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Abstract 

The GPS double difference carrier phase measurements are 

ambiguous by an unknown integer number of cycles. High 

precision relative GPS positioning based on short 

observational timespan data, is possible, when reliable 

estimates of the integer double difference ambiguities can be 

determined in an efficient manner. In this contribution a new 

method is introduced that enables very fast integer least- 

squares estimation of the ambiguities. The method makes use 

of an ambiguity transformation that allows one to 

reformulate the original ambiguity estimation problem as a 

new problem that is much easier to solve. The transformation 

aims at decorrelating the least-squares ambiguities and is 

based on an integer approximation of the conditional least- 

squares transformation. This least-squares ambiguity 

decorrelation approach, flattens the typical discontinuity in 

the GPS-spectrum of ambiguity conditional variances and 

returns new ambiguities that show a dramatic improvement 

in correlation and precision. As a result, the search for the 

transformed integer least-squares ambiguities can be 

performed in a highly efficient manner. 
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1. Introduction 

High precision relative GPS positioning is based on the very 

precise carrier phase measurements. A prerequisite for 

obtaining high precision relative positioning results, is that 

the double-difference carrier phase ambiguities become 

sufficiently separable from the baseline coordinates. Different 

approaches are in use and have been proposed to ensure a 

sufficient separability between these two group of parameters 

[1-8]. In particular, the approaches that explicitly aim at 

resolving the integer-values of the double-difference 

ambiguities have been very successful. Once the integer 

ambiguities are fixed, the carrier phase measurements will 

start to act as if they were high-precision pseudorange 

measurements, thus allowing for a baseline solution with a 

comparable high precision. However, the fixing of the integer 

ambiguities is a non-trivial problem, in particular if one aims 

at numerical efficiency. This topic has therefore been a rich 

source of GPS-research over the last decade or so. Starting 

from rather simple but timeconsuming integer rounding 

schemes, the methods have evolved into complex and 

effective search algorithms [9-17]. Nevertheless, at present 

times, it is still expedient to seek ways for improving the 

efficiency of the various search methods. This is in particular 

true for real-time applications of GPS. But to a certain 

extent, this is also true for some typical static applications of 

GPS. If  we are namely really able to significantly reduce the 

computational effort for estimating the integer ambiguities, 

it may also become worthwhile to tackle problems that have 

dimensions higher than the one's considered sofar. For 

instance, it may become much easier then to simultaneously 
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estimate all integer double-difference ambiguities when 

adjusting a GPS network [18]. 

In this contribution a new method will be presented for the 

integer least-squares estimation of the double-difference 

carrier phase ambiguities. The method consists of two steps. 

In the first step, an ambiguity transformation Z* is 

constructed that allows one to reparametrize the original 

double-difference ambiguities, such that new ambiguities are 

obtained, having certain desirable properties. Hence, the 

original integer ambiguity vector a, its real-valued least- 

squares estimate ~ and corresponding variance-covariance 

matrix Qa, are transformed as 

(1) z = Z ' a ,  ~ = Z*Ct, Q~ = Z * Q ~ Z .  

The ambiguity transformation Z" is required to be integer 

and volume preserving [19]. The kernelletter z is used to 

denote the transformed ambiguities. The idea of transforming 

the double-difference ambiguities is of course not completely 

new. Certain linear combinations of the GPS-observables 

already play a prominent role in the problem of ambiguity 

fixing. In particular "wide-laning" techniques have proven to 

be very successful. Well-known examples are the narrow- 

lane, the wide-lane and extra wide-lane combinations 

[20-22]. But also other wide-lane combinations have been 

studied [23]. At present however, the various integer linear 

combinations that are considered, are restricted to the single- 

channel dual-frequency case. They therefore require the use 

of dual-frequency carrier phase data. Moreover, since they 

enact at the level of a single channel only, they do not allow 

one to take care of the receiver-satellite geometry. The above 

ambiguity transformation Z* however, does not require the 

use of dual-frequency carrier phase data per se and also 

allows one to take care of the slowly changing receiver- 

satellite geometry, a geometry which is so emphatically 

present in the ambiguity variance-covariance matrix Q~. 

Once the transformed ambiguities have been obtained, the 

actual search for the integer least-squares ambiguities is 

performed in the second step. The search is based on a 

sequential conditional least-squares adjustment of 2 and it 

derives its efficiency from the properties of the transformed 

ambiguities. In terms of the conditional least-squares 

ambiguity estimates, the transformed ambiguity searchspace 

is described by the inequality 

(2) ~ (~ill_Zi)2 / (y~(ill,ill) ~ ~2 
i=1 

in which zip~ denotes the least-squares estimate of the ith 

ambiguity conditioned on the first (i-1) number of 

ambiguities and ~i/z.~l~ denotes its variance. Z 2 is an 

appropriately chosen positive constant that ensures that the 

ambiguity searchspace indeed contains the sought for integer 

least-squares ambiguities. It is the sum-of-squares structure 

in the above inequality that allows one to formulate bounds 

for the individual ambiguities, thus enabling that a search for 

the transformed integer least-squares ambiguity ~ can be 

performed. Although the recovery of a sum-of-squares 

structure is not new in itself, there are important differences 

in how it is interpreted and used for the search 

[13],[16,17],[24]. Once the integer estimate ~ has been 

determined, the corresponding baseline solution /~ can be 

recovered as 

( 3 )  b ^ -1 ^ = b - Q ~ Q ~  (z-z"), 

in which /; denotes the non-fixed least-squares baseline 

solution. 

