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The negatively accelerated, gradually increasing learning curve is
an artifact of group averaging in several commonly used basic
learning paradigms (pigeon autoshaping, delay- and trace-eye-
blink conditioning in the rabbit and rat, autoshaped hopper entry
in the rat, plus maze performance in the rat, and water maze
performance in the mouse). The learning curves for individual
subjects show an abrupt, often step-like increase from the un-
trained level of responding to the level seen in the well trained
subject. The rise is at least as abrupt as that commonly seen in
psychometric functions in stimulus detection experiments. It may
indicate that the appearance of conditioned behavior is mediated
by an evidence-based decision process, as in stimulus detection
experiments. If the appearance of conditioned behavior is taken
instead to reflect the increase in an underlying associative
strength, then a negligible portion of the function relating asso-
ciative strength to amount of experience is behaviorally visible.
Consequently, rate of learning cannot be estimated from the
group-average curve; the best measure is latency to the onset of
responding, determined for each subject individually.

C onditioning paradigms are used to study learning in laboratory
animals, like the pigeon, the mouse, and the rat. They play a
fundamental role in attempts to identify the neurobiological basis
of learning and memory. They come in two basic categories. In the
first, motivationally important “reinforcements” (typically, food
delivery or shock to the feet) are signaled by a neutral stimulus,
called the conditioned stimulus (CS). The reinforcement, also
called the unconditioned stimulus (US), comes whether the subject
responds to the CS or does not. After some number of trials, the
subject responds to the CS in anticipation of the reinforcement. This
procedure is called classical or Pavlovian conditioning. The antic-
ipatory response is called the conditioned response. The term
“reinforcement” is indicative of the conceptual framework in which
this learning has always been understood, namely, that the moti-
vationally important event strengthens an underlying connection:
an association. Different theorists have posited connections be-
tween stimuli and reinforcers, between stimuli and responses, and
between responses and reinforcers (outcomes), but in all cases, the
learning involves the strengthening of an association between two
elements of experience.

In the second category of conditioning paradigms, whether the
reinforcing event happens is contingent on the animal’s making an
appropriate response. These are called instrumental or operant
conditioning paradigms. They include maze paradigms, in which the
animal learns to go to the location where it finds the reinforcement.
Here, too, it is generally assumed that the reinforcement strength-
ens a connection, but in this case, the emphasis is on the connection
between the response and the reinforcing event (the outcome).

The learning curve is the plot of the magnitude or frequency of
the conditioned response as a function of the number of reinforce-
ments. Although conditioning has been studied for more than a
century, there have been few attempts to specify the quantitative
properties of the learning curve in individual subjects. This neglect
is surprising because, as we will see, they are relevant to our
conception of the learning process, and they place constraints on
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what may be inferred from the learning curve about the underlying
changes in the nervous system.

Group-learning curves have often been published. Fig. 1 is an
example. In such a curve, the behavioral measures have been
averaged across subjects; and often, across blocks of trials, or even
whole sessions, as in Fig. 1. It is often assumed, either explicitly or
implicitly, that the properties of the group curve are those of the
individual curves. It has, however, long been recognized that
averaging across subjects might give a misleading picture of what
occurs in individual subjects (1-8). If the progress of conditioning
in each individual subject is step-like, but the step occurs early in
some subjects and later in others, averaging across subjects will
suggest a gradual increase. Averaging across trials will also make
rapid transitions appear to be more gradual.

The potentially misleading nature of the group learning curve
becomes serious when modelers try to make their model of
acquisition process approximate the group curve, rather than the
curve typical of the individual subject. For example, Kakade and
Dayan (9) set as a criterion for a successful model of conditioning
its ability to capture the prolonged increase in performance seen in
Fig. 1 (which they also take from figure 2 in ref. 10, p. 227). We now
show that in most subjects, in most paradigms, the transition from
a low level of responding to an asymptotic level is abrupt.

Visualizing Acquisition

One way to visualize the course of acquisition is to plot the
cumulative record of conditioned responses as a function of trials
or reinforcements. The cumulative record is the running sum of the
successive behavioral measurements. Changes in the slope of this
record correspond to changes in the level of performance. Fig. 2
shows these plots for nine pigeons in one experimental group in an
autoshaping paradigm, a commonly used appetitive Pavlovian
paradigm. The illumination of a round key on the wall of the
experimental chamber is the CS. The reinforcement is the brief
presentation of a hopper filled with grain, which coincides with the
end of the CS. The conditioned response is the pecking of the key.
The pigeon pecks the key despite the fact that its pecking has no
effect on food delivery. In this case, key illumination (the CS) lasted
6 sec and terminated with 4 sec of access to grain (the US). The
average interval between key illuminations was 54 sec.

