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1. Introduction. If p is a prime, we define g∗(p) to be the least prime
that is a primitive root (mod p), and similarly for prime powers pr. The
problem of establishing a bound for g∗(p) uniformly in p is quite difficult,
comparable with establishing a uniform upper bound for the least prime
in an arithmetic progression. Indeed, there do not exist any uniform upper
bounds for g∗(p) that improve upon the current bounds for the least prime
in an arithmetic progression. However, much more can be said if we exclude
a very small set of primes. The purpose of this paper is to improve exist-
ing bounds for g∗(p) which hold for almost all primes p, and to establish
analogous results for all composite moduli.
Elliott [2] had first given a bound for g∗(p) for all but O(Y ε) primes

p up to Y , of the form g∗(p) ≤ (log p)Oε(log3p). (Here we have defined
log1x = max{log x, 1} and lognx = max{log(logn−1x), 1} for any integer
n ≥ 2.) This was subsequently improved by Nongkynrih [6] to g∗(p) ≤
(log p)Oε(log3p/ log4p). We are able to establish the following bound. Write
ω(n) for the number of distinct prime factors of n.

Theorem 1. Let Y , ε, and η be positive real numbers with ε ≤ 20/21,
and define B = B(ε, η) = 3/ε + 5/4 + η. The number of odd prime powers
pr not exceeding Y for which the estimate

g∗(pr)≪ε,η (ω(p− 1)
2 log p)B

fails is Oε,η(Y
ε).

Since ω(n) ≪ logn for all integers n, it is apparent that the bound for
g∗(pr) given in Theorem 1 is no larger than a fixed (depending on ε and
η) power of log p. We see that this is an improvement over the existing
bounds, where the exponent of log p tends to infinity with p. We remark
that Theorem 1 may easily be extended to include all moduli which admit
primitive roots, i.e., to include moduli of the form 2pr.
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To extend this type of result to composite moduli, we use the following
definition. Given an integer q ≥ 2, we say that a λ-root (mod q) is an inte-
ger, coprime to q, whose multiplicative order is maximal among all integers
coprime to q. We see that the λ-root is an extension of the primitive root to
all moduli, and we extend the notation g∗(q) to mean the least prime λ-root
(mod q).

Theorem 2. Let ε be a positive real number. For almost all integers
q ≥ 2, we have

g∗(q)≪ε ω(φ(q))
44/5+ε(log q)22/5.

The approach to establishing these theorems is through Proposition 3
below, which gives a bound for g∗(q) based on the assumption of a zero-free
rectangle for Dirichlet L-functions (mod q). This is the same approach taken
in earlier work on this subject; the improvement lies in the use of the “shifted
sieve”, a version of the linear sieve with very good error terms, rather than
Brun’s sieve.

For any integer n, let s(n) denote the largest squarefree divisor of n.
For any integer q ≥ 2, let E(q) denote the exponent of the group Z

×
q of

reduced residue classes (mod q), let Φ(q) be the group of Dirichlet characters
(mod q), and define

Φ∗(q) = {χ
E(q)/s(φ(q)) : χ ∈ Φ(q)}.

Only the characters in Φ∗(q) are relevant to detecting λ-roots, as we show
in Section 2. Let c0 be the probability that a randomly chosen element of
Z
×
q is a λ-root. Also, given real numbers σ and T with 1/2 ≤ σ < 1 and

T > 0, define Q(σ, T ) to be the set of integers q ≥ 2 such that, for some
nonprincipal χ ∈ Φ∗(q), the corresponding L-function L(s, χ) has a zero
β + iγ with β > σ and |γ| < T .

Proposition 3. Let q ≥ 2 be an integer and σ a real number satisfying
1/2 ≤ σ < 1, and set

f(q, σ) = (ω(φ(q))
2
log1ω(φ(q)) · c

−1
0 log q)

1/(1−σ).

If q 6∈ Q(σ, f(q, σ)), then g∗(q)≪σ f(q, σ).

We remark that f(q, σ) ≪σ,θ q
θ for every θ > 0. We also remark that

c−10 ≪ log1ω(φ(q)) (see Section 2) and that the generalized Riemann hy-
pothesis implies that Q(1/2, T ) is empty for every T > 0. Thus the following
corollary of Proposition 3 is immediate.

