
The Learning of Control
Concepts Using
Interactive Tools

JOSÉ SÁNCHEZ,1 SEBASTIÁN DORMIDO,1 FRANCISCO ESQUEMBRE2

1Department of Computer Sciences and Automatic Control, Spanish National University for Distance Education, Madrid, Spain

2Department of Mathematics, University of Murcia, Murcia, Spain

Received 24 January 2003; accepted 20 July 2004

ABSTRACT: This paper discusses the creation of interactive computer simulations

that implement virtual laboratories in the field of Control Engineering education. Easy Java

Simulations (Ejs, http://fem.um.es/Ejs/), a Java-based tool that helps create interactive

dynamic simulations, is introduced. This tool can be used on its own, generating stand-

alone Java applications or applets, or in conjunction with Matlab/Simulink, using them as the

internal engine that describes and solves the model. We describe in this paper this particular

feature in detail, and provide some examples that show the advantages that this tool offers to

the world-wide engineering education community. Ejs is a freeware, open source, tool aimed

for educators with low profile in programming but deep knowledge on certain technical and

scientific fields. The tool allows to develop complete, interactive simulations in three steps:

describing the mathematical model (optionally using Matlab/Simulink), building the user

interface using off-the-shelf graphical elements, and connecting certain properties of these

elements to the variables of the model. This last step is the key point to transform a classical

simulation into a full interactive application. �2005Wiley Periodicals, Inc. Comput Appl Eng Educ 13:

84�98, 2005; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20033

Keywords: control education; interactivity; web-based simulation; virtual laboratory;

dynamic picture; interactive module

INTRODUCTION

It is easy to realize, while flying through any book on

control engineering, that most of the ideas, concepts,

and methods in this topic, are so rich in visual content

that they can be represented and manipulated intui-

tively and geometrically (root locus, Bode diagrams,

Nyquist, and Nichols plot, to name a few). Actually,

many of the basic ideas in automatic control often arise

from very specific and visual situations. Visualization,

thus, appears naturally in the origins of automatic

control, in the discovery of new relationships among

mathematical objects, and in the transmission and

communication of the knowledge. One of the most

Correspondence to J. Sánchez (jsanchez@dia.uned.es).
Contract grant sponsor: Spanish CICYT; contract grant

numbers: DPI2001-1012, DPI2004-01804.
Contract grant sponsor: Fundación Séneca, The Center for

Coordination of Research of the Region of Murcia, Spain.

� 2005 Wiley Periodicals Inc.

84



important tasks for teachers in control engineering is

to transfer to students not only the formal and logic

structure of the discipline but also the strategic and

intuitive aspects of the subject [1].

The use of interactive multi-windowed computer-

aids in instruction (interactive modules) is particularly

significant because it provides practical insight into

control system fundamentals. In essence, an inter-

active module in control education is a collection of

graphical windows whose components are active,

dynamic, clickable; and that is intended to explain

just a few concepts [2]. Students can change any

active element in the graphical interface and an

immediate recalculation and dynamic presentation

automatically starts. This way, students perceive

instantly how their modifications affect the system

behavior.

Interactive modules make possible an early intro-

duction of concepts such as linearization, effects of

non-linearities, integrator windup, effects of time

delay, and others. At the same time, they allow for

demonstration of design iterations interactively. For

example, a pole on a lead�lag network may be dragged

on a root locus plot using the mouse and the effect on

the transient response displayed instantly. Hence,

design iterations using classical methods (root locus,

Bode) and modern methods (pole-placement, LQG,

H1) may be carried out and demonstrated in an

instructive fashion. The use of interactive and instruc-

tional graphic tools would reinforce active participa-

tion of students. For educators, interactive modules

can provide a very useful way to testing control princi-

ple ideas and how difficult it is to get a particular

control concept across to students.

Furthermore, the student has an excellent oppor-

tunity to ‘‘experiment’’ with his/her own ideas in terms

of engineering design by simple interaction with the

tool. Interactive modules cannot only be effective in

presenting engineering concepts in the classroom but

also beneficial in extending students experience in

analysis and design assignments. This invitation of

creativity can be most useful when it comes to speci-

alized control engineering student projects.

Many good lessons can be extracted from similar

experiences in other disciplines. An outstanding

example comes from the field of Physics, namely

Physlets [3,4]. Physlets (Physics applets) are simple

(just dealing with one facet of a phenomenon), small

(easy downloadable across the network), web-

oriented (developed in Java), scriptable animations.

They are also free for non-commercial use. Thanks

to all these attributes, this collection of animations

allows an easy integration of the computer into the

classroom. Even better, the tool helps build a world-

wide community of physics instructors generating

free educational resources.

Obviously, it would be desirable to make a trans-

lation of the Physlets strategy to the control engi-

neering educational community, but this community

presents some peculiarities. As a consequence of the

high impact of the control engineering in the industry,

there exist many high-priced, commercial tools that

are used to design and simulate control systems. In

particular, the Matlab/Simulink environment has been

considered a de facto standard for this community.

During the last years, several free and worthy educa-

tional applications have been developed using this

tool or, directly, generic programming languages

(Java, VisualBasic, Cþþ), with more or less use of

interactivity and graphics [5�8]. The unique state-

ment in which all control engineering instructors seem

to agree is that the programming of instructional soft-

ware using commercial tools is a very time-consuming

activity, and high programming skills are required to

develop helpful applications. This statement can be

extended, even with more strength, to the develop-

ment of virtual and remote labs.

In this paper, we introduce Easy Java Simulations

(Ejs), a tool that can help address this problem.

