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Abstract. In models of plant volatile isoprenoid emissions,
the instantaneous compound emission rate typically scales
with the plant’s emission potential under specified environ-
mental conditions, also called as the emission factor,ES. In
the most widely employed plant isoprenoid emission models,
the algorithms developed by Guenther and colleagues (1991,
1993), instantaneous variation of the steady-state emission
rate is described as the product ofES and light and temper-
ature response functions. When these models are employed
in the atmospheric chemistry modeling community, species-
specificES values and parameter values defining the instan-
taneous response curves are often taken as initially defined.
In the current review, we argue thatES as a characteristic
used in the models importantly depends on our understanding
of which environmental factors affect isoprenoid emissions,
and consequently need standardization during experimental
ES determinations. In particular, there is now increasing con-
sensus that in addition to variations in light and temperature,
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alterations in atmospheric and/or within-leaf CO2 concentra-
tions may need to be included in the emission models. Fur-
thermore, we demonstrate that for less volatile isoprenoids,
mono- and sesquiterpenes, the emissions are often jointly
controlled by the compound synthesis and volatility. Be-
cause of these combined biochemical and physico-chemical
drivers, specification ofES as a constant value is incapable of
describing instantaneous emissions within the sole assump-
tions of fluctuating light and temperature as used in the stan-
dard algorithms. The definition ofES also varies depending
on the degree of aggregation ofES values in different pa-
rameterization schemes (leaf- vs. canopy- or region-scale,
species vs. plant functional type levels) and various aggre-
gatedES schemes are not compatible for different integra-
tion models. The summarized information collectively em-
phasizes the need to update model algorithms by including
missing environmental and physico-chemical controls, and
always to defineES within the proper context of model struc-
ture and spatial and temporal resolution.
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1 Introduction

Plant-released volatile organic compounds (BVOC) are ma-
jor determinants of atmospheric oxidative capacity and play
important roles in formation of secondary organic aerosols
and cloud condensation nuclei with important implications
for the Earth’s climate (Engelhart et al., 2008; Kulmala et
al., 2004; Mentel et al., 2009; Peñuelas and Staudt, 2010;
Spracklen et al., 2008). Among BVOC, volatile isoprenoids,
isoprene and methylbutenol (C5), monoterpenes (C10) and
sesquiterpenes (C15), deserve special attention because of
high reactivity in the atmosphere and their large contribution,
often more than 90%, to total plant emissions. Atmospheric
chemistry and transport and chemistry-climate models re-
quire accurate estimation of the source strength of volatile
isoprenoids with satisfactory spatial and temporal resolution.
For biome to global-scale predictions of air chemistry and
climate, BVOC emission estimates with a spatial resolution
of 100–10 000 km2, depending on the process studied, can
be satisfactory, but for regional air quality assessments, the
emission estimates need to be of very high temporal (∼1 h)
and spatial (1–50 km2) resolution to appropriately account
for the source variability (Eder et al., 1993; Fiore et al., 2003;
Logan, 1989; Loughner et al., 2007). Such high resolution
data are obtained using predictive models that require cli-
matic forcing variables, information on plant leaf area, archi-
tecture of plant stands, species composition and isoprenoid
emission potentials as input data and provide emission rates,
typically in hourly resolution, as model output.

In these models, the key characteristic determining the
emission capacity of vegetation is the emission potential
(ES), separately determined for different classes of volatile
isoprenoids, isoprene, monoterpenes and sesquiterpenes. As
originally defined (Guenther et al., 1991, 1993),ES is
the steady-state emission rate corresponding to a speci-
fied arbitrarily defined set of environmental drivers. In
the initial form of the models, leaf temperature (commonly
fixed at TL=30◦C) and light intensity (commonly fixed
at Q=1000 µmol m−2 s−1) were specified in definition of
ES. Such a definition allowed for convenient simulation of
volatile isoprenoid fluxes as the product ofES and the nor-
malized light and temperature functions, so called Guenther
et al. algorithms (Guenther et al., 1991, 1993). A similar
logic, defining the emission capacity and modifying this by
environmental drivers was used in all upcoming emission
models, even if including more detailed process-based de-
scriptions of various biochemical steps and resulting environ-
mental dependencies (Grote et al., 2006, 2010; Martin et al.,
2000; Niinemets et al., 1999, 2002c; Zimmer et al., 2000).

At the time of its initial definition,ES was defined at leaf-
level as a species-specific average emission rate (Guenther et
al., 1991, 1993). Once estimated,ES values were often not
modified in subsequent modeling exercises and the variation
associated with anyES determination was not considered

with only very few exceptions (e.g., Guenther et al., 1994;
Hanna et al., 2005). The shapes of light and temperature
response functions (Guenther et al., 1991, 1993), were also
often taken as originally defined. Up to present, the major-
ity of atmospheric modeling exercises continue to be estab-
lished on the premise of early definitions ofES and response
function shapes. However, over recent years it has become
increasingly evident that apart from light and temperature,
additional short- and medium-term drivers play an impor-
tant role in modifying the emission rates (Arneth et al., 2007;
Heald et al., 2009; Possell et al., 2005). In some recent ef-
forts, modelers have grappled with ways to include some of
these additional factors in their simulations (Arneth et al.,
2007; Heald et al., 2009; Possell et al., 2005), while others
have retained the simpler structure of the original models. As
a result, the definitions ofES have become variable among
the models.

In particular, CO2 concentration response functions have
been developed (Arneth et al., 2007; Possell et al., 2005;
Wilkinson et al., 2009), and it has been suggested that
CO2 concentrations also need standardization in definingES
(Wilkinson et al., 2009). In addition, it has been demon-
strated that the standardized emission rates as well as the
shape of the temperature response curve can vary depending
on the rate of temperature change (e.g., fast vs. slow tem-
perature response curves; Singsaas et al., 1999; Singsaas and
Sharkey, 2000). Furthermore, for less volatile mono- and
sesquiterpenes, it has been shown that the steady-state as-
sumption underlyingES and environmental response curves
is often not satisfied due to simultaneous controls of emis-
sions by the rate of synthesis and volatility (Grote and Ni-
inemets, 2008; Niinemets and Reichstein, 2002; Noe et al.,
2006, 2010; Schurgers et al., 2009a). This evidence col-
lectively suggests thatES as a modeling concept depends
on the understanding of the biological, environmental and
physico-chemical factors limiting isoprenoid emission and,
thus, varies in dependence on the model structure.

Of course, every model is incomplete in its representation
of the true biochemical and physico-chemical processes, and
ES is differently defined depending on the assumptions car-
ried in each model. This recognition should compel us to
continually assess missing processes and their importance to
the uncertainties contained in model predictions, as well as
lead us in identifying the strategies for model improvement.
It is within this spirit that we have undertaken the current
analysis as a means to evaluate the current state-of-affairs of
isoprenoid emission models and definitions ofES. In this
synthesis, we will begin by reviewing the traditional “Guen-
ther et al.” algorithms that have been so widely used in the
modeling of plant isoprenoid emissions. We will also attempt
to define these algorithms within the context of our knowl-
edge about biochemical processes, thus establishing a mech-
anistic justification for their use. We also review the way the
species-specific leaf-levelES values are aggregated in higher
scale emission models, and analyze the potential aggregation

Biogeosciences, 7, 1809–1832, 2010 www.biogeosciences.net/7/1809/2010/
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errors during the scaling of emission estimates from the leaf-
to landscape-scales.

We use the overall analysis to emphasize thatES as a mod-
eling concept (vs. the emission rate measured under specified
conditions) should always correspond to the structure, time-
step and spatial resolution of the model used, and to high-
light the prime areas for future experimental work needed
for model improvement and application in highly variable
field environments. In this analysis, we focus on instanta-
neous environmental responses, and consider acclimation of
isoprenoid emission to environmental conditions as much as
this is needed to understand the variability in the shape of en-
vironmental response curves and development of novel mod-
els (induced emissions). For acclimation, developmental and
stress responses inES we refer to the accompanying paper
(Niinemets et al., 2010).

2 Models and definitions ofES

The definition ofES, the average emission rate under arbi-
trarily chosen standard conditions, largely depends on an un-
derstanding of the rapid emission controls and on the form
of the specific emission model that is used. In the past, it has
been considered safe to fix only light intensity and leaf tem-
perature to deriveES values for isoprene, a compound that is
rapidly synthesized from a small carbon pool in chloroplasts.
Moreover, it was considered sufficient to fix only tempera-
ture for monoterpenes emitted from a large pool in special-
ized storage tissues such as resin ducts and resin blisters in
conifers (Guenther et al., 1991, 1993; Tingey et al., 1980).
Later, it was observed that in several species lacking spe-
cialized storage tissues, monoterpene emissions depend on
light availability in a manner similar to isoprene (Loreto et
al., 1996c; Staudt and Seufert, 1995). It was further found
that in species with large monoterpene reservoirs in storage
tissues, light-dependent monoterpene emissions can also oc-
cur (e.g., Staudt et al., 1997).

Discovery of the light-dependent terpene emissions in
both the non-storing and storing species caused us to re-
assess the definition ofES for terpenes, and made clear
that light intensity, in addition to temperature, must be con-
trolled in determining monoterpeneES. To complicate mat-
ters even further, it was discovered that species lacking spe-
cialized storage tissues can exhibit light-dependent and light-
independent emissions, which can potentially interfere with
each other (Kahl et al., 1999; Loreto et al., 1996a; Niinemets
and Reichstein, 2002; Schuh et al., 1997). Thus, we were
forced to develop mixed models or dynamic models for pre-
diction ofES, especially for the emission of isoprenoids with
higher molecular mass (Niinemets and Reichstein, 2002;
Schuh et al., 1997).

Apart from light and temperature, isoprene emissions
also vary in response to changes in CO2 concentration
(Jones and Rasmussen, 1975; Loreto and Sharkey, 1990;

Mgalobilishvili et al., 1978; Monson and Fall, 1989). This
physiological evidence has been neglected so far, and only
recently, the importance of standardization of CO2 concen-
tration inside the leaf for determination ofES values has been
recognized (Wilkinson et al., 2009).