Corollary 3.1. If the generalized Riemann hypothesis holds for (cer-
tain) characters (mod q), then

g∗(q)≪ (ω(φ(q)) log1ω(φ(q)))
4(log q)2.
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In the case where q is a prime, this has already been shown by Shoup [7],
improving an earlier result of Wang [8] in which (ω(φ(q)) log1ω(φ(q)))

4 is

replaced by ω(φ(q))
6
. Although both authors state their bounds only for

primitive roots, the bounds actually hold for prime primitive roots as well.
To deduce Theorems 1 and 2 from Proposition 3, we need bounds on

the size of Q(σ, T ). To this end, we define Q(Y ;σ, T ) to be the number
of elements of Q(σ, T ) not exceeding Y , and Q′(Y ;σ, T ) to be the number
of elements of Q(σ, T ) which are odd prime powers not exceeding Y . The
following lemmas, when combined with Proposition 3, imply Theorems 1
and 2.

Lemma 4. Let Y , ε, η, and B be as in Theorem 1. There exists θ =
θ(ε, η) > 0 such that

Q′(Y ; 1−B−1, Y θ)≪ε,η Y
ε.

Lemma 5. We have Q(Y ; 17/22, Y 1/20) = o(Y ).

Lemma 4 follows directly from existing zero-density estimates for Dirich-
let L-functions, but Lemma 5 is somewhat more complicated due to the
prevalence of imprimitive characters in Φ∗(q) for composite moduli q (see
Section 4).

The author would like to express his gratitude to Hugh Montgomery
for suggesting this problem and to thank him and Trevor Wooley for their
guidance and support. The author would also like to thank Andrew Granville
and Andrew Odlyzko for their comments regarding existing results related
to this work. This material is based upon work supported under a National
Science Foundation Graduate Research Fellowship.

2. Preliminaries. We begin by developing some notation and sim-
ple facts relating to the characters (mod q) which are relevant to detecting
λ-roots. Let G be a finite abelian group with exponent E. For every prime
l that divides E, let α(l) be the largest integer such that lα(l) divides E.
There exist integers m(l) for which we can write

G ∼=
(

⊕

l|E

(Zlα(l))
m(l)
)

⊕H

for some subgroup H whose exponent divides E/s(E). For each prime p
dividing E, we define subgroups Gp of G by

(1) Gp = (pZpα(p))
m(p) ⊕

(

⊕

l|E
l 6=p

(Zlα(l))
m(l)
)

⊕H,

the set of all elements of G whose order divides E/p. We see that the index
of Gp in G is p

m(p). We extend this notation to all squarefree divisors d of
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E by defining subgroups Gd by

Gd =
⋂

p|d

Gp,

and (abusing notation somewhat) we define m(d) to be the real number
which satisfies

dm(d) =
∏

p|d

pm(p),

so that dm(d) is a multiplicative function of d. By convention, we let G1 = G
and m(1) = 1. We note that m(d) ≥ 1 for all squarefree divisors d of E, and
that the index of Gd in G is d

m(d).

Let γ(g) be the characteristic function of elements of maximal order in
G. Then, by definition (1) of the Gp, we have

(2) {g ∈ G : γ(g) = 1} = G \
⋃

p|E

Gp.

If we define ν(g) to be the product of all primes p dividing E such that
g ∈ Gp (or equivalently, the largest squarefree divisor d of E such that
g ∈ Gd), then we see from equation (2) that for any g ∈ G, we have

(3) γ(g) =

{

1 if ν(g) = 1,
0 if ν(g) > 1.

We may also detect these elements of maximal order using group char-
acters. Let Φ be the group of homomorphisms from G into C. For each
squarefree d dividing E, define subgroups Φd of the character group Φ by

Φd = {χ
E/d : χ ∈ Φ}.

For convenience we write Φ∗ for Φs(E). Let hd be the characteristic function
of Gd. By the standard properties of group characters, for any g ∈ G we
have

(4) hd(g) =
1

|Φd|

∑

χ∈Φd

χ(g).

By summing this over all g ∈ G we see that |Φd| = |G|/|Gd| = dm(d), and
in fact we can treat this as the definition of the real numbers m(d). Finally,
we define c0 to be the probability that a randomly chosen element of Z

×
q is

a λ-root. From equation (2) and the definition (1) of the Gp, we can easily
calculate that

c0 =
∏

p|φ(q)

(

1−
1

pm(p)

)

.

