‘The LBA Problem and its Importance

in the Theory of Computing

Je Hartmanis‘l~

and

e

H.B. Hunt,ITI T

TR 73-171

May 1973

Department of Computer Science
Cornell University
Ithaca, New York 14850

+This research has been supported in part by the National

Science Foundation Grant GJ-33171X.
) I . . .
This research was supported by a National Science Foundation
Graduate Fellowship in Computer Science.



The LBA Problem and its Importance

in the Theory of Computing

J. Hartmanis
and

H.B. Hunt, III

Abstract:

In this paper we study the classic problem of determining
whether the deterministic and non-deterministic context-sensitive
language are the same or, equivalently, whether the languages
accepted by deterministic and non-deterministic linearly bounded
automata are the same. We show that this problem is eguivalent
to several other natural problems in the theory of computing
and Wial the Lediuiigues uSed Ou uace LDA g;ublcm liave sevelalr ulller
applications in complexity theory. For example, we show that
there exists a hardest tape recognizable non-deterministic con-
text-sensitive language Ll' such that Ll is a deterministic con-
text-sensitive language if and only if the deterministic and
non-deterministic context-sensitive languages are the same.

We show furthermore, that many decision problems aboﬁt sets
described by regular expressions are instances of these tape-
hardest recognizable context-sensitive languages. Thus, it
follows that non-determinism in Turing machine computations
(using at least linear tape) can not save memory over deter-
ministic Turing machine computations if and only if the equiva-
lence of regular expressions can be decided by a deterministic

linecarly bounded automaton. It also follows that the equivalence



of reqular expressions can be decided by a non-deterministic
linearly bounded automaton if and only if the family of con-

text-sensitive languages is closed under complementation.
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1. Introduction

In this section we sketch the history of the LBA problem
and outline the results in this paper.

Linearly bounded automata were first defined and investi-
gated by John Myhill in 1960 [13]. As Myhill points out, the defini-
tion of a linear bounded automaton was motivated by an observa-
tion made by Rabin and Scott about two-way finite autoﬁata with
erasing, This remark appeared in a technical report bn which
the well-known Rabin and Scott paper "Finite Automata and their
Decision Problems" was based. The observation wés that two-way
finite automata, which can erase input symbols, cén accept non-
regular sets and that the equivalence problem for these mutomata is
recursively undecidable. These observations never appeared in
the published paper, but the short paragraph in the original
technical report sufficed to convince Myhill that this model
with erasing only was artifical and that the automaton should
be permitted to erase and print on the tape squares occupied
by the initial input word. Thus these automata are just one-
tape Turing machines which can use for computation as much tape as
is needed to write down the input word. Since this definition
bounds the. available tape linearly to the length of the input

word Myhill called them linearly bounded automata.



- The importance of linearly bounded automata was
further emphasized when their connection with language
theory was discovered. In the late fifties and early sixties
Chomsky initiated an intensive study of formal languages and
defined four‘classes of grammars with the corresponding
languages: the regular, context-free, context-sensitive
and recursively enumerable languages. After it was realized
in 1962 that the context-free languages were exactly the
languages accepted by non-deterministic push-down automata,
the regular, context-free and recursively-enumerable languages
could all be defined by their grammars or equivalently by
the automata which accepted them. The context-sensitive

languages remained the only exception.
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accepted by a deterministic linearly bounded automaton was a
context-sensitive language. In 1964 Kuroda [ 9] introduced
the non-deterministic linearly bounded automaton and showed
that the family of languages accepted by the non-deterministic
linearly bounded automata is exactly the same as the family
of languages generated by the context-sensitive grammars.
These results revealed another natural éonnection between

families of formal languages and families of automata; but it
also raised the now classic, LBA problem (or the First LBA
problem) :

Are the languages accepted by deterministic

and non-deterministic linearly bounded automata

the same? Or eguivalently, are the deterministic -

and non-deterministic context-sensitive languages
the same? Abbreviated, DSCL=NDCSL?



If DCSL = NDCSL then the family of context-sensitive languages
is closed under complementatidn. On the other hand, it still
could happen that DCSL # NDCSL but the family of context-sensi-
tive languages is closed under complementation. Thus we are
lead to the Second LBA problem:

Are the context-sensitive languages closed under
complementation?

Both of these problems are basically problems about the
minimal amount of memory needed to perform a computation. In
general, such problems are quite difficult and so far in com-
putational complexity theory we have had little success in
determining lower complexity bounds for specific computations.
The above mentioned LBA problems appear to be no exception.

At the same time, our inability to answer them indicates that
we have not yet understood the nature of non-deterministic
computations.

Considerable progress on the first LBA problem was made
in 1969 by W. Savitch in his doctoral dissertation [14]. |
Savitch showed that every non-deterministic Turing machine
using L(n) tape, L(n) > Rfog n, can be simulated by a deter-
ministic Turing machine using no more than [L(n)]2 tape.

Thus the non-deterministic context-sensitive languages can
all}be recognized by nz—tape bounded deterministic Turing
machines. The result was surprising since all previous simula-
tion methods required an exponential amount of tape. Further-
more, Savitch showed that there exists one non-deterministic

L(n) = fog n - tape recognizable language L, such that if Ly
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is recognizable deterministicly in fogn - tape, then for all
tape bounds L(n), L(n) > fogn, the non-deterministic and
deterministic recognizable languages are the same. Thus if
non-determinism can be eliminated for the fogn - tape recon-
izable language L, then DCSL = NDCSL and we see that we have
a sufficient condition for the LBA problem. Unfortunately,
this was shown only to be a sufficient condition for DCSL =
NDCSL.

In this paper we show that we can find necessary and
sufficient conditions for DCSL = NDCSL in terms of one non-
deterministic context-sensitive language by constructing a

hardest deterministic tape recognizable context-sensitive

NDCSL if and only if

language L Thus we get that DCSL

1
Ly is a deterministic context-sensitive language.

Similarly, the family of context-sensitive languages
is closed under complementation if and only if the comple-
ment of Ll’ il' is a non-deterministic context-sensitive
language.