The above discussion emphasizes that the definition ofES
depends on what environmental factors are considered as op-
erative in altering the emission rate and thus needing stan-
dardization during the emission measurements. The defini-
tion of ES is also different when the emissions come from a
large pool of preformed compounds, or are immediately syn-
thesized, or when they come simultaneously from both large
existing pools and from de novo synthesis. Thus, the choice
of the emission model used can crucially alterES estima-
tions. In the following sections, various model approaches
are summarized and model-specific sources of variation in
emission rates are analyzed.

2.1 Modeling standardized responses of volatile
isoprenoids to key environmental factors in
steady-state conditions

Since the early 1990’s, two prominent models, the so-called
“Guenther et al. algorithms”, have been used to simulate the
responses of isoprene emissions to incident quantum flux
density (Q, light intensity) and leaf temperature (TL) and the
release of monoterpenes from storage tissues in dependence
on temperature (Guenther, 1999; Guenther et al., 1991, 1993,
1995, 1996c). In the case of isoprene, the emission algo-
rithm was constructed on the premise that the emissions are
driven by the combined coupling of isoprenoid biosynthesis
to photosynthetic processes and the temperature-dependence
of enzyme activity, while the monoterpene release model
was based on monoterpene vaporization and diffusion out of
the storage tissues, i.e., on physical processes (see Guenther,
1999; Guenther et al., 1991, 1993, 1995, 1996c). Later, the
isoprene emission algorithm was also employed to simulate
methylbutenol (Harley et al., 1998; Schade et al., 2000) and
light-dependent monoterpene emissions in species lacking
specialized monoterpene storage tissues (Bertin et al., 1997;
Ciccioli et al., 1997b; Dindorf et al., 2006; Kesselmeier et
al., 1997; Kuhn et al., 2002; Steinbrecher et al., 1997). Ad-
ditionally, CO2 response functions have recently been added
to the Guenther et al. algorithms (Wilkinson et al., 2009), as
well as to emission models that seek to link isoprenoid pro-
duction directly to photosynthetic metabolism (Arneth et al.,
2007; Schurgers et al., 2009a).

According to the Guenther et al. type of models, the
volatile isoprenoid emission rate,E, is a product of the
standardized emission rate,ES, and non-dimensional light,
f (Q), leaf temperature,f (TL), and CO2, f (Ci), functions:

E = ES f (Q) f (TL) f (Ci). (1)

The functionsf (Q), f (TL) and f (Ci) are normalized
to 1.0 at standardized conditions used forES determination.
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Fig. 1. The rate of isoprene emission in relation to incident quan-
tum flux density (light intensity,Q) in temperate broad-leaved de-
ciduous speciesQuercus alba(a) (data modified from Harley et al.,
1997) andLiquidambar styraciflua(b) (data modified from Harley
et al., 1996) studied in leaves from the lower and upper canopy. The
emission rate was standardized with respect to the rate measured at
Q of 1000 µmol m−2 s−1 that is the typical light intensity at which
the isoprenoid emission potential,ES, is defined (Guenther et al.,
1993). The light response function (Eq. 2) was fitted to the data
and the model parameters,α, the apparent quantum yield, andCL1,
the scaling coefficient, are shown for the different responses. In ad-
dition, the original light-response function reported by Guenther et
al. (1993) is shown in both panels (red lines).

For monoterpene emissions from storage compartments,
f (Q)=f (Ci)=1 in all cases.

2.1.1 The light dependence (f (Q) function)

The dependence of isoprenoid emissions on incident quan-
tum flux density (Q) was originally described by a model

similar to that used to simulate the net CO2 assimilation rate
and its dependence on incident quantum flux density (Guen-
ther et al., 1993); the so-called Smith’s function (Smith,
1937; Tenhunen et al., 1976). This response function repre-
sents a classic rectangular hyperbola, with the emission rate
approaching an asymptote asQ approaches infinity:

f (Q) =
CL1αQ√
1 + α2Q2

, (2)

whereα is the apparent quantum yield of isoprenoid emis-
sion andCL1 is the scaling constant to force the function
to 1.0 at the standardized value ofQ (commonly taken as
1000 µmol m−2 s−1).

The metabolic basis for thef (Q) function is not well un-
derstood. It is known that the 2-C-methyl-D-erythritol 4-
phosphate (MEP) pathway that leads to the synthesis of both
isoprene and monoterpenes occurs in the chloroplasts, and
is dependent on ATP and NADPH produced in the light-
dependent reactions of photosynthesis (e.g., Lichtenthaler et
al., 1997; Schwender et al., 1997). Additionally, the rate of
production of glyceraldehyde 3-phosphate (G3P), a primary
product of photosynthesis, and a main substrate of isoprene
and monoterpene biosynthesis, is dependent on light inten-
sity in rectangular hyperbolic fashion (Magel et al., 2006;
Rasulov et al., 2009). Thus, there is good reason to believe
that the rectangular hyperbolic shape of thef (Q) function
truly reflects a shape similar to that of the photosynthetic
light response function.

In the initial model parameterization, values of
α=0.0027 mol mol−1 and CL1=1.066 were used for iso-
prene based on measurements in four species (Guenther,
1997; Guenther et al., 1993), and these values have been
used in unmodified form in the majority of subsequent
modeling studies that have employed the Guenther et
al. (1991, 1993) algorithms. However, there is evidence of
significant variation in the shape of the light response curve,
in particular, among leaves from different canopy positions
in a given species (Fig. 1a, b; Lerdau and Throop, 2000).
Acclimation to low light conditions increases the apparent
quantum yield for an incident light,α, implying that the
light function saturates at lower light intensities. Enhanced
α in leaves from lower canopy likely reflects more efficient
light harvesting in these leaves, compatible with greater
foliage chlorophyll contents in low light (Niinemets, 2007
for a review).

Furthermore, there is a strong variation inα values among
species (Fig. 1a, b; Funk et al., 2006; Lerdau and Throop,
2000). For instance, Funk et al (2006) obtained the best-fit
averageα value of 0.0015 forEucalyptus saligna. Using the
value ofα of 0.0027 to simulate the emissions in this species
would overestimate isoprene emission at all light intensities,
especially under lower light. For example, the overestima-
tion is 34% at a moderate light intensity of 500 µmol m−2 s−1

and it increases to 65% atQ=200 µmol m−2 s−1, empha-
sizing the significance of using appropriateα values. In
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addition, analysis of light dependencies of methylbutenol
(Harley et al., 1998; Schade et al., 2000) and light-dependent
monoterpene emissions (Schuh et al., 1997; Staudt et al.,
2003) also simulated by the same algorithm demonstrates
that the shapes of the response curves for these volatile iso-
prenoids can be different from the response shape deter-
mined for isoprene (Sect. 2.2.2). Taken together, this evi-
dence strongly suggests that using constant parameters of the
light response function,α andCL1, in large-scale simulation
analyses can result in significant bias. In BVOC emission
models, more effort should be devoted to gaining adequate
parameterizations for the light response functions. Although
quantitative information regarding the within-canopy varia-
tion in α is scarce (Harley et al., 1996, 1997), variations inα

have been occasionally included in emission models, varying
α values with cumulative leaf area index from canopy top to
bottom (Guenther et al., 1999).

2.1.2 The temperature dependence (f (T L ) function) for
de-novo synthesized isoprenoids

In the Guenther et al. (1991, 1993) algorithms, an Arrhenius
type response was used for the temperature function,f (TL),
of isoprene emission. This function describes a curve with
an optimum atTm:

f (TL) =

exp
[

CT1(TL − TS)
RTSTL

]
1 + exp

[
CT2(TL − Tm)

RTSTL

] , (3)

where CT1 and CT2 are the parameters (J mol−1) charac-
terizing the activation and deactivation energy of the emis-
sion, R is the gas constant (8.314 J mol−1 K−1), TL is the
leaf absolute temperature andTS is the standard temperature
(typically 303.16 K) at whichf (TL)=1. In initial temper-
ature response function parameterization based on measure-
ments inEucalyptus globulus(Guenther et al., 1991), the val-
ues used wereCT1=95 100 J mol−1, CT2=231 000 J mol−1,
Tm=311.8 K and the temperature for standardization was
taken as 301 K (27.8◦C). Later, based on further measure-
ments in three additional species,Tm was taken as 314 K
and the temperature for standardization as 303.16 K (30◦C)
(Guenther et al., 1993). In addition, a non-dimensional em-
pirical parameterCT3 was included (Guenther, 1997):

f (TL) =

exp
[

CT1(TL − TS)
RTSTL

]
CT3 + exp

[
CT2(TL − Tm)

RTSTL

] . (4)

CT3 as originally introduced was taken as 0.961 (Guenther,
1997) to account for the circumstance that the original pa-
rameterization proposed in Guenther et al. (1993) did not
yield f (TL)=1.0 at 30◦C. However, we note that combina-
tions ofCT1, CT2 andTm can be found that satisfy the crite-
rion f (TS)=1.0 without the need for an additional parameter.