We note in particular that c−10 ≤ φ(q)/φ(φ(q))≪ log1ω(φ(q)).
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In the course of applying the sieve, it will be important to understand
the behavior of the sum ψ1(x, χ) defined by

ψ1(x, χ) =
∑

n<x

χ(n)Λ(n)(x− n).

The following lemma provides the necessary bound, for the moduli q for
which Proposition 3 will be established.

Lemma 6. Let q ≥ 2 be an integer , and let x, σ, and T be real numbers
satisfying 1/2 ≤ σ < 1 and 1 ≤ x ≪ T ≪ q. If q 6∈ Q(σ, T ), then for all
nonprincipal χ ∈ Φ∗(q), we have

ψ1(x, χ)≪ x1+σ log q.

P r o o f. We begin by writing

ψ1(x, χ) =
−1

2πi

2+i∞\
2−i∞

L′

L
(s, χ)

xs+1

s(s+ 1)
ds

and pulling the contour leftwards towards Re s = −∞ to see that

ψ1(x, χ) = −
∑

̺

x̺+1

̺(̺+ 1)
+O(x log x),

where the sum runs over all nontrivial zeros ̺ = β + iγ of L(s, χ) (see for
instance [1, Chapter 19]). Because q is not in Q(σ, T ), every zero of L(s, χ)
has either β ≤ σ or |γ| ≥ T , and thus we can write

ψ1(x, χ)≪
∑

β≤σ

x1+β

γ2
+
∑

|γ|≥T

x1+β

γ2
+ x log x.

However, the number of zeroes of L(s, χ) up to height T is ≪ T log qT , and
so
∑

|γ|≥T γ
−2 ≪ T−1 log qT by partial summation. Therefore

ψ1(x, χ)≪ x1+σ log q + x2T−1 log qT + x log x.

Since x≪ T ≪ q, the first term is dominant, and the lemma is established.

3. The shifted sieve: Proof of Proposition 3. Let A be a finite
sequence, ν a map from A to the positive integers, and w a function from
A to the nonnegative reals. Let Υ be a squarefree integer, put

S(A, Υ ) =
∑

a∈A
(ν(a),Υ )=1

w(a),

and, for all d dividing Υ , put

Ad =
∑

a∈A
d|ν(a)

w(a).



282 G. Martin

Lemma 7. Suppose that X and R are positive numbers and f(d) a mul-
tiplicative function such that for all d dividing Υ , we have f(d) ≥ d and

(5)

∣

∣

∣

∣

Ad −
X

f(d)

∣

∣

∣

∣

≤ R.

Then there exists an absolute positive constant C1 such that

S(A, Υ ) ≥
C1X

log1ω(Υ )

∏

p|Υ

(

1−
1

f(p)

)

+O(Rω(Υ )2).

P r o o f. Let pj denote the jth prime, and put z = pω(Υ ) and P =
∏

p≤z p.

Also let {λ−d } be a sequence of real numbers such that λ
−
1 ≤ 1 and, if we

define σn =
∑

d|n λ
−
d , then σn ≤ 0 for all integers n ≥ 2. We begin by citing

the lower bound

(6) S(A, Υ ) ≥ X
∏

p|Υ

(

1−
1

f(p)

)

∑

d|P

σd
∏

p|d(p− 1)
−R
∑

d|P

|λ−d |.

This is a special case of the shifted sieve of Iwaniec [4, Lemma 1], where we
have specified that Q = Υ , A = R, B = 1, and g(d) = d for all d dividing
P , and that the correspondence l sends the smallest prime factor of Υ to p1,
the next smallest to p2, and so on. We now take {λ

−
d } to be Rosser’s weights

for the linear sieve, whose definition depends on a positive parameter y as
follows. If d is not squarefree, define λ−d = 0. If d = q1 . . . qr for primes
q1 > . . . > qr, define

λ−d =

{

(−1)r if q1 . . . q2l−1q
3
2l < y for all 0 ≤ l ≤ r/2,

0 otherwise.

