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The Least Mean Fourth (LMF) Adaptive 
Algorithm and Its Family 

EUGENE WALACH AND BERNARD WIDROW, FELLOW, IEEE 

Abstract-New steepest descent algorithms for adaptive filtering and 

have been devised which allow error minimization in the mean fourth and 

mean sixth, etc., sense. During adaptation, the weights undergo exponential 

relaxation toward their optimal solutions. Time constants have been de- 

rived, and surprisingly they turn out to be proportional to the time 

constants that would have been obtained if the steepest descent least mean 

square (LMS) algorithm of Widrow and Hoff had been used. The new 

gradient algorithms are insignificantly more complicated to program and to 

compute than the LMS algorithm. Their general form is 

W 
J+l 

= w, t 2plqK-lx,, 

where W, is the present weight vector, W, + 1 is the next weight vector, r, is 

the present error, X, is the present input vector, u is a constant controlling 

stability and rate of convergence, and 2 K is the exponent of the error being 

minimized. Conditions have been derived for weight-vector convergence of 

the mean and of the variance for the new gradient algorithms. The behavior 

of the least mean fourth (LMF) algorithm is of special interest. In 

comparing this algorithm to the LMS algorithm, when both are set to have 

exactly the same time constants for the weight relaxation process, the LMF 

algorithm, under some circumstances, will have a substantially lower weight 

noise than the LMS algorithm. It is possible, therefore, that a minimum 

mean fourth error algorithm can do a better job of least squares estimation 

than a mean square error algorithm. This intriguing concept has implica- 

tions for all forms of adaptive algorithms, whether they are based on 

steepest descent or otherwise. 

I. INTRODUCTION 

M ANY signal processing problems such as plant 
modeling, noise canceling, channel equalization, etc., 

can be represented in the form depicted in Fig. 1. Shown is 
a linear plant which can be represented by the polynomial 
transfer function P(z), whose output is corrupted by addi- 
tive independent zero-mean noise nj. Our aim is to find, 
preferably in an adaptive iterative way, a plant model 
P(z). This can be done by minimizing a certain statistical 
measure of the error ej. Usually the minimization is done 
in the mean square sense, i.e., one minimizes the expected 
value of the square of the error E [e,“]. This choice of 
performance measure is usually due to its utility, simplic- 
ity, and relative ease of analysis. Nonmean-square error 
criteria have appeared in the literature, generally in the 
context of analysis of Gaussian processes [l]-[4]. 

In this paper we consider the more general problem of 
minimizing E[cfK] for K = 1,2, . . . . Assuming that the 
noise nj is independent of the input signal x,, it is easy to 
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Fig. 1. Block diagram of adaptive plant modeling 

see that the optimal solutions for the problem of Fig. 1 will 
be the same for all the choices of integer K 2 1. Namely, 

E[cjK] isminimal CJ P(z) =$(z). (1) 

The choice of any particular K, however, will influence the 
performance of the adaptive algorithm employed in order 
to find the solution (1). 

In this paper we consider the steepest descent LMS 
(least mean square) algorithm of Widrow and Hoff which 
is probably the simplest and most widely used. In Section 
II we reintroduce briefly well-known formulas which govern 
the behavior of the “conventional” LMS algorithm. In 
Section III we derive an extension of the Widrow-Hoff 
algorithm which enables us to minimize E[cfK] for K 2 1. 
Then we analyze the performance of this new algorithm. 
The LMS case can, of course, be viewed as a particular 
case of the general algorithm for K = 1. Based on this 
analysis, we show that for certain problems the choice of 
K > 1 is considerably advantageous over the “conven- 
tional” choice of K = 1. Section IV is dedicated to the 
special case of the LMF algorithm (i.e., algorithm which 
minimizes the mean fourth of the error cj, with K = 2). 
Computer simulations are presented to illustrate the poten- 
tial advantages of the new algorithm. 

II. THE LMS ALGORITHM 

Consider the schematic structure pictured in Fig. 2. This 
is a more detailed version of the plant modeling scheme of 
Fig. 1. The adaptive plant model p(z) is built of a tapped- 
delay line of length n. We assume that n is equal to the 
order of the plant P(z) so that if all the weights WT = 

(WI,’ * -> w,) of the adaptive model were frozen at the 
proper values ( W*)T = (w:; . ., w,*), then the model k(z) 
will match exactly the transfer function P(z) of the plant. 
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Fig. 2. Schematic structure of the tapped-delay-line used for plant 
modeling. 