In the atmospheric modeling community, the tempera-
ture response function is often used as originally developed,
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Fig. 2. Comparison of the temperature responses of isoprene syn-
thase activity inPopulus tremuloides(data from Monson et al.,
1992), the “standard” isoprene emission curve by Guenther et
al. (1993) model as re-parameterized (1997, Eq. 4) to yield a value
of 1.0 at 30◦C, and the measurements of isoprene emission rate in
Quercus rubra(data from Singsaas et al., 1999). These measure-
ments were either conducted rapidly (4 min at each leaf tempera-
ture, fast curve) or slowly (30 min at each temperature, slow curve).
In all cases, the data were standardized with respect to the mea-
surements at 30◦C, yielding the temperature response function of
isoprene emission.

even using the initial default parameterization of Guenther et
al. (1991, 1993). This approach does not consider that the
temperature response of isoprene emission is variable due
to reasons not yet fully understood. The mechanistic basis
for the temperature response function (Eq. 3) stems from en-
zyme kinetics, and Eq. (3) can be successfully parameterized
to fit the in vitro temperature response of the isoprene syn-
thase enzyme reaction (Lehning et al., 1999; Monson et al.,
1992; Niinemets et al., 1999). Although the shapes of tem-
perature responses of isoprene emission and isoprene syn-
thase are similar, there are several important differences. In
particular, isoprene synthase activity has a higher optimum
temperature than isoprene emission rate and the “standard”
isoprene emission curve by Guenther et al. (1993) lies at
higher temperatures well below that for isoprene synthase
(Fig. 2; Lehning et al., 1999; Monson et al., 1992), (s. also
Niinemets et al., 1999 for the comparison of isoprene emis-
sion responses and synthase activity). In addition, the ob-
served temperature dependence of isoprene emission differs
depending on how measurements are made. When measure-
ments are carried out fast, stabilizing the leaf for no more
than 3–4 min at each temperature step, the temperature re-
sponse curve of isoprene emission has a higher optimum than
if measurements are conducted slowly, waiting until an ap-
parent steady-state (30 min and more) is reached (Singsaas
et al., 1999; Singsaas and Sharkey, 2000).

www.biogeosciences.net/7/1809/2010/ Biogeosciences, 7, 1809–1832, 2010
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The discrepancy from isoprene synthase enzyme kinetics
and rapid time-dependent changes in temperature response
curves (Niinemets et al., 2010 for longer-term acclimation-
type changes) suggest that the temperature response of iso-
prene emission does not solely reflect enzyme kinetics, but
also depicts changes in the immediate isoprene precursor,
dimethylallyldiphosphate, DMADP, pool size (Niinemets et
al., 1999). It is likely that with increasing temperature, iso-
prene synthase activity increases up to temperatures close
to the point of irreversible thermal damage of chloroplasts
(Fig. 2), while the DMADP pool size starts to decrease al-
ready under mild heat stress conditions that are inhibitory
for photosynthetic CO2 uptake (production of glyceralde-
hyde 3-phosphate) and photosynthetic electron transport that
are both needed for DMADP formation (Niinemets et al.,
1999). Thus, the discrepancy between isoprene synthase and
DMADP pool size becomes larger the longer the leaf stays
at supraoptimal temperatures (Fig. 2 for the comparison of
fast vs. slow temperature responses of isoprene emission and
Singsaas et al., 1999; Singsaas and Sharkey, 2000).

Apart from the time-dependent effects, the temperature
optimum can also be affected by physiological acclimation
to growth temperature regime. Plants of the deciduous vine
Mucuna prurienshave been shown to have lower temperature
optima of isoprene emission when the growth temperature
was decreased (Monson et al., 1992). The shape of the tem-
perature response curve has also been shown to vary among
the leaves from the top and bottom of tree canopies (Harley
et al., 1996, 1997). This evidence collectively demonstrates
that the shape of the isoprene temperature response func-
tion cannot be taken as constant, but it varies with the rate
of change in leaf temperature during measurements and can
also be modified upon acclimation to different environmen-
tal conditions (e.g., Mayrhofer et al., 2005; Wiberley et al.,
2005). Modifications in the optimum temperature of isoprene
emission in dependence on past temperature environment
have been embedded in MEGAN (Guenther et al., 2006), but
the quantitative data for parameterization of such relation-
ships are very limited (Gray et al., 2003; Pétron et al., 2001;
Sharkey et al., 1999).

How important is inclusion of species-specific and envi-
ronmental variations in the shape of the temperature response
curve in larger scale models? We conducted a simple sen-
sitivity analysis by either reducing or increasing the opti-
mum temperature by 5◦C relative to the default parameter-
ization (Guenther, 1997), while adjusting the other parame-
ters such that the conditionf (TL)=1.0 at 30◦C was still satis-
fied. This sensitivity analysis demonstrated that if the “true”
optimum temperature was 5◦C less than the default value,
the default parameterization underestimatedf (TL) by 7% at
25◦C and overestimated by 95% at 40◦C. If the “true” op-
timum temperature was 5◦C greater than the default value,
the default parameterization overestimatedf (TL) by 2% at
25◦C and underestimated by 34% at 40◦C. Thus, under cer-
tain environmental conditions, already moderate differences

in optimum temperature can result in significant uncertainties
that may need consideration in larger-scale predictions.

2.1.3 The temperature dependence (f (T L ) function) for
stored isoprenoids

For species with monoterpenes stored in specialized leaf tis-
sues, only physical evaporation and diffusion were originally
suggested to control the emission rate andf (TL) has been
defined as (Guenther et al., 1993):

f (TL) = exp [β(TL − TS)] , (5)

whereβ (K−1) is the temperature response coefficient char-
acterizing the exponential increase of monoterpene vapor
pressure and velocity of diffusion with temperature. In chem-
istry and biology, the temperature dependence of processes is
often described according to theQ10, the rate at temperature
T +10◦C relative to the rate at temperatureT . Q10 values are
then used to characterize the exponential increase in process
rates as a function of temperature.Q10 andβ are related as:

Q10 = exp (10β), (6)

In the original parameterization of the Guenther et al. (1993)
algorithms, a value ofβ=0.09 K−1 (Q10=2.46) was taken as
a median of 28 published estimates ofβ for different plant
species. Theβ estimates in this compilation were mainly
based on individual monoterpene species rather than on total
monoterpene emissions (Guenther et al., 1993). Althoughβ

varied more than 2.5-fold (0.057–0.144 K−1) among these
28 estimates, in many past and contemporary simulation
analyses,β has been considered constant. Yet, in addition to
the variability present in theβ values for individual monoter-
penes, recent studies have highlighted important interspe-
cific and seasonal variation inβ estimates for the sum of
all emitted monoterpenes (Holzinger et al., 2006; Komenda
and Koppmann, 2002; Llusià and Pẽnuelas, 2000; Ruuska-
nen et al., 2007; Tarvainen et al., 2005). Monoterpenes
largely differ in volatility (saturated vapor pressure, parti-
tioning between gas, liquid and lipid phases, Sect. 2.2) at
given temperature (Table 1; Copolovici and Niinemets, 2005;
Niinemets and Reichstein, 2002). Thus, these variations inβ

values may reflect interspecific and seasonal differences in
the composition of emitted monoterpenes (Sect. 2.4). Al-
though quantitative measurements of sesquiterpene volatility
are rare, sesquiterpenes are generally characterized by lower
volatility than monoterpenes, and large differences in volatil-
ity occur among various sesquiterpenes as well (Bowles,
2003; Helmig et al., 2003; Paluch et al., 2009). Varying tem-
perature response coefficients have been reported for mono-
and sesquiterpenes emitted by the same species (Ruuska-
nen et al., 2007), and differentβ values have been observed
for various mono- and sesquiterpenes (Llusià and Pẽnuelas,
2000; Tarvainen et al., 2005), supporting the association ofβ

values with compound volatility.
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Nevertheless, theβ values for any given mono- and
sesquiterpene have been observed to vary during the season
(Holzinger et al., 2006; Peñuelas and Llusià, 1999; Tarvainen
et al., 2005). InPinus sylvestris, β for total monoterpenes
varied between 0.076–0.18 K−1 over the season (data refer
to two years of measurements), whereas the range of varia-
tion was occasionally more than 4-fold for given monoter-
pene species, e.g., between 0.036–0.15 K−1 for α-pinene
(Tarvainen et al., 2005). Analogously, inPinus ponderosa,
the seasonal variation inβ for total monoterpenes was 0.11–
0.27 K−1 (Holzinger et al., 2006). These changes may re-
flect modifications in monoterpene diffusion conductance
from the site of storage to the ambient atmosphere, but there
are currently no experimental data about such modifications.
An alternative explanation might be that in field studies, a
limited temperature range is available for estimation ofβ

values (Holzinger et al., 2006). In seasonal climates, the
range is shifted to lower temperatures in the beginning and
end of the growing season and to higher temperatures in
mid-season. As the rise of compound vapor pressure with
temperature is not strictly exponential, but is typically fit-
ted by a three-parameter Antoine equation (Copolovici and
Niinemets, 2005; van Roon et al., 2002),β for a given ter-
pene will somewhat vary over different ranges of tempera-
ture. Thus, the variation inβ values recovered in seasonal
field studies may reflect inadequacy of the single parame-
ter temperature response function. As whole canopy mea-
surements demonstrate, use of a constantβ value determined
from summer measurements can result in ca. 50% underesti-
mation of whole-year monoterpene emissions (Holzinger et
al., 2006).

A further shortcoming of current models of the tempera-
ture responses of monoterpene emission is that some species,
which were traditionally considered to emit monoterpenes
only from storage tissues, have now been shown to also
emit monoterpenes that have been synthesized from recently-
assimilated CO2. These emissions are predicted to depend
on temperature according to Eq. (3) and also depend on light
according to Eq. (2). For instance, the temperate evergreen
coniferPinus sylvestrishas been previously considered to be
only a storage emitter (Janson, 1993). However, using sta-
ble carbon isotope (13C) labeling to distinguish slow and fast
turnover pools of monoterpenes, it was found that about 30%
of emissions rely on de novo synthesis (fast turnover pools)
in this species (Shao et al., 2001; see also the Sect. 2.3 for the
light-dependent emissions of induced monoterpenes in other
conifers). In such species with the emissions coming from
both storage and de novo synthesis, modeling the tempera-
ture responses of emissions solely by Eq. (5) will be inade-
quate.β will inevitably have to be defined as a mixed param-
eter depending on the temperature effects on enzyme activity,
and physico-chemical properties of specific monoterpenes,
including terpene-specific values of diffusion conductance.
Simulation analyses demonstrate that temperature sensitivity
of emissions relying on both de novo synthesis and storage

Table 1. Variation in physico-chemical characteristics of iso-
prene, non-oxygenated monoterpenes and monoterpene alcoholsα-
terpineol and linalool at 25◦C.