We will need the following facts about the sequence {λ−d } [4, Lemma 2]: if
4 ≤ z2 ≤ y ≤ z4, then

∑

d|P

|λ−d | ≪ y(log y)−2

and

(7)
∑

d|P

σd
∏

p|d(p− 1)
= 2eγ

log(s− 1)

s
+O

(

1

log y

)

,

where s = (log y)/(log z). Applying this with y = C2z
2 for C2 a positive

constant gives us

2eγ
log(s− 1)

s
+O

(

1

log y

)

=
eγ logC2
log z

(

1 +O

(

logC2
log z

))

+O

(

1

log z

)

(8)

≥
C1
log z
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for some positive constant C1, if C2 and z are sufficiently large. With these
estimates, the lower bound (6) becomes

S(A, Υ ) ≥
C1X

log z

∏

p|Υ

(

1−
1

f(p)

)

+O

(

RC2z
2

(log z)2

)

.

We note that C2 is an absolute constant, since it depends only on the O-
constant in equation (7), and thus C1 is absolute as well, since it depends
only on C2 and the O-constants in equation (8). It remains only to note that
z ∼ ω(Υ ) log1ω(Υ ) to establish the lemma.

We may now establish Proposition 3. Let q ≥ 2 be an integer and x > 1
and 1/2 ≤ σ < 1 real numbers. We will apply Lemma 7 with A being the
set of positive integers less than x. Let Υ = s(φ(q)), let ν(n) be defined as in
Section 2 before equation (3), and let w(n) = Λ(n)(x−n). From the relation
(3), we see that

S(A, Υ ) =
∑

n<x

γ(n)Λ(n)(x− n)

counts only prime powers which are λ-roots (mod q). Using the form (4) for
hd and the definition of the ψ1(x, χ), we also have

Ad =
∑

n<x
d|ν(n)

w(n) =
∑

n<x

hd(n)w(n)(9)

=
1

|Φd|

∑

χ∈Φd

∑

n<x

χ(n)w(n) =
1

dm(d)
ψ1(x, χ0) +

1

|Φd|

∑

χ∈Φd
χ6=χ0

ψ1(x, χ).

If we write ψ1(x) =
∑

n<x Λ(n)(x− n), then

ψ1(x)−ψ1(x, χ0) =
∑

n<x
(n,q)>1

Λ(n)(x−n)≪ x
∑

p|q

∑

r≥1
pr<x

log p≪ (x log x) log q,

since ω(q) ≪ log q. Moreover, if we assume that q 6∈ Q(σ, x), then we may
apply Lemma 6 (with T = x) to bound the terms in the last sum of equation
(9); we obtain

Ad =
1

dm(d)
ψ1(x) +O(x

1+σ log q).

Thus if we take X = ψ1(x) and f(d) = d
m(d) for all d dividing s(φ(q)), we
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see that we can take R≪ x1+σ log q. Applying Lemma 7, we see that

S(A, Υ ) ≥
C1ψ1(x)

log1ω(φ(q))
c0 +O((x

1+σ log q)ω(φ(q))
2
)

=
C1ψ1(x)

log1ω(φ(q))
c0(1 +O(x

−1+σ(ω(φ(q))
2
log1ω(φ(q)))c

−1
0 log q))

=
C1ψ1(x)

log1ω(φ(q))
c0(1 +O((x

−1f(q, σ))1−σ)),

since the bound ψ1(x) ≫ x2 follows from Chebyshev’s bound for ψ(x).
Assuming that x exceeds a sufficiently large (in terms of σ) multiple of
f(q, σ), we obtain a positive lower bound for S(A, Υ ). Therefore, there exists
a prime power pr ≪σ f(q, σ) which is a λ-root (mod q). But if p

r is a λ-root,
we must have (r, φ(q)) = 1, in which case p itself is also a λ-root which is
≪σ f(q, σ). This establishes the proposition.

4. Proof of Lemmas 4 and 5. To establish Lemma 4, we introduce
the notation Q′(σ, T ) to denote the subset of Q(σ, T ) consisting of the odd
prime powers, and we recall that Q′(Y ;σ, T ) denotes the number of elements
of Q′(σ, T ) not exceeding Y . Given an odd prime power pr, every character
in Φ∗(p

r) is induced by a character (mod p2) [5, Lemma 6]. The proof of
this fact is similar to the proof that any primitive root (mod p2) is also a
primitive root (mod pr) for every odd prime p and integer r ≥ 3.