Originated also for the teaching of Physics, the tool is

being adapted to serve the needs of control engineer-

ing education. Thus, the tool can be considered as a

timely first step for the community in control educa-

tion in the way of adopting a Physlets-like approach

in order to be on the brink of the new pedagogical

tendencies as Physics instructors are trying to do.

The article organizes as follows. We first discuss

the use of a new approach in the design of control

systems for instruction, that is, using interactivity as a

tool to involve students in their learning process. Next,

we provide a general introduction to Ejs. Finally,

we discuss the features of Ejs that can be of special

interest for control engineering educators. In parti-

cular, we describe in full detail how Ejs works in con-

nection with Matlab and Simulink, illustrating the

procedure with the help of two concrete examples.

The Interactive Approach in
Control Engineering

According to Skogestad and Postlethwaite [9], a control

designer (teacher, engineer, or student) must fulfill the

following procedure in order to design a suitable

control system for a plant:

1. Study the plant to be controlled and obtain

initial information about the control objectives.

2. Model the plant and simplify the model, if

necessary.

CONTROL CONCEPTS USING INTERACTIVE TOOLS 85



3. Analyze the resulting model; determine its

properties.

4. Decide which variables are to be controlled

(controlled outputs).

5. Select the control configuration.

6. Decide on the type of controller to be used.

7. Decide on performance specifications, based

on the overall control objectives.

8. Design a controller.

9. Analyze and if the specifications are not

satisfied, modify it or the type of controller.

10. Simulate the resulting controlled system, either

on a computer or pilot plant

11. Repeat from step 2, if necessary.

12. Choose hardware and software and implement

the controller.

13. Test and validate the control system, and tune

the controller on line, if necessary.

It can be observed that if the design of the control

system leads to unsatisfactory results of the simula-

tions (step 10), we would be forced to go back to step

2 and proceed to repeat steps 2 to 10, analyzing them

one-by-one. The approach of Skogestad and Post-

lethwaite to design a control system using traditional

tools can be considered a ‘‘non-interactive approach.’’

This is due to the fact that it is not possible to know

the consequences of the decisions taken during the

design process until we are very near the end (step 11),

just before the final hardware implementations. This

situation produces that the same steps must be repeat-

ed over and over in order to correctly tune the design

parameters, making this a very time-consuming activity.

This is a direct consequence of the non-existence of a

real-time link between the design and the analysis

phases, preventing the designer from appreciating the

gradient of change in the performance criteria given

for the elements he/she is manipulating.

If there were such a real-time connection or link

between the decisions taken during the design phase

and the results obtained in the analysis phase, both

phases could be merged in one. In this new approach,

decisions taken in some steps would show on-the-fly

the differences between the simulation results and the

original control specifications fixed in step 1. It would

not be necessary to iterate so many times across every

step trying to tune the parameters.

But this proposed link to merge analysis and design

can be brought to existence if we give interactivity the

central role that it deserves in the development of new

software tools for control education. Nowadays, the high

performance of current computers, the advanced object-

based programming tools and methodologies, and the

staggering computer graphic capabilities allow us to

design control applications in which any modification of

the system parameters has a real-time translation in the

graphical visualization of the system response (Fig. 1).

This new approach is known as interactive design [10].

In such a high-interactive system, several graphic

windows are updated immediately, reflecting the value

of every active element, and the constraints among

them. This lets us establish a reactive behavior among

all active components of the system, hiding the

underlying mathematical basis. Every change in the

values of system parameters has a dynamic repercus-

sion in the system response. Since a good design

usually involves multiple control objectives using

different representations (time domain or frequency

domain), it is possible to display several graphic

windows that can be updated simultaneously during

the manipulation of the active elements.

Furthermore, interactive design with instanta-

neous performance display let us go beyond. In many

cases, it is not only possible to calculate the position

of a graphic element (be it a curve, a pole, or a

template) from the model, controller or specifications,

but also calculate a new controller from the position of

the element. For instance, a closed loop pole can be

computed by calculating the roots of the characteristic

polynomial, itself based on the model and controller;

and the controller parameters can be synthesized from

the set of closed loop poles if some conditions on the

degrees are fulfilled [11].

Consequently, the control designer could appreci-

ate the impact of his/her actions in the system’s

behavior in a glimpse and from different perspectives.

The designer can identify the bottlenecks of the de-

signs in a very easy way and can attempt to work them

out. But, what is probably even more important, he/

she cannot only identify the effect of the manipulation

Figure 1 Outlines of the non-interactive (a) and inter-

active (b) approaches. [Color figure can be viewed in

the online issue, which is available at www.interscience.

wiley.com.]

86 SÁNCHEZ, DORMIDO, AND ESQUEMBRE



of a design parameter displayed, but its direction and

amplitude also become apparent. The gradient of the

change flashes and opens the mind of the designer.

Ictools and CCSdemo [12,13], developed at the

Department of Automatic Control at Lund Institute of

Technology, and SysQuake at the Institut d’Automá-

tique of the Federal Polytechnic School of Lausanne

[14,15] are good examples of this new educational

philosophy for teaching automatic control. Very signi-

ficant didactic interactive modules developed using

SysQuake can be found in References [2,16�18].

Figure 2 shows an example of how this new way of

interactive control education provides practical insight

into control systems fundamentals, in this case, to

explain the ‘‘aliasing’’ phenomenon. This is an inter-

active module in the sense mentioned earlier, and

when the student manipulates some active element in

the Figure, the new result is automatically produced.