Octanol/water Octanol/air
Henry’s law partition partition
constant,Hxy coefficient,KOW coefficient,KOA

Compound1 mol/mol air
mol/mol water

mol/mol octanol
mol/mol water

mol/mol octanol
mol/mol air

Isoprene 4266 29.09 0.00682
α-Terpinene 1914 866.5 0.453
α-Pinene 7435 3392 0.456
β-Pinene 3772 4599 1.219
α-Phellandrene 3052 6601 2.163
β-Phellandrene 3052 6684 2.190
S-(−)-Limonene 1577 5537 3.511
R-(+)-Limonene 1563 5490 3.512
Terpinolene 1457 5148 3.532
γ -Terpinene 1433 5354 3.735
Linalool 1.162 104.5 89.90
α-Terpineol 0.1238 105.6 853.1

1 The compounds were ranked according to increasing val-
ues of KOA. Data for isoprene as revised in Niinemets and
Reichstein (2003), data for other compounds from Copolovici and
Niinemets (2005, 2007). The convention of units as in Staudinger
and Roberts (2001).

can significantly differ from the emissions dominated by
storage only, with 5◦C temperature change corresponding to
25–30% difference in predicted emission rates (Schurgers et
al., 2009a).

Finally, we note that the dependence of emissions on light
suggests that values ofβ may also differ among past studies
due to lack of standardization for light during measurements
of temperature response curves (e.g., measurements in dark-
ness vs. measurements under light). With this new knowl-
edge in hand, further experimental studies are called for to
gain insight into causes of variations inβ values in emitters
having terpene storage tissues.

2.1.4 CO2 dependence (f (Ci) function)

Apart from light and temperature, within leaf CO2 concen-
trations (intercellular CO2 concentration,Ci) also vary dur-
ing the day as the result of changes in stomatal conductance
(a measure of stomatal openness), especially under low at-
mospheric humidities and in plants experiencing soil water
deficit. These short-term (also called “instantaneous”) in-
fluences ofCi are different from the effects of growth CO2
concentration onES (for reviews see Arneth et al., 2007;
Niinemets et al., 2010; Young et al., 2009). The instanta-
neous influences ofCi on isoprenoid emissions likely reflect
the partitioning of metabolites between the chloroplast and
cytosol of plant cells (Rosenstiel et al., 2003), whereas the
effect of growth CO2 concentration likely affects the expres-
sion of key enzymes (Loreto et al., 2007; Rosenstiel et al.,
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fit the data forQ. rubra.

2004). The CO2-dependence function that is used to calcu-
lateE in Eq. (1), refers to the instantaneous influence ofCi .

Observations used to support parameterization off (Ci)

have demonstrated that isoprene emission rates decrease with
increasing CO2 concentration above the current ambient CO2
concentrations of ca. 385 µmol mol−1, while the emissions
increase at sub-ambient CO2 concentrations (Fig. 3; Loreto
and Sharkey, 1990; Monson and Fall, 1989; Monson et al.,
1991; Rasulov et al., 2009; Sharkey et al., 1991; Wilkinson
et al., 2009). Fewer studies have further demonstrated that
after the initial increase of isoprene emissions at lower CO2,
the emissions level off and decrease again atCi values be-
low 100–150 µmol mol−1 (Fig. 3; Loreto and Sharkey, 1990;
Rasulov et al., 2009).

Few studies have investigated the CO2 responses of higher
molecular mass isoprenoid emissions. The immediate CO2
effects are expected to be small for terpene emissions from
storage tissues, but effects similar to isoprene emissions are
predicted for emissions of de novo synthesized terpenes. In
agreement with this expectation, monoterpene emission rates
were not different at 350 and 700 µmol mol−1 in terpene-
storing speciesRosmarinus officinalis(Pẽnuelas and Llusià,
1997). However, contrary to the predictions, monoterpene
emission rates from the foliage of evergreen broad-leaved
Quercus ilexthat does not have specialized terpene stor-
age tissues were also not significantly different between
350 and 1500 µmol mol−1 in Loreto et al. (1996b) and be-
tween 350 and 700 µmol mol−1 in Staudt et al. (2001a), al-
though photosynthesis was stimulated by 1.4–1.8-fold by
higher CO2 in these studies. In contrast to this evidence,

monoterpene emission rate was reduced at 1000 µmol mol−1

relative to 350 µmol mol−1 in the same species in the study
of Rapparini et al. (2004). In addition, in a manner similar
to that for isoprene, Loreto et al. (1996b) demonstrated a re-
duction of monoterpene emissions in CO2-free air inQ. ilex.
Clearly more work on instantaneous CO2 responses of mono-
and especially sesquiterpene emissions is needed (Peñuelas
and Staudt, 2010).

Definition of f (Ci) in Eq. (1) has been attempted based
on biochemical knowledge of isoprene synthesis (Wilkinson
et al., 2009). In particular, it has been assumed that isoprene
production at different CO2 concentrations is determined by
the partitioning of intermediates for DMADP synthesis be-
tween the cytosol and chloroplasts (Wilkinson et al., 2009).
At low Ci , f (Ci) was assumed to increase due to enhanced
transport of triose phosphates from the cytosol into chloro-
plasts (Wilkinson et al., 2009), while at high CO2 concen-
tration, f (Ci) was suggested to decrease due to increased
use of phosphoenolpyruvate (PEP) in the cytosol by the en-
zyme PEP carboxylase, and thus decreased transport of PEP
into the chloroplast for synthesis of isoprenoid compounds in
the MEP pathway (Loreto et al., 2007; Monson et al., 2007;
Rosenstiel et al., 2003). Thus, asCi is increased due to in-
creases in stomatal conductance or increases in ambient CO2
concentration, less substrate is made available for chloroplas-
tic processes, such as DMADP synthesis, and the isoprene
emission rate decreases. In contrast, whenCi is decreased,
such as during moderate water stress, less PEP will be di-
verted away from DMADP synthesis, and isoprene biosyn-
thesis rate will increase. Combining the two different pro-
cesses and simplifying, Wilkinson et al. (2009) proposed the
following empirical equation based on measurements in four
tree species to describe the dependence of isoprene emissions
on short-term variations inCi :

f (Ci) = Emax −
EmaxC

h
i

Ch
∗ + Ch

i

, (7)

whereEmax is the isoprene emission rate normalized to a ref-
erence concentration, taken as 400 µmol mol−1 andh andC∗

are empirical coefficients. This function describes data ob-
tained over theCi range of ca. 150–1000 µmol mol−1 rea-
sonably well (Fig. 3). However, the mechanism proposed
cannot explain the reduction of isoprene emissions below
ca. 150 µmol mol−1 (Fig. 3). In addition, the shape of the
f (Ci) function varies among plants adapted to different at-
mospheric CO2 concentrations (Fig. 3; Wilkinson et al.,
2009), complicating the use of Eq. (7) for simulation of the
CO2-response in plants in different CO2 atmospheres.

Alternative approaches, such as the control of isoprene
(Rasulov et al., 2009) and monoterpene (Niinemets et al.,
2002c) synthesis by energy supply from photosynthetic elec-
tron transport have been suggested to describe the full CO2
dependence of volatile isoprenoid emission, and have been
semi-empirically included in predictive models (Arneth et
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al., 2007; Schurgers et al., 2009a). Such an approach can be
promising as it allows description of both light and CO2 re-
sponses of isoprene by the same mechanism; although it has
not yet been conclusively shown that the CO2 dependence of
isoprene emission is caused by dynamics in photosynthetic
electron transport. More experimental work is needed to de-
termine the basis for the exact shape of the CO2 responses
function, the biochemical basis for the effect of growth CO2
concentration on the shape of the response, and the interac-
tions betweenf (Ci), f (Q) andf (TL).

2.2 Key differences between the emission algorithms of
highly volatile isoprene and less volatile mono- and
sesquiterpenes emitted in light-dependent manner

As noted in Sect. 2.1, several species have specialized stor-
age tissues such as resin ducts, oil glands, and glandular
trichomes for terpene storage. In such species, large com-
pound storage pools are generally in equilibrium with the
compound concentration in the leaf gas-phase, and emissions
are predicted by simplified models based on temperature ef-
fects on compound vaporization and diffusion out of storage
pools (Eq. 5). After the detection of the light-dependence
of monoterpene emissions in broad-leaved species lacking
specialized storage tissues (Loreto et al., 1996c; Staudt and
Seufert, 1995), and analogous findings for sesquiterpenes
(Hansen and Seufert, 2003), the isoprene emission algo-
rithm (Eqs. 1–3) has been applied to simulate light- and
temperature-dependent emissions of these other compounds
(e.g., Bertin et al., 1997; Ciccioli et al., 1997b; Dindorf et
al., 2006; Kesselmeier et al., 1997; Kuhn et al., 2002; Pio et
al., 2005). However, monoterpenes and sesquiterpenes have
lower volatility than isoprene, and the crucial question is to
what extent the use of the isoprene emission algorithm is jus-
tified.

2.2.1 Non-specific storage of isoprenoids

Volatility is a basic physico-chemical characteristic of any
emitted organic compound. Volatility can be charac-
terized by the gas/water partition coefficient – Henry’s
law constant, H , mol mol−1 air/(mol mol−1 H2O) – that
describes the partitioning of the compound to the gas
phase, and octanol/water partition coefficient –KOW,
mol mol−1 octanol/(mol mol−1 H2O) – that characterizes the
partitioning of the compound to the lipid phase (Niinemets et
al., 2004). The smaller the value ofH , the more a compound
tends to be stored (concentrated) in the leaf liquid phase, and
the larger the value ofKOW, the more a compound tends to
be stored in the leaf lipid phase (Niinemets and Reichstein,
2002, 2003). The ratioKOW to non-dimensional form of
Henry’s law constant gives the octanol to air partition coeffi-
cientKOA (Chen et al., 2003; Copolovici et al., 2005; Mey-
lan and Howard, 2005). For isoprene and monoterpenes, the
values ofKOW vary by more than two orders of magnitude,

the values ofH by over four orders of magnitude, and the
values ofKOA by over five orders of magnitude (Table 1).
Typically, the values ofH andKOW are low for oxygenated
water-soluble compounds such as the monoterpene alcohols
linalool andα-terpineol, and the values ofH andKOW are
large for non-oxygenated monoterpenes (Table 1; Copolovici
and Niinemets, 2007; Copolovici et al., 2005). In contrast,
isoprene has a largeH and a lowKOW, implying that this
compound is preferably partitioned to the gas phase with mi-
nor storage capacity in the leaf liquid and lipid phases.