The basic idea that lies at the root of the method - both in 

the construction of Z*, as in the formulation of the search - 

is, that integer least-squares ambiguity estimation becomes 

trivial once all the least-squares ambiguities are fully 

decorrelated. Their confidence ellipsoid would then be 

aligned with the grid axes and the sought for integer least- 

squares ambiguities would then simply follow from a 

rounding of the real-valued least-squares estimates to their 

nearest integer. The ambiguities would be fully decorrelated 

when the conditional least-squares estimates are identical to 

their unconditional counterparts, i.e. when C~il ~ - ~i holds 

true for all i. In case of GPS however, the least-squares 

ambiguities are usually highly correlated and their confidence 

ellipsoid is usually extremely elongated. This is particularly 

true in case of short observational timespans and in the 

absence of precise P-code data. As a consequence of the 

intrinsic structure of the ambiguity variance-covariance 

matrix, the spectrum of ambiguity conditional variances, 

(Ja(ill, ill) i = 1 ..... n, generally shows a large discontinuity when 

passing from the third to the fourth conditional variance. But 

this implies, when the above inequality is used in the original 

parametrization, that the search would suffer from the fact 

that the bounds for the first three ambiguities are rather 

loose, whereas the remaining bounds are extremely tight. The 

essence of the method is therefore to aim at constructing a 

decorrelating ambiguity transformation Z*, that removes the 

discontinuity from the spectrum. In two dimensions this is 

achieved by basing the ambiguity transformation on an 

integer approximation of the fully decorrelating conditional 

least-squares transformation. Transformations of this type are 

also known as Gauss-transformations and in the non-integer 

case they are considered to be the basic tools for zeroing 



entries in matrices [25]. The n-dimensional case is tackled 

through a repeated use of the two-dimensional decorrelating 

ambiguity transformation. But instead of applying it to the 

unconditional ambiguities, it is now applied to pairs of 

conditional least-squares ambiguities. This approach has been 

motivated by the presence of the typical discontinuity in the 

GPS spectrum of ambiguity conditional variances and is 

based on ideas from [26]. The success of our method is 

largely due to the presence of this discontinuity and it 

stipulates the relevance of satellite redundancy and the use of 

dual-frequency data. Once the spectrum of conditional 

variances has been flattened, less correlated and very precise 

ambiguities zi are returned, thus allowing that the search for 

the transformed integer least-squares ambiguities can indeed 

be performed in a highly efficient manner. 

In order to properly judge the significance of the present 

contribution, it is important that one distinguishes between 

the following two problems of GPS-ambiguity fixing: 

1. The ambiguity est imation problem, and 

2. The ambiguity validat ion problem. 

The present contribution only addresses the first problem and 

not the second. The second problem, which depends on the 

outcome of the first, is concerned with the validation of the 

estimated integer ambiguities. Although the procedures for 

validating the estimated ambiguities which are currently in 

use in practice, appear to work satisfactory, it is the author's 

opinion that there is still some room for improving the 

theoretical basis of these validation procedures. For a proper 

statistical evaluation of both the estimated ambiguities as 

well as the corresponding baseline solution, it would be very 

helpful indeed if one has at one's disposal the probability 

densities of the corresponding integer estimators. This 

however, is a non-trivial problem, but reference is made to 

the discussions in [13], [27-29]. Despite the importance of 

proper validation procedures, the present contribution is only 

concerned with the integer ambiguity estimation problem. 

There is therefore no harm in stressing, that our method, 

efficient as it may be, might still come up with the wrong 

integer ambiguities if the data are contaminated with 

unmodelled effects. 

2. The GPS Ambiguity Estimation Problem 

In this chapter the integer least-squares ambiguity estimation 

problem is formulated and discussed. It shows how the 

search can be based on a sequential conditional least-squares 
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adjustment of the ambiguities and it explains why in case of 

GPS such a search, when performed for the original 

ambiguities, suffers from being inefficient. As such, chapter 

two identifies the dilemma with which one is confronted and 

shows along which lines solutions can be sought. In section 

2.1, first the basic observation equation of the carrier phase 

observable is given. We restrict our attention to carrier phase 

data to accentuate that our method is in principle independent 

of the use of code data or even the use of dual-frequency 

data. But the method can easily accommodate code data as 

well, although with Anti-Spoofing turned on, very precise 

code data will probably no longer be available. The double- 

difference version of the carrier phase observation equation 

forms the basis of the model that will be used for the integer 

least-squares ambiguity estimation. The concept of integer 

least-squares estimation is discussed in section 2.2. In section 

2.3 a sequential conditional least-squares estimation of the 

ambiguities is performed in order to recover a sum-of- 

squares representation for the ambiguity search space. The 

sum-of-squares structure is used to formulate sharp bounds 

for the individual ambiguities. The search procedure based 

on these bounds, is discussed in section 2.4. In section 2.5 

the spectrum of ambiguity conditional variances is studied. 

It is shown, when short observational timespan carrier phase 

data are used, that the special structure of the variance- 

covariance matrix of the ambiguities usually results in a 

spectrum having a large discontinuity. As a consequence, the 

search for the original ambiguities suffers from the potential 

problem of halting. 

2.1 The Carrier-Phase Observation Equation 

The GPS observables are (P or C/A) code-derived 

pseudorange measurements and carrier phase measurements. 

These data can be available on both of the two frequencies 

L1 and/,2. In the following we will restrict our attention to 

the carrier phase measurement O. The carrier phase 

measurement can be represented as 

(4) = Ilr-ell +c(dt -dT)  +~,N+e , 

where: 

r 

R 

C 

cdt : 

cdT : 

£ 

is the unknown receiver antenna position vector 

at signal reception time, 

is the given satellite antenna position vector at 

signal transmission time, 

is the speed of light in vacuum, 

is the receiver clock range offset, 

is the satellite clock range offset, 

is the carrier wavelength of the signal (L 1 or L2), 
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N 

and 

is the carrier phase ambiguity (L 1 or L2). 