All these previous examples are mainly intended

for the explanations of mathematical concepts in

control theory. They help students figure out the

relationships and constraints among different para-

meters of a system which is, in many cases, rather

difficult to visualize just observing the equations in

the book. Another type of interactivity-based control

applications have raised during the last years, allowing

a more qualitative approach to the control of different

plants (Fig. 3 shows an example of this). These

applications focus on the user interaction with

realistic models of different systems with either many

control strategies or controllers. They let users know

how the systems will react in certain situations, thus

becoming very useful qualitative teaching/training

systems for learning how to deal with certain cases.

These environments help instructors bring the theo-

retical concepts (basically quantitative) to the practical

world (more qualitative and intuitive), bridging the gap

between both worlds. Examples of such interactive

modules are described in References [6,19�22].

However, the construction of these virtual labs

has to cope with the same drawbacks that the theory-

focused interactive modules: programming skills and

developing time, being the last a direct consequence

of the first one. Usually, the control engineering

teacher is a scholar in the control field, not in pro-

gramming languages, methods, and techniques. He/

she knows how to use different modeling and simu-

lation environments, but these tools are not oriented

Figure 2 Interactive module to explain the ‘‘aliasing’’ [2]. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]

CONTROL CONCEPTS USING INTERACTIVE TOOLS 87



to the development of dynamic pictures from the

perspective of the interactive design. To make an

extensive use of interactivity with these tools requires

a non-trivial effort or the programming task becomes

very tricky and extensive. Therefore, it seems clear

that the academic control community demand a tool to

develop interactive modules: instructional simulations

with low programming cost, interactivity as the main

feature, and as low as possible an economic cost.

Why Is not Ejs Just Another Tool to Develop
Interactive Modules?

Ejs is a software tool that helps create dynamic, inter-

active scientific simulations in Java language [23]. Ejs

falls in the category of code generators. This means

that users need to provide the most relevant core of the

simulation’s algorithm and the tool automatically

generates a whole lot of extra code needed to create

the complete interactive simulation. What makes Ejs

special in this category is that it has been conceived by

teachers and for teachers (and students) which are

more interested in the understanding of the simulated

phenomena that in the computer specific aspects.

The tool uses an original simplification of the

successful model-view-control software paradigm,

and structures simulations in two main parts: model

and view. The model is what conveys the scientific

part of the simulation and is thus the responsibility

and the main interest of the target user. Most teachers

are usually able (or can easily learn) to describe

physical phenomena in terms of mathematical equa-

tions and to translate these into algorithms of a

computer language, or by means of high-level tools

such as Matlab/Simulink. The main objective when

creating the model of a simulation is to concentrate in

the analytical description of the phenomena, the

content and the accuracy of the simulation. However,

the creation of the necessary graphical user interface

(that is, the view) is the part of the simulation that

demands more knowledge of advanced programming

techniques. This activity can lead to long searches in

reference manuals looking for the right library and

graphical routines. And, to make the situation even

worse, the addition of interactivity to this interface

involves mastering sophisticated software techniques

(such as event-handling or multitasking). All this

requires a big investment of time and effort (Fig. 4).

Ejs helps its users through both tasks. While

retaining the flexibility of a general programming

language, so that it is possible to specify almost any

type of algorithms, the tool provides extensive

scaffolding for the model. Thus, the user follows a

guided sequence of steps in which he/she defines the

model by

(a) declaring the variables that describe the system,

(b) initializing these variables to a correct initial

state, and

(c) writing the algorithms that state how the value

of these variables change in time or under user

interaction.

This last step consists in translating the mathema-

tical equations or physical laws that govern the

phenomenon under study into computer algorithms.

Sometimes, though, the actual implementation of these

algorithms can be a difficult task. For this reason, Ejs

provides two extra conveniences. The first one is a

built-in editor and solver for systems of ordinary

differential equations (ODE). The user writes his/her

equations in a way much similar to what he/she would

write on a blackboard, and the system automatically

Figure 3 Advanced control of a distillation column

using an interactive approach [21]. [Color figure can

be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Figure 4 Building a simulation with Easy Java

Simulations (Ejs). [Color figure can be viewed in the

online issue, which is available at www.interscience.

wiley.com.]

88 SÁNCHEZ, DORMIDO, AND ESQUEMBRE



generates the code that numerically solves the system

using one of several of the provided standard

algorithms. An illustrative interactive module on the

quadruple-tanks process that uses this feature can be

found in Reference [22]. The second facility is a

connection to Matlab/Simulink that lets users specify

and solve their models with the help of these tools. This

option is described in detail in the next section.

To create the view, Ejs provides a set of advanced

graphical elements (see Fig. 5), which build on top of

both standard Java Swing components (containers,

buttons, text fields, sliders, combo boxes . . .) and on

specific scientific two- and three-dimensional visua-

lization classes from the Open Source Physics project

[24] (particles, vectors, images, vector and scalar

fields . . .). These element are used in a simple drag-

and-drop way to build the interface. The user needs to

design the view so that it will offer a visualization of

the phenomenon appropriate to the desired pedagogi-

cal goals. In particular, the view should encourage

students to explore the phenomenon under different

perspectives in order to gain a better understanding of

the system.

To complete the view, its different elements have

to be instructed to display on the screen according to

the values of the variables of the model. Every graphic

element of Ejs has certain internal values, called

properties, that can be customized to make the element

look and behave in a particular way (change its

displayed value, position, size . . .). The user can then

connect the properties of the graphical elements of the

view to the value of the different model’s variables.

Some of these properties can also be instructed to

trigger user-defined actions (typically routines defined

in the model) when the user interactively changes

them. This procedure, which we call linking the model

and the view, is what turn the simulation into a real

dynamic, interactive application. This mechanism

conforms a simple, though very effective, way of

designing and building advanced interactive user

interfaces.