Five things are apparent in these plots. First, the conditioned
behavior seems to appear abruptly. The plots do not show the
prolonged acceleration they would show if acquisition in the
individual pigeon looked like the group average in Fig. 1. (This
appearance, however, depends rather strongly on a choice of
vertical scale. We describe methods for quantifying abruptness later
in the text.) Second, asymptotic levels of performance (terminal
slopes) differ greatly between subjects. Third, the latency, that is,
the number of trials before the abrupt appearance of responding,
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Fig. 1. Group-average (n = 20 pigeons) rate of key pecking (the conditioned
response in the pigeon autoshaping paradigm) as a function of number of
sessions (with 50 trials per session). Coordinate frame and jagged data line were
traced from Gamzu and Williams (figure 2 in ref. 10, p. 227). We have superposed
a Weibull function approximation (smooth curve), to show that this function, y =
A {1 — 2" — [(x/L)S]} can capture the kind of prolonged increase seen in these
averages. A is the asymptote and L is the onset latency or location (the value of
x at which y is half of its asymptotic value). Note the value (1.4) of the shape
parameter S, which determines the shape and steepness of the function.

also differs greatly between subjects. Fourth, there is little corre-
lation between the two parameters; some records of shallow slope
begin early and some begin late; conversely, some records with
steep slope begin early and some late. Finally, it is not uncommon
for the level of behavior to decrease later on, well below the level
it had when it first appeared, as indicated by downward deflections
in the slope of the cumulative record.

A second way to visualize the acquisition of conditioned respond-
ing is to plot the pecks on each trial (Fig. 3). This plot is the
(discrete) derivative of the cumulative record plot. In some cases,
it is readily intelligible (Fig. 3 Upper), whereas in others, the
trial-to-trial variability in the number of pecks, makes it hard to see
what is going on (Fig. 3 Lower). Other disadvantages of this
visualization are that the parameters of acquisition (latency, abrupt-
ness, and asymptote) are not so readily visible, and, finally, one
cannot make more than one plot per figure, to show differences and
similarities between subjects.

Quantifying Acquisition
In quantifying the appearance of conditioned behavior in individual
subjects, we want to know at least three things: (i) how long it took
for it to appear; (if) how abruptly it attained its asymptotic level; and
(iii) what the asymptotic level was. We now describe how to obtain
these parameters from each kind of plot, beginning with the second
kind.

Our approach to these questions is descriptive rather than
model-driven. We use two different representations to test whether
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Fig. 2. The cumulative number of pecks versus the number of trials for the
nine birds in Condition CR_CS6_IT9.
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Fig.3. Two examplesof Pecks versus Trials plots. The dashed curve in each panel
is the best-fitting Weibull function. (Upper) The subject did not respond at all for
~40 trials; then, within the space of ~10 trials, it transitioned to making between
5 and 15 pecks on each trial. These data are summarized fairly well by the
best-fitting Weibull function. (Lower) The subject did not respond at all for the
first 30 trials; then, it began to make between zero and three pecks per trial. This
pattern of weak and highly intermittent responding persisted for 600 more trials.
Although the plot is visually confusing, the Weibull function again captures the
structure of the data. The asymptote is at 0.5 pecks per trial because the subject
did not peck on substantially more than half the trials. The function rises with
step-like abruptness, because after the first trial on which there was a peck (Trial
30), there was no further increase in the weak and intermittent pecking tendency.
In fact, there was a modest decrease after Trial 200.

the conclusions one draws about acquisition depend on the choice
of a representation.

We summarize the plots of pecks versus trials by fitting a
continuous function to the data. The Weibull function is often used
to summarize psychometric plots. When applied to the pecks-
versus-trial data, the function is

Pecks = A(1 — 2~ [(Trials/L)s)y

Its parameters, A, L, and S, correspond to the aspects of acquisition
just mentioned: asymptote (A), latency (L), and abruptness of
onset (S).

Different values for the S parameter of the Weibull function
cause it to assume widely different forms so it can approximate most
monotonically increasing data sets. When § is close to 1, it approx-
imates the inverse exponential. When § is >1.5, it is sigmoidal,
asymmetrically so for values around 2, and symmetrically for values
of 4 and higher. As § goes to infinity, it becomes a step function.
Roughly speaking, the higher the value of S, the more abrupt the
rise. However, it is important to bear in mind that this measure of
abruptness is normalized to the L of behavioral onset, because S is
the power to which the ratio Trials/L is raised. When the onset L
is short, low values of § may be found in data that show a rapid initial
rise in the level of performance (for example, see Fig. 7).

Summarizing the Pecks versus Trials plots with Weibull functions
allows one to plot the results from all subjects on a single graph.
Such a plot (Fig. 4) confirms the impression one has from the plot
of the cumulative records: acquisition is generally abrupt, there are
striking between subject differences in both onset latency and
asymptotic level, and these differences do not covary.

The Weibull function is monotonic; it cannot capture multistep
changes in behavior, particularly when these postacquisition steps
are both up and down. For that result, our second approach, based
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Fig. 4. Best-fitting Weibull functions for the Pecks versus Trials plots of the
nine subjects whose data were first shown in Fig. 2 (smooth curves). The heavy
jagged line is the group-average pecks per trial.
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on the cumulative record is needed. We think that, generally
speaking, the cumulative record is the best way to make the
characteristics of the raw data immediately intelligible (cf. 11 and
12), because changes in behavior appear as changes in its slope. The
points where such changes occur are change points. We have
generalized a recursive algorithm (13) so that it may be applied to
the finding of change points in any kind of cumulative record.