Actually the results are stronger in that DCSL = NDCSL
implies that the deterministic and non-deterministic tape
bounded computations are the same for all tape bounds L(n) > n.
Furthermore, there exists a recursive translation which maps
every non-deterministic Turing machine onto a deterministic
one using no ﬁore tape than the non-deterministic one (pro-
vided it used at least linear tape).

Similarly, if the family of context-sensitive languages

is closed under complementation then there exists a recursive



translation which maps every fba onto another iba accepting
exactly those sequences not accepted by the first.

Next we show that the LBA problems can be reduced to
equivalent problems about very simple non-writing automata
or flowchart computations. Consider finite automata with
k read-only heads which can move in both directions on the
input and sense when two heads are scanning the same tape
square. Then, utilizing our previous results and an obser-
vation by Savitch, we show that there exists a language L2
over a one-symbol alphabet, Lzlg_a*, which is recognizable
by a 7-head non-deterministic finite automaton and has the

property that, L2 is recognizable by a k-head deterministic

finite automaton if and only if DCSL NDCSL.

Again, L, is recognizable by a k-head non-deterministic
finite automaton if and only if the family of CSL's is closed
under complementation which happens, iff the family of lan~-

guages over a one-symbol alphabet recognizable by multi-head

automata is closed under complementation.

Thus we will show that if non-determinism can be eliminated
in one specific 7-head finite automaton by using more heads
then it can be eliminated in all Turing machine computations
usingino less than linear tape. A similar result holds for
flowcharts where we must eliminate non-determinism by using
more variables.

To relate the LBA problems to a different problem area
we show that the complexity of the LBA problems is equivalent .
to many decision problems about sets described by regular

expressions. In this case the proofs exploit an obsecrvation



due to Meyer and Stockmeyer [12] about the descriptive power
of regular expressions. It turns out that for any non-deter-
ministic 2ba M there exists a deterministic &ba which for
any input y to Mi can write down a regular expression R(y)
describing the set of all invalid computations of M, on input
y. Therefore the input y is accepted by M, if and only if
there is a valid computation by Mi on y, which happens if and
only if L[R(y)] # I*, where L(R) denotes the language described
by R. Thus we see that if a deterministic %ba can check whether
a regular expression describes a set not equal to I*, every non-
deterministic fba Mi can be replaced by a deterministic 2ba,
usihg the above procedure. Furthermore, since the set of all
regular expressions R not describing I* is, easily seen to be,
a non-deterministic cs% , we get the following result:

DCSL = NDCSL if and only if

L, = {R|R regular expression, L(R) # I*}

is a deterministic context-sensitive language.

Similarly one proves that the family of contexf—sensitive
languages is closed under complementation if and only if i3 is
a cst. .

A generalization of this result leads to a metatheorem
about properties of regular expressions which link the LBA prob-
lems to the tape complexity of many other decision problems
about regular sets.

Let P be any property on the regular sets over I = {0,1}

such that



1) P(I*) = True, and
2) The set of languages

U {x\L|p(L) = True}
)-FEE*
is properly contained in the family of regular

sets over I.yhere x\L ﬁ{w[k w e L}
Let
-1, = {R|R is a regular expression over {0,1} and P[L(R)] = False}
be a non-deterministic csf. Then I is a deterministic cs® if
and only if DCSL = NDCSL.

Similarly,

L ={R|R is a regular expression over {0,1} and P[L(R)] = True}
is a non-deterministic csf if and only if the family of non-deter-
ministic cs®'s are closed under complementation.

To illustrate the power of this result we list five other
decision problems about regular sets such that any one of them
can be recognized by a det. 2%ba if and only if NCSL = DCSL,and
furthermore if the complement of any one of these languages is
a csf then the context-sensitive languages are closed under
complementation. In all examples R and S are restricted regular
expressioﬁs over {0,1}:

{(R,S) |L(R) # L(S)}

{ R |L(R) # I*}

{ R |L(R) is coinfinite}

{ R |L(R) # REVERSAL L(R)}

{ R |L(R) # L(R*)},



2. Hardest Tape and Time Recognizable CSL.

In this section we give the first of two proofs that
there exists a hardest tape and time recognizable context-
sensitive language and show, furthermore, that the LBA prob-
lem is equivalent to the problem of eliminating non-deter-
minism in non-writing automata or flowchart computations.

For the szke of completness we recall that a linearly

bounded automaton is a one-tape Turing machine whose input

is placed between end markers and the TM cannot go past these
end markers. Thus all the computations of the %ba are per-
formed on as many tape squares as are needed to write down the
input and since the %ba can have arbitrary large (but fixed)
tape alphabet, we see that the amount of tape for any given
gba (measured as length of eguivalent binary tape) is linearly
bounded by the length of the input word. If the TM defining
the fba operates deterministicly we refer to the automaton

as a deterministic %ba, otherwise as a non~-deterministic fba

or simply an 1iba.

Since the connection between linearly bounded automata
and context-sensitive languages is well-known we will also
refér to the languages accepted by non-deterministic and
deterministic fba's as non-deterministic and deterministic
context-sensitive languages, respectively.

The essence of the first proof is to write down a
universal context-sensitive language so that no other cs?
can be more difficult to tecognize. The surprising thing

is that this can be done very easily. Below we give a



"universal" cst.
L, = {#M,4 CODB(xlxz...xn)#[xlxz...xn is accepted by fba M}

Thus the sequences in Ll consist of a simple encoding of
an 2ba, Mi' followed by an encoded form of an input accepted
by M, . The input encoding CODE(xlxz...xn) is any straight-
foward, symbol by symbol encoding of sequences over alphabets
of arbitrary cardinality (the input and tape alphabet of Mi)
into a fixed alphabet, say {0,1 #}; with the provision that
|CODE(xj)| > the cardinality of the tape alphabet of M.
Clearly, by inspecting the description of Mi it can be deter-
mined what encoding is used.