It is clear that 

P(z) = wl* + w2*zp1 + w3*zp2 + * * * + wn*zen+l. (la) 

Subsequently we will assume that the input xj and the 
plant noise nj are independent of each other. Moreover we 
will assume that both xj and nj are distributed symmetri- 
cally around zero (i.e., all the odd moments of xj and nj are 
equal to zero). 

, &eferring to Fig. 2, the system error at thejth moment ej 
can be found as 

cj = dj - WjTXj = nj +( W*)=Xj - WjTXj = nj - qTXj, 

(2) 

where 

Xi’ = (Xj' Xj-1,'. .,Xj-n+l) (3) 

represents the vector of the last n samples of the input 
signal, 

WJT= (wlj>w2j>‘**>w~j) (4) 

denotes the current values of the adaptive weights and 

F$=W$-W* (5) 

represents the difference between the current adaptive 
weight vector and the optimal solution. This is the weight 
vector error. Adaptation is done by moving, at each itera- 
tion, a certain small step in the direction opposite to the 
current estimation of the gradient. 

The Widrow-Hoff algorithm uses an instantaneous 
estimation of the gradient of E[rj]: 

v(c;) = -2cjxj. (6) 

Hence the adaptation rule is 

y+1 = wj + 2/5x,. (7) 

then the mean of the weight vector Wj will converge from 
any initial guess to the optimal solution W*. Assuming 
that vectors I$ and Xj are independent of each other, the 
weight vector error I$ will obey the matrix equation 

q y+1] = (I- WP[ v;l (9) 

where R is the autocorrelation matrix of the input signal 

R = E[XjXj=]. (10) 

Hence there will be, generally, it different modes of conver- 
gence and n different relaxation time constants for the 
weights given by 

(11) 

where&, i = l;.. , n, represent the eigenvalues of R. 

After convergence, the system error ej comes close to 
being equal to the plant noise n,. However, due to ‘the 
noise in the estimate (6) of the gradient, the weights of the 
model will be also noisy. Therefore the system error power 
will be higher than the optimal (Wiener) power E [nf]. It is 
of interest to consider the ratio between this excess mean 
square error and the optimal error power. This dimen- 
sionless ratio is called misadjustment M. It was shown in 
[5] that 

M = pnE[xf] = ptr(R). 

Substituting (11) into (12) yields 

(12) 

(13) 

Clearly, the adaptive algorithm performs better if the 
m&adjustment is lower. However, the time constants ~~ 
cannot be increased indefinitely because eventually the 
adaptive algorithm will lose its ability to react to the 
possible fluctuations in the parameters of the plant. n is 
equal to the fixed order of the plant. Therefore we will be 
able to compare the efficiency of various algorithms by 
measuring the corresponding misadjustment for the given 
values of the time constant r and the plant order n. 

III. MODIFIED STEEPEST DESCENT ALGORITHM 

In this section we will extend the Widrow-Hoff algo- 
rithm in order to be able to minimize E[cfK] for arbitrary 
choice of K = 1,2, * * . . We can estimate the instantaneous 
gradient as follows. The instantaneous error, given by (2), 
is raised to the 2K power and differentiated with respect to 
the weight vector fVj. The instantaneous gradient is there- 
fore 

The constant p controls stability and rate of convergence. 
The behavior of this algorithm has been analyzed exten- 

v($+) = -2K+-lXj. , (14 

sively in the literature (see, for instance, [5]). It was shown Using this gradient, the new adaptation rule will be 
that if the adaptation constant p was chosen such that 

05) 
1 

y+1 = Wj + 2pKrjK-lXj. 

’ < ’ < nE[xf] ’ 
(8) Examination of expression (15) shows that if the pro- 

posed algorithm converges (E[ wj+ i] = E[ I$$]), then the 
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point of convergence must obey the equation 

E [ c;“‘Xj] = 0. (16) 
Substituting (2) into the above, 

E [ ( dj - FV,‘X,)‘“-‘X,] = 0. (17) 
For K = 1 (conventional LMS case) the system of (17) is 

linear in wj and has only one (optimal) solution. Gener- 
ally, however, (17) constitutes a system of n polynomial 
equations of degree 2 K - 1 in n unknowns w,, i = 1,. . . , n. 
One has to consider the possibility of convergence to a 
local minimum. However, the mean of the error to the 2K 

power is a convex function of the weight vector and 
therefore cannot have local minima. Indeed the Hessian 
matrix of the error-to-the-2K-power function can be shown 
to be positive definite or positive semidefinite. The basic 
argument is presented by Gersho [4]. 