The reason for this is that linking is a two-way

connection. When one or more variables of the model

change, this change is passed on to the view so that it

immediately displays the new state of the model.

Also, because the elements provided have built-in

interactive capabilities, any interaction of the student

with the interface immediately affects the model vari-

ables that have a connection to it. For example, let us

imagine an Ejs simulation of the control level of a

tank. The tank and the water inside it are represented

in the view by means of two colored rectangles. If the

dimensions of the tank are modified by dragging with

the mouse the corners of the outer rectangle, the

variables representing the tank width and height in

the analytical model will reflect this change (thus

affecting the dynamic of the system). Similarly, if the

water level changes as consequence of the model’s

evolution, the visible height of the rectangle will

change to show the current water level.

With all this high-level information, which only

the user can provide, Ejs takes care of all the low-level

procedures needed to create the final simulation. It

will generate the Java code that handles all the internal

tasks, compile it into Java classes, pack the classes in a

compressed file, and end up with a ready-to-use

simulation. Simulations created using Ejs can be used

as stand-alone applications under different operating

systems (for instance, a.BAT file is provided when

running under Windows), or be distributed via Internet

and run as applets within HTML pages (which are

also generated by Ejs) by using any Java-enabled web

browser. The tool also includes a simple HTML editor

to help the teacher enhance the generated web pages

with pedagogical information and/or instructions for

the simulation.

Using Matlab/Simulink With Ejs:
A First Example

We now turn to the description of one of the features

of Ejs that can be of most interest to control engineer-

ing educators. As we said above, users can choose to

specify and numerically solve their models using their

own algorithms, with the help of Ejs built-in ODE

editor and solvers, or (and this is the option we discuss

now in detail) using Matlab/Simulink, if they have it

Figure 5 Library of graphical elements of Ejs. [Color

figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

CONTROL CONCEPTS USING INTERACTIVE TOOLS 89



installed in their computers. (Actually, Ejs allows the

user to use the three of these options at the same time,

taking care of all the internal calls in order to run and

synchronize the simulation properly.) This means that

a simulation created with Ejs can

(a) call any Matlab function (either built-in or

defined in an M-file) at any point in the model

and

(b) run external Simulink models.

Developers can then insert Matlab code in an

Ejs application to make calculations in the Matlab

workspace. But also, the model of a system can be

completely or partially developed using just Simulink

block diagrams. In this last situation, Ejs can just be

the tool that will help create the view of the simulation,

i.e., the visualization and user interface for the

Simulink model. This process has been made as

simple as possible. Once a Simulink simulation has

been selected in Ejs as part of the model, all the

Simulink variables can be accessed from Ejs and be

associated to regular variables. So, developers can

link them to the graphical elements like regular Ejs

variables. When running the simulation, Ejs will auto-

matically take care of running the Simulink model and

of the two-way exchange of information between the

model and the view (on the side of Ejs) and the Matlab

workspace.

Let us illustrate this procedure by means of an

example taken from the list of demo applications

included in Simulink standard distribution. It consists

of an interactive simulation of a two-dimensional

pendulum formed by a bob of fixed mass that is

suspended from a rod (of negligible mass) under the

action of gravity. When the bob is displaced from the

stable equilibrium state (the lower vertical position

with zero initial velocity), gravitational forces tend to

recover the original position. In the absence of friction,

the movement observed is called simple harmonic

motion. The differential equation that model the

simple pendulum is:

x00 ¼ F � l� c� x0 � m� g� sinðxÞ
m� l

ð1Þ

Figure 6 shows the view of the application developed

with Ejs using Matlab/Simulink as the simulation

engine. This application allows users a total inter-

activity with the simulated pendulum. It can be easily

appreciated that there are different elements that help

change many of the parameters of the system (the

mass of the bob, gravity, friction coefficient, integra-

tion step). In addition, the graphical representation

of the pendulum is highly interactive as well. It is

possible to modify the rod length, the initial angular

position, and velocity just by clicking with the mouse

the bob and the velocity vector and dragging them.

In this way, every system parameter is under control.

Users can use the mouse, as our hand does picking up a

true pendulum’s bob and dropping it, and create many

different experiments changing gravity and friction

and observing the results in the display and on the

attached plot.

However, the most relevant features of this

example is that Matlab/Simulink is running at the

background. Figure 7a shows the original Simulink

block diagram implementing the differential equation

Figure 6 View of the interactive module developed by Ejs. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]

90 SÁNCHEZ, DORMIDO, AND ESQUEMBRE



above. Three steps are required in order to use an

existing Simulink model within Ejs.

The first step consist in doing some changes to the

original Simulink model. These changes are necessary

because Simulink models are (obviously) created to

be run within Simulink. But, since communication

between Simulink and Ejs goes through Matlab’s

workspace, we first need to change the Simulink

model so that it sends/receives the value of some of its

variables and parameters to/fromMatlab’s workspace.

The second change comes from the fact that Simulink

models are usually played and paused by the user

through Simulink’s user interface. Hence, the model

must be changed so that it stops after each integration

step. This way, Ejs can control exactly when the

model needs to play. The final change (though not

compulsory) is to remove from the Simulink block

diagram any visualization of the state, since Ejs will

most likely take care of all our visualization needs.

Figure 7b shows the resulting block diagram, after we

modified it to run in connection to Ejs.