It is easily seen that Ly is a csf since it can be accepted
by a non-deterministic 2%ba, M, which simulates M, on input
Xy eee X Since Mi uses no more tape than required to write
down the input, the encoded input CODE(Xl ces xn) gives enough
tape for M to simulate Mi’ Thus L, is a context-sensitive

1

language and we get the next result in terms of Ll'

Theorem 1: 1. Ll € NDCSL.

2. L1 € DCSL iff NDCSL = DCSL.

3. il € NDCSL iff the family of context-sensitive

languages is closed under complementation.

Proof: From the construction of L1 we know that Ll
is a cs%. This follows, as mentioned above, since the codes
for the input symbols xj of M, are long enough to encode all

tape symbols of M, - Thus NDCSL = DCSL implies that L, is re-

1

cognized by a deterministic 2ba.
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On the other hand, if Ll is recognizable by a deterministic

iba, MD, then DCSL = NDCSL since for every ndiba Mi we can recur-
sively construct an equivalent deterministic fba MD(i)‘ The

diba M operates as follows: for input Xy eee X MD(i) writes

D(i) n

#Mi#CODE(xlxz...xn)# on its tape and starts the diba My on this

input and accepts the input iff MD accepts its input. Because of

the definition of M_ the input #Mi#CODE(x ...xn)# is accepted by

D 1%2
My if and only if the input XyeeaX, is accepted by Mi,and therefore

MD(i) and Mi accept the same set. Furthermore, since the length

of #Mi#CODE(x ...xn)# is linearly bounded by the length of

1%2
(for any fixed i) we see that MD(i) is a deterministic

2ba. Thus NDCSL = DCSL, as was to be shown.

xlxz. . .Xn

The third part of this theorem follows by a similar argumenﬁ.
T+ is interesting +n note that *f'P car be reacoanized on
a deterministic 2ba then all non-deterministic tape computations
using Li(n) > n tape can be replaced by equivalent deterministic
computations using no more tape. Furthermore, there is a recur-
sive translation which maps the non-deterministic Turing machines

onto the equivalent deterministic Turing machines.

Corollary 2: DCSL = NDCSL if and only if there exists a recur-

sive translation o such that for every non-deterministic TM
. . ‘ S o . -
Ml, which uses Ll(n) > n tape, Mo(l) is an equivalent deter

ministic T™™ using no more than Li(n) tape.

Proof: The "if" part of the theorem is obvious.
To show the "only if" part, let M, be any non-deterministic
™ accepting the set Ay C I* and using L (n) > n tape.
= i e

L4
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We first define two auxillary languages used in the proof.
Let
A = {#w#thi on input w uses more than (t + |w| -1)

tape squarestl.

Clearly, Ai is a non-deterministic csf, since we can run Mi
non-deterministicly on input w and see whether for some choice
of moves more than t + |w| -1 tape is reguired. But if DCSL =
NDCSL then A; is accepted by a deterministic fba M.

Next, we define

A; = {#w#thi accepts w using no more than

(|]w] + t) tape squares}

Again, AE is accepted by a non-deterministic fba and
therefore, by our assumrption, A; is accepted by a deterministic
fba MY.

i
We now show that from Mi and Lg, which can be obtained

recursively from Mi by Theorem 1, we can recursively obtain

Mo(i) which accepts Ai using no more than Li(n) deterministic
tape.
Mo(i) operates as follows:
1. for input w = Xj...%x, Mo(i) finds the largest t

(if it exists) such that

#w#t is in Ai

by successively checking
#2

buwd, $wbZ, BubS,....

with the deterministic 2ba Mi .
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2. On #w#t Mo(i) simulates the deterministic fiba

'M{ and accepts the input w iff M; accepts #w#t.

Clearly, M accepts Ai on deterministic tape Li(n), as

o (i)
was to be shown.

From the above results we see that if DCSL = NDCSL
then all other deterministic and non-deterministic tape-bounded
computations using more than a linear amount of tape are the
same. On the other hand, we have not been able to force the
equality downward. For example, we have not been able to show
that if all deterministic and non-deterministic tape-bounded
computations using L, (n) > 2" tape are the same, that then
DCSL = NDCETL. |

Similarly, it could happen that DCSL = NDCSL but that
the fogn - bounded deterministic languages are properly con-
tained in the non-deterministic fogn - bounded computations.

Our next result shows that the previous thecorem can be
generalized to hold for a wide class of tape-bounded languages.
Similar results have also been obtained by R. V. Book [1]
using AFL Theoretic techniques.

We say that f:N - N is a semihomogeneous function if

for all ¢ > 0 there exists a kC such

f(?n) < kcf(n).

Thus £(n) = n5 is a semihomogenecous function but £(n) = 2"
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is not. We say that f(n) is non-deterministic tape con-

structable iff there exists a non-deterministic TM which for

input al computes f(n) using no more than f(n) tape squares.

Let

L, = {#CODE (%%, . .x )4

B, t.. " ]Mil < ICODE(xlxz...xn)lz

XyXgee X 1S accepted by Mi using no more than
f(n) tape, and ICODE(xj)I > cardinality of tape
alphabet of Mi}.

We assume that all codes of input and tape alphabet symbols

of My have the same length.

Theorem 3: Let f be a non-deterministic tape constructible,
semihomogensous function such that for all k, k > L,

f(kn) > kf(n) > 0. Then Lf is non-~deterministic f£(n) - tape

recognizable. Furthermorec, L_. is deterministic f£(n) - tape

£

recognizable iff the deterministic and non-deterministic

f(n) - tape recognizable languages are the same.
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Proof: Let Lf be defined as above and note that f(kn) > kf(n)'

implies for all n f£(n) > c'n, for a fixed constant c > 0.