Next we derive conditions for convergence of the mean 
for K 2 1. We will prove that E[ I$] + 0. We will limit our 
analysis, here, to the relatively simple case of small devia- 
tions from the Wiener solution when the weight error 
vector 5 is close to zero. A more general convergence 
proof is presented in the Appendix, where the stronger 
question of convergence of the variance is demonstrated. 
We begin by subtracting the optimal (Wiener) solution 
from both sides of (15). Accordingly, 

V 
/+I 

= v/ + 2pK~;~-lX/. 

Substituting (2) into (18) yields 

08) 

5+1 = q+ 2j.&Xj c (‘1_,,‘( 2Ki l jn$(-X~~)2xp1p’). 

(19) 
Since we assumed that 5 is close to zero, we can neglect 
the impact of terms on the right side of (19) which include 
high powers of 5. Hence 

l$+1 = v/ + 2pKXJ(n?K-’ -(2K - l)nfK-‘Xjr’I$). 

(20) 

Take expectations of both sides of (20). We have assumed 
that nj is independent of Xj. For small p we can assume 
that nj is independent of I$’ Therefore the second term on 
the right side of (20) will vanish under expectation. Hence 

E[ q+1] = (I - 2pK(2K - ~)E[T$~~~] R)E[ 51, 

(21) 

where R is positive definite input autocorrelation matrix 
defined by (10). Denote 

!d L I - 2pK(2K - 1) E [ n;Kp2] . R. (22) 

‘5 is independent of r~, only when n, is white. However, for small 
values of p we can assume that V, is determined, mainly, by long past 
samples n, _ A, which are not correlated with the current value of I,. In 
such a case, relations between n, and PJ are weak, and they can be viewed 

as two independent random variables (see also [5] and [6]). For the simple 
case of K = 1, more rigorous proofs of convergence which do not assume 
independence of 5, n, and V,, also exist (see [7] and [S]). 

Substitution of (22) into (21) yields 

E[T+,] =WE[y]. (23) 

Since R was assumed to be positive definite, we can choose 
an adaptation constant p 

’ < ’ < K(2K - I)j[nf”e2] y,, ’ 
(244 

where 

Y max A maximal eigenvalue of R , (24b) 

so that all eigenvalues of the matrix Q will have absolute 
values smaller than 1. For choice of p in accord with (24) 
the normal form factorization will be 

.A* 

6 2 sup& < 1, i = l;+*,n; AA* = I. (25) 

Now we are able to evaluate the impact of each iteration 
on the weight vector q. Denote by u,+, the norm of the 
vector E[y+,]: ’ 

_I 

(26) 
From (23), (25) and (26) we can find 

/ 
6: 0 

u,+~ = E[c;“]A ‘.. A*E[ y] I S2uJ. (27) 

\O 4f 

The recursive inequality (27) shows that the adaptation 
process will cause the convergence E[ F$] + 0, i.e., algo- 
rithm (15) will provide an unbiased estimate of the Wiener 
solution. 

In order to complete the convergence analysis of algo- 
rithm (15) we have to show that the variance y.‘y also 
converges; in fact we show that for some choices of p there 
exists a finite superior limit to E( 5’5). This is somewhat 
more complex than the proof of convergence of the mean 
presented above and has been deferred to the Appendix. 

Convergence of the mean is contingent, of course, on 
compliance with condition (24a). In practice this condition 
might be difficult to check. However, we can bound the 
maximal eigenvalue of a positive definite matrix by its 
trace, tr(R) = nE(xj), and thus find the easily applied 
sufficient condition for convergence of the mean of the 
new adaptive algorithm: 

’ < ’ < Kn(2K - 1)E[nTKe2 l ] .E[x;] . (28) 

Conditions for convergence of the variance are given in the 
Appendix. 

We proceed next to the evaluation of the time constants 
of the adaptive process. Once again we assume that the 
current weight vector guess is in the vicinity of the optimal 
solution, so that approximation (21) holds. Comparing (21) 
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to (9) it is clear that all the modified algorithms (K > 1) 

will behave in a way similar to that of the conventional 
LMS algorithm (K = 1). This means that, generally, there 
will be n different modes of convergence corresponding to 
the n different eigenvalues of R. Accordingly there will be 
n different relaxation time constants for the weights, 

1 

ri= 2pK(2K- 1)E[nTK-2]hi’ 
i = 1 ***,n. 

’ 

(29) 

Comparing (29) to (ll), it is clear that for arbitrary choice 
of K, the time constants will be proportional to the time 
constants of the LMS algorithm. This is a surprising result! 
What it means is that the time constants in the weight 
relaxation process when minimizing mean fourth error, for 
example, are proportional to the time constants of the 
weight relaxation process when minimizing mean square 
error. 