The algorithm has four stages: In the first stage, it identifies for
each point in the cumulative record a putative change point in the
record before that point. To find this earlier point, it in effect draws
a straight line between the start of the record and the latest point
and finds the earlier point that deviates maximally from this straight
line (see Fig. 5). In the second stage, it computes for each putative
change point, the strength of the evidence that it is a true change
point. The strength of the evidence is the log of the odds against the
null hypothesis of no change (the logit). In the third stage, it finds
the first change point for which the evidence exceeds a user-
specified decision criterion, and it truncates the data at that point.
In the fourth stage, it begins over again, taking the change point as
the origin and the first datum after the change point as the first
observation.

This procedure represents the behavior as a sequence of levels of
performance. Each level is the slope of the cumulative record
between two successive change points (Fig. 6). The number of
successive levels in this representation depends on the decision
criterion in the third stage of the parsing algorithm. The lower the
decision criterion is, the more sensitive the algorithm is to possible
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Fig.5. Inthisillustration, the algorithm for finding change points is applied to
the cumulative record as of Trial 27. (In practice, it is applied iteratively to each
successive pointin the cumulative record.) In this record, there were no pecks until
Trial 20, where pecking began. The slanted dashed line is a straight line drawn
between the origin and the cumulative record at end of Trial 27. The cumulative
record deviates maximally from this straight line between Trials 19 and 20, so that
is the putative change point. It divides the record up to Trial 27 into two portions:
Trials 1-19 and Trials 20-27. If the change point is accepted as valid, then the
algorithm begins over again, with the pecks on Trial 20 as the first datum.

13126 | www.pnas.org/cgi/doi/10.1073/pnas.0404965101

e #peckson1trial _~ cumulative pecks
--- Weibull = change point (cp)
Key - - - slopes between cps
10 1000
Bird 2196

amo oo cm o o

500

Pecks per Trial

Cumulative Pecks

- 0
0 20 40 60 80 100

Fig. 6. Different representations of the course of the acquisition of key
pecking by a pigeon in a Pavlovian appetitive conditioning experiment. Data
are either the number of pecks on each trial (left axis) or the cumulative
number of pecks (right axis). The first representation is by means of a Weibull
function fit to the pecks per trial (dotted curve). The second is by means of the
slopes of the straight lines connecting successive change points in the cumu-
lative record (dashed sequence of steps). These slopes are the average pecks
per trial between two change points. The change points, as found by the
change-point algorithm, are superposed on the cumulative record (m).

changes in the level of performance; hence, the more change points
it finds. For the representation in Fig. 6 (dashed steps), the decision
criterion was set at logit = 2, which is rather sensitive. One may
doubt that the two brief downward steps in the level of performance
are to be taken seriously. It is likely that, at this level of sensitivity,
the algorithm overfits the data, by using more segments than are
necessary to capture the systematic structure of the data. One could
use Bayesian and/or minimum-description-length techniques (14,
15) to limit the number of steps used to represent the complete
record. However, these more complex methods are more appro-
priate when one is attempting to find a mathematical model of the
process that generated the data. Here, we are only interested in a
useable quantitative description. We routinely vary the sensitivity to
see the effect that it has on the resulting representation and the
summary statistics derived from it.

With this approach to representing the data, the number of trials
preceding the first upward change (the first significant increase in
behavior) is the measure of the onset latency. The estimate of the
asymptote is the mean response rate over the second half of the
trials." The abruptness of the transition is the number of trials
between the first upward change point and the change point after
which the postchange slope is =80% of the asymptotic rate. The
measure depends on the decision criterion used in determining
change points, so we repeat it by using criteria ranging from very
sensitive to very insensitive.

The change-point-based measure of abruptness may be com-
pared to an abruptness measure obtained by calculating the interval
over which the best-fitting Weibull function rises from 10% to 90%
of its asymptote.| Both approaches estimate the interval within
which the rise in performance traverses 80% of its range. Fig. 7
illustrates the two measures of the dynamic interval.

THow to estimate the asymptote is somewhat problematic because conditioned pecking
appears to be asymptotically unstable (see Bidirectional Changes in Performance Postac-
quisition). The results to be reported are approximately the same when other estimates of
asymptote are used (for example, the asymptote estimate from the best-fitting Weibull
function). A better term than asymptote would be ““average vigor of postacquisition
performance” but it is a cumbersome locution.

IThe differing mathematical characteristics of the two representations of the data preclude
applying exactly the same measure of dynamicinterval in both cases. The Weibull function
is only 0 when Trials or Time = 0. The successive steps representation may cross any given
level more than once.

Gallistel et al.
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Fig. 7. Determination of the dynamic interval, by using either the Weibull
representation or the steps representation. This data set had the lowest value
(0.49) for the S parameter of the Weibull function among the 105 data sets
analyzed. Nonetheless, the initial rise is very rapid because the onset latency
is so short (seven trials). The dynamic interval based on the Weibull represen-
tation is the number of trials between the first and ninth decile. The dynamic
interval based on the Slopes representation is the number of trials between
the first upward change point and the change point at which the postchange
point slope is >80% of the asymptotic rate.