It can be seen in Figure 7 that system parameters

have been adapted to be read from Matlab’s work-

space: rod length, bob mass, gravity, friction, initial

angular position, and velocity, integration step. Also,

the block diagram has been slightly modified so that

it will write the simulation state in the Matlab’s

workspace (time, position, and velocity) after each

iteration.

The second step that we need to connect the

Simulink model to Ejs is the creation of a simple

Matlab M-file. This M-file provides Ejs with basic

information about the model, and the variables and

parameters that can be accessed across the Matlab’s

workspace. Figure 8 shows the M-file that we created

for this example.

The syntax for this text file is rather easy. The

value of the variables has to be defined and initialized

in Matlab language, that is, as if this file were to be

used as a typical Matlab M-file. (Actually, the file

will be executed before playing the Simulink model.)

However, what enables Ejs to read and access these

variables is the special comment at the end of each

line. This comment starts with the keyword ‘‘Ejs’’

immediately after the Matlab begin-of-comment char-

Figure 7 Original and modified Simulink block

diagrams. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.

com.]

Figure 8 M-file pendulum.m to connect Simulink and Ejs.

CONTROL CONCEPTS USING INTERACTIVE TOOLS 91



acter ‘‘%.’’ The keyword must be followed by one of

the following words: Model, Variable, or Parameter.

* Model is used to tell Ejs the name of the

Simulink file that describes the model.
* Variable provides Ejs with the description of a

variable of the Simulink model. Avariable can be

declared to be accessible for reading, writing,

or both. If no modifier is indicated, the variable

can be freely accessed and Ejs will take care of

synchronizing its value with the associated Ejs

variable before and after the Simulink model

runs. If declared as InputOnly, however, Ejs will

understand that the variable is not to be changed

by the Simulink model and will always force its

value to whatever it is within Ejs. In our example,

gravity and the initial conditions are input-only

variables that will be fixed by the user though

the simulation interface. Finally, if declared as

OutputOnly, Ejs will read the variable after the

Simulink model is run, but will not try to change

its value in the Simulink model. For instance,

the three state variables of the model are read-

only since they are the result of Simulink

execution after each integration step.
* Parameter declares variables that are defined

inside Simulink blocks. Ejs makes no distinction

between variables and parameters for computa-

tional uses. However, for technical reasons, the

comment for a parameter must include informa-

tion about the block or menu in which the

parameter is defined and used and the function of

this parameter within the block. In our example,

the integration step dt is declared to be the

general (that is, not defined within any block)

parameter maxstep since it is located in a dialog

panel of the Simulink menu bar.

The third and final step consists in connecting the

variables in Ejs model with the Matlab’s workspace

variables (that are in turn associated to variables of

the Simulink model). Figure 9 shows the variables in

Ejs for our example and how they are connected to

Matlab’s variables. Notice that we have chosen similar

(if not identical) names for both sets of variables.

Our Simulink model is now ready to be used. Ejs

will run the Simulink model whenever we insert the

Java sentence matlab.play (‘‘_matlab/pendulum.m’’);

in any suitable place, most likely in a page of the

evolution (Ejs’ main loop) section of Ejs. A call to this

method has the following effects:

1. The value of all Ejs variables, which are connect-

ed to a Matlab variable (except those declared as

OutputOnly) is pushed to the Simulink model.

2. The Simulink model is run exactly once.

3. The value of all Matlab variables which are

connected to Ejs variables (except those declared

as InputOnly) are retrieved from the Simulink

model.

We can now operate Ejs in the standard way in

order to build our desired view and link to it the

variables of the model in a form that suits our

pedagogical needs. Figure 10a shows the tree-like of

view elements that we chose for our view. Figure 10b

displays the table of properties for the graphical

element that represents the pendulum’s bob.

Finally, it is worth noting that Ejs is capable of

running more than one Simulink model from within

one single simulation. This is simply done by creating

two or more separate pages of variables, each with a

suitable M-file, and connecting the Ejs variables to the

corresponding Matlab variables. When the system

runs, Ejs will take care of opening as many Matlab

sessions as needed and of managing all connections.

A more detailed explanation of the development of

Ejs applications using Matlab/Simulink can be found

in Ejs documentation. This example of the simple

pendulum and more are included in Ejs standard

distribution available at http://fem.um.es/Ejs/.

A Second Example: A MIMO System

In this second example, we use Ejs to build a simu-

lation that explains the use of SISO techniques in

MIMO control. The example covers the use of com-

pletely decentralized control as a mechanism for

Figure 9 Ejs table of variables showing the connection

to Matlab’s variables. [Color figure can be viewed in the

online issue, which is available at www.interscience.

wiley.com.]

92 SÁNCHEZ, DORMIDO, AND ESQUEMBRE



directly exploiting SISO methods in a MIMO setting.

This approach considers that interactions can be

treated as a form of disturbances. For example, if the

first output, y1(t) of a m � mMIMO plant is described

as:

Y1ðsÞ ¼ G11ðsÞU1ðsÞ þ
Xm
i¼2

G1iðsÞUiðsÞ ð2Þ

then the contribution of each input, other than u1,

could be considered as an output disturbance

G1i(s)U(s) for the first SISO loop. Whereas this

approach is incorrect from a formal point of view,

under certain conditions it can produce acceptable

results. In the example, we use a conventional multi-

loop control scheme consisting of a 2 � 2 process and

two feedback controllers [25]. Four transfer functions

of the two-input, two-output, plant are necessary to

completely characterize the process dynamics:

GðsÞ ¼ G11ðsÞ G12ðsÞ
G21ðsÞ G22ðsÞ

� �
ð3Þ

G11ðsÞ ¼
2

s2 þ 3sþ 2
G12ðsÞ ¼

k12

sþ 1
ð4Þ

G21ðsÞ ¼
k21

s2 þ 2sþ 1
G22ðsÞ ¼

6

s2 þ 5sþ 6
ð5Þ

where the coefficients k12 and k21 depend on the

operating point, and can determine the stability of

every individual control loop when the other loop is

opened. The transfer functions of the two feedback

controllers C1(s) and C2(s) are given by:

C1ðsÞ ¼
4:5ðs2 þ 3sþ 2Þ

sðsþ 4Þ C2ðsÞ ¼
1:5ðs2 þ 5sþ 5Þ

sðsþ 4Þ
ð6Þ

Another aspect to be taken into account in a decen-

tralized approach is the important practical problem

of how the controlled variables Yi and the manipu-

lated variables Ui should be paired in the multiloop

control scheme. A correct pairing is crucial since an

incorrect configuration can result in poor control

system performance and reduced stability margins.

In the 2 � 2 control system example, there are two

possible control configurations. In the first one, Y1 is

controlled by adjusting U1, while U2 is used to control

Y2. This configuration is referred as the 1-1/2-2

control scheme. The alternative strategy is to pair Y1
with U2 and Y2 with U1, configuration termed as 1-2/

2-1.

The method to be used to suggest pairings is the

relative gain array (RGA) developed by Bristol [26].

This approach requires only steady-state information

and provides two important items of information: a

measure of process interactions, and a recommenda-

tion concerning the most effective pairing of con-

trolled and manipulated variables. A detailed

explanation on the calculation of the RGA can be

found in Reference [27]. In our example, and

considering the system presented in Equation 2, the

RGA obtained is:

L ¼ l 1� l
1� l l

� �
¼

1

1� k12k21

�k12k21

1� k12k21

�k12k21

1� k12k21

1

1� k12k21

2
664

3
775

ð7Þ

In particular, one usually aims to choose pairings such

that the diagonal entries of L are large. One also tries

Figure 10 Elements for the view of the pendulum.

[Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]

CONTROL CONCEPTS USING INTERACTIVE TOOLS 93



to avoid pairings that result in negative diagonal

entries in L. In our MIMO plant, for 1> k12> 0,

1> k21> 0, the RGA suggests that the 1-1/2-2 control

scheme must be used.

To gain further insight into the stability problem,

it is necessary to calculate the characteristic equation

of both control schemes: 1-1/2-2 and 1-2/2-1. The

transfer function of closed-loop system can be

organized in matrix form as:

Y1ðsÞ
Y2ðsÞ

� �
¼ Iþ GðsÞCðsÞð Þ�1

GðsÞCðsÞ
R1ðsÞ
R2ðsÞ

� �

CðsÞ ¼
C1ðsÞ 0

0 C2ðsÞ

� �

ð8Þ

where G(s) changes according to the pairing. Thus,

for the 1-1/2-2 configuration G(s) is the same as

in Equation 3, but in the 1-2/2-1 control scheme

G(s) is:

GðsÞ ¼ G12ðsÞ G11ðsÞ
G22ðsÞ G21ðsÞ

� �
ð9Þ

Hence, the characteristic polynomial d(s) of both

configurations are:

d1�1=2�2ðsÞ ¼ s6þ10s5þ51s4þð148� 6:75k12k21Þs3

þð259� 47:25k12k21Þs2

þð234� 108k12k21Þsþ 81ð1� k12k21Þ
ð10Þ

d1�2=2�1ðsÞ ¼ s6 þ ð4:5k12þ10Þs5

þð36k12þ1:5k21þ 8:25Þs4

þð6:75k12ðk21þ3:5Þ
þ 0:5ð6:75k21þ20ÞÞs3

þð2:25k12ð5:25� k21þ11Þ
þ 9:75k21 � 16:25Þs2

þð27k12k21þ9k12þ9k21 � 40:5Þs
þ 81k12k21 � 81

ð11Þ

where k12 and k21 determine the stability of the closed-

loop system. In this way, it is possible to establish

stability regions for specified values of k12 and k21.

Clearly, the development of an interactive application

using this MIMO plant (or others) with two SISO

controllers will allow to change the operating points

on-the-fly and measure the process interactions be-

tween loops and how sensible is to modify the pairing.

After this brief on the theoretical background of

the application, the first step to start the design of our

Ejs application using Simulink is to create the block

diagrams for the system and the plant. These are

shown in Figure 11.

It can be appreciated in Figure 11a that the block

diagram is already adapted to be controlled from Ejs.

The variables to be read from the workspace are the

references (variables r1 and r2) and the disturbances

(variables disturb1 and disturb2). The information

sent back to the workspace after each integration step

are the plant outputs (variables y1 and y2), the two

control actions (variables u1 and u2), the two error

signals (variables error1 and error2), and the time.

Notice that the block diagram is adapted to pair inputs

and outputs by means of four switch blocks controlled

by a variable named pairing. Therefore, modifying

the value of this variable from Ejs, and hence in the

workspace, the structure of the system is changed, and

so, the pairing of inputs and outputs is made. The

block diagram has also been modified to open or close

the loops from the workspace by changing the value of

the open1 and open2 variables.

It is important to notice in Figure 11b that the

coefficients k12 and k21 are the numerators in the G12

and G21 blocks, respectively. Figure 12 shows the

Matlab file needed to tell Ejs how to interact with the

Simulink model through Matlab’s workspace. Please

notice how the comments on k12 and k21 tell Ejs their

precise locations and functions in the diagram.