The last step in our analysis of the adaptive process (15) 
will be the evaluation of the misadjustment M(K). Since 
the misadjustment is defined only for the adaptive processes 
in steady state (after adaptive transients have died out), we 
can assume that the error vector 5 is small, close to zero. 
Therefore we can use once more the basic expression (20). 
Multiplying each side of (20) by the transposed form of 
itself yields 

y+15T1 

= (I - 2pK(2K - l)n;K-2XJXjT) 

. V&‘( I - 2pK(2K - l)n,2K-2XjX;) 

+4p2K2n~K-2XjXjT + 2pKnfK-’ 

.X,5*( I - 2pK(2K - l)n;“-“X,X?) 

+2pKr1,2~-‘(1- 2pK(2K - l)n;“-‘XjXJr)v,XJT. 

(30) 
The last two terms on the right side are multiplied by the 
odd degrees of the noise nj. Therefore, since nj was as- 
sumed to be independent of Xj and 5 (for small values of 
p) and its odd moments were assumed to be equal to zero, 
these terms vanish when we take expectations of both sides 
of (30). Hence 

“(y+lyL) 

= E( 55’) 

-2pK(2K - l)E [ nyKp2( X,X,‘F$y’ + v,~*x,x;“)] 

+4p2K2(2K - 1)2E[n;Kp4(XjX;~~TXjX:‘)] 

+ 4p2K2E [ nf”-‘XjXjT] . (31) 

For small p the third term on the right side of (31) can be 
neglected since for any I$ it will be small relative to the 
second term. Moreover, assuming that the algorithm has 
converged and is in steady state: 

E( I$+&) = E( qy’). (32) 

Hence 

-2pK(2K - l)E[ nTKe2( X,x,‘??’ + ~~*x~x~)] 

+4p2K2E [ n,““-“XjXJT] = 0. 

(33) 

Again using the assumption of independence of nj, Xj and 
5, (33) becomes a Lyapunov equation that has the unique 
solution: 

E[yy*] = 
pKE [ nqK-‘] 

(2K - 1)E[nfKp2] I* 
(34) 

Eq. (34) implies that the noises in the various weights are 
uncorrelated with each other. This conclusion holds for 
arbitrary K (for K = 1 this is a well-known feature of the 
LMS algorithm, see [5] and [6]). 

Now we evaluate the power of the additional noise at the 
system output due to noise in the weights. 

Since, according to (34), all the components uij of the 
vector I$ are uncorrelated with each other, we can neglect 
all the “cross terms” in the expression (35). Hence 

E[(~~x~)‘] = nE[ufj*xJ-i+l)2] = nE[u&]E[x?]. 

(36) 
Substituting (34) into (36) yields 

(37) 

Substituting (37) into the definition of the misadjustment 
M(K) we find for an arbitrary choice of K: 

M(K) = 
due~~~~~~oise) = E[ ( Y~X)‘] 

Wiener error J+Gl 
power 

= (2K - l)E[nj] E[nTKp2] . 
(38) 

Combining (29) and (38) yields 

E[n;“-‘1 

M(K) = 2(2K- 1)2+;](+jK-2]j2 j:$ (39) 

It is easy to see that expressions (8), (11) and (13) can be 
viewed as a special case of expressions (28) (29), and (39) 
for K = 1. Comparing various algorithms for K = 1,2, * . . 
and keeping corresponding time constants equal from one 
algorithm to another, we can define a(K), using (13) and 
(39), as 

M(1) 
a(K) A ~ = 

(2K - l)2E[n;](E[n;K-2]j2 

JWK) E[nJKp2] ’ 

(40) 
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TABLE1 
Valuesof a(K) FORSEVERALPROBABILITYDENSITIESFORPLANT 

NOISE nj 

GAUSSIAN UNIFORM SINE 
WAVE 

SQUX2E 

(4 

Fig. 3. Several probability densities for various forms of plant noise II,. 

The use of algorithms with K > 1 will be advantageous 
over the use of the conventional LMS when a(K) > 1. 
This means that lower misadjustment can be expected for 
the same speed of convergence when CX( K) > 1. 

The optimal choice of K can be determined when the 
moments of the plant noise nj are known, since a(K) only 
depends on these moments. A set of special probability 
densities for nj has been studied. These densities are pic- 
tured in Fig. 3. They have been selected for their practical 
importance, and they are shown in a logical ordering in 
Fig. 3. The Gaussian density is shown in Fig. 3(a), the 
uniform density in Fig. 3(b), the probability density of a 
sinusoidal signal is shown in Fig. 3(c), and that of a square 
wave is shown in Fig. 3(d). The corresponding values of 
a(K) are given in Table I for K = 1,2,3,4. 