The term e represents carrier phase measurement noise and 

biases such as satellite ephemeris errors, tropospheric and 

ionospheric delays, and ranging errors caused by multipath. 

In the processing of phase data it is not uncommon to 

difference the carrier phase measurements between satellites 

and between receivers to eliminate the satellite and receiver 

clock offsets. This gives the double difference carrier phase 

observation equation 

(5) 
D D O  = D D  ]Jr - R  II + L D D N  + DDE , 

where D D  stands for the double-difference operator. In this 

equation the ambiguity-term D D N  is known to be integer- 

valued. For reasons of simplicity we will restrict ourselves in 

the following to the two-receiver situation. This however, has 

no effect on the general applicability of the proposed 

method. The method is namely independent of the number of 

receivers used, and is therefore also applicable in situations 

where more than two receivers are used. This is for instance 

the case when the GPS-data are simultaneously adjusted for 

in a network-mode. 

Linearization of the observation equations with respect to the 

unknown parameters, and a collection of these linearized 

equations into a linear system of equations, gives 

(6) 
y = A a + B b + e  , 

where: 

b 

A, B : 

e 

is the vector of observed minus computed double 

difference carrier phase measurements, 

is the vector of unknown integer double 

difference ambiguities, 

is the vector that contains the increments of the 

unknown baseline components, 

are the design matrices for ambiguity terms and 

baseline components, and 

is the vector of unmodelled errors. 

This system of observation equations is taken as point of 

departure for computing estimates of the unknown 

parameters a and b. Our estimation criterion will be based on 

the principle of least-squares. From a statistical viewpoint 

this choice is motivated by the fact that, in the absence of 

modelling errors, properly weighted linear least-squares 

estimators are identical to unbiased minimum variance 

estimators. Furthermore, these estimators are also maximum 

likelihood estimators if the assumption of normality holds for 

the phase observables. In the following we will assume that 

the bias-terms in e are either corrected for or sufficiently 

small to be neglected. 

2.2 Integer Least-Squares Estimation 

The least-squares criterion for solving the linear(ized) system 

of observation equations (6) reads 

(7) min l l y -Aa-Bbl l~ ,  with a e Z "  , b ~ R  3 , 
a,b 

where II.ll~, = (.).ayl(.), Oy is the variance-covariance 

matrix of the double-difference carrier phase observables, 

Z" is the n-dimensional space of integers and R 3 is the 3- 

dimensional space of reals. The minimizers of (7) will be 

denoted as respectively d~Z" and / ~ E R  3 . Note that (7) is a 

constrained least-squares problem. This is due to the 

presence of the integer-constraint  a~ Z "  . The minimization 

problem (7) will therefore be referred to as an in teger  least- 

squares problem. 

The quadratic objective function of the above integer least- 

squares problem can be decomposed into a sum of three 

squares, 

Ily-Aa-BblI2Q, = I1~11~, + Ilbla-bll2Q,,,, + IIc~-all~°, 

(8) 

where: ~ is the real-valued, unconstrained least-squares 

ambiguity vector, having Qa as variance-covariance matrix; b la 

is the condi t ional  least-squares baseline vector, conditioned 

on a, having Q~la as variance-covariance matrix; and ~ is 

the unconstrained least-squares residual vector. From the 

above decomposition follows, that the last two squares 

vanish identically, if the objective function (8) would be 

minimized as function of a ~ R "  and b E R  3. Hence, the 

minimizers would then be given by c~R n and / ) E R  3 , and 

the minimum of the objective function would be given by the 

squared norm of the least-squares residual vector 2. In our 

case however, the objective function needs to be minimized 

as function of a ~ Z  n and b E R  3 . In that case, only the second 

square vanishes identically and the minimizers are given by 

6~ Z n and /~ = /~ 16 ~ R 3 . The corresponding minimum of the 

objective function is then given by II~ll~, ÷ I1~ -~t1~ • 

The above shows that the integer least-squares problem (7) 

may be solved in two steps. The first step consists then of 

solving (7) with Z" replaced by R n. Hence, in the first step 

the integer-constraint is removed, reducing the problem to an 

ordinary unconstrained least-squares problem. As a result of 

this first step, real-valued estimates for both the ambiguities, 



c~, and the baseline components, /~, are obtained, together 

with their corresponding variance-covariance matrices: 

(9) 
' Q~)" 

This result forms then the input for the second step. In the 

second step one first solves for the vector of integer least- 

squares estimates of the ambiguities, 6. It follows from 

solving the integer least-squares problem 

(10) min. (Ct-a)Q?~l(d-a) with a~Z". 
a 

Once the integer least-squares ambiguity vector 6~Z" has 

been obtained, the residual (c~-6) is used to adjust the 

unconstrained baseline solution /;, to get b = /;]cl. As a 

result, the final baseline solution is obtained as 

(11) = 1)It = D - QgaQ2~l(gt-6). 

The above step-wise approach agrees conceptually with the 

procedure that is usually followed in practice, when 

ambiguity-fixing is included in the baseline computations. 

The estimates a and /~ are sometimes referred to as the 

"float-solution", and the estimates 6 and /~, being the 

solution of (7), are then referred to as the "fixed-solution". 

Note that the minimization problem (10) may not have a 

unique solution. Although it is very unlikely that it has more 

than one solution, it is possible in principle that (10) has up 

to 2" different integer minimizers. Still however, we will 

assume in the present sequel that (10) has one and only one 

solution. Our motivation for this assumption is based on the 

fact, that a reliable fixing of the ambiguities will not be 

considered feasible whenever the solution of (10) is non- 

unique. 