The view of the final Ejs application is shown in

Figure 13. It is composed of several windows to get a

complete control of the decentralized control system.

The main window (upper-left corner) allows users to

play the simulation, to change the value of some

variables, to open/close information panels, to choose

the type of control in each loop (automatic or manual),

and to pair inputs/outputs according to the informa-

tion of the RGA panel (lower-right corner). The four

signal scopes of the plot panel (lower-left corner) let

users appreciate the effects of interactions in the two

control loops with the SISO design. The relevant

detail of the control parameter panel is the possibility

of changing interactively the values of k12 and k21 just

by dragging the red dot in the diagram with the mouse.

Obviously, any change either the k’s or the pairing will

produce changes in the stability of the system, and

that will be shown in the characteristic polynomial

roots panel of the closed-loop system. Thus, all these

panels visualize on-the-fly how sensible it is to pair

the inputs with the outputs in function of the k’s values

and under which conditions the closed-loop system is

stable.

In addition, the application allows to study some

robustness issues in decentralized control using a

diagonal nominal model. In this case, Matlab is in-

structed from the application to draw the picture of the

94 SÁNCHEZ, DORMIDO, AND ESQUEMBRE



Figure 11 Simulink model of the decentralized control architecture (a) and MIMO

plant (b). [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

CONTROL CONCEPTS USING INTERACTIVE TOOLS 95



singular values of the system (middle-right corner in

Fig. 13). This is possible because the view has been

designed so that it will call a user-defined method

every time the k’s values are changed interactively.

This user-defined method includes a Java statement of

the form _matlab.eval(mFile); that evaluates an M-file

that contains all the Matlab sentences required to

plot the singular value response of a continuous-time

system. In this simple way, all of Matlab’s powerful

graphic capabilities can also be used interactively

from within simulations created with Ejs.

CONCLUSIONS

Examining the state of the art in interactivity-

based didactic applications for control engineering it

is clear that they are a step behind other scientific

fields, as for example, Physics. The control engineer-

ing field is, however, a discipline very well suited

for the use of interactivity as a way to reinforce

the study of many theoretical concepts. But, until now,

the biggest part of computer-based education on

control has been conducted using basic theoretical

tutorials, most of them featured for the static of their

contents.

Figure 12 M-file mimo.m to connect Simulink and

Ejs.

Figure 13 Full view of the Ejs application. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

96 SÁNCHEZ, DORMIDO, AND ESQUEMBRE



In control engineering, the relationships among

the variables of a system are accurately and clearly

defined by mathematical language, but its visualiza-

tion is complicated for students. This is not a simple

mental exercise. It is true that there are many mathe-

matical packages to program these relationships and

thus to observe the results of changing some param-

eters of the system, but these tools are mainly oriented

towards a non-interactive approach composed of two

stages: design and analysis. That is, students have to

afford many iterations with the tool to appreciate the

level and sense of the change in some parameters.

Moreover, such a static approach does not always

facilitates the global view of the relationships among

the variables of the system. The amount of data that a

static approach can produce and the number of

iterations needed to obtain them make it difficult to

students to build a mental scheme of the interactions

among the components of the system. In these cases, a

qualitative and conceptual view of the system can be a

better approach to lead students to a deeper under-

standing of the system.

However, the control engineering teacher is an

expert in his/her subject but not in programming

techniques. The development of interactive didactic

applications is not so easy with the typical tools that a

control engineering teacher uses to explain concepts,

as for example, Matlab/Simulink. At the same time,

there are many commercial tools designed to create

animations and multimedia but, in general, scientific

simulations cannot be created with them because they

make a poor or inexistent use of the mathematical

language to define the system to model.

Ejs is a tool that can be the first in the colonization

of this no-man’s land. It should be considered as a first

step in the development of further and more advanced

tools intended for control engineering educators with

some knowledge of programming, not for advanced

programmers with little knowledge of control and

modeling. Ejs has been conceived for people who are

more interested in the content of the simulation, the

simulated phenomenon itself, and much less in the

technical aspects needed to build the simulation.

Hence, Ejs provides a conceptual structure and simpli-

fied tools that allow concentrate most of the time in

the description of the model of the system to simulate.

To help assist educators in the field of control-

engineering, Ejs has been extended so that it can be

used in conjunction with Matlab/Simulink, a de facto

standard in control engineering. Inspired in the model-

view-control software paradigm, Ejs facilitates the

creation of the user interface, and Matlab/Simulink let

teachers develop the model using the language they

are familiar with.

After examining the state of the art in other dis-

ciplines, it is clear that an exciting taskmust be accom-

plished to improve the computer learning experience

in the control engineering curriculum. New interactive

modules for concepts in control systems have to be

developed, and new tools must arise. From the ex-

perience obtained with the creation of the first such

ones, new ideas to design the second generation must

flourish.

REFERENCES

[1] B. S. Heck (Ed.), Special report: Future directions in

control education, IEEE Control Systems Mag 19

(1999), 35�58.

[2] S. Dormido, The role of interactivity in control

learning [Plenary lecture], Proceedings of the 6th

IFAC Symposium on Advances in Control Education,

Oulu, Finland, 2003, pp 11�22.

[3] W. Christian and M. Belloni, Physlets: Teaching

physics with interactive curricular material, Prentice

Hall, Upper Saddle River, NJ, 2001. See also http://

webphysics.davison.edu/applets/applets.html.

[4] W. Christian and M. Belloni, Physlet1 physics:

Interactive illustrations, explorations, and problems

for introductory physics, Upper Saddle River, NJ,

2004.