IV. LEASTMEANFOURTHERRORALGORITHM 

This algorithm can be viewed as a special case of the 
general algorithm, analyzed in the previous section, for the 
choice of K = 2. The LMF algorithm is 

J+$+1 = Fq + 4$Xj. (41) 

Example I: If the plant noise nj is a random process 
uniformly distributed between fl then, from Table I, 
a(2) = 2.33. In this case, one can expect that the use of 
LMF algorithm will enable an improvement of about 3 dB 
over the LMS algorithm. There will be about 3 dB less 
noise in the weights for the same speed of convergence. In 
order to illustrate this case, a computer simulation was 
performed. The LMS and LMF adaptive algorithms were 
used to model the plant 

A(z) = 0.1 + 0.22-l + o.3z-2 + o.4z-3 + o.5z-4 

+O.~Z-~ + O.~Z-~ + 0.22~~ + 0.1~~~. (42) 

The input signal was white and of unit power. The plant 
output noise was simulated as a uniformly white random 
process of power 100. A ten-weight tap-delay line adaptive 
model was used. Two simulations were performed using 
exactly the same data, the first using LMS and the second 
using LMF. In each case the power of weight noise (aver- 
aged over the last 125 samples) was plotted versus the 
number of iterations performed. The adaptive weights were 
initialized by adding to each one of the weights of the plant 
itself random components drawn from a population having 
power equal to 0.56. Results of ten independent experi- 
ments were averaged. 

For the LMS algorithm the adaptation constant p was 
chosen to be 9 X 10e4, giving a theoretical time constant 
of - 550 samples. All time constants were equal because xj 
was white. After about two time constants the error power 
indeed decreased to its steady state value. The misadjust- 
ment was measured to be 0.959 x 10P2 (compared to a 
theoretical value of 0.9 X 10P2). 

For the LMF algorithm the adaptation constant was 
chosen to be 1.5 X 10P6. Hence, according to (29), the 
expected time constant was once again equal to 550. After 
about two time constants the error power decreased to the 
steady state value. But this time the n-&adjustment was 
only 0.445 x lop2 (theoretically, according to expression 
(39), the misadjustment should have been 0.386 X 10P2). 



280 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-30, NO. 2, MARCH 1984 

SIGNAL 
PRIMARY 

:1 
UTPUT 

INPUT 

El 

4DAPTIVE NOISE CANCELLER 

Fig. 4. Block diagram of adaptive noise canceler. 

As expected, for the given time constant, the LMF 
algorithm had about 3 dB less weight noise due to adaptiv- 
ity than the conventional LMS algorithm, giving about 3 
dB less excess mean square error. 

Example 2: Another important case of advantageous 
implementation of the LMF algorithm (or more generally 
implementation of algorithms for K > 1) is the one where 
the plant noise is deterministic rather than random. Such a 
situation is frequently encountered, for instance, when the 
adaptive system of Fig. 1 is employed for the purpose of 
noise canceling. In this case the formulation of the problem 
is somewhat changed. (Refer to Fig. 4). The adaptive noise 
canceler shown in this figure is identical to the adaptive 
plant modeling scheme shown in Fig. 1, and the same 
notation is used. In the system of Fig. 4, the “primary 
input” fj consists of the sum of the “signal” nj and a noise 
originating from the “noise” x, filtered by P(z). The 
“reference input” is the noise xj. The objective is to 
eliminate, if possible, the additive noise of the primary 
input to obtain the signal n, at the noise canceler “output.” 
The noise xj, correlated with the primary noise, is adap- 
tively filtered by P(z). Adapting P(z) to minimize the 
mean square of the error E] causes the noise canceler 
output, also ej, to be a best least squares estimate of the 
signal n,. The signal yj could be stochastic or deterministic. 
The concept of adaptive noise canceling is presented in [5]. 

Despite a changed interpretation in Fig. 4, the mecha- 
nism of the adaptive process remains the same as in Fig. 1. 
Hence we can still use the expressions developed in the 
previous section in order to evaluate the performance. For 
this example, let 

nj = acos(wj). (43) 

Accordingly, Table I shows that a(2) = 3.6. Therefore the 
LMF algorithm is expected to outperform the LMS algo- 
rithm by almost 6 dB in this case. 

The conditions used for the computer simulations were 
exactly the same as in the previous example except for the 
fact that n, was obtained from (43) for a = 106 and 
o = m/4. The performance of the LMS algorithm resulted 
in a r&adjustment of 0.892 X 10e2 (compared to the 
theoretical value of 0.9 X 10e2). For the LMF algorithm 

-I I I I I I I I I I I I I I I IAI I 11 xl25 
0 5 10 15 20 aclaptatlons 

Fig. 5. Learning curves for LMS and LMF algorithms with rectangu- 
larly distributed error. 

the misadjustment was only 0.26 x lop2 (theoretical value 
0.25 x 10P2) for the same time constant. 