Depending on the specific physico-chemical characteris-
tics, certain monoterpenes can be non-specifically stored
within the leaves of species that lack dedicated monoter-
pene storage tissues (Loreto et al., 1996b; Staudt and Seufert,
1995). Those compounds with lowH (e.g., linalool, 1,8-
cineole) can be stored in the leaf liquid phase (Niinemets et
al., 2002b; Noe et al., 2006). Compounds with highKOW
such as non-oxygenated mono- and sesquiterpenes can be
stored in the leaf lipid phase consisting of lipid bilayers in
various membrane structures and other leaf hydrophobic re-
gions (cuticle, lignified cell wall regions) (Niinemets and Re-
ichstein, 2002; Noe et al., 2006, 2008). Such a non-specific
storage of monoterpenes inside leaves can be important in
modifying the time-dependent kinetics of emissions, imply-
ing that control over the emission rate is shared between
monoterpene synthesis and volatility. While monoterpene
synthesis in these species is believed to be rapidly modi-
fied by temperature and light, non-specific storage induces
time-lags between compound synthesis and emission. The
presence of a foliar pool of “old” monoterpenes synthesized
previously is supported empirically by stable carbon isotope
labeling experiments that switch between12CO2 and13CO2
and concomitantly monitor changes in the fractions of12C-
and13C-labelled monoterpenes (Loreto et al., 1996a; Noe et
al., 2006, 2010). All these experiments demonstrate impor-
tant time-lags from hours to tens of hours between the start
of 13C-labelling and attainment of a steady-state13C-labelled
monoterpene emission rate (Fig. 4). Although filling the im-
mediate intermediate pools for monoterpene synthesis is also
partly responsible for the lags in13C-labelling (Grote et al.,
2006, 2009; Noe et al., 2010), the turnover of intermediate
pools is relatively fast and the overall13C-labelling kinetics
is determine by the pool of non-specifically stored monoter-
penes (Noe et al., 2010).

The presence of non-specific storage also implies that
emissions do not respond immediately to modifications in
environmental variables (Fig. 4). For instance, due to
non-specific storage, the increase of the emissions can be
slower than predicted by a steady-state light-response func-
tion (Eq. 2), and the emissions may continue for hours into
the dark period (Fig. 4; Niinemets et al., 2002a; Peñuelas et
al., 2009), resulting in night emissions in species considered
to be light-dependent emitters (Niinemets, 2008; Niinemets
et al., 2002a). This type of pattern is in marked contrast with
the isoprene emission model that predicts an instant response
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model initially developed for isoprene (Guenther et al., 1993) suggests that monoterpene emission rate immediately tracks the altered light
intensity (a) and that in all the emittedtrans-β-ocimene molecules at least one carbon atom is labeled by13C (b, simulation without the
storage pool). In reality, reaching the steady-state is time-consuming due to non-specific monoterpene storage within the leaf liquid and lipid
phases (Niinemets and Reichstein, 2002; Noe et al., 2006). This leads to time-lags in reaching the maximum monoterpene emission rates and
continued release of monoterpenes from darkened leaves (a), as well as to time-lags intrans-β-ocimene labeling with13C and de-labeling
after swapping back to12CO2. The best fit to the data can be obtained with a model including two leaf monoterpene pools, the faster pool
presumably located in the leaf liquid phase and the slower pool presumably located in the leaf lipid phase (Niinemets and Reichstein, 2002;
Noe et al., 2006). For (a), the half-time for the faster pool was 0.078 h, while the half-time was 2.05 h for the slower pool (Niinemets and
Reichstein, 2002). For (b), the corresponding half-times obtained were 0.03 h for the faster, and 0.26 h for the slower pool (Noe et al., 2006).

of emissions to light (Eqs. 1–2). In addition, as different
emitted monoterpenes have different volatilities (Table 1),
the time-lags induced due to non-specific storage are differ-
ent for different terpenes (Niinemets and Reichstein, 2002;
Noe et al., 2006). This leads to time-dependent modifica-
tions in the fractional composition of emitted monoterpenes
under non-steady state conditions (Niinemets and Reichstein,
2002).

Niinemets and Reichstein (2002) and Noe et al. (2006)
have developed a dynamic model to consider the effects of
non-specific storage on monoterpene emission kinetics. At
least two pools,S1 (nmol m−2) andS2 (nmol m−2) with vary-
ing time-kinetics (time constantk1 andk2, s−1) were needed
to simulate monoterpene emission rate at timet (Niinemets
and Reichstein, 2002; Noe et al., 2006):

E(t) = k1S1(t) + k2S2(t), (8)

where the pool kinetics are given as:

dS1(t)

dt
= ηI − k1S1(t) (9)

dS2(t)

dt
= (1 − η)I − k2S2(t). (10)

Analytical solution of the model is provided in Niinemets
and Reichstein (2002). In these equations,η is the fraction of

monoterpenes going to poolS1, and 1-η is the fraction going
to poolS2. The rate of compound synthesis,I , can be sim-
ulated by the standard Guenther et al. (1993) model (Eq. 1),
with corresponding instantaneous light- (Eq. 2), temperature-
(Eq. 3) and CO2- (Eq. 7) response functions. The poolS1 was
presumed to exist in the leaf liquid phase andS2 in the lipid
phase. Depending on the monoterpene physico-chemical
characteristics, the half-times of non-specific storage vary
from minutes (poolS1) to hours (poolS2), indicating that
non-specific storage effects need consideration in simulating
monoterpene emissions in species lacking specialized stor-
age. Overall, the non-specific storage model provides a good
fit to the data (Fig. 4).

2.2.2 Implications of non-specific storage onES and the
shape of the light and temperature response
functions

In addition to the above-mentioned factors driving variabil-
ity in light (Sect. 2.1.1) and temperature (Sect. 2.1.2) re-
sponses of isoprene emission, non-specific partitioning of
monoterpenes into internal leaf tissues can alter both the
temperature and light-responses of monoterpene emission
rate, and such effects are particularly significant for mod-
eling the dynamics of monoterpene emissions. Studies on
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the light-dependence of monoterpene emissions in species
lacking specialized storage tissues have demonstrated that
the light response of emissions has a different shape than
the rectangular hyperbola produced by the isoprene response
function (Schuh et al., 1997; Staudt et al., 2003). In partic-
ular, the initial part of the monoterpene emission response
to light is often sigmoidal (Fig. 5). To parameterize the sig-
moidal rise of the emissions as light intensity increases, it
has been suggested to modify the Guenther et al. algorithm
(Eq. 2) as (Schuh et al., 1997):

f (Q) = CL1m

(
αmQ√

1 + α2
mQ2

)2

, (11)

where CL1m and α are the modified light response func-
tion parameters. This function has been shown to fit light-
dependent monoterpene emissions better than the original
isoprene emission algorithm (Fig. 5a; Dindorf et al., 2006;
Schuh et al., 1997; Staudt et al., 2003). However, the sig-
moidal shape of the light-response of monoterpene emis-
sions likely results from non-specific monoterpene storage
(Fig. 5b). Reaching a steady-state emission rate at any given
light intensity can be time-consuming, taking tens of min-
utes (see e.g., Fig. 4a). In leaves with empty non-specific
storage pools, the emission rate is initially less than the syn-
thesis rate. In typical measurements of light response curves,
starting from low light with a gradual increase of light, non-
specific storage leads to apparent sigmoidal shape of the light
response curve (Fig. 5b).

Although the sigmoidal light response curves can be pa-
rameterized with the modified equation (Eq. 11), the subse-
quent model would not be effective in describing time-lags
between changes in light intensity and monoterpene emis-
sion rate that occur, for example, during the course of a day
(Fig. 4). To parameterize such patterns, a dynamic model
(Eq. 8) is needed. In fact, such time-lags can be successfully
simulated by deploying a simplified lag factor in the mod-
els rather than applying sigmoidal light-response functions.
Especially in large-scale simulations, where relatively crude
time resolutions on the order of 1 h are used, and vegetation
can be assumed to be close to a steady-state, use of sigmoidal
shape is expected to introduce even a larger bias in the pre-
dicted emissions than use of the standard steady-state light
response curve developed for isoprene (Eq. 2). Yet, in these
models, the value ofES estimated from rapid light-responses
will be inadequate.