Results

Autoshaped Key Pecking in the Pigeon. The choice of representation
does not affect the conclusion that the appearance of autoshaped
key pecking is abrupt. We subjected the data from 105 birds taught
to key peck by continual reinforcement of transient key illumina-
tions (that is, reinforcement on every illumination) in the laboratory
of the late John Gibbon (Columbia University and New York State
Psychiatric Institute). The data came from a variety of experiments,
none of which was designed for the purpose of portraying the course
of acquisition. The experiments differed widely in the duration of
the CS, the duration of the intertrial interval, and some other
parameters (e.g., whether there were one or two CSs and whether
both or only one of them was reinforced). Depending on the
analysis, between 22% and 56% of the birds went from a negligible
level of responding to a nearly asymptotic level in a single trial.
Between 45% and 57% made the transition in 10 trials or less. For
75% of the subjects, the dynamic interval was 34 trials or less,
according to the change-point analysis with the most sensitive
decision criterion, and 62 trials or less, according to both the
Weibull analysis and the change-point analysis with the least
sensitive criterion. Regardless of the analysis, ~50% of the subjects
made 10 or fewer responses within the dynamic interval.

Another way to capture quantitatively the abruptness of the rise
in conditioned behavior is to compute the rate of behavior after the
first change point (that is, between the first and second change
points) as a fraction of the asymptotic rate of behavior. We call this
statistic the “first fraction.” Fig. 8 plots the first fractions as a
function of the trial at the first change point. The median first
fraction is 0.44, but the values range widely. To be noted, are the
many cases in which the initial rate is higher than the asymptotic
rate. Also to be noted is the lack of dependence on the latency: first
fractions are not notably smaller in subjects with a long onset
latency.

The S parameter of the best-fitting Weibull function is a fourth
way to index the relative abruptness of the rising phase: the higher
the value of S, the more abrupt the transition, relative to the onset
L, which, when the Weibull function is used, is the number of trials
to a half-asymptotic level of performance. From the value of S, one
can calculate what fraction of the period before and after the
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Fig. 8. The rate of pecking between the first and second change points
(determined by using t test and criterion = 2) as a fraction of the asymptotic
rate of pecking, on a log scale, plotted as a function of the trial at the first
change point.

appearance of behavior is occupied by the transitional phase. For
the median value of S, performance exceeds 10% of asymptote only
when the number of trials has reached 82% of the onset latency. It
attains 90% of the asymptotic level 0.15 log units later, when the
trial count reaches 114% of the onset latency.

Correlations Between Parameters of Learning Curves. The correla-
tion between the asymptote (4) and the onset latency (L) was weak
(0.05) and insignificant, as was the correlation between the onset
latency and the relative sharpness of the rise (—0.08). The corre-
lation between the latency and the dynamic interval was positive
(0.64). Thus, a late onset predicts a more gradual rise, when the rise
is measured in absolute terms (number of trials over which rise
occurs) but not when it is measured in relative terms (as a
proportion of the onset latency or location, L). A late onset does not
predict a lower asymptotic level of performance. Thus, the factors
that determine how long it takes before conditioned behavior
appears have little in common with the factors that determine how
vigorous it is once it appears. This finding is important because the
group-average learning curve confounds these two aspects of
conditioned behavior: An early rise in the group average may
indicate either that several subjects began to respond early or that
a few subjects with a high postacquisition response rate happened
to begin responding early.

Bidirectional Changes in Performance Postacquisition. Representing
the learning curve with a Weibull function presupposes that the
increase in performance as a function of experience is monotonic.
However, the algorithm that finds changes in the level of perfor-
mance and represents performance as a sequence of levels reveals
that this is often not the case. In the majority of the birds (56 of 105),
there was at least one significant decrease in performance after the
initial rise to “asymptote,” even when we used an extremely
conservative decision criterion in the change-detecting algorithm,
namely, logit = 6, which corresponds to odds of 1,000,000:1 against
the hypothesis of no change (i.e., to P << 0.001). Fig. 9 shows
examples chosen at random.

As the diversity seen in examples in Fig. 9 makes clear, the pattern
of postacquisition ups and downs in the level of performance varies
greatly from subject to subject, and so resists summary. Some
points, however, seem clear: First, postacquisition ups and downs in
performance are large. Second, the level of performance seen
hundreds of trials postacquisition may be a small fraction of the
level seen soon after the first appearance of conditioned behavior.
Third, the changeable character of postacquisition performance
needs to be born in mind when one sees cases where there is a
sequence of ascending steps. When both ascending and descending
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Fig. 9. Arandom sample of the diverse but commonly seen ups and downs

in the level of conditioned responding after its first appearance. The change
points that generated these plots were detected by using the change-
detecting algorithm, with a t test and a decision criterion (logit) of 6, which
corresponds to a P value of <0.000001. Significant, substantial, and long-
lasting decreases in performance are often seen. In other words, conditioned
performance is asymptotically unstable.

steps are common, then one expects to see occasional examples of
an ascending sequence of several steps just from the chance
arrangement (sequencing) of random steps of various size and sign.
Finally, in this paradigm, the notion of running subjects until a
stable asymptotic level of behavior is obtained is illusory, because
up or down changes in the level of performance occur abruptly and
unpredictably many hundreds of trials postacquisition.