Example 3: For this example, the configuration of Fig. 
4 is used. We let nj consist of randomly distributed samples 
of *a. Accordingly, Table I shows that a(2) = 9. In this 
case the improvement due to the implementation of the 
LMF algorithm is close to 10 dB! 

The results of the corresponding computer simulation 
are presented in Fig. 5. Once more exactly the same 
conditions were used as during the previous two examples; 
nj was a randomly distributed sequence of samples of 
amplitude f 10. (A square-wave nj would have given the 
same result.) For the LMS algorithm the misadjustment of 
0.960 x 10e2 was measured (compared to the theoretical 
value of 0.9 x lo-*). The lower curve in Fig. 5 corre- 
sponds to the LMF algorithm. The misadjustment was only 
0.099 x 10e2 (compared to the theoretical value of 0.1 x 

10e2) for the same time constant. 
All three examples have verified the following: 

a) that expressions (28), (29), and (39) for stability, time 
constants, and r&adjustment closely agree with the 
computer simulations of the performance of the 
steepest descent algorithms for K 2 1 for small values 
of adaptation constant p; 

b) that in certain important cases, the choice of K > 1 
enables considerable improvement of the perfor- 
mance of the adaptive algorithms. 

However, though potentially advantageous, the imple- 
mentation of “higher order error algorithms” requires a 
certain degree of caution. First of all it should be noted 
that in certain cases the choice of K > 1 might cause 
deterioration in the performance. For instance if nj is 
Gaussian then a(2) = (9/15) -C 1. Therefore in that partic- 
ular case, LMS will outperform LMF. 
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Even when a(k) > 1, the choice of large K is generally 
associated with decrease in the degree of stability of the 
algorithm for the given initial conditions.2 In some cases it 
might be advisable (if feasible from the computational 
point of view) to employ simultaneously both the LMS and 
LMF algorithms. Both algorithms could be designed to 
work with the same time constant. If the difference be- 
tween the errors of the two algorithms is low, then the 
LMF algorithm should be used to operate with the lower 
misadjustment. However, if the difference between the two 
algorithms exceeds a certain preprogrammed threshold, 
then a system controller will conclude that the LMF algo- 
rithm has gone unstable and lost track of the optimal 
solution. The controller will switch to the LMS, and the 
LMF algorithm will restart its adaptation using the current 
weights of the LMS process as an initial condition. Then 
the controller will switch back to using the LMF output. 

V. CONCLUSION 

A new family of algorithms was introduced to adjust the 
weights of an adaptive filter so that the expected value of 
the error to the degree 2K would be minimized. The 
concept of steepest descent was used as a basis. Hence all 
these algorithms can be viewed as an extension of the 
Widrow-Hoff LMS algorithm. 

The performance of the new algorithms was analyzed 
and it was shown that in certain cases the choice of K > 1 
will outperform the conventional LMS algorithm by a 
considerable margin. By “outperform” we mean less noise 
in the weights for the same speed of convergence. Exam- 
ples were presented in which the LMF algorithm performs 
better than the LMS algorithm by margin of 3-10 dB. Use 
of LMF is not universally indicated, however, for one case 
(Gaussian plant noise) presented showed LMS to outper- 
form LMF by about 3 dB. The best value of K can be 
chosen by using expressions (39) and (40). Simulation 
results were presented to illustrate and verify the theoret- 
ical results. 

The above analysis was limited to the steepest descent 
algorithms. However, the results obtained have even more 
general implications. Corresponding to the steepest descent 
LMS and LMF algorithms are the “exact” least squares 
algorithms [9]-[ll] and “exact” least fourth algorithms 
which are yet to appear in the literature. Minimization of 
the mean fourth error instead of minimization of mean 
square error can be shown to offer similar benefits (lower 

21n order to illustrate this fact, Example 1 was simulated with the 
choice of K > 2 and initial weight error increased 16 times. Theoretically, 
for uniformly distributed n,, a(K) = (4K - 1)/3. Hence, the misadjust- 
ment should decrease proportronally to K. Indeed, for K = 4 the misad- 
justment decreased to the 0.18 X 10e2. However, for the given initial 
conditions and K = 5 the algorithm “blew up.” Then the simulation was 
performed again, starting this time with lower initial error. This time the 
algorithm (for K = 5) converged without any difficulty. Hence, the choice 
of the optimal K must be a compromise between the best misadjustment 
(as defined by (39)) and convergence limits induced by the expected error 
in the initial conditions. 