To further account for monoterpene release in darkness
and better parameterize the temperature dependence of ex-
isting models (e.g., Fig. 4a), it has been suggested to com-
bine the light-dependent emission model (emission rateEL)
and the model developed for species with specialized storage
tissues (emission rateES) (Schuh et al., 1997):

E = EL + ES. (12)

In this mixed algorithm used to simulate emissions in broad-
leaved deciduous tree speciesFagus sylvaticaand herb
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Fig. 5. Light-responses of monoterpene emission rate in the
Mediterranean evergreen sclerophyllQuercus ilexgrown under high
and low light and comparison with Guenther et al. (1991) standard
emission response (Eq. 2)(a) (data from Staudt et al., 2003), and
(b) simulated responses of monoterpene emissions using a steady-
state algorithm (Guenther et al., 1993) and a dynamic algorithm that
considers the effect of non-specific storage on monoterpene emis-
sions (Eq. 8; Niinemets and Reichstein, 2002). In the dynamic sim-
ulation, the synthesis rate of monoterpene emission at any light in-
tensity was predicted by Guenther et al. (1993) algorithm, and the
light level was increased by 50 µmol m−2 s−1 steps in every 2 min.
In (a), the data were fitted by modified light-response function sug-
gested by Schuh et al. (1997; Eq. 11).

speciesHelianthus annuus, the emission rate from the non-
specific storage pool,ES, was exponentially dependent on
temperature similar to Eq. (5), whileEL was described as
dependent on light according to Eq. (11) and on tempera-
ture according to Eq. (3), and separate emission potentials
were used forEL andES. Thus, under given conditions, this
mixed model predicts thatES makes a constant contribution
to the total flux. However, the size of the non-specific storage
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Fig. 6. Temperature effects on monoterpene emission rates from foliage of the broad-leaved evergreen Mediterranean sclerophyllQuercus
ilex (symbols), on monoterpene synthase activity (solid line) andα-pinene octanol-to-air partition coefficient (KOA, dashed line) that charac-
terizes the equilibrium size of non-specific monoterpene pool in the leaves(a), and time-dependent changes in monoterpene emissions from
Q. ilex leaves after changes in temperature from 20◦C to 33◦C (b). In all cases, the data were normalized with respect to the value measured
at 30◦C. The emission rate data in (a) are from Bertin and Staudt (1996; open squares), Staudt and Seufert (1995; filled squares), Staudt
and Bertin (1998; open circles) and Loreto et al. (1998; filled circles) (Niinemets, 2004 for details on data compilation and fitting). The
data in (b) are from Ciccioli et al. (1997a). All measurements were conducted at saturating light and cuvette CO2 concentrations of approx-
imately 350 µmol mol−1. The measurements of monoterpene synthase activity are from Fischbach et al. (2000) and theKOA estimations
from Copolovici et al. (2005; Table 1). Physico-chemical factors likely explain differences between the rates of monoterpene emission and
synthesis. As more monoterpenes can be non-specifically stored within the leaves at low temperatures, the emission rates are less than the
synthase activity, while at higher temperatures, monoterpenes that have been accumulated at lower temperatures are released. Accordingly,
leaves can transiently emit less or more monoterpenes than immediately synthesized. Emission of stored monoterpenes after switching to
higher temperature likely explains the monoterpene emission burst in (b).

pool very much depends on the previous conditions, imply-
ing, for instance, that the emission rate in darkness decreases
in time and that the response of the emission to a given in-
crease or decrease in light level depends on how long the
leaf has been under given conditions (Fig. 4a; Loreto et al.,
1996a; Niinemets et al., 2002a). Such effects can only be
simulated by a model based on dynamic pools (Eq. 8).

Although the mixed model (Eq. 12) predicts a stronger
temperature response than the standard Guenther et
al. (1991) model, it cannot predict bursts of emission follow-
ing short-term increases in temperature such as occur dur-
ing a single day (Fig. 6) and for hot days that follow cold
days (e.g., Niinemets et al., 2002a). Such phenomena re-
flect the circumstance that when ambient temperatures are
low, monoterpenes are non-specifically stored in leaf lipid-
and aqueous pools. Therefore, in hot days following such
cool days, monoterpenes are released with a faster rate than
predicted on the basis of temperature effects on the rate
of monoterpene synthesis alone. Unlike the case for iso-
prene emission (Fig. 2), monoterpene emissions are charac-
terized by large apparentQ10 (emission rate at the temper-
atureT +10◦C relative to the rate atT ) values, even larger
than those for monoterpene synthase activity (Fig. 6). Again,
this largeQ10 value may reflect filling of the monoterpene
pools under low temperature when compound volatility lim-
its the emission rate, and transient emptying of these pools

at higher temperature (Fig. 6). Parameterization and simula-
tion of such hysteresis effects in the temperature response is
possible only with a dynamic model such as Eq. (8).

From the evidence we have presented, it is clear that
light-dependent monoterpene emissions reflect the contribu-
tion of both de novo monoterpene synthesis and emission of
monoterpenes from storage. The value ofES will approach
the rate of monoterpene synthesis,I , as a steady state is ap-
proached. It is important to recognize the difference between
the standardized emission rates when directly applying the
Guenther et al. (1993) isoprene emission model and when
using a dynamic model. In the dynamic model approach,
the appropriateES needed isES=I . For the steady-state
model, even the best estimate ofES yielding the smallest
sum of error squares (minSS) between the predictions (Epred)
simulated by Eq. (1) and observations (Eobs) during the day
(wheren is the number of measurements conducted during
the day),

min SS =

i=n∑
i=1

(
Epred,i − Eobs,i

)2
, (13)

will overestimate the emissions under some conditions, e.g.,
after induction of synthesis in the morning hours when light
increases, and underestimate the emissions under other con-
ditions, e.g., after reduction of synthesis rate in the afternoon
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when light decreases. Furthermore, the value ofES that
best fits the daily time-courses of emissions with a steady-
state model does not necessarily coincide with the value of
ES measured under standardized conditions of 30◦C and
1000 µmol m−2 s−1. This conceptual difficulty further un-
derscores that definition ofES will differ depending on what
model is used and even how the model is parameterized, e.g.,
measuringES values under standardized conditions or deriv-
ing ES from Eq. (13) as the best fit value from field measured
time-courses (Epred=f (ES), Eq. 1).

This evidence collectively demonstrates that the use of
steady-state temperature- and light dependencies developed
for isoprene emission (e.g., the Guenther et al. algorithms)
in simulating the emissions of higher molecular mass com-
pounds is likely to carry significant uncertainties and errors
in the estimation of emissions from vegetation experiencing
diurnal fluctuations in leaf temperature and light intensity.
This is clearly an area that should receive high priority in
future research.

2.3 Towards the construction of models for induced
emissions

In the previous section, we focused on constitutive emissions
present only in certain species. Yet, emissions of volatile
compounds can be triggered by various biotic and abiotic
stress factors in essentially all plant species (Arimura et al.,
2009; Brilli et al., 2009; Niinemets, 2010; Wu and Bald-
win, 2009). Furthermore, foliage sesquiterpene emissions
are mostly associated with stress (Duhl et al., 2008; Hakola
et al., 2006), and emissions of homoterpenes,C11 compound
DMNT (4,8-dimethylnona-1,3,7-triene) andC16 compound
TMTT (4,8,12-trimethyltrideca-1,3,7,11-tetraene) are exclu-
sively associated with stress, in particular, with biotic stress
(Arimura et al., 2009; Herde et al., 2008; Vuorinen et al.,
2007; Wu and Baldwin, 2009). The stress-driven monoter-
pene emissions are often dominated by specific stress-marker
compounds such as the oxygenated monoterpenes linalool
and non-oxygenated ocimenes (Blande et al., 2007; Cardoza
et al., 2002; Martin et al., 2003; Pinto et al., 2007; Staudt
and Bertin, 1998; Staudt et al., 2003). In addition to these
specific compounds, a blend of monoterpenes can often be
elicited that resembles the emissions in constitutive emitters
such as emissions ofα- andβ-pinene, limonene etc. (Brilli et
al., 2009; Huber et al., 2005; Paré and Tumlinson, 1998; Paré
and Tumlinson, 1999). To further complicate matters, such
typical monoterpene emissions can be triggered in species
emitting these compounds constitutively (Huber et al., 2005;
Staudt and Lhoutellier, 2007). Clearly, stress-induced emis-
sions cannot always be separated from the modulation of
constitutive emissions by environment and physiology and
also because the stressors are not always directly visible (e.g.,
small sap-sucking herbivores such as spider mites).

An important implication of induced emissions is that
standardized emission rates (ES) can vary widely depending

on whether plants have been exposed to or are suffering
from certain biotic or abiotic stresses. The presence of in-
duced emissions can explain why species found to be non-
emitters in some studies, are subsequently observed to be
strong emitters in other studies. For example, temperate de-
ciduous broad-leavedBetulaspp. have been found to be low
mono- and sesquiterpene emitters in some studies and during
certain times of the year, with emission rates in standardized
conditions only on the order of 0.1–0.4 µg g−1 h−1 (Hakola
et al., 1998, 2001; K̈onig et al., 1995). In other studies and
at other times of the year, they have been found to be mod-
erately strong emitters, withES values on the order of 1.5–
8 µg g−1 h−1 and the emissions dominated by the monoter-
penes linalool and ocimenes, and by sesquiterpenes (Hakola
et al., 1998, 2001; K̈onig et al., 1995; Owen et al., 2003;
Steinbrecher et al., 1999). In analogous manner, a large vari-
ability, more than 80-fold, is present inES values in the
Mediterranean evergreen coniferPinus pinea(Fig. 7). In
this species, emissions during the wet and cool season are
dominated by the monoterpene limonene (constitutive emis-
sions), while the emissions in the hot dry season are dom-
inated by the monoterpenes linalool andtrans-β-ocimene
(induced emissions) (Niinemets et al., 2002b; Staudt et al.,
1997, 2000). Importantly, even in the constitutive emitters,
the induced emissions can exceed constitutive emissions by
several-fold (Fig. 7).

Currently, the variation inES values due to induced emis-
sions cannot be considered in simulation models. There is
encouraging evidence that stress dose versus induced emis-
sion relationships can be derived (Beauchamp et al., 2005;
Karl et al., 2008; Niinemets, 2010), making it possible to
include induced emissions in future models. Despite this ev-
idence, there is currently limited information on the stress
thresholds leading to elicitation of induced emissions and
also on how the stress thresholds vary with species constitu-
tive and induced tolerance to given environmental driver and
biotic stress (Niinemets, 2010). Evidently, much more ex-
perimental work is needed for quantitative incorporation of
induced emissions into large scale predictive models. Apart
from quantifying the stress dose vs. emission response rela-
tionships, inclusion of induced emissions requires a capacity
to predict large scale environmental and biotic disturbances
such as insect outbreaks (Arneth and Niinemets, 2010).