Eye-Blink Conditioning in Rabbit and Rat. The eye-blink paradigm is
a widely used aversive Pavlovian conditioning paradigm, particu-
larly in neurobiologically oriented work. J. Kehoe (University of
New South Wales, Sydney) kindly supplied data on 24 rabbits given
delay eye-blink conditioning to a 650-ms tone (the CS), with one of
three intervals; 200, 400, or 600 ms, between tone onset and the US
(periorbital shock). There were 65 trials per 61-min session for the
first 4 days and 80 trials per 75-min session for the remaining 3 days.
The US was omitted on a random 8% of the trials. A conditioned
response was scored when a blink followed the onset of the CS and
preceded the US.

One subject never acquired a conditioned response. For 10 of the
23 subjects that did, the cumulative records show strikingly abrupt
one-trial transition from no responding to a >80% probability of a
conditioned blink (Fig. 104). In the other subjects, either the
transition or the subsequent responding is more variable (Fig. 10B),
but the abrupt onset of nearly asymptotic responding predominates
in the overall picture. When the records are analyzed with the
change-point algorithm, using the binomial probability test with a
decision criterion of 2 (equivalent to P < 0.01), the median dynamic
interval is 1 trial and the median first fraction is 0.98.

There is a significant negative correlation between onset latency
(trials to first blink) and asymptotic responding, whether the
asymptote is taken to be the blink probability over the second half
of the trials (r = —0.73) or the maximum sustained blink probability
(r = —0.59). Thus, a late onset predicts a lower asymptotic blink
probability. The correlation between onset latency and the dynamic
interval is insignificant (» = 0.11); a late onset does not predict a
slow transition.

Similarly abrupt onsets of conditioned responding were seen in
data supplied by D. Bangasser, D. Wexler, and T. Shors (Rutgers,
The State University of New Jersey, New Brunswick) on the course
of trace eye-blink conditioning in six rats. The CS was a 250-ms
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Fig. 10. Cumulative records of conditioned blinks from Kehoe’s data. (A)

Records of the most abrupt and steadiest rabbits. (B) The more variable records
from Kehoe's data.

white noise. It was followed 500 ms after its offset by a mild
periorbital electric shock. There were two sessions, with 200 trials
each. The median dynamic interval was one trial and the median
first fraction was 1.25.

There were large and prolonged fluctuations in postacquisition
blink probability in both the rabbit and the rat data.

Conditioned Hopper Entry in the Rat. M. Bouton (University of
Vermont, Burlington) kindly provided data from a hopper-entry
autoshaping experiment conducted in his laboratory by M. Caniga,
with eight rats as subjects. There were two 10-sec CSs, a 3,000-Hz
tone, and a clicker, only one of which was reinforced. The positive,
that is, reinforced CS was counterbalanced across subjects. Two
food pellets were released into the feeding hopper at the conclusion
of each positive CS; nothing happened at the conclusion of the
negative (unreinforced) CS. The conditioned response was the
anticipatory poking of the head into the feeding hopper. There were
three presentations of the positive CS and three of the negative CS
in each 90-min session, randomly intermixed. The interval between
presentations varied about a mean of 15 min. The ratio between the
intertrial interval and the signal interval (the trial duration) was
much greater than in any of the pigeon autoshaping experiments.
This ratio is known to lead to rapid acquisition (16), and it did so
in this case. The mean acquisition latency in the Weibull analysis
(the mean number of the trial at which performance attained half
of its asymptotic value) was 5.8 (median 5.3). The mean and median
of first change points were both 4.5, using a # test, with the decision
logit set at 2.

The learning curves for rat autoshaping also rose abruptly. By
using the change-point analysis, with the ¢ test and a decision
criterion (logit) of 2, the mean dynamic interval was 5.5 trials
(median 6.5). (The asymptote estimates used in making this analysis
were from the best-fitting Weibull functions.) The mean and
median first fractions were both 0.61. The experiment stopped after
42 trials (14 sessions), so one cannot say whether one would see in
this paradigm the postacquisition ups and downs seen in pigeon
autoshaping and rabbit and rat eye-blink conditioning.
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The Weibull A4 and the Weibull L (that is, trials to half-maximal
responding) were weakly and insignificantly correlated (r = 0.26).
The correlation between the trial at the first change point and the
dynamic interval (interval between the first change point and the
change point after which the slope exceeded 80% of the asymptotic
slope) was —0.69. In words, the later the first appearance of
conditioned behavior, the shorter the interval over which it rose.

Plus Maze Learning in the Rat. D. M. Smith in the laboratory of S.
Mizumori (University of Washington, Seattle) kindly provided data
from 11 rat subjects in an experiment in which they learned to
choose the baited arm in a four-armed maze in the shape of a plus.
On each trial, the rat was placed facing the far end of a randomly
chosen unbaited arm. In the first session, which consisted of 20
trials, the baited arm was chosen at random from one trial to the
next. Thus, there was no possibility of nonchance performance.
(There is a one-third probability of choosing the baited arm by
chance.) After the first session, sessions consisted of 30 trials each.
The baited arm changed half way through each session: for the first
15 trials of each session, the bait (two drops of chocolate milk) was
at the end of the east arm; for the second 15, it was at the end of
the west arm.