The variance-covariance matrix of /~la is given as 
-1 

Qbl~ = Q~-  QbaQa Qa~" In practice, this variance-covariance 

matrix is usually used to describe the precision of the final 

baseline solution /) (approaches may differ, however, in the 

way this matrix is scaled). Here however, some remarks of 

caution are in order [27]. The structure of (11) shows, that 

can be interpreted as a conditional least-squares estimate. 

That is, starting from the result of the first step, (9), b can 

be interpreted as the least-squares estimate of b, conditioned 

on the integer ambiguity-vector c~. And consistent with this 

interpretation, the precision of/~ may indeed be described by 

the variance-covariance matrix QbL~" When doing so, one 

should recognize however, that Qbl~ is interpreted as a 
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conditional variance-covariance matrix. Hence, in the light of 

predicting empirical outcomes of future experiments, the 

following meaning should be given to the formal variance- 

covariance matrix Q~I~" When the measurement experiment 

is repeated a sufficient number of times under similar 

circumstances, the matrix QsIo describes the spread one can 

expect in the various baseline solutions, when all baseline 

solutions are based on the same value for a. But this shows, 

since in practice each baseline determination will have its 

own integer estimate for the ambiguity vector a ~ Z " ,  that 

strictly speaking, Q~Io does not describe what it should 

describe. In other words, Q~Io is the variance-covariance 

matrix of/~ la, but not necessarily that of b =t; Icl. The fact 

that the least-squares estimator of the ambiguity vector is 

integer, does not imply that it is nonstochastic. What is 

needed therefore, is the unconditional variance-covariance 

matrix of b. Hence, in order to obtain the theoretically 

correct variance-covariance matrix of/~, the stochasticity of 

the integer estimator of the ambiguity vector should be taken 

into account when applying the error propagation law to 

(11). This is a nontrivial problem (the probability density 

function of 6 is of the discrete type) and one that has not yet 

been solved satisfactorily from a theoretical point of view. 

Fortunately, the practical relevance of this problem may be 

minor, in particular when a sound validation procedure has 

been used for the validation of 6. One of the features of a 

proper validation procedure should namely be to verify 

whether or not sufficient probability mass is located at a 

single gridpoint of Z". And when this can be assured to a 

sufficient degree, the influence of the stochasticity of 6 on/~ 

will be small and matrix Q~;ha can be taken as a sufficient 

realistic measure for the precision of/~. 

It will be clear that Q~t, < Q~" When short observational 

timespans are used, we in fact have QbI<<Q~. This can be 

explained as follows. Since GPS satellites are in very high 

altitude orbits, their relative positions with respect to the 

receiver change slowly, which implies in case of short 

observational timespans, that the ambiguities - when treated 

as being real-valued - become very poorly separable from the 

baseline coordinates. As a result, the precision with which 

the baseline can be estimated will be rather poor. However, 

when one explicitly aims at resolving for the integer-values 

of the ambiguities and assumes that their discrete probability 

density function is sufficiently peaked, the high-precision 

carrier-phase observables will start to act as if they were 

high-precision pseudo-range observables. As a result, the 

baseline coordinates become estimable with a comparable 

high precision and Qt; -~ Q~h~ << Q~ holds true. The sole 

purpose of "ambiguity-fixing" is thus, to be able, via the 
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inclusion of the integer-constraint a6 Z ~ , to obtain a drastic 

improvement in the precision of the baseline solution. In this 

way, long observational timespans can be avoided, which 

otherwise would have been needed if the ambiguities were 

treated as being real-valued. 

In the remaining of the sequel we will not be concerned 

directly with the baseline solution. Instead we will 

concentrate our attention on solving the ambiguity integer 

least-squares problem (10). And it is with the minimization 

of this constrained objective function, that the intricacy of 

the integer ambiguity estimation problem manifests itself. 

2.3 Sequential Conditional Least-Squares Estimation 

Due to the presence of the integer-constraint a~ Z" , there 

are unfortunately in general no standard techniques available 

for solving (10) as they are available for solving ordinary 

least-squares problems. As a consequence one has to resort 

to methods that in one way or another make use of a discrete 

search strategy for finding the integer minimizer of (10). 

However, before we start thinking of setting up such a search 

strategy, it helps if we ask ourselves the question what the 

structure of (10) must be in order to be able to apply the 

simplest of all integer estimation methods. Clearly, the 

simplest integer estimation method is "rounding to the 

nearest integer". And when applied to (10), this method will 

give the correct answer provided that the ambiguity variance- 

covariance matrix Q~ is diagonal, i.e. when all least-squares 

ambiguities are fully decorrelated. A diagonal Q~ implies 

namely that (10) reduces to the minimization of a sum of 

independent squares, 

n 

(12) minimize ~(~i - a):/o~(~.i>, 
av...a,,~ Z i = l  

where o~<~.i> denotes the variance of the ith least-squares 

ambiguity. Hence, in that case we can work with n separate 

scalar integer least-squares problems. And the integer 

minimizers of each of these individual squares are then 

simply given by the integers nearest to ~ .  The conclusion 

reads therefore, that the ambiguity integer least-squares 

problem becomes trivial, when all least-squares ambiguities 

are fully decorrelated. 