Then the following algorithm describes'a f-tape bounded
non-deterministic TM which recognizes Lee
1. Che k . < <
c |Ml[ < ICODE(xlxz...xn)I.
2. Verify that the format is correct and that the

proper coding is used.

3. On a work track of the tape mark off [Z|f(n)
squares for scratch space, I is the tape alphabetof
M..
i
4. Simulate M, on X = X.X,...X_using the scratch
i 172 n
space from 3. Accept the input iff Mi accepts x.

-
——

Note: we have eaougl itape since Lhe simula

o~
~d s

needs to encode no more than f(n) tape symbols of

Mi.
The space reguired to execute (1) and (2) is linear in n.
To execute steps (3) and (4) we need |I| f(n) tape squares.
But |Z] £(n) < £(|Z|n) < k-f(n), thus L. is non-deterministic
f(n) - tape acceptable.

On the other hand, if Lf is deterministic f(n) - tape

acceptable, then there exists a deterministic f(n) - tape
bouhded T M' such that L(M') = Le-

every non-deterministic f!n) - tape bounded TM an equivalent

We use M' to find for

deterministic f(n) - tape bounded machine. For any ™ Mi

construct M _,., as follows:
o (1)



15

1. Short inputs are acccpted by table look-up.

For input X Xpeo Xy such that

ICODE(xlxz...xn)[ > ]Mi

Mo(i) writes out

#CODE(xlxz...xn)#
# M. # ... # .
2. Mo(i) applies M' to the new input from (1).

The tape required by Mo(i) is less than

kln + f(kln)

which is less than

kln + k2 f(n) ,

since f is semihomogeneous. But then the required tape
can be bounded by c¢ f(n) and we see that Mo(i) is a deter-
nministic f(n) - tape bounded TM, as was to be shown,

Note that in Theorem 3 we could replace the cqndition
f(kn) > kf(n)
by the weakened condition
f(kn) > (fogk) £(n) ,

and still carry through the proof. Thus we know, for example,
that there exists hardest tapc recognizable languages for func-
tions such as: nl/z, nl/3, n2/3, etc. Combining this obser-

vation with our previous result we get:



16

Corollary 4: For any positive rational number r the

language L r is f(n) = n¥ - non-deterministic tape recon-
n
izable. Furthermore L r is deterministic nr—tape recon-
n
izable iff all n* non-deterministic tape bounded computations

can be so recognized.
So far all considerations have involved tape as our
computational complexity measure. It turns out that the hardest

tape recognizable language L, is also a hardest time recognizable

1
context-sensitive language. We cast our result in terms of

polynomial time computable languages.

Theorem 5: All context-sensitive languages can be recognized in

deterministic polynomial time (non-deterministic polynomial time)
if and only if the cs? L

polynomial time (non-deterministic polynomial time).

Proof: Recall that
Ll = {#Mi#CODE(xlxz...Xn)#lxlxz...xn is accepted by 2ba Mi}

Clearly, if csi's are accepted in polynomial time then so is

the cs? Ll'

If Ll is accepted.in polynomial time by a multi-tape Turing
machine M then for any #&ba Mi we can recursively obtain a TM
_Mp(i) accepting‘the same language in polynomial time. Mp(i)
operates as follcws: for‘input X Xge e e X Mp(i) writes down

#Mi#CODE(xlxz...xn)#
~and then simulates M on this input. Clearly, if M operates iq

polynoﬁial time then so does Mp(i)' as was to be shown.,
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It is worth mentioning that Greibach [4] has recently
exhibited a context-free language which plays the same role
among context-free languages as L, does for context-sensitive
languages. Namely, this context-free language is the hardest
time and tape recognizable cf2 and there also exist two re-
cursive translations mapping context-free grammars onto Turing
machines recognizing the language generated by the grammer in
the minimal time and on the minimal amount of tape, respectively.
Though at this time we do not know what is the minimal time or
tape required for the recognition of context-free languages.

Before proceeding with the study of context-sensitive
languages we will state two conjectures about tape requirements

for the recognition of context-free languages.

Conjecture l: There exists a context-free language which cannot

be recognized non-deterministically on fogn - tape. Though
we know that all context-free languages are deterministically

recognizable on [fog n]2 tape [11].

Conjecture 2: If L is a non-regular context-free language

which can be recognized deterministically on fog fog n - tape,
then L is not a context-free language. We know that there
exist fog fogn - tape recognizable context-free languages [11],
but in all such cases the complement is not a context-free
language and its recognition does not require counting (i.e.
fog n - tape). On the other hand, intuitively it seems that
if_L and L are non-regular context-free languages then

the recognition process must involve counting and therefore

must require at least f£og n - tape.



-18-

Finally we.note that the methods used to construct the
"universal" csi Ly can be used to construct other "universal"
languages. We illustrate this by constructing the languagé ilr
which plays the same role for non-deterministic polynomial time-
bounded computations as Ly does for the context-sensitive langu-
ages.

Let DPTIME and NDPTIME designate the families of languages
acceéted by deterministic and non-deterministic polynomial time-
bounded Turing machines, respectively.

We will say that a language L is p-complete iff L is in

NDPTIME and for all Li in NDPTIME there exists a deterministic
polynomial time-bounded function f, such that

X is in Li iff fi(x) is in L .
et

~ 3[M, [t

L, ~ {#M#CODE(x %, .. x )4 | xy%, ... % is

n
accepted by the one-tape, non-deterministic TM Mi in time t}

Theorem 6: The language Ly is accepted in non-deterministic linear
time by a four tape TM. Furthermore,

'Ll is in DPTIME iff NDPTIME = DPTIME.