The other important issue with induced emissions is that
the induced monoterpenes (Brilli et al., 2009; Niinemets
et al., 2002b; Ortega et al., 2007; Staudt et al., 1997),
DMNT (Staudt and Lhoutellier, 2007), and sesquiterpenes
(Hansen and Seufert, 2003; Staudt and Lhoutellier, 2007)
are often emitted in light-dependent manner. For constitu-
tive emitters, the presence of parallel induced emissions can
greatly complicate efforts to characterizeES. For instance,
in Pinus pinea, low-level constitutive emissions dominated
by limonene are only dependent on temperature (Staudt
et al., 1997, 2000) and can be simulated by Eq. (5). In
contrast, the induced emissions dominated by linalool and

www.biogeosciences.net/7/1809/2010/ Biogeosciences, 7, 1809–1832, 2010
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ies demonstrating lowES, the emissions were typically dominated
by the monoterpene limonene and were not light-dependent (con-
stitutive emissions). In studies demonstrating large emissions, the
emissions were typically dominated by the monoterpenes linalool
and trans-β-ocimene that are considered as typical stress-induced
monoterpenes. These emissions were both light- and temperature
dependent (e.g., Niinemets et al., 2002b; Staudt et al., 1997). Thus,
conceptually, the constitutive emissions can be predicted by Eq. (5),
induced emissions by Eqs. (2) and (3), and total emissions by
Eq. (12). However, due to non-specific storage of induced monoter-
penes (Noe et al., 2006), a dynamic model is needed to describe
these emissions (Eqs. 8–10).

trans-β-ocimene depend both on light and temperature (Ni-
inemets et al., 2002b; Staudt et al., 1997) and are better
simulated by Eqs. (2) and (3). Thus, the total emission
rate (induced and constitutive) can be simulated using the
mixed model (Eq. 12). In reality, this situation is rendered
even more complex due to physico-chemical effects result-
ing from the non-specific storage of induced monoterpenes
(Niinemets et al., 2002b; Noe et al., 2006), requiring the use
of a dynamic model (Eqs. 8–10). In addition, “constitutive”
emission rate in storage emitters can significantly increase
after the events of herbivory exposing the storage contents to
the ambient air (Loreto et al., 2000). Thus, in conifer species,
where the emissions are typically assumed to be simulated
by only one simple temperature-dependent equation (Eq. 5),
parameterization of daily time-courses may necessitate the
use of a complex array of models. Given the fundamentally
different controls on constitutive and induced emissions, it
is important to separately define the emission potentials for

constitutive (standardized emission rate in the absence of in-
duced emissions) and induced (standardized emission rate in
the absence of constitutive emissions) emissions.

2.4 Consideration of alterations in mono- and
sesquiterpene compositions in models

Terpene-emitting species release simultaneously many dif-
ferent compounds. This reflects the presence of several dif-
ferent terpene synthases in plant foliage as well as production
of several terpenes by the same terpene synthases (Alonso
and Croteau, 1993 for a review). For instance, monoterpene
emitting species can release more than 20 different monoter-
penes (Niinemets et al., 2002c for a review of monoterpenes
released from the foliage ofQuercus ilex). In isoprenoid
emission and modeling studies,ES for monoterpenes is gen-
erally taken as a sum of all monoterpenes emitted andES for
sesquiterpenes as a sum of all sesquiterpenes. Because the re-
activity of different terpenes with OH radicals and ozone dif-
fers several orders of magnitude (Atkinson and Arey, 2003a,
b; Calogirou et al., 1999), for reliable air quality simulations,
it is highly relevant to consider the variations in the compo-
sition of emitted terpene blends as well. There are multiple
factors that can affect the composition of the emitted com-
pounds, and we provide here only a brief overview of the key
determinants.

In terpene-storing species, it is well-known that different
genotypes have varying foliage terpene compositions (e.g.,
Canard et al., 1997; Hayashi and Komae, 1974; Tobolski
and Hanover, 1971). In non-storing species, it has also been
demonstrated that genotype affects the emission composi-
tions, reflecting differences in the expression of various ter-
pene synthases. For instance, in Mediterranean evergreen
sclerophyll Quercus ilex, monoterpene emissions of some
populations are dominated byα-pinene andβ-pinene, while
in other populations by limonene (Niinemets et al., 2002c;
Staudt et al., 2001b). Analogous observations have been
made for another Mediterranean sclerophyllQuercus suber
(Staudt et al., 2004). Apart from the strong genetic compo-
nent, there is evidence of environmental effects such as wa-
ter, nutrient and light availabilities on terpene compositions
in terpene-storing species (Firmage, 1981; Letchamo et al.,
1994; Merk et al., 1988; Schiller, 1993; Voirin et al., 1990).

Leaf age and seasonality have also been shown to affect
the composition of stored terpenes (Hall and Langenheim,
1986; Rohloff, 1999). In addition, variation in the com-
position of emissions during the season has been demon-
strated for terpene-storing and non-storing species (Bertin
et al., 1997; He et al., 2000; Kuhn et al., 2004; Llusià and
Pẽnuelas, 2000; Sabillón and Cremades, 2001; Staudt et al.,
1997, 2000). Interestingly, in constitutive isoprene emitters,
young leaves that do not yet have developed the capacity for
isoprene emission may be significant monoterpene emitters
(Brilli et al., 2009; Kuhn et al., 2004). With development
of isoprene emission capacity, monoterpene emission rates

Biogeosciences, 7, 1809–1832, 2010 www.biogeosciences.net/7/1809/2010/
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decrease and the emissions cease in fully mature non-stressed
leaves (Brilli et al., 2009; Kuhn et al., 2004).

In addition, growth under elevated CO2 can modify the
composition of emissions in non-storing species (Loreto et
al., 2001). So far, such variations are imperfectly understood,
but may reflect selective expression of different monoterpene
synthases in different conditions (Loreto et al., 2001). As
discussed in Sect. 2.3, environmental and biotic stress elic-
its expression of a variety of mono- and sesquiterpenes, and
thus, stress-induced emissions typically have different com-
positions than constitutive emissions.

In addition to the biological factors, emission composi-
tions in species without specialized storage can transiently
change due to differences in compound physico-chemical
characteristics (Eq. 8, Table 1), for instance, after dark-light
transfers. Due to differences in the capacity for non-specific
storage, compounds with lower volatility take longer to reach
a steady-state tissue concentration. Thus, after switching
on the light, the emissions will be initially dominated by
compounds with greater volatility, while after switching off
the light, emissions will be dominated by compounds with
lower volatility (Niinemets and Reichstein, 2002). In addi-
tion, analogous effects can occur after rapid changes in the
rate of monoterpene synthesis such as after light or tempera-
ture change. Such physico-chemical effects emphasize the
importance of analyzing the emission compositions in the
steady-state.

These data collectively demonstrate that variations in
emission composition occur among the populations of the
same species and can also occur in dependence on environ-
mental drivers and seasonality. We plead that the informa-
tion of the composition of emitted compounds be published
together with the sum of the emissions (ES).

2.5 ScalingES in models

ES in the emission models have been originally defined as
species-specific values on the leaf scale (Guenther et al.,
1991, 1993). These species-specificES values of dominant
species have been employed to simulate regional emissions
(Guenther et al., 1994, 1996b; Keenan et al., 2009). Fur-
ther plant functional type specific (Guenther et al., 1995),
and landscape-level (Guenther et al., 1999) emission poten-
tials both still defined on the basis of leaf area were con-
structed. Ultimately, average canopy-level integrated emis-
sion potentials have been defined (Guenther et al., 2006).
These canopy-level values were expressed on the basis of
ground surface area differently from all previousES defi-
nitions (Guenther et al., 2006). Larger-scale emission po-
tentials can be estimated from leaf-scale emission potentials
using up-scaling models or by direct measurements of emis-
sion fluxes using micrometeorological techniques. As the up-
scaled values are outcomes of models, the aggregated emis-
sion potentials derived from leaf-level data are subject to vary
with the algorithms used for integration of isoprenoid fluxes.

On the other hand, deriving the larger-scale emission poten-
tials from flux measurements also requires several critical as-
sumptions. Here we analyze the wayES values are used and
aggregated in different model schemes, potentials and lim-
itations of various scaling routines and the compatibility of
aggregatedES values scaled up in various manner. We also
shortly analyze the potentials and limitations of derivation
of the large-scale emission potentials from the emission flux
measurements.

2.5.1 Leaf-level emission potentials scaled to canopy,
landscape and biome

Leaf-scale species-specific estimates ofES can be directly
used to simulate canopy and landscape level BVOC emis-
sion fluxes using soil-vegetation-atmosphere transfer (SVAT)
models (e.g., Baldocchi and Meyers, 1998; Baldocchi et al.,
1999) similar to the schemes widely used for simulation of
plant carbon gain (Caldwell et al., 1986; Falge et al., 1997;
Ryel, 1993). SVAT models are typically 1-D layered models
or 3-D models that describe the variation in light, tempera-
ture and humidity in dependence on the amount of leaf area
and leaf area distribution of the vegetation (e.g., Baldocchi,
1991; Baldocchi et al., 1999; Cescatti and Niinemets, 2004).

In addition to employing appropriate light, temperature
and CO2 response functions (Eqs. 1–7), a series of biological
factors such as leaf age, and long- and short-term acclima-
tion responses inES are important to consider (Grote, 2007;
Niinemets et al., 2010). For accurate integration, distribution
of foliage of different emitting species within the canopy is
needed. Canopy models with varying complexity can be used
in integration schemes, e.g., models including spatial aggre-
gation and 3-D heterogeneity vs. simple Lambert-Beer mod-
els with random dispersion of foliage elements (Baldocchi,
1997; Cescatti and Niinemets, 2004). AlthoughES is the
key predictor of the emission potential of given vegetation,
the structure of the canopy model, as well as the quality of
leaf area and canopy architecture data can potentially intro-
duce as much or even more variation in predicted emission
fluxes as the prescribedES values (Grote, 2007; Guenther et
al., 2006).