Unfortunately, in reality, the least-squares ambiguities are 

usually highly correlated and the variance-covafiance matrix Q~ 

is far from being diagonal. Still however, it is possible to 

recover a sum-of-squares structure of the objective function 

if we diagonalize Q~. Not every diagonalization works 

however. What is needed in addition, is, that the 

diagonalization realizes, like in (12), that the individual 

ambiguities can be assigned to the individual squares in the 

total sum-of-squares. This for instance, rules out a 

diagonalization based on an eigenvaiue decomposition of the 

ambiguity variance-covariance matrix. In the same spirit of 

decomposition (8), we will therefore apply a conditional 

least-squares decomposition to the ambiguities. And this will 

be done on an ambiguity-by-ambiguity basis. Hence, a 

sequential conditional least-squares estimation will be 

applied. This implies that the first least-squares ambiguity ~ 

remains unchanged. The second least-squares ambiguity 

however, is replaced by its 

conditioned on the first ambiguity 
-1  ^ ^ 

oa(z~Oa~.~(a ~ -a~). Note that azl ~ 

least-squares estimate, 

a 1. This gives a 2 1 1  = a 2 -  

is uncorrelated with a~. 

The third least-squares ambiguity is replaced by its least- 

squares estimate conditioned on the first two ambiguities 
^ -1  

a~ and a 2. This gives a31z, l=a3-(Y0(3,1)Oa(1,1)(a~-al)- 
-1  ^ ^ 

~(3,211~%(21~,Zll~(a21~ - a2)" Note that a312,1 is uncorrelated with 

both c~2/~ and al '  By continuing in this way, we obtain for 

the ith step, using the shorthand notation ~lJ for ajl(/-l),.-l' 

i - I  
- I  ^ 

(13) aill = a i  - ~ O ~ ( i d l J ) O ~ ( / l J , J l J )  ( a j l J  - a . ) ,  

j ~ l  

And gtill is uncorrelated with all ~ils for j= l  ..... (i-1). It now 

follows from (13) that the ambiguity difference ( ~ - a )  can 

be written in terms ofi_lthe differences (~lj-a.) ,  j= l  ..... i, as 
^ ^ + - 1  ^ 

(ai-ai) = (airl-ai) E~(i,ilj)O~(iljjiJ)(ajlj-aj). Hence, when 
. . . .  j = 1  . . , 

th~s ~s written out in vector-matrix form, using the notation 

= (t~i'c~21~ ..... a, IN)" and the error propagation law is 

applied, it follows, because of the fact that the conditional 

least-squares ambiguities are mutually uncorrelated, that 

(14) (c~-a) = L(~l-a) and Q~: LDL*, 

where: D = diag.(...,o~(il~.il~,...) and (L)ij=0 for l<i<j<n, 
- I  

and (L)0= 1 for i=j, and (L)ij=O~(i.j[j)(Yaqlj,jlj) for l<j<i<_n. 

The above matrix decomposition is well-known and is 

usually referred to as the LDL*-decomposition [25]. With our 

"re-discovery" of the LDL*-decomposition, we now can give 

a clear statistical interpretation to each of the entries of the 

lower triangular matrix L and to each of the entries of the 

diagonal matrix D. This interpretation will also be of help for 

the construction of the ambiguity transformation in the next 

chapter. Substitution of (14) into the objective function of 

(10) gives the desired sum-of-squares structure, and allows 

us to rewrite the integer least-squares problem as 

n 

(15) minimize ~(~il~ - ai)2/o~(ill,~ln. 
aL,..,a~ Z i = l  

Note that the sum-of-squares of (15) reduces to that of (12), 

when all least-squares ambiguities would be fully 

decorrelated. Also note, that in case of (15), a simple 



"rounding to the nearest integer" will now not necessarily 

give the correct integer minimizer to (10). This is due to the 

fact that 8il z depends on aj for j= l  ..... (i-1). But, the sum-of- 

squares structure of (15) still allows one to set up sharp 

bounds for the individual ambiguities. This is shown in the 

next section. 

2.4 Search for the Integer Least-Squares Ambiguities 

In order to solve (15) we will first restrict the solution space 

by replacing the space of integers, Z", by a smaller subset 

that can be enumerated• The idea is to use the objective 

function of (15) for introducing an ellipsoidal region in R ", 

on the basis of which the search can be performed. This 

ellipsoidal ambiguity search space is determined by 

n 

(16) ~(8ilI_ai)2/oa<ili.ili) ~ )~2. 
i=l 

This ellipsoidal region is centred at c~e R ", its orientation and 

elongation are governed by the ambiguity variance- 

covariance matrix Qa, and its size can be controlled through 

the selection of the positive constant Z2. It will be assumed 

that the positive constant Z 2 has been chosen such that the 

region at least contains the sought for integer minimizer of 

(15) [24]. 

In order to discuss our search for the integer least-squares 

ambiguities, we will first consider the two-dimensional case. 

For n=2, the inequality (16) reduces to 

(17) (81-al) 2 / 1~(1,1) + ( 8 2 1 1 - a 2 ) 2  / ~a(211,211) <- %2. 

This ellipsoidal region is shown in figure 1. Also shown 

in the figure are the rectangular box that encloses the ellipse 

and the line passing through the centre of the ellipse, 

(81 , a 2 )  , having (1,O'a(2,1)O'~1,1)) as direction vector. This line 

intersects the ellipse at the two points where the normal of 

the ellipse is directed along the al-axis. Note that the point 

(a 1,t~211) moves along this line when a I is varied. With (17) 

we are now in the position to construct the following two 

bounds for the two ambiguities a t and a 2, 

(18) { ( a l - a l  )2 < 0"r~(1,1) ~2 

(82[ 1 -a2 )2 < Oa(211,211)~(al)Z 2, 

with K(al) = 1 - (81 -a l )  2 / Z2oa(1,t). The corresponding 

intervals and their lengths are also shown in figure 1, 

Our search for the integer least-squares ambiguities now 

proceeds as follows• First one selects an integer ambiguity 
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line: (a2-/12) --o 1)%,l)(at-~It)=O 