-~

Proof: It is easily seen that a four-tape TM M' can accept Ll in
linear time. We indicate how M' uses its tapes: on the first
sweep of the input M' checks the format of the input, copies Mi

3|M, |t
' on the second

from the input on the first working tape and #
working tape. The third working tape is used to record the pre-
sent state of M, {(in a tally notation) durinag the step-by-step

simulation of Mi' It is seen that with the available information
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on its working tapes M' can simulate Mi on the input in time
2|M |t (for an appropriate, agreed upon representation of M.)

-~

Thus M' operates in non- -deterministic linear time and accepts Ll
Therefore, il is in NDPTIME and the assumption
NDPTIME = DPTIME

implies that il is in DPTIME.

To prove that £l in DPTIME implies that DPTIME.= NDPTIME,
assume that il is accepted by a deterministic TM M" operating
in deterministic time nP. Then for any non-deterministic TM Mi
working in time n? we can recursively construct a TM Mo(i) oper-

ating in polynomial time as follows:

1. for input XKyXge oo X Mo(i) writes down

n

¥zjﬁcev2(.1x2...xn)#3|Mi‘nq
2. Mo(i) starts the deterministic machine M' én the
sequence in (1) and accepts the input XqXqe oo Xy iff

M* accepts its input.
Clearly., Mi and Mc(i) are equivalent, furthermore Mo(i) operates

in tme less than
" : p 8!
2[3|M, [ + | #M, #CODE (x7%,...x ) [1¥ < Cn
Thus Mo(i) operates in polynomial time, as was to be shown.

-~

The previous proof shows that if Ll is in DPTIME,

then we can recursively obtain for every M, running in time n9

an equivalent deterministic TM running in time O[npq]. Unfor-—-
tunately, for a given TM we cannot recursively determine the running

time and thus we do not know whether M; runs in polynomial time
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or not. Even if we know that Mi runs in polynomial time we can
still not recursively determine the degree of the polynomial.
Our next result shows that, nevertheless, we can get a

general translation result. For a related result see [3].

Theorem 7: DPTIME = NDPTIME iff there exists a recursive transla-

tion o and a positive integer k, such that for every non-determin-
istic T™ M, . which uses time Ti(n) > n, Mc(i) is an equivalent

deterministic TM working in time Ol Ti(n)k]

Proof: The "if" part of the proof is obvious. To prove the ;only
if" part assume that DPTIME = NDPTIME. We will outline a proof
that we can recursively construct for any M., running time

Ti(n) > n, an equivalent deterministic TM Mo(i) operating in time
o[Ti(n)k], for a fixed k.

In our construction we use two auxillary 1anguages:'

B.' '{#w#t |Mi accepts w in less than t time }

o
i

'{#w#t IMi on input w takes more than t timel .

Clearly, both languages can be accepted in non-deterministic
linear time. Therefore, by our previous result, we can recur-
sively construct two deterministic machines Mi‘ and Mi" which
accept B,' and B;'', respectively, and operate in time 0OInP3.
From Mi' and Mi" we can recursively construct the deterministic
T™ Mo(i)’ which operates as follows:

1. For input w M finds the smallest t0 such that

o (i)

#w#t© is not in B This is done by checking with M/ '’

R
b E

successively v, #w#z, #w#3, cen e
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. : to : \
2, Mo(i) starts Mi on input #w# and accepts w iff Mi

accepts $wito,

Clearly, Mo(i) is equivalent to Mi and Mo(i) operates 1in
time '
T, (n)

olz nP] = ol T, (mPy .
1 A

By setting k = p+l, we have completed the proof.

We conclude by observing that Ll is a p-complete problem,

as defined above.
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3. Non-writing Devices and Flowcharts

Next we will show that the LBA problem is equivalent'to
problems about eliminating non-determinism in some very simple
non-writing automata. Then we will use this result to show that
the LBA problem is élso equivalent to eliminating non-determinism
from a single 10;variable elementary flowchart by using more

variables.

A k-head finite automaton (or a multi-hecad finite automaton)
is a one-tape Turing machine with k read-only heads, k=1,2,3,... .
The input string is written on the tape with special end markers
at both ends of the input, and the finite automaton is so designed
that the read-heads cannot leave the input. The automaton is an
accepting device and an input is accepted if, after starting the
automaton in its starting state with ali heads on the lert end
marker, the automaton enters an accepting.state and halts. We
assume that the automaton is capable of sensing when two heads
are on the same tape square. We distinguish between deterministic
and non-deterministic multi-head automata.

We first establish a relationship between linearly bounded
languages and fogn - tape bounded languages over one-letter
alphabets, due to Savitch [15].

For any language A over an alphabet I = {al,az,...,ak},

manLy a) = (1) |w in A} ,

where n maps each word w in I* onto the number n(w) which w

’
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denotes in k-adic notation, that is
t

- 3
n(ai ail .o ait) :E: ai‘k .
j=o )

(vhere we interpret a; as i).
Clearly, this mzpping establishes a one-one corre-
spondence between strings over I and non-negative integers;

zero is denoted by the null string.

Lemma 8: The language A, A € I* with |I| = k , is accepted
by a deterministic (non-deterministic) linearly bounded auto-
maton if and only if TALLY(A) is accepted by a deterministic

(non—deterministic) fogn - tape bounded Turing machine.

Proof: Since going from A to TALLY(A) the lencgth of every string
.

is increased exponentially, for input 1 1 the &ogni—tape bounded

Turing machine has as much tape available as the 2ba has for in-
put n,. Thus a fogn - tape bounded Turing machine can accept
TALLY (A) if an %ba can accept A. Conversely, if A ='{lni} is
accepted by a fLogn - tape bounded TM, then'{ni} , where

n, ijs written in k-adic notation with k > 2, can be accepted by
an 2ba which simulates the fogn - tape bounded TM. Since this
¢ba, has enough tape to carry out the simulation we have the
desired result.

Thus we immediately obtain the following result.