estimation variance for the same amount of input data) $n 
similar cases when using “exact” algorithms. This will be 
the subject of a future paper. 
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APPENDIX 

Our purpose is to analyze the convergence of the variance of 
the LMS family of algorithms given by (15) (or (18)). It should be 
noted that generally (for K > 1) the convergence properties of 
LMF algorithms depend on the choice of initial conditions. Thus 
our stability analysis must be limited to a certain bounded 
domain D around the Wiener solution. Let D be a sphere of 
radius d 

“: E D 0 5’5 < d2. (Al) 

The radius d must be finite, although it can be chosen to be 
arbitrary large so that domain D will encompass all the possible 
choices of the initial position of the adaptation process. 

We will prove that for every finite D, there exists a nonempty 
range of adaptation constants p 

OI/.LI/.bLg 642) 

that inside D, each iteration decreases the variance of the weight 
error vector, i.e., 

limsupE[ FJ’q] = c(p), 
J-+00 

where c(p) is a finite scalar. Moreover we will show that for 
p + 0 the convergence point c(p) + 0. In addition we will 
develop an approximate evaluation of the stable range [0, p,,]. 
Our derivation will be based on the fundamental assumption that 
the sequences 5, n,, and Xj are independent random variables3 

Using (19) once more, the impact of each iteration can be 
evaluated from 

(A31 

Take expectations of both sides of (A3). These expectations can 
be done in two stages: assume first that VJ is given, then find 
conditional expectation of both sides of (A3). Then take expecta- 
tion over all possible VJ E D. Since n, was assumed to be 
independent of X, and 5, and to have zero odd moments, all 
terms on the right-hand side of (A3) which include an odd power 

3Strictly speaking this assumption is not realistic, however, it is widely 
accepted and used (see, for instance, [6]). For the simple case of K = 1, 
more rigorous proofs of convergence which do not assume independence 
of PJ, and X,, also exist (see [7] and [S]). 
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of n, will vanish under expectation. Hence the conditional expec- 
tation is 

EVJ yPj+,] 

= V,‘y - IpKE, ,[ ;g; (““,y 1)“‘.(X/p] 

+4p2KzE,[X;Xl( ‘g’i 2K; 1)n;(-Xjy)2K-1-i)j. 

For a bounded VJ, the last term on the right side of (A4) must 
also be bounded. Assume that Xj and n, have finite higher order 
moments. As such, we can find a positive scalar a so that for 
every I$ in the domain D, 

b-1 
Denote by Bj the following n x II dimensional matrix, 

B, A Eq[ yci (““,i l)n~i(x:v,)““-i-l’x,x~]. (~6) 

This matrix is positive definite for arbitrary VJ, assuming as 
before that R = E[X,X,T] is positive definite. Substitution of 
(A5) and (A6) into (A4) yields 

E,,[ vJT+lF$+l] -=c yT(Z - 4pKB,)v, + 4p2K2a. (A7) 

Moreover all the terms in (A6) are nonnegative definite matrices 
and thus for all VJ 

B, 2 CJ p (2K - l)E[ n;K-2] R, (A@ 

which is the i = K - 1 term in (A6). Hence we can find a 
positive scalar bmin such that for arbitrary 5 all the eigenvalues of 
B, will be greater than b,,. Furthermore, for arbitrary v/ E D, 
the maximal eigenvalue of BJ can be bounded by a certain scalar 
b max. Hence 

0 < bmin < 
i 

all eigenvalues of Bj 

for arbitrary y E D < bmax. (A9) 

Choose the adaptation constant ~1 such that 

(AlO) 

Then all the eigenvalues of the matrix 1 - 4pKB, will be positive 
but smaller than 1. Hence 

~‘(I- 4~KB,)~ < (1 - 4~Kb,in)~T~. (All) 

Substitution of (All) into (A7) yields 

E?[ V,T+lvJ+l] < (1 - 4pKbmin)QTF$ + 4p2K2a. (A12) 

Relation (A12) holds for every 5 E D. Therefore we can average 
it over all possible choices of C; E D: 

E[ F$&+I] < (1 - 4pKb,,,)E[ 5’51 + 4p2K2a. 

(Al3) 

Since (1 - 4pKbmin) < 1 from (AlO), E[ Y’V,] has to converge in 
the following sense 

(Al41 

Therefore if p was chosen small enough the upper limit of the 
variance (limited by (A14)) can be brought arbitrary close to zero. 