J 

@ 

(al-~t)2< ~(t,1)~ 2 

< ~,(al) Cr(211,Zlt)Z2 

Figure 1: Ambiguity search space and bounds. 

a t that satisfies the first bound of (18). It will be assumed 

that the two ambiguities are ordered such that one starts with 

the most precise least-squares ambiguity, i.e. that 

cya(1.i)<cy~(z2 ). Then, based on this chosen integer ambiguity 

value at, the conditional least-squares e s t i m a t e  8211 and 

scalar )~(al) are computed. These values are then used to 

select an integer ambiguity a2 that satisfies the second bound 

of (18). Since we aim at finding the integer minimizer, it is 

natural to choose the integer candidates in such a way that 

the individual squares in the sum-of-squares (17) are made 

as small as possible. This implies that a2 should always be 

chosen as the integer nearest to 8211 . But remember that8211 

depends on a 1 . For al one first chooses the integer nearest 

to 81 . If one then fails to find an integer a 2 that satisfies the 

second bound, one restarts and chooses for a 1 the second 

nearest integer to 81 , and so on. Note that in this way, one 

is roughly following the direction of the line (a1,8211), 

working with a I along the at-axis from the inside of the 

ellipse, in an alternating fashion, towards the bounds of the 

ellipse• And this is continued until an admissible integer-pair 

(al,a2) is found, i:e. until a gridpoint is found that lies inside 

the ellipse. Then a shrinking of the ellipse is applied, by 

applying an appropriate downscaling of X 2, after which one 

continues with the next and following nearest integers to @ 

This process is continued until one fails to find an admissible 

integer for al. The last found integer-pair is then the sought 

for integer least-squares solution• 

Generalizing the above to the n-dimensional case, results in 

the following bounds for the individual ambiguities, 

(19) (8ill-ai) 2 <_ oa(ill,ill))~(al))C , i=1 ..... n, 

i-I  

with )~(al) = (1 - E (~lJ - a)2 / ;(2 oa(/kj jl~) ' These bounds are 
• j=l ' . . 

now used, qmte analogous to the two &menslonal case, for 

the search of the integer least-squares ambiguities. Note that 
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the bounds of (19) are sharper than those that would result 

when using the ellipsoidal planes of support for bounding the 

individual ambiguities. In that case, one would have: 

(gti-ai) 2 < oe(/.0Z2 for i=1 ..... n. And clearly, since 

0<£(a~)_<l and since a conditional variance is always 

smaller or at least as small as its unconditional counterpart, 

it follows that the bounds of (19) are always sharper or at 

least as sharp as (~(I,i)Z 2 . 

To conclude this section, we briefly remark on the practical 

implementation of the sequential conditional least-squares 

estimation. In the previous section, see (14), the 

correspondence was shown between the LDL*-decomposition 

of Qa and the Sequential conditional least-squares estimation. 

It will be clear that the LDL*-decomposition is easily 

constructed from the triangular Cholesky-decomposition. 

Many geodetic least-squares adjustment software-packages 

make use of the Cholesky-decomposition, but it is usually 

the Cholesky-decomposition of the normal matrix, Qa -~ , that 

is standard available and not the Cholesky-decomposition of 

Qa. This however, does not pose any difficulty. From the 

Cholesky-decomposition of the normal matrix, the LDL*- 

decomposition of Q~ is easily constructed. Inversion gives 

then Qe = L-*D-1L -~. This decomposition of Qe is again 

unique. The difference with the decomposition of Qe in (14) 

is however, that matrix L-* in Qe -- L-*D-~L -~ is upper- 

triangular and not lower-triangular. Hence, this 

decomposition would follow if one would apply a 

"backward" triangular decomposition to Qe. That is, instead 

of starting with a~, one then starts with a,. The conclusion 

reads therefore, that when one starts from a triangular 

decomposition of the normal matrix Q~I, bounds for the 

ambiguities can be constructed as easily as those of (19). The 

only difference would then be, that these bounds would 

correspond to a sequential conditional least-squares 

estimation that commences with a conditioning on the last 

ambiguity and stops with a conditioning on the first 

ambiguity. 

2.5 The GPS Spectrum of Ambiguity Conditional 

Variances 

In the previous section it was shown how we perform the 

search for the integer least-squares ambiguities. But as it was 

pointed out, it may happen that the search halts before a 

complete integer ambiguity candidate vector has been found. 

This occurs when the size of the bound is such that no 

candidate integer lies within the interval. The problem that 

the search for the integer least-squares ambiguities halts is a 

very serious one in case of GPS carrier-phase processing, in 

particular when short observational timespans are used. As 

it will be explained, this problem is intrinsically related to 

the structure of the GPS carrier-phase model of observation 

equations and the chosen parametrization. 

For a single baseline model, it can be shown that the 

spectrum of ambiguity conditional variances, Oa(ill,iD for 

i=1 ..... n, has a large discontinuity when passing from the 

third conditional variance °e(alz,~ : 312a) to the fourth 

conditional variance oa(413,z~ : 413,2,1)' In order to explain this 

bebaviour of the spectrum of conditional variances, the 

following example considers a synthetic 2-by-2 ambiguity 

variance-covariance matrix. The structure of this matrix is 

chosen such, that it resembles the structure of the actual n- 

by-n ambiguity variance-covariance matrices. 

Example 1 

Let the variance-covariance matrix of the two least-squares 

ambiguities ~ and ci 2 be given as 

(20) l{~a(l'l) ~fi(l'2)/ = 1~2 I10 ~1 _[_ ([~1//~11 * " 

It will be assumed that 

(21) O2 << 1321,1]~ ; ~ = ~22. 