Corollary 9:  The deterministic and non-deterministic context-

sensitive languages are the same if and only if the deterministic

and non-deterministic fogn - bounded languages over one-
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letter alphabets are the same.

At the same time it 1s known that:
Lemma 10: The language A, A € L* , is accepted by a determin-
istic (non-determiﬁistic) multi-head finite automaton if and
only if A is accepted by a deterministic (non-deterministic)

fogn - tapé bounded Turing machine.

Proof: (For a more complete proof see [5]). The basic idea

of the proof is that a 2cgn - tape bounded TM can count

.up to n (k-times) and thus can encode the k-head positions of

a k-head automaton, say in binary form, on the 2fogn - tape and
use this. encoding for a stepwise simulation of the k-head finite
automaton. Thus every set accepted by a k-head automaton is also
accepted by a fogn - tape bounded TM.

Conversely , every foun - tape bounded Turing Machine can
be simulated by a k-head finite automaton which encodes the tape
content of the fogn - tape bounded Turing machine by its head
positions on the input tape. Since a fogn - tape we can record
no more than nP different patterns (for some p), we see that
on input of'length n , p heads can euncode all these patterns.
With a few additional bookkeeping heads, utilizing the encoded
fogn - tape bounded TM tape content, the k-head automaton can
simulate the fogn - tape bounded TM. Thus every foan - tape
bounded language can be accepted by a multi-head automaton.
Since these considerations hold for deterministic as well as
non-deterministic automata, We.have completed the outline of

the proof.
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From this we get Savitch's result.

Corollary 11: The deterministic and non-deterministic context-

sensitive languages are the same if and only if the languages

over a one-letter alphabet accepted by the deterministic and

non—detepministic multi-head finite automata are the same.
Next we show that we can strengthen this result by using

the language

where Ll is the "universal" csf defined before.

Theorem 12: 1. The language TALLY(Ll) is recognizable

by a ko-head non-deterministic automaton.

2. TALLX(Ll) 1s recognizable Ly & deterLmlinisiic

(k0 + p)-head automaton iff DCSL = NDCSL.

Proof: Since Ll is a ndcsf we know, from our previous

results, that TALLY(Ll) is accepted by a ko—head non-determin-

istic automaton. (k0 can be explicitly computed from Ll).
Similarly, if TALLY(Ll) can be accepted by a determin-

istic'(ko+p)—head automaton then we know that Ll can be accepted

by a dtba, and vice versa. But then, using Theorcm 1 , we get

- that TALLY(Ll) is deterministically recognizable on some (k0+p)-

head automaton iff DCSL = NDCSL, as was to be shown.

The next result shows that the number of heads ko in

the previous result can be reduced to 7 hcads.
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For L € a* define
o k
L[k] = {a" n

|a” in L}.

Corollary 13: 1. The language

Xy )
[TALLY (Ll) ]

is accepted by a 7-head non-~deterministic finite automaton.
(kq]
2. [TALLY(Ll)] 0 is accepted by a determininistc

multi-head automaton iff DCSL = NDCSL.
Proof: ¥Follows from the next lemma.

Lemma 14: Let A, A € a*, be a set accepted by a non-determin-

istic k-head finite automaton. Then

N in a)

[3
I
—~—
o0}
3
fu

is accepted by a 7-head non-deterministic finite automaton and
A is accepted by a deterministic multi-head finite automaton
if and only if A[k] is accepted by a deterministic multi-head

finite automaton.

Proof: The main tool in this proof is the method of encoding
the position of the k-heads of a finite automaton M on the
input a”t by one head of an automaton Ml an input ank and then,
using six additional read-only heads,to carry out a simulation
of M by’Ml. The essential steps in the simulation are described
below. First we note that with five read hecads a deterministic
finite automaton can check whether the input at is such that

t = nk ; for some n. Thus the format of the input can be checked

’



-27-

and a head can be placed on the n-th tape square if t = nk.

To encode the k heads of M ©On input a” as one head
X .
position of Ml on input a” , order the k-heads arbitrarily

and place the "encoding" head of Ml on the r-th tape square
l1<rx< nk with

_ _ _ 2 _ k-1
r-1l = (dl—1)+(d2 1)n+(d3 1)n +...+(dn L)n

iff the i-th head of M, 1 < i < n, is on the di—th tape square.
After this by a lengthy but straightforward argument one can

show that M, can carry out a step by step simulation of M and

1
k
thus M accepts input a if and only if Ml accepts input a .

Clearly, if A can be accepted by a deterministic multi-

(k1] (k]

head finite automaton then so can A for any k. If A can

be accepted by a Getermioisiic p-head [iuile autvmaton I'iz Llicn
we can design a p(k+l)-head deterministic automaton M3 which

accepts A.

For input a the automaton M3 will simulate M, on input

k
a” as follows: M3 uses the first p heads to mimick the p heads

of M., , as long as these heads stay on the first n tape squares.

2

1f a head of M, goes further than the first n tape squares (recall,

2

the simulated input is nk long) then k heads are used on the input
of length n to count how far the head has moved. Since we can

count up to nk with k-heads on an input of length n, the (k+1l)p
k

heads suffice for M3 on input a” to simulate M, on input al .
k
accepts a if and only if M2 accepts a’ , but then M3

[x]

Thus M3

accepts A. Thus A is a deterministic language if and only if

4

A is. This complectes the proof.

4
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Next we show that the previous results have a natural
interpretation for flowchart computations, thus relating the
classic non-determinism problem for context-sensitive languages
to a somewhat more programming oriented problem.

We say that a flowchart is elementary (or an E-flowchart)

if and only if it is a flowchart made up of the assignment state-

ments

x:=x =1
X:=y

and the tests
x =0
X=Yy .

An E-flowchart is deterministic if and only if every

assignment statement and every test branch leads to exactly
one assignment statement or test. If some assignment statement
or test branch leads to more than one assignment or test, or
leads to one or more assignments and tests, then the flowchart

is non-deterministic.