Consequently, for every prime power pr ∈ Q′(σ, T ), there is a character
χ which is primitive to one of the moduli p or p2 such that L(s, χ) has a zero
β + iγ with β > σ and |γ| < T . On the other hand, every such character
will account for ≪ log Y prime powers in Q′(σ, T ) which do not exceed Y ,
and so

(10) Q′(Y ;σ, T )≪ (log Y )
∑

q<Y

∑∗

χ (mod q)

N(σ, T, χ),

where N(σ, T, χ) denotes the number of zeros β+iγ of L(s, χ) satisfying β >
σ and |γ| < T , and

∑∗
denotes a summation over primitive characters only.

Zhang [9] has established the following zero-density estimate for Dirichlet
L-functions: for any real numbers Y , δ > 0 and 17/22 ≤ σ ≤ 1, we have

(11)
∑

q<Y

∑∗

χ (mod q)

N(σ, T, χ)≪δ (Y
2T )6(1−σ)/(5σ−1)+δ.

We apply this estimate with T = Y θ and σ = 1 − B−1, where B is as in
Theorem 1. Together with the bound (10), this gives us Q′(Y ;σ, T )≪ε,η Y

ε,
as long as δ = δ(ε, η) and θ = θ(ε, η) are small enough with respect to ε and
η. This establishes Lemma 4.
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Unfortunately, a given character can in general induce characters in Φ∗(q)
for many more moduli q if we do not restrict to prime powers, and so we must
work harder to establish Lemma 5. Given positive integers m and n such
that m divides n, we say that n is an admissible multiple of m if there exists
a character in Φ∗(n) which is induced by a primitive character (mod m).

Lemma 8. Let q ≥ 2 be an integer , and set t = ω(q). Let p1, . . . , pt be the
primes dividing q and r1, . . . , rt positive integers. Then for every admissible
multiple nq of q , either :

(i) prii divides n for some 1 ≤ i ≤ t; or

(ii) n is not divisible by any prime congruent to 1 (mod φ2(q)pr11 . . . p
rt
t ).

P r o o f. We use parenthetical superscripts to indicate explicitly the mod-
ulus of a character, so that χ(q) denotes a character (mod q), for example.
To establish the lemma, it suffices to show that if (i) and (ii) both fail,

then any character χ(q) which induces an element χ
(nq)
1 of Φ∗(nq) is in fact

principal (hence imprimitive), contradicting the assumption that nq is an
admissible multiple of q.

Assume the negations of (i) and (ii). Write nq = n′q′, where q′ is the
largest divisor of nq with s(q′) = s(q), so that q divides q′ and (n′, q′) = 1.
Then any character (mod nq) is the product of a character (mod n′) and a

character (mod q′). Since χ
(nq)
1 ∈ Φ∗(nq), we may write

χ
(nq)
1 = (χ

(n′)
2 χ

(q′)
3 )

E(nq)/s(E(nq))

for some characters χ
(n′)
2 and χ

(q′)
3 . Since p

ri
i does not divide n for any 1 ≤

i ≤ t, we see from the definition of q′ that φ(q′) divides φ(q)pr1−11 . . . prt−1t .
On the other hand, n is divisible by a prime which is congruent to 1
(mod φ2(q)pr11 . . . p

rt
t ), and so φ

2(q)pr11 . . . p
rt
t must divide E(nq). These ob-

servations together imply that φ(q′) divides E(nq)/s(E(nq)), and thus

(χ
(n′)
2 χ

(q′)
3 )

E(nq)/s(E(nq)) = (χ
(n′)
2 )

E(nq)/s(E(nq))χ
(q′)
0 ,

where χ
(q′)
0 is the principal character (mod q′). We see that the character

χ
(nq)
1 induced by χ(q) is also induced by a character (mod n′). But since
(q, n′) = 1, it must be the case that χ(q) is principal. This establishes the
lemma.

Let A(x; q) be the number of admissible multiples of q not exceeding x.

Lemma 9. Let δ > 0 be a real number and x, y = y(x), and z = z(x) real
parameters satisfying x, y, z > 1 and

(12) z3ylog z ≪ (log x)1−δ.
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Then for all integers q with 2 ≤ q ≤ z, we have

(13) A(xq; q)≪δ
x log z

y
+

x

exp((log2x)/(z
3ylog z))

.