Note that the above 2-by-2 matrix is given as the sum of a 

scaled rank-2 matrix and a rank-1 matrix. And because of 

(21), the entries of the rank-2 matrix are very much smaller 

than the entries of the rank-1 matrix. 

First we consider the correlation between the two ambiguities 

~ and 4> It follows from (20) that the square of the 

correlation coefficient is given as 

(22) p2 = ((1 +o2/13~)(1 "1"0"2/1~22)) -1 , 

Together with (21) this shows that p2_=l. Hence, the two 

ambiguities are very heavily correlated. As a consequence of 

this extreme correlation, one will observe a large 

discontinuity in the conditional variances. To show this, 

consider the variance ~(~,1) and the conditional variance 

(Y~(211,211), It follows from (20) that 

(23) (~(1,1) = ~-2+[~ ; (~(211,2]1) • 1~2+ 82 
1 +o2/13~ 

Together with (21) this shows that c~(211,211)<< eYe(I,1). 



Hence, there is a tremendous drop in value when one goes 

from the variance of the first ambiguity to the conditional 

variance of the second ambiguity. With [32, sufficiently large, 

we approximately have o~o.,)-= 921 and ~211,211)--2cy a. The 

important implication of this result for the search of the 

integer least-squares ambiguities, is the following. When 

oa(~,l) is large and 15a(2b,211 ) is extremely small, the problem 

of search-halting will be significant. A large ~Ym.1) implies 

namely, that the first bound of (18) will be rather loose. 

Quite a number of integers will therefore satisfy this first 

bound. This on its turn implies, when we go to the second 

bound, which is very tight due to ~a(211,2ll)<<(ya(1,1), that we 

have a high likelihood of not being able to find an integer 

that satisfies this second bound. The potential of halting is 

therefore very significant when one goes from the first to the 

second bound. As a consequence a large number of trials are 

required, before one is able to find a candidate integer- 

pair. []  

The above two-dimensional example has shown, how the 

search is affected when the conditional variances show a 

large discontinuity. This effect is also typically experienced 

in the actual search for the integer least-squares ambiguities. 

The structure of (20) resembles namely the structure of the 

actual ambiguity variance-covariance matrices. In case of the 

single baseline model, the actual n-by-n ambiguity variance- 

covariance matrices can also be written as the sum of two 

matrices. The first matrix in this sum is then of rank n, but 

contains very small entries because of the high precision with 

which the carrier-phases can be observed. The second matrix 

in the sum will be of rank 3, and contains entries which are 

relatively large due to the poor precision with which the 

baseline can be estimated when the ambiguities are still 

estimated as reals. As a result of this structure, the actual 

spectrum of ambiguity conditional variances will generally 

show a large discontinuity after the third variance: 

(24) (Yaqlj,j[j)<<cya(itril,9 i=1,2,3 , j=4 ..... n. 

This implies, since the first three bounds of (19) will be 

rather loose and the remaining bounds will be very tight due 

to the discontinuity, that the potential of halting will be 

significant when one passes from the third bound to the 

fourth bound. The following example gives a representative 

illustration of the characteristics of the spectrum of 

ambiguity conditional variances. 

Example 2 

This example is based on a 7 satellite configuration using 

dual frequency carrier-phase data for an observational 
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timespan of two seconds. Figure 2 shows the spectrum of 

conditional standard deviations expressed in cycles. Note the 

logarithmic scale along the vertical axis. 

Since 7 satellites were observed on both frequencies, we 

have twelve double-difference ambiguities and therefore also 

100 

10 
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0.01 l , I , I , I , l 

2 4 6 8 10 

Figure 2: A GPS spectrum of conditional standard 

deviations. 

twelve conditional standard deviations. The figure clearly 

shows the tremendous drop in value when passing from the 

third to the fourth standard deviation. There are three large 

conditional standard deviations and nine extremely small 

ones. The nine small conditional standard deviations are due 

to the presence of satellite redundancy and the fact that dual 

frequency carrier-phase data is observed. And it is because 

of the large values of the first three conditional standard 

deviations and the extreme small values for the remaining 

conditional standard deviations, that the search for the integer 

least-squares ambiguities will be rather timeconsuming. [] 

It will be clear that the efficiency of the search for the 

integer least-squares ambiguities could be improved 

considerably, if we would be able to eliminate the 

discontinuity in the spectrum and lower the values of the 

large conditional standard deviations. In the next chapter it 

will be shown how this can be achieved through a 

reparametrization of the ambiguities. 

3. The Reparametrized Ambiguity Estimation Problem 

This chapter is devoted to the elimination of the potential 

problem of halting. The original integer least-squares 

problem is reparametrized such that an equivalent 

formulation is obtained, but one that is easier to solve. As 

our search procedure of the previous chapter, also the 

reparametrizing ambiguity transformation makes use of the 
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sequential conditional least-squares estimation of the 

ambiguities. Although the aim is to fully decorrelate the 

ambiguities, true diagonality of the variance-covariance 

matrix will be difficult to reach. In section 3.1 it is shown 

that this is due to the fact that only a particular class of 

ambiguity transformations is admissible. Being restricted to 

this class, section 3.2 shows to what extent the ambiguities 

can be decorrelated for the two-dimensional case. Based on 

an integer approximation of the conditional least-squares 

transformation, a decorrelating two-dimensional ambiguity 

transformation is introduced. With this transformation it is 

guaranteed that the square of the correlation coefficient of 

the transformed ambiguities is less than or equal to 1/4. In 

section 3.3 the n-dimensional problem is discussed. The 

discontinuity in the GPS-spectrum of conditional variances 

is flattened through a repeated use of the two-dimensional 

ambiguity transformation. By removing the discontinuity 

with the ambiguity transformation, transformed ambiguities 

are obtained that show a dramatic improvement in both 

precision and correlation. As a result the search for the 

transformed ambiguities can be performed in a highly 

efficient manner. In section 3.4 a measure for the gain in 

baseline precision due to ambiguity fixing is introduced. It is 

shown how this gain can be computed directly from the 

spectrum of conditional variances. 