The flowcharts are used as accepting devices of sets of
integers. The integer n is accepted if and only if the flow-
chart computation with the first variable set equal to n ends
at some exit labelled with "accept". Otherwise the input is
rejected. (Note that the accepting condition can be handled
in many different ways. For example; we could have deranded
that the computation halts and that a specificd variable is

set to one for accepting and zero for rejecting).
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Theorem 15: There exists a set of integers .L accepted by

a non-deterministic E-flowchart with 10 variables such that
the following two statements are equivalent.
1. L is accepted by a deterministic E-flowchart.

2. DCSL = NDCSL.

Proof: The proof consists of a reasonably straightforward
simulation of multi-head automata by E-flowcharts and vice
versa.

In simulating the flowcharts on k-hecad automata the
head positions on the input tape encode the contents of the
variables of the flowchart and vice versa. The three additional
variables are needed to obtain a subflowchart which performs

the assignment
X:= x+1

for x less than the input variable and to permanently store

~the input. This completes the outline of the proof.

For related results see Warkentin and Fischer [16].
We do not know whether the number of heads or the number

of flowchart variables can be reduged further in the two pre-
vious results. We conjecture, however, that this is the case.
ﬁe believe that it would be‘worthwhilc to investigate the non-
deterministic k-head automata languages over a one symbol
alphabet for k = 2 and 3. The casec of ‘2 heads seems simple

and it would be very interesting to determine whether all 2-head
non-deterministic finite automata can be replaced by equivalent
deterministic multi-head finite automata. It is our hope

.that these k-head automata with small values of k may provide
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a place where some further insights can be gained into the LBA
problem and more generally, in the nature of non-determinism
in computing.

We also believe that the linearly bounded automata with
oracles deserve further investigation. The main problem here
is to deteimine whether there exist recursive oracles such that
the deterministic and non-deterministic 2ba language accepted
with these oracles are different.

It is interesting to note that T. Baker [2] has shown
that there are recursive oracles for which the deterministic
and non-deterministic polynomial time-bounded TM computations
are the same and that there are other oracles for which'they

are Jdifferent.
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4, Decision Problems about Reqular Expressions

In this section we show that the LBA problem can be re-
lated to several natural decision problems about regular ex-
pressions. This approach yields many hardest tape recognizable
languages which appear more natural than the "universal" con-
text-sensitive language constructed in the second section.

The main tool in this work is the observation made by
Meyer and Stockmeyer [12] that restricted regular expressions
can be used to describe invalid fba computations very economi-
cally. Thus these results, as well as many other results about
the complexity of various decision problems [6,7,12], should
also be viewed as results about the descriptive power of regular
expressions,

A restricted regular expression or simply a regular

expression is any valid expression over the alphabet consisting

of 0,1,-,+,*% and the delineation ( , ). The operators -, +

and * have their well-known meaning of concatenation, set

union and Kleene closure. For a regular expression R the set

of scquences described by R is designated by L(R).

Next we look at valid fba computations which will be

used to link the LBA problem to the complexity of several
decision problems about regular expressions. Consider an £ba
M with tape alphabet T and state set Q working on an input

Y = XjeeeX . At each discrecte time interval during the com-
putation we caﬁ describe the state of the computation by giving
the tape content, the hecad position of M and its state. If

the computation is deterministic then after k steps of com-

puting there will be a unique configuratioh describing the
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situation and for a non-deterministic fba there will be
a set of possible configurations. To make these ideas

more precise we will refer to a sequence

x1x2"‘xj—l(qlxj)xj+1'"Xn

as an instantaneous description. This sequence means that

the tape content is Xqeeo Xy the fba is in state g and the
reading head is scanning the j-th tape symbol Xj‘ Thus an
instantaneous description is any string in [T + (Q x T)Y)*,
which contains exactly one symbol in Q@ x T. If the start

state is q, then

(qo,xl)xz...xn

is an initial configuration and any configuration containing

a halting state is a final configuration. ©One instantaneous

description ID; 4 follows 1Dy if and only if therc exists a
move of M which changes IDi in one operation to IDi+l' A

valid computation of M an input y = Koo X is a sequence of

instantaneous descriptions

n 4
#IDO#IDleDzn...IDt#

where 1D, is the initial configuration on the input Xqeea Xy

n

i.e.,
ID0 = (qo,xo)x2x3...xn P)

ID, is a final configuration and for all i, 0 < i < t, ID; 11
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follows D, . We denote the set of all valid computations of
M on input y by RM(y). Thus we sce that y is accepted by

M if and only if

Ryv) # ¢,

or equivalently, the set of invalid computations of M and y

ﬁM(y) , must not contain all sequences, i.e.
= R - *
IM(y) RM(y) # L*

The main observation [due to Meyer and Stockmeyer] is
that for every fba M and input y the set of invalid computa-
tions of M on y is a regular set and that it can be described

1 - P Y - ~aa 1 - -
by a restiricted rcgular cxprescicn cuch that

|1, | < eylyl,

and furthermeore that a deterministic fba can map y onto IM(y).
This is the critical step in the argument which links 2fba
computations to regular expressions.

Thus we have the following result:

Theorem 16 (leyer and Stockmeyer): Let M be a non-deterministic
LBA with tape symbol' set T, state set S, and set of designated-
accepting states F, with I € S. Let all accepting states be
final. Let dq be the unique start state of M. Let y = X Xge o Xy
be an input to M.

Then there is a deterministic fba M' such that M', started

with #(qo,xl)xz...xn# on its tape, halts with a regular expression
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By over I on its tape such that

Proof: We only sketch the idea of the proof.

For a complete proof see [6 ].

By is the union of:
Bl , the set of strings that do not begin with

#(qo,xl)xz...xn#;

82 , the set of strings that do not contain a symbol
(qf,t), where qg € r.