[5] R. C. Garcia and B. S. Heck, Enhancing classical

control education via interactive GUI design, IEEE

Control Systems Mag 19 (1999), 77�82.

[6] D. Cooper and D. Fina, Training simulators en-

hance process control education, Proceedings of the

American Control Conference, San Diego, CA, 1999,

pp 997�1001.

[7] I. Benyo, G. Lipovszki, and J. Kovács, Advanced

control: Simulation tools in labview environment,

Proceedings of the 6th IFAC Symposium on Advances

in Control Education, Oulu, Finland, 2003, pp

275�279.

[8] J. P. Keller, Interactive control system design, Proceed-

ings of the 6th IFAC Symposium on Advances in

Control Education, Oulu, Finland, 2003, pp 365�370.

[9] S. Skogestad and I. Postlethwaite, Multivariable feed-

back control: Analysis and design, Wiley, New York,

1996.

[10] S. Dormido, Control learning: Present and future,

Annu Rev Control 28 (2004), 115�136.

[11] S. G. Crutchfield and W. J. Rugh, Interactive learning

for signal, systems, and control, IEEE Control Systems

Mag 18 (1998), 88�91.

[12] M. Johansson, M. Gäfvert, and K. J. Åström,

Interactive tools for education in automatic control,

IEEE Control Systems Mag 18 (1998), 33�40.

[13] B. Wittenmark, H. Häglund, and M. Johansson,

Dynamic pictures and interactive learning, IEEE

Control Systems Mag 18 (1998), 26�32.

[14] Y. Piguet, SysQuake: User Manual, Calerga, 1999.

CONTROL CONCEPTS USING INTERACTIVE TOOLS 97



[15] Y. Piguet, U. Holmberg, and R. Longchamp, Instanta-

neous performance visualization for graphical control

design methods, Proceedings of the 14th IFAC World

Congress, Beijing, China, 1999.

[16] S. Dormido, M. Berenguel, S. Dormido-Canto, and P.

Rodrı́guez, Interactive learning of constrained general-

ized predictive control, Proceeding of the 6th IFAC

Symposium on Advances in Control Education, Oulu,

Finland, 2003, pp 201�206.

[17] N. Tan, D. P. Atherton, and S. Dormido, Systems with

variable parameters: Classical control extensions for

undergraduates, Proceedings of the 6th IFAC Sympo-

sium on Advances in Control Education, Oulu, Finland,

2003, pp 287�292.

[18] J. Salt, P. Albertos, S. Dormido, and A. Cuenca,

An interactive simulation tool for the study of multirate

sampled data system, Proceedings of the 6th IFAC

Symposium on Advances in Control Education, Oulu,

Finland, 2003, pp 45�50.

[19] Y. Piguet and D. Gillet, Java-based remote experi-

mentation for control algorithms prototyping, Proceed-

ings of the American Control Conference, San Diego,

CA, 1999, pp 1465�1469.

[20] C. Schmid, A remote laboratory using virtual reality on

the web, Simulation 73 (1999), 13�21.

[21] J. Sánchez, F. Morilla, S. Dormido, J. Aranda, and

P. Ruipérez, Virtual control lab using Java and Matlab:

A qualitative approach, IEEE Control Systems Mag 22

(2002), 8�20.

[22] S. Dormido and F. Esquembre, The quadruple-tank

process: An interactive tool for control education,

Proceedings of the European Control Conference,

Cambridge, UK, 2003.

[23] E. Esquembre, Easy Java Simulations: A software tool

to create scientific simulations in Java, ComPhysComm

156 (2004), 199�204. See also http://fem.um.es/Ejs.

[24] W. Christian, The open source physics project. http://

www.opensourcephysics.org.

[25] C. G. Goodwin, S. F. Graebe, and M. E. Salgado,

Control system design, Prentice Hall, Upper Saddle

River, NJ, 2001.

[26] E. H. Bristol, On a new measure of interactions for

multivariable process control, IEEE Trans Automatic

Control 11 (1966), 133�134.

[27] D. E. Sebor, T. F. Edgar, and D. A. Mellichamp,

Process dynamics and control, Wiley, New York, 1988.

BIOGRAPHIES

José SánchezMoreno received his computer

sciences degree in 1994 from Madrid Poly-

technic University and his PhD in sciences

from UNED (Universidad Nacional de Edu-

cación a Distancia, Spain) in 2001. Since

1993, he has been working at UNED

Department of Computer Sciences and Auto-

matic Control as an assistant professor. His

current research interests are the design of new systems for control

education, virtual labs, telepresence, and the use of the internet in

education.

Sebastián Dormido holds a degree in

physics from the Complutense University in

Madrid, Spain (1968), and a PhD from

University of The Basque Country, Spain

(1971). In 1981, he was appointed professor

of control engineering at the Universidad

Nacional de Educación a Distancia. His

scientific activities include computer control

of industrial processes, model-based predic-

tive control, robust control, and model and

simulation of continuous processes. He has authored and co-

authored more than 150 technical papers in international journals

and conferences. Since 2002, he has been president of the Spanish

Association of Automatic Control CEA-IFAC, where he promotes

academic and industrial relations.

Francisco Esquembre received the PhD

degree in mathematics in June 1991 from the

University of Murcia, Spain, where he has

worked since 1986, holding a permanent job

as assistant professor since 1994. His aca-

demic expertise includes differential equa-

tions, dynamical systems, and numerical

analysis. He currently teaches at the Uni-

versity of Murcia, and his research includes

computer assisted teaching and learning as

well as simulation of scientific processes for didactical purposes.

98 SÁNCHEZ, DORMIDO, AND ESQUEMBRE