3.1 The Class of Admissible Ambiguity Transformations 

Certain linear combinations of the GPS-observables play a 

prominent role in the problem of ambiguity fixing. For the 

purpose of ambiguity fixing one usually aims at those integer 

linear combinations that produce a phase observable which 

has a relatively long wavelength, a relatively low noise 

behaviour and a reasonable small ionospheric delay [20]. 

And these properties are indeed very beneficial to the 

ambiguity fixing process. At present however, all integer 

linear combinations that are considered, are restricted to the 

single-channel dual-frequency case. But this implies, that the 

relative receiver-satellite geometry, which is so emphatically 

present in the ambiguity variance-covariance matrix, is not 

taken into account in the current linear combinations. This 

observation suggests therefore, that it is of interest to 

Consider multi-channel integer linear combinations, instead 

of only the current single-channel integer linear 

combinations. 

In [19] the admissible class of multi-channel integer linear 

combinations of the ambiguities was identified. It was shown 

that a full-rank n-by-n transformation Z* of the original 

ambiguity vector a to a new ambiguity vector z, giving z = 

Z'a, is admissible if and only if Z* is volume preserving and 

has entries which all are integer. Typical examples of 

transformations that fall in this class are the identity matrix 

and the permutation matrices. But also all ambiguity 

transformations that change the choice of reference satellite 

in the double-difference ambiguities, are admissible. And on 

the single-channel level, the same holds for the 

transformation from the L t and L 2 ambiguity to the L~ 

ambiguity and the wide-lane ambiguity. Note however, that 

the one-to-one single-channel transformation from the L 1 and 

L2 ambiguity to the narrow-lane and wide-lane ambiguity is 

not admissible. 

With the class of admissible ambiguity transformations 

identified, we can now try to use members from this class to 

aid the ambiguity fixing process. Let Z* be an ambiguity 

transformation, which is used to transform the ambiguities as 

(25) z = Z * a  , ~=Z*d , Qe =Z*QaZ" 

The ambiguity integer least-squares problem (10) would then 

transform accordingly into the equivalent minimization 

problem 

(26) min(~ -z)*Q~q(~-z) with z~ Z". 
z 

Similarly, the original ambiguity searchspace (16) would 

transform into the new ambiguity searchspace 

n 

(27) E(~ilI_ zi)2 / %~ilz,iln <_ ~2 . 
i = 1  

Note that this transformed searchspace not only has a volume 

which is identical to the volume of the original searchspace, 

but it also has, as it should be, the same number of candidate 

gridpoints. Based on the transformed searchspace (27), the 

search for the integer minimizer g of (26), can now be 

performed in exactly the same way as it has been described 

in section 2.4 for the original searchspace. And once the 

integer least-squares ambiguity i has been found, the integer 

minimizer ~ of (10) can be recovered from invoking 

= Z-*L The final baseline solution /~ follows then from 

(11). Alternatively, one could also use 

(28) ~ ~ -1 = b - Q~eQe (z - z") 

to obtain the final baseline solution. 

In order to have any use for the ambiguity transformation Z*, 

we should aim at finding a transformation that makes the 

transformed integer least-squares problem (26) easier to solve 

than the original problem (10). Clearly, the ideal situation 

would be, to have a transformation Z* that allows for a full 



decorrelation of the ambiguities. In that case, Qe is diagonal 

and (26) can simply be solved by rounding the entries of 

to their nearest integer. Unfortunately however, the 

restrictions on Z* do generally not allow for a complete 

diagonalization of the variance-covariance matrix. For 

instance, the choice where Z contains the (normalized) 

eigenvalues of Qe is not allowed. Although this 

transformation preserves volume, it generally does not have 

entries which all are integer. Also a diagonalization based on 

Z* =L -j , with L being the triangular factor of Q~, is not 

admissible. Again, although L is volume-preserving, its non- 

zero off-diagonal entries will generally not be integer. This 

shows that in terms of diagonality, one will have to be 

content with a somewhat less perfect result. Nevertheless a 

decrease in correlation, although not complete, will already 

be very helpful, since it would close the existing gap 

between (~(1,1) and (Ya(211,211) of example 1. In the next 

section it will be shown to what extent the ambiguities can 

be decorrelated in the two-dimensional case. 

3.2 A 2D-Decorrelating Ambiguity Transformation 

In order to answer the question as to how to construct the 

ambiguity transformation Z*, we first consider the problem 

in two dimensions. Let the ambiguities and their variance- 

covariance matrix be given as 

(29) 

a = 2 and Qe ~O.(2,1) O.fi(2,2) ) 

From section 2.3 we already know, that the conditional least- 

squares based transformation returns least-squares 

ambiguities that are fully decorrelated. When (13) is written 

in vector-matrix form, we obtain for the two-dimensional 

case, the transformation 

(30) 

Since we are studying the effect of transformations on Qa, 

we have for reasons of convenience skipped the elements a~ 

and a 2 in the above transformation. Note, that this 

transformation not only decorrelates, but, in line with the 

correspondence between linear least-squares estimation and 

best linear unbiased estimation, also returns ci2t ~ as the 

element which has the best precision of all linear unbiased 

functions of 81 and a2" Also note, that the above 

transformation is volume-preserving. Hence, the only 

condition that prohibits the above transformation from 

becoming an admissible ambiguity transformation is, that not 
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all entries of the transformation are integer. But, this 

shortcoming is easily repaired. We