The measure of behavior in this paradigm is again binary (correct
versus incorrect choice), so the change-detecting algorithm used the
X test to assess the evidence that the frequency of correct choices
after a putative change point was different from the frequency
before.

Fig. 114 shows the cumulative correct choices for three of the 11
subjects. These are the solid lines plotted against the left axis of each
panel. The small circles superposed on these lines are the change
points found with a sensitive decision criterion (logit = 1.7, corre-
sponding to a P value of 0.02). The heavy dashed lines plot the
slopes between these change points against the right axis of each
panel. These slopes are the probabilities of a correct choice. The
end of the 20-trial pretraining period is indicated by a thin vertical
line. The chance level of performance is indicated by a thin dashed
horizontal line at 0.33 (right axis).

For most subjects, acquisition was abrupt and early. When we
used the 1.7 decision criterion (P < 0.02), the median first fraction
was 0.88 (0.90 when we used a still more sensitive decision criterion
of 1.3, which corresponds to P < 0.05). The median dynamic
interval was one trial. In 7 of 11 rats, the first positive increment in
the probability of correct choice was >80% of the asymptotic
increment. In the early sessions, some rats (notably, R814) did not
adjust at first to the midsession reversal in the baited location,
whereas others adjusted to this from the outset.

The majority of subjects began to choose correctly immediately
after the end of pretraining: the first above-chance increment in
correct choice probability was localized to within = 5 trials of the
end of pretraining in 6 of 11 rats (7 of 11 when we used logit = 1.3).
This variability in the estimated change point reflects mostly the
errors inherent in estimating exactly when the change occurred. Our
procedure does not deliver a confidence limit for this estimate, but
because the errors were as often negative as positive, that is, the
change point was often located in the pretraining phase, where it
could not in fact have fallen, we assume that all these changes in fact
occurred at the start of the training phase, when the bait location
first became predictable from trial to trial The first positive change
point was within one trial of the first (east-west) reversal of bait
location in one rat and within four trials of the beginning of the
second training session in three rats.

In summary, what one sees in this appetitive spatial conditioning
paradigm is one-trial learning. More often than not, the learning
occurred on the first trial on which it could occur. In any case, what
varied was not the gradualness with which correct choices emerged
but rather the latency of the step-like appearance of an asymptotic
level of correct choice. The data are consistent with the assumption
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Fig. 11. Spatial learning. (A) Three examples of cumulative correct choices in a
plus maze (solid curves, plotted against the left axes) as a function of elapsed
trials, with significant change points superposed (small circles). The slopes be-
tween the change points (heavy dashed lines) are plotted against the right axes
(probability of correct choice). The chance level of performance (0.33) isindicated
by the thin dashed lines. The thin vertical line at Trial 20 indicates the end of the
pretraining period, during which the bait was randomly relocated from trial to
trial. Data were from D. Smith and S. Mizumori. (B). Three examples of cumulative
efficiencies for mice in a water-maze paradigm. The efficiency is the straight line
distance from the point of placement to the platform divided by the distance
swum. For reference, each plot also has lines with slopes equal to the group mean
on the first trial and the group mean + 2 SE.

that the subject notes the location on each trial and decides at some
point that it is predictable from trial to trial.

Water-Maze Learning in the Mouse. In the water-maze paradigm, the
subject is placed in a random location and orientation in a circular
bath filled with opaque water, with a platform located somewhere
just beneath the surface of the water. If it swims to the platform, it
can stand on it. The platform must be discovered by random
swimming on the first trial, but it remains in the same location on
subsequent trials. With repeated trials, mice and rats learn to swim
to it more directly. The paradigm is widely used in tests of the effects
of genetic manipulations on spatial learning.

We applied our analytic procedures to data on the water maze
learning of nine mice, kindly provided by R. Han and L. Matzel
(Rutgers, The State University of New Jersey). On the first 30 trials
of training, they videotaped the mice swimming until they reached
and remained on the platform. From the tapes, they computed the
efficiency of the mouse’s swim, which is the straight-line distance
between where it was placed and the platform divided by the
distance the mouse swam in getting to and standing on the platform.
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Fig. 11B shows the cumulative efficiency records for three of the
mice; the best, the median mouse, and the worst. For comparison,
each record shows a line with a slope equal to the mean efficiency
of all nine mice on the first trial (when they could not know where
the platform was). It also shows a second (dashed) line with a slope
equal to twice the SE of this mean. From this result, it can be seen
that all mice achieved a greater efficiency than would be expected
from the first-trial performance of the group. However, there were
striking individual differences, and these differences were apparent
from the outset. Some mice did much better than others.

These records were analyzed for change points by using the ¢ test,
with a decision criterion of 2.0 (P < 0.01). Most mice only had a
single upward change point. There were three cases with two
successive upward steps, but in two of them, the second upward step
was followed by a downward step. In other words, there was no
gradual improvement in the performance of any of these mice.
Their performance went abruptly to asymptote. In short, these
results are consistent with the previously ventured generalization:
the learning of a spatial location generally requires but a single
experience. Several trials may, however, be required to convince the
subject that the location is predictable from trial to trial.

