorithm (MCL) [16]. Next, we rank
the interestingness of each cluster by the number of parent
shareholders in the cluster. Basically, if there is only one parent
shareholder, then the cluster is (part of) a corporate group.
Otherwise, we consider nodes with no incoming links in the
cluster as family members, and run a variant5 of Alg. 4 to
compute the set of companies of the cluster controlled by the
family members.

An example cluster is shown in Fig. 7 (d). It spans over
3 layers, and includes parent shareholder nodes only, i.e. no
direct or indirect control exists between any pair of nodes.
The three nodes in yellow are family members (their are
actually brothers) who own about 1/3 shares respectively of
each company at layer 2. There are also two companies at layer
3. They are owned directly by two family members and by the
company shown in red at layer 2 (which is owned by all three
family members). Notice that such a family group schema may
be adopted also when the parent shareholders are not relatives,

5C is initialized to the set of family members and line 2 is S ← ∪i∈CNout(i).

Elapsed time for layered owner./dividend/corporate

ExtractLayers() 0.91s 0.91s 0.91s

Layered comput. on layers 1-15 32.84s 32.44s 3.32s

Flat computation on layer 16 5.01s 0.15s 0.01s

Layered comput. on layers 17-29 0.28s 0.04s 0.01s

Total elapsed time 39.04s 33.54s 4.25s

Elapsed time for flat owner./dividend/corporate

Flat computation on layers 1-29 > 1h out-m. 11.34s

TABLE I. ELAPSED TIMES ON THE ITALIAN NON-PARTNERSHIP SHARE

GRAPH (2.474M NODES, 2.894M EDGES).

and not even individuals, but rather companies. The “lungs”
sub-graph shown in Fig. 4 is such an example. There, the
yellow nodes, which play the role of “family” members, are
non-Italian companies.

C. Running times

Table. I reports the running times of the three steps of
the layered ownership, dividend and corporate group algo-
rithms. The input is the Italian non-partnership share graph.
The test machine is a commodity PC with Intel Core i5-
2410@2.30GHz with 16 Gb of RAM and Windows 7 OS.
All flat and layered algorithms were implemented in Java 8,
with no use of multi-threading and with all data structures
(ownership graph, matrices O, D, R and C) stored in main
memory. Matrix inversion in the integrated ownership solutions
is implemented through the Scipy Python library on sparse lin-
ear algebra (docs.scipy.org). The flat solutions of the integrated
ownership and dividend problems run out of time limit and out

http://docs.scipy.org


of memory respectively. Regarding integrated ownership, the
main problem is the inversion of the (sparse) matrix 2.474M ×
2.474M. Regarding dividend, the out-of-memory issue is due
to the huge number of simple paths to be stored in R. The small
size of the recursive layer (2,370 nodes, which is three orders
of magnitude smaller than the whole network) makes instead
layered computations feasible in terms of memory occupation
and efficient in terms of running time. The total running
times range from a few seconds to less than 40 seconds.
For comparison, the flat computation of the corporate group
problem, which is the only flat algorithm which terminates,
requires 2.6× the time of the layered computation.

VII. CONCLUSIONS

A. Related work

A thorough analysis of ownership graphs from a network
science perspective has been conducted in [8]. Economists are
interested in forms of concentration of ownership and control.
For instance, the network value of a node vi =

∑

j oijνj
is defined as the sum of all its integrated ownerships oij
weighted by the intrinsic economic value νj of the owned
company j. [8] provides a reinterpretation of the network
value of a node in terms of flow and centrality of generic
networks – and in particular in terms of c(α, β)-centrality
[4]. Our contribution lies instead in exploiting the layered
structure for algorithmic optimizations in the calculation of
values oij . [8] also proposes a bow-tie view of ownership
networks, which is compared in Sect. V-A with the layered
structure introduced here. The dividend problem is introduced
in this paper. Rubin’s algorithm [14], which is used at the core
of the solution, has been exploited for finding paths connecting
an individual in an online social network with friends of a
friend at distance l [11]. However, density of social networks
makes the approach unfeasible even for small values of l.
On the contrary, sparsity and layered structure of ownership
networks, allow for an efficient solution of the dividend
problem. Regarding the corporate group problem, existing
models of control propagation consider continuous values (vs
our 0/1 model). The weakest link of a path p = 〈i1, . . . , ik〉 is

mink−1
h=1wihih+1

. The sum of weakest links connecting i and j
has been proposed in [7] as a measure of the control of j by
i. Such an approach, however, does not take into account the
presence of cycles. Integrated control [6] and relative majority
[8] models start from a modified adjacency matrix W and
apply the integrated approach of solving equation (1). Finally,
a cornerstone empirical investigation of the relations between
ownership and control is [12]. The paper covers 540 large
firms from 27 countries. The largest dataset considered so
far (see [8]) includes data of 24,877 companies and 106,141
shareholders from 47 countries, which is 30× smaller than the
Italian ownership graph.

B. Conclusion

The main contribution of this paper was in the interplay
among modelling of ownership networks as layered graphs,
algorithms exploiting efficiently such structure, and the em-
pirical study of a significant case. We have translated key
problems about corporate governance into analytical problems
over graphs such as computing transitive closure (integrated
ownership), all-pairs simple paths (dividends), and information

diffusion over graphs (control). The analysis of differences
in the distributions of integrated ownership, dividends, and
control groups reveals outlier (suspicious) behaviors that need
further scrutiny by corporate governance experts, including
economists, market control authorities, and policy makers.

Several open issues arise for future works, aimed at ex-
tending the approach to consider: multiple classes of stocks
with different voting rights, different types of controlling
shareholder (individuals, State, financial institutions, widely
held companies), different minimum thresholds for controlling
a company, integration of economy expert background knowl-
edge for ranking those clusters of nodes not explainable as
corporate or family business groups. The availability of data
about the boards of directors of companies would raise addi-
tional related issues, such as relating control with sharing of
directors between the controlled and the controlling company
(interlocking [10]), and studying glass-ceiling or other forms
of discrimination in groups of companies [13].
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