P r o o f. Set t = ω(q), and choose integers ri such that

(14) pri−1i ≤ y ≤ prii (1 ≤ i ≤ t).

By applying Lemma 8, we see that the number of admissible multiples nq
of q with n < x is bounded by

(15)

t
∑

i=1

x

prii
+#{n < x : p |n⇒ p 6≡ 1 (mod φ2(q)pr11 . . . p

rt
t )}.

In the first term, we use the estimate t ≤ log z for z sufficiently large, and
the choice (14) of the ri, to see that

(16)

t
∑

i=1

x

prii
≤
x log z

y
.

We treat the second term using a simple upper bound sieve. Notice that by
the choice (14) of the ri, we have

(17) φ2(q)pr11 . . . p
rt
t ≤ q

2
(

t
∏

i=1

ypi

)

≤ q2(ytz) ≤ z3ylog z.

The prime number theorem for arithmetic progressions states that given
δ > 0, we have

ψ(x; d, 1) =
x

φ(d)
+Oδ(x exp(−C3(log x)

1/2))

for some positive constant C3, uniformly for all d≪ (log x)
1−δ [1, equations

(10)–(11) of Section 20]. By partial summation, this implies that

(18)
∑

p<x
p≡1 (mod d)

p−1 =
log2x

φ(d)
+Oδ(1),

again uniformly for d in the above range, which includes d = φ2(q)pr11 . . . p
rt
t

due to equation (17) and the restriction (12). The formula (18) allows us to
apply an upper bound sieve from Halberstam–Richert [3, Corollary 2.3.1] to
deduce that

#{n < x : p |n⇒ p 6≡ 1 (mod φ2(q)pr11 . . . p
rt
t )}

≪δ x(log x)
−1/φ(φ2(q)p

r1
1 ...p

rt
t ).

We rewrite this using the bound (17) as

#{n < x : p |n⇒ p 6≡ 1 (mod φ2(q)pr11 . . . p
rt
t )} ≪δ

x

exp((log2x)/(z
3ylog z))

.
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Using this bound together with the bound (16) in equation (15) establishes
the lemma.

Define R(σ, T ) to be the set of integers q ≥ 3 such that, for some prim-
itive character χ (mod q), the corresponding L-function L(s, χ) has a zero
β + iγ with β > σ and |γ| < T .

Lemma 10. For all real x > 1, we have

(19)
∑

q<x

q∈R(17/22,x1/20)

1≪ x.997 and
∑

x<q

q∈R(17/22,x1/20)

q−1 ≪ x−.003.

P r o o f. The right-hand side of the zero-density estimate (11) is certainly
an upper bound for the first sum in (19) as well. Taking Y = x, T = x1/20,
and θ = 1/100 in (11), we see that

∑

q<x

q∈R(17/22,x1/20)

1≪ x41861/42000,

and 41861/42000 < .997. This establishes the first bound in (19), and the
second bound follows directly by partial summation.

We are now ready to prove Lemma 5. We note that every element of
Q(σ, T ) is an admissible multiple of some element of R(σ, T ). Therefore,

(20) Q(Y ;σ, T ) ≤
∑

q<Y
q∈R(σ,T )

A(Y ; q).

For q ≤ log3Y , we bound A(Y ; q) by applying Lemma 9 with z = log3Y
and y = (log2Y )

1/(2 log z), which satisfy the condition (12) with any δ < 1.
Of the two terms in equation (13), the first term is dominant, giving

A(Y ; q) ≤ A(Y q; q)≪
Y log4Y

exp((log3Y )/(2 log4Y ))
.

For the remaining values of q, we have the trivial bound A(Y ; q) ≤ Y/q.
Therefore equation (20) becomes

Q(Y ;σ, T )≪
∑

q<log3Y

Y log4Y

exp((log3Y )/(2 log4Y ))
+

∑

log3Y≤q<Y
q∈R(σ,T )

Y

q
.

Upon choosing σ = 17/22 and T = Y 1/20, we apply Lemma 10 to the second
sum to obtain

Q(Y ; 17/22, Y 1/20)≪
Y log3Y log4Y

exp((log3Y )/(2 log4Y ))
+

Y

(log3Y )
.003
= o(Y ),

which establishes the lemma.
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