Discussion

The Nature of Learning. The change in conditioned behavior that
occurs in the course of a typical conditioning experiment does not
extend over many trials. Conditioned behavior commonly makes its
appearance abruptly, going from its initially measured level to
approximately its final level in the span of 1-10 trials.

The psychometric function for the detection of a light flash under
optimal circumstances in the human observer undergoes 80% of its
rise over an interval of ~0.5 common log units of light intensity
(17). The psychometric function for the detection of a tone em-
bedded in noise undergoes 80% of its rise over of an interval of ~0.9
common log units increase in sound intensity (18). By comparison,
the median learning curve in pigeon autoshaping undergoes 80% of
its rise in the span of a 0.15 log unit increase in training duration.
Thus, the transition from the initial response level to vigorous
responding in many conditioning experiments is more abrupt than
the transition from undetectable to perfectly detectable in sensory
threshold experiments.

The purely empirical conclusion that the typical learning curve
undergoes most of its rise in the span of a few trials is not consistent
with the totality of the following common theoretical assumptions:
(i) underlying the appearance of simple learned behavior is the
gradual strengthening of one or more associative connections; (if)
the relation between associative strength and number of reinforce-
ments obeys, at least to a first approximation, first-order kinetics:
it grows rapidly at first and then more slowly, approaching an
asymptote exponentially; and (i) measures of the strength of the
learned response reflect this growth over an appreciable range of
associative strengths. In other words, gradations in the behavioral
measures reflect gradations in the underlying associative strengths.
If all three of these assumptions were true, then individual acqui-
sition curves would look like the group-average curve in Fig. 1, but
they do not; they look like the curves in Fig. 4. Therefore, one or
more of these assumptions is likely to be wrong. In this section, we
consider alternatives to them.

One alternative is that learning is not associative, even in simple
Pavlovian appetitive and aversive conditioning paradigms. From an
information-processing perspective (16, 19-22), learning is the
extraction from experience of information about the world, which
is carried forward in memory to inform subsequent behavior. On
this view, the brain computes from the information carried forward
in memory the value of decision and control variables. A condi-
tioned response appears when the value of the relevant decision
variable exceeds a decision criterion (threshold). Once sufficient
experienced has accrued so that the subject has decided to respond
to the CS, the value of the decision variable is irrelevant to
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subsequent performance. Other variables, some experience-
dependent, some not, determine the vigor of the postacquisition
(postdecision) responding.

From an information-processing perspective on learning, the
appearance of conditioned behavior is likely to be abrupt, for the
same reason that psychometric functions in stimulus detection
experiments are abrupt. Decision variables, unlike associative
strengths, reflect the strength of the evidence that a behaviorally
relevant state of the world actually obtains (for example, the
strength of the evidence that the CS reliably predicts reinforce-
ment). The strength of the evidence may be an accelerating function
of the amount of experience. In this information-processing view,
the abruptness of the onset of conditioned behavior is jointly
determined by the steepness of this function as it crosses the
decision threshold, the noise in the decision variable and the noise
in the threshold. If the signal-to-noise ratio in the vicinity of the
decision criterion is of the same order of magnitude as the derivative
(slope) of the decision variable as it crosses the decision criterion,
then conditioned responding will appear at full strength within the
span of a few trials.

Within the associative framework, one can accommodate the
step-like nature of the learning curve in individual subjects in at
least two ways. One can assume that the underlying process of
association formation is itself step-like. There is precedent for this
in the older verbal learning literature (5, 23, 24), where it was shown
that learning to recall a given word in a list of repeatedly presented
words occurs in an all-or-nothing manner. This result led quite
naturally to the assumption that the formation of an association was
all or none.

However, the assumption that associative connection is all or
nothing has no currency in the literature on animal learning and the
neurobiology of learning. It requires, among other things, that one
abandon the notion of a rate of learning, which is commonly
understood to be the magnitude of the increment in associative
strength on a reinforced trial normalized by the difference between
the pretrial associative strength and the maximum possible strength.

Alternatively, one can continue to assume that simple condi-
tioned behavior is mediated by the gradual, negatively accelerated
increase in the strength of an underlying associative connection (or
connections) but that performance factors prevent our observing
this in the behavior itself. It is commonly and plausibly assumed that
there is a behavioral threshold, below which an associative connec-
tion has no behavioral manifestation. Furthermore, the behavioral
manifestation of a given increment in associative value may trans-
late into different behavioral changes depending on where one is on
a performance function (25, 26). It is also plausible that there is a
behavioral saturation level for associative strength, a level above
which further increases in associative strength produce no further
increase in the vigor, rate, or probability of a conditioned response.
The question then is whether the behavioral threshold and the
saturation level are sufficiently far apart for any appreciable range
of associative strengths to be manifest in a range of behavioral
strengths. The narrow dynamic intervals that predominate in the
individual learning curves analyzed here imply that the behavioral
threshold and the saturation level are so close together that a
negligible portion of the function relating associative strength to
number of reinforcements is visible.