83 , the set of words that make a mistake between one

i.d. and the next (i.e., IDj+l doesnot follow from

IDj bv one. avpiication of a move rule of M.)

-— — &, - ' »
But, By = [(Z-#) U #+1(Z-(qg,x;)) U (qg,x;).
- ~ & . *
The reader should note the similarity of the above to Horner's

method for evaluating polynomials, i.e.,

2 no_ ra
a0+alx+a2x +...+ank = ao+x[al+x[a2+...+x[an]...1].
B, = [z-( U {q.} x T)1* .
2 G &F £
-— U *0' * . a |y|-20 3._ . ‘*
%37 e oer 1727 : [Z7-£y (010500501 2%,
1772’3

3
where fM: 23 + 22; which essentially maps correct triples of

symbols into correct triples. Essentially 83 says that mistakes

occur n symbols apart.
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The remainder of the proof consists in noting that
lByI < CM-IyI and that given y, the time required to deter-
ministicly write out By is bounded by a polynomial in |8y|.

Using Theorem 16 a simple coding argument yields

Theorem 17: Let

L4 = {(Rl’RZ)lRl and R, are regular expressions

over {0,1} and L(Rl) # L(R2)}

€ NDCSL and L, € DCSL iff NDCSL = DCSL.

Then L 4

4

Proof: If Ly is in DCSL then we can check L(By) # L*¥ on a
deterministic fba and from Theorem 16 it follows that .

DCSI, = NDCSL.
To see that L, is in NDCSL, we note that to verify
L(R,) # L(R,)

we need only to give a string x one symbol at a time and

verify that
x € [L(R{) N L(R] U [L(R;) N L(R,] .

This can be done on a non-deterministic &ba in a straightforward

way, which completes the proof.

We next extend Theorem 17 to prove a metatheorem about the
deterministic tape complexity of many decision problems about

the regular sets. Define
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x\L = {w|x w € L} and L/x = {w|w x € L}.

Theorem 18: Let P be any predicate on the regular sets over {0,1}

such that

1) P({0,1}*) is true and

2) 3%l= Y {x\L|P(L) = Truel
x €{0,1}*
kn:éﬁ; = U {L/x|P(L) = Truel]
. x6{0,1}*

is not the set of all regular sets over {0,1}.

Then

{R|R is a regular expression over {0,1) and P[L(R)] = False}
in NDCST. impiies NDOST, = NCST..

Similarly,

{R|R is a regular expression over {0,1} and P[L(R)] = True}

in NDCSL implies that NDCSL is closed under complementation,

Proof: Let L, be a regular set over {0,1} not iné?;.

Let hO(O) 00 and ho(l) = 01l. Then given R, a regular
expression over {0,1} we can effectively find in linear space
and deterministic polynomial time in lRiI a regular expression

Rj such that

L(Rj) = hO(L(Ri)) 10 (0 + 1)* +

(00 + 01)* 10 L, + (00 + 01)*10(0 + 1)*

0
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= ho(L(Ri)) 10 (0 + 1)* + (00 + 01)*10 L0 +

(00 + 01)* [A + 0 + 1 + 11(0 + 1)*]

Case 1:

L(R) = (0 + 1)*

1

Then

ho(L(Ru)) = (00 + 01)*%

i

and

L(Rj) = (0 + 1)* ,
Hence,

P(L(Rj)) = True,
Case 2:

L(Ri).# (0 + 1)*
Then

dx € (0 + 1)* -~ L(Ri)
Hence

ho(x).é (00 + 01)* - hO(L(Ri))'
But

P(L(Rj)) = True
implies a7

hy () lO\L(Rj) = L, c&z
Hence

P(L(Rj)) is FALSE.
Therefore,
P(L(Rj)) = TRUE
if and only if
L(R,) = (0 + 1)* ,
Thus if P(L(Rj)) = False is decidable by a dfba then so is

L(R,)#(0+1)*, and therefore, by our previous results it follows
i
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Corollary 19. DCSL = NDCSL iff any one of the following

languages is in DCSL. Similarly, NDCSL is closed under com—
plementation iff the complement of any one of the following
languages is in NDCSL: _

1. {R|R is a regular expression and L(R) # {0,1}*};

2. {R|R is a regular expression and L(R) # L(R*)};

3. {R|R is a regular expression and L(R) = L (r) FEV+}

.
’

4. {R|R is a regular expression and L(R) is cofinite};

5.(Vkil) {RIR is a regular expression and L(R) is not k definitel.

It is interesting to note that in the proofs of Theorems 16
and 17 we only used regular expressions of star-height 1 (i.e.,
no nested *'s). Thus if there exists a regular expression R0
-~ . ] . L - » 4 3R - -~ ~ 1 - . -
vl siar-neight 1 not 1ng;2, then Theorem 18 can be changed to read
Ew)
"{R|R is a regular expression over {0,1} of star-height 1

and P[L(R)] = False} in DCSL implics DCSL = NDCSL".

We finally note that all the languages in Corollary 19

can be choosen to be of star-height 1. Thus we get, for example,

Corollary 20: The language

{R|R is a regular expression of star-height 1 and
L(R) # L(R*)}

is a tape and time hardest recognizable csf.

We conclude by stating a result obtained by Hunt which
indicates further similarities between the LBA prcblem and the
NDPTIME problem. From the above observations we know that even

if we restrict ourselves to regular expressions of star-height 1,

+han +ha T anmava~n
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{(Ri.Rj) | L(R;) # L(Rj)}

is a hardest tape recognizable CSL. The next result shows
that if we drop the Kleene star completely then we get a

p-complete problem.

Theorem 21: Let Ri’ Rj be regular expressions over 0, 1, *y

+'. Then
L = {(r;/R)) | L(Rr)) # L(R;)]

is a p-complete problem. Thus L is in DPTIME iff
NDPTIME = DPTIME.

Proof: See [6].
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