So far we have established that, subject to the assumptions 
stated above, there is a nonempty range of adaptation constant p 
in which algorithm (15) will converge inside the given bounded 
domain D. However, in practice verification of stability condition 
(AlO) might be quite cumbersome. Therefore it is useful to have a 
simple, practical approximation for finding the stable range of p. 
We will derive such a range based on the assumption of small 
deviations from the Wiener solution, i.e., 

Recall that (A3) and (A4) which describe the impact of itera- 
tionj on the variance of VJ. In the vicinity of the Wiener solution, 
when (A15) is true, we can neglect in (A4) all terms which depend 
on 5 to the power higher than two. Hence 

Ed [ Y,~,~,,] z 5’5 - 4pK(2K - 1) Ey [ njKp2( yITXj)‘] 

+4p2K2E,, [ XTXj( nT”-’ + (2K - 1) 

.(4K - 3)n, ‘y yTxj)2)]. Gw 

The product (vTXj)’ can be represented as q’X,X,TF$. Re- 
arranging the terms, and using once more the assumption of 
independence of Xj, I$, and n, , yields 

E~[$~v,+~] = V,TGPJ+4p2K2E[X~Xj]E[n~K-2], 

(Al7) 
where 

GaI-4pK(2K- l)E[n;“-‘]E[XjX;] 

+4p2K2(2K- 1)(4K- ~)E[~z;~~~]E[X;X,X,X;]. 

(Al@ 
By inspection of (A17), it is clear that convergence properties 
depend solely on the nature of the matrix G: the algorithm will 
converge if and only if the magnitudes of all eigenvalues of G are 
less than one. In order to evaluate the matrix G we will need an 
additional approximation: 

X,‘x, = const. = nE [ x;], (A19) 

which is quite reasonable for large values of n. Substitution of 
(A19) into (A18) yields 

G = I - 4pK(2K - l){ E[ niKp2] 

-pK(4K- 3)r~E[x;]E[n;~-~]}R. (A20) 

Since the autocorrelation matrix R is assumed to be positive 
definite, all eigenvalues of G will have absolute values smaller 
than one if and only if 

E[ n:K-2] 

Ox’< K(4K-3)nE[xj]E[njKm4] 
(fQ1) 

and 

1 - ym,4pK(2K - l)( E[ n;K-2] 

-pK(4K - 3)nE[ $1 E[ r~;~-~]) > -1 (A22) 

where ymax is the maximal eigenvalue of R. Condition (A22) will 
be always satisfied, regardless of the choice of p. Hence, (A21) is 
a sufficient condition for stability of the variance of the weight 
vector for small deflection from the Wiener solution. 
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It should be noted that use of stability condition (A21) is quite 
straightforward from a practical point of view, since only knowl- 
edge of input power and plant noise moments is required. 

In the derivation of the stability condition (A21), several 
simple assumptions were made: (A15) and (A19). In our experi- 
ence, however, this stability condition turned out to be quite 
robust and to provide an excellent approximation of the stable 
range of adaptation constant II. 
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Analysis and Performance Evaluation of an 
Adaptive Notch Filter 

BENJAMIN FRIEDLANDER, SENIOR MEMBER, IEEE. AND JULIUS 0. SMITH, MEMBER, IEEE 

Abstrct-An adaptive notch filter is derived by using a general predict- 

ion error framework. The proposed infinite impulse response filter has a 

special structure that guarantees the desired transfer characteristics. The 

filter coefficients are updated by a version of the recursive maximum 

likelihood algorithm. The convergence properties of the algorithm and its 

asymptotic behavior are discussed, and its performance is evaluated by 

simulation results. 

1. INTRODUCTION 

D 

ETECTION, estimation, and filtering of narrow-band 
signals in the presence of noise, are some of the most 

common problems in signal processing. In some applica- 
tions such as interference rejection and correlation process- 

ing, it is desired to remove the narrow-band signal compo- 
nents while leaving the broad-band energy unchanged. 
This can be achieved by passing the signals through a 
notch filter of the type depicted in Fig. 1, where the 
notches are centered on the narrow-band signals. 

When the frequencies of the narrow-band components 
are known, the design of such notch filter is straightfor- 
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Fig. 1. Transfer function of an ideal notch filter 

ward (Fig. 1). Standard time-domain and frequency- 
domain implementations are available [l]. A simple time- 
domain filter will have pole-zero pairs, with zeros located 
on the unit circle at the desired notch frequencies. The 
situation is more complicated when the narrow-band fre- 
quencies are not known a priori. In this case, it is necessary 
to design an adaptive filter in which the notch frequencies 
and bandwidths will be adjusted based on the input data. 

In this paper we develop an adaptive infinite 
impulse-response (IIR) notch filter, based on the general 
prediction error framework used by Ljung [2], [3] to de- 
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