Under these narrow-window assumptions about the perfor-
mance function, the common associative model becomes similar
in important respects to the information-processing model.
There is in both an underlying quantity that grows with experi-
ence until it crosses a threshold, above which its value is
behaviorally irrelevant. The conclusion that the performance
function (the narrow distance between threshold and saturation
levels) makes only a negligible portion of the associative growth
function behaviorally visible implies that neither the form nor
the parameters of the underlying growth function may be
estimated even approximately directly from the behavioral
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learning curve. Because, by assumption, the asymptote, if any, of
the underlying function lies above the behavioral saturation
level, the asymptotic strength of the measured behavior does not
depend on the asymptote of the growth function. In other words,
asymptotic behavioral strengths do not provide even an ordering
of the underlying associative strengths. The latency to behavioral
onset is similarly uninformative. It may be increased or de-
creased either by raising or lowering the narrow behavioral
window, by decreasing or increasing the rate of learning (the
steepness with which the underlying growth function rises), or by
increasing or decreasing asymptotic associative strength. The
implications of this conclusion for the interpretation of results
from experiments that look for genetic or pharmacological
effects on the rate of learning are unpalatable. From the learning
curve alone, it would not seem possible to distinguish effects on
performance factors from effects on association formation.

None of these conclusions will surprise some students of animal
learning, who have generally ignored the effects of training vari-
ables on the learning curve in favor of designs that compared the
effects of various treatments on the asymptotic level of behavior.
However, these designs rarely test whether behavior has in fact
attained an asymptote, and they often rely on the assumption that
asymptotic strength and rate of acquisition covary and that the
ordering of asymptotic behavioral strengths indicates the ordering
of underlying associative strengths. Our analysis shows that none of
these assumptions is empirically justified.

The Elusive Asymptote. We have referred repeatedly to the behav-
ioral asymptote, and we often made use of an estimate of it in our
analyses, while at the same time, presenting evidence that throws
doubt on the existence of an asymptote in the strict sense. Strictly
speaking, a performance asymptote exists only if there is a stable
value to which performance approaches arbitrarily closely as one
extends training for arbitrarily many trials. The performance of
many subjects in many different paradigms appears never to attain
an asymptote in that sense. Rather, it appears to fluctuate irregu-
larly. The postacquisition instability of conditioned behavior would
be consistent with the presence of substantial 1/f noise in these
repeated behavioral measurements. This kind of variability, is
ubiquitous in repeated behavioral measurements (27). The fin 1/f
noise refers to the frequency parameter in a Fourier analysis of the
sequence of behavioral measures. The inverse of the frequency is
the period of an oscillation, the number of trials, or the temporal
interval required for a complete oscillation. In 1/f noise, the
amplitude of the oscillation, how far it diverges from its mean value,
is proportional to the period of fluctuation. Thus, long-lasting
variations in performance are large; indeed, the longer lasting they
are, the larger they are. In data, with 1/fnoise, there is no asymptote
in the strict sense. Moreover, estimating the mean about which the
data fluctuate is complicated by the fact that the longer the period
of the fluctuations one observes, the larger are their amplitudes.
Thus, extending the period over which the mean is estimated may
not improve the estimate. There may be no alternative to the kind
of rough-and-ready estimate we have used.
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Implications for Good Practice. The group-average learning curve
confounds three independent parameters of individual learning
curves, onset latency, dynamic interval, and asymptote. From the
group-average curve, it is not possible to determine which of these
parameters differs between the groups, or even if there are con-
sistent differences.

The methods we have elaborated in these analyses show how to
improve the common practice. Whatever is measured on each trial,
it possible to produce from it a cumulative record, by computing
trial by trial the cumulative (running) sum. When plotted, this
cumulative record allows one to see at a glance the onset latency,
the abruptness or gradualness of the approach to asymptote, and
the asymptotic level (terminal slope), if there is one. A dozen or
more cumulative records can be plotted on a single graph (Figs. 2
and 10). Thus, it is possible to lay the plots for the subjects in the
control and experimental groups side by side or one above the
other, giving a visually comprehensible, information-rich presen-
tation of the data from every subject in every group. The algorithm
for computing change points and the slopes between them trans-
lates what the viewer sees into a representation of the record, from
which summary statistics are easily computed. The algorithm is
included in the supporting information, which is published on the
PNAS web site.

The obvious summary statistics are the onset latency (the number
of trials to the first change point), the dynamic interval and the first
fraction (measures of the abruptness of the behavioral transition),
some measure of the notional asymptote, and possibly, also, a
measure of the postacquisition stability of the behavior. An exam-
ple of the latter would be the maximum difference between
postacquisition slopes (rates), divided by the notional asymptote.
This measure gives an indication of the amplitude of prolonged
postacquisition fluctuations in behavior.

Conclusion

The acquisition of conditioned behavior is probably not always
abrupt. However, the range of data analyzed here establish a
presumption of abruptness. In most cases, the learning curve for
individual subjects may be assumed to rise from the level seen in the
naive subject to a level characteristic of a well trained subject in <10
trials (indeed, often in a single trial). The postacquisition level of
responding often shows large, prolonged fluctuations. Additionally,
there is no consistent correlation between the latency to the onset
of conditioned behavior and its subsequent vigor.

Given the abruptness with which conditioned behavior appears
and the lack of consistent correlation between latency, abruptness
and asymptote in the individual curves, the group-average learning
curve cannot give a meaningful measure of rate of learning. The
best measure of would appear to be the latencies to the onset of
responding.
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