At the biome- and global-scales, emission potentials
are typically determined for plant functional types (PFT),
ES,PFT, based on the species-specificES estimates obtained
from screening studies conducted all across the world (Ar-
neth et al., 2007; Guenther et al., 1995, 2006). These
functional-type specificES estimates significantly simplify
the large-scale integration of emission fluxes. However, the
accuracy ofES,PFT values depends on the way the weighted
average of species-specificES values is obtained. While
global averageES,PFT values can be derived for each PFT,
species composition within a given PFT will significantly
affect the predicted emissions. For instance, both decidu-
ous North-American speciesFagus grandifoliaand Quer-
cus albawill fall in broad-leaved deciduous tree PFT, but
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1824 Ü. Niinemets et al.: The leaf-level emission factor of volatile isoprenoids

F. grandifolia does not emit isoprene, whileQ. alba is a
strong isoprene emitter. Thus, isoprene emissions of ar-
eas dominated byFaguswill be overestimated by average
ES,PFT for broad-leaved forests, while the emissions from
areas dominated byQuercuswill be underestimated. The
spatial resolution of emission inventories can be significantly
improved by including available vegetation species coverage
data (Guenther et al., 2006). In any case, it is important to
keep in mind that any PFT-level emission potential is a mod-
eled characteristic that depends both on leaf-levelES values
as well as on species coverage estimates. Errors in species
coverage estimates can potentially bias the emission predic-
tions as much as errors in prescription ofES, and become
potentially relevant when vegetation composition changes
due to changes in environmental conditions (Schurgers et al.,
2009b).

In large-scale emission models, use of layered or 3-D mod-
els that specify environmental conditions for each layer or
3-D canopy element, voxel, is complicated by the need for
high amount of detailed structural information for model pa-
rameterization. Yet, typically only spatial information for
integrated traits such as canopy leaf area index and plant
functional type is available. As an alternative to the detailed
multi-layered models, big-leaf canopy models have been de-
veloped that approximate the canopy as a single big-leaf
(Amthor, 1994; Lloyd et al., 1995). The key limitation of sin-
gle big-leaf models is associated with inherent non-linearity
of plant physiological responses to light and temperature. As
the result, simple integration that does not consider that un-
der sunny conditions there are sunlit and shaded foliage at
any location in the canopy, overestimates the true fluxes: this
is a mathematical consequence of Jensen’s inequality theo-
rem for concave functions (Niinemets and Anten, 2009 for a
review). Such integration problems are partly overcome by
development of two big-leaf models, consisting of a sunlit
and a shaded big-leaf (Dai et al., 2004; de Pury and Farquhar,
1997).

Many big-leaf type models assume that the responses of
the entire canopy to light and temperature can be approxi-
mated with functions similar to those used for single leaves.
Certain “optimum” variation in foliage physiological poten-
tials within the canopy is assumed, and thus, only the upper
canopy leaf physiological potentials are used for analytical
integration of whole canopy responses to above-canopy en-
vironmental conditions (Amthor, 1994; Dai et al., 2004; de
Pury and Farquhar, 1997). In these models, the “optimum”
variation is defined as linear decrease of foliage physiolog-
ical potentials with long-term light availability from top to
bottom of the canopy (Amthor, 1994; Dai et al., 2004; de
Pury and Farquhar, 1997). With such assumption, the typi-
cal ES values estimated for high-light exposed foliage, and
ES,PFT values derived from these, can be used in the area-
dependent integration of large-scale fluxes. Such big-leaf ap-
proaches have been used in global isoprene and monoterpene
simulations with LPJ-GUESS (Arneth et al., 2007, 2008a;

Schurgers et al., 2009a). So far, the condition of “optimal”
variation ofES through the canopy still awaits experimen-
tal verification, although for photosynthesis, we have learned
that the variation is not satisfying the optimality criterion
(Friend, 2001; Niinemets and Anten, 2009).

2.5.2 Canopy-level emission potentials in integration
schemes

In the integration schemes outlined above,ES values used
are still leaf-scale emission potentials determined for un-
shaded foliage. Alternatively, in the recent isoprene emission
model MEGAN, canopy-scale isoprene emission potential,
Ecanwas defined (Guenther et al., 2006) that is not only stan-
dardized for temperature and light asES traditionally was,
but also for leaf area index (LAI) and for many biological
factors. In MEGAN, canopy-level isoprene emission fluxes
are calculated combiningEcan with empirical relationships
between above-canopy average incident quantum flux den-
sity and temperature (Guenther et al., 2006).

Two different approaches are currently used to deriveEcan
estimates.Ecan values can be based on available leaf-level
ES estimates for given species that are further combined with
a canopy model to yield values ofEcan (Guenther et al.,
2006). PFT-specific values ofEcan can be further derived
combiningES estimates of species belonging to given plant
functional type and linking these again to a canopy model
(Guenther et al., 2006). Alternatively,Ecan determinations
can take advantage of the circumstance that net isoprenoid
emission fluxes (emission of BVOC by vegetation minus de-
composition in the ambient atmosphere as well as deposition
to the canopy) can be measured by a variety of micromete-
orological techniques, from analysis of gradients to relaxed
eddy accumulation (REA) and eddy covariance (Baldocchi
et al., 1999; Fuentes and Wang, 1999; Fuentes et al., 1999;
Graus et al., 2006; Guenther et al., 1996a; Huber et al., 1999;
Karl et al., 2002, 2007; Kim et al., 2009; Rinne et al., 2002;
Spanke et al., 2001; Spirig et al., 2005). Thus,Ecan estima-
tions can skip the tedious step of leaf to canopy integration
that can be error-prone and uncertainty-inducing if numerous
assumptions need to be made due to practical reasons.

However, the key question is how one can generalize from
a set of studied ecosystems with given canopy structure and
emitting species composition to other ecosystems with dif-
fering structure to derive landscape- and regional-scale emis-
sion fluxes. Obviously, if information of compound de-
composition and deposition is available, one can derive an
estimate of the canopy-emission potential,Ecan,flux, from
the flux measurements. However, out of the large num-
ber of measurements obtained by eddy-flux measurements,
only few data may correspond to the “standardized” light
and temperature defining a specificEcan,flux value. Thus,
inverse modeling approaches are needed that solve for the
value ofEcan,flux best describing the whole set of measure-
ments, i.e. satisfying the condition specified by Eq. (13). Yet,
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the value ofEcan,flux obtained will critically depend on the
model structure assumed. Inverting a layered model to derive
leaf-area weighted average emission potential is clearly im-
practical because of lack of bijection and accordingly, due to
too many assumptions required. Alternatively, fitting canopy
emissions to light and temperature above the canopy based
on Eqs. (2) and (3), can yield values of initial quantum yield
of emission (Eq. 2) andEcan,flux, among other parameters,
specific to a given canopy. However, these parameters, in
particular, the quantum yield of isoprenoid emission and
Ecan,flux are subject to vary with canopy structure and po-
tentially also with meteorological conditions, e.g., overcast
vs. sunny days (Gu et al., 2003 for model analysis of whole
canopy responses to direct vs. diffuse solar radiation). As
flux measurements are often not conducted in stands having
a “standard” LAI, converting the values of quantum yield and
Ecan,flux to a standard LAI used in MEGAN would again re-
quire implementation of a canopy model. Inverse modeling
procedures are becoming standardized in CO2-flux commu-
nity (Carvalhais et al., 2008; Lasslop et al., 2008), but so far
no common protocol has been agreed upon in BVOC emis-
sion community.

In summary, in large-scale integration schemes, it is highly
relevant to clearly specify how the emission potential used
for scaling the emission fluxes is determined. Integration
models currently include both emission potentials that are
directly based on leaf-level measurements and emission po-
tentials that include a great deal of modeling. It is im-
portant to consider that these different emission potentials
cannot be used interchangeably in different models. Care
should be taken in applying the modeled and aggregated
emission potentials, e.g., asEcanapplied in MEGAN (Guen-
ther et al., 2006). Any change in light and temperature re-
sponse functions applied in the emission model, and modi-
fication of time-resolution of climatic drivers would require
re-computation ofEcan values.

3 Outlook

The emission models used worldwide to simulate volatile
isoprenoid emission fluxes from vegetation for further use
in atmospheric chemistry models are largely based on Guen-
ther et al. (1991, 1993) algorithms. The strength of these
algorithms has been the conceptual simplicity provided to
modelers in that they need only the standardized emission
rate,ES, and being able to simulate the emission fluxes using
the light and temperature functions specified by Guenther et
al. (1991, 1993), for which input data are readily worldwide
available. However, since the original development of the
Guenther at al. algorithms significant variations in plant re-
sponses to environmental drivers light and temperature, and
to so far unaccounted environmental drivers such as CO2,
have been highlighted, and emission induction by biotic and
abiotic stresses and modifications in emission compositions

have been demonstrated. Recent studies have also observed
important variability in the share in the emission controls
between compound synthesis and physico-chemical factors.
On the basis of this knowledge, the accuracy of source mod-
eling can be improved. Of course, inclusion of further de-
tails necessarily carries larger parameterization burden, but
making this effort might be worthwhile when the accuracy
of emission source estimates is critical to improve, e.g., in
extrapolating to future environments (Arneth and Niinemets,
2010; Arneth et al., 2008b; Young et al., 2009). Apart from
the sources of variation resulting from factors controlling the
emissions, definitions ofES differ depending on the underly-
ing model algorithms and degree of aggregation, and can be
a chief reason for large between-model discrepancies of sim-
ulated emission totals (e.g., Arneth et al., 2008a for a com-
pilation of respective global extrapolation exercises). Our
purpose in writing this paper was to provide greater depth in
the understanding for those who wish to simulate isoprenoid
emissions, and to stimulate the development of novel ap-
proaches which include the contemporary understanding of
emission controls in future emission predictions.
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Niinemets,Ü., Tenhunen, J. D., Harley, P. C., and Steinbrecher,
R.: A model of isoprene emission based on energetic require-
ments for isoprene synthesis and leaf photosynthetic properties
for Liquidambarand Quercus, Plant Cell Environ., 22, 1319–
1336, 1999.
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Pétron, G., Harley, P., Greenberg, J., and Guenther, A.: Seasonal
temperature variations influence isoprene emission, Geophys.
Res. Lett., 28, 1707–1710, 2001.

Pinto, D. M., Blande, J. D., Nyk̈anen, R., Dong, W.-X., Nerg, A.-
M., and Holopainen, J. K.: Ozone degrades common herbivore-
induced plant volatiles: does this affect herbivore prey loca-
tion by predators and parasitoids?, J. Chem. Ecol., 33, 683–694,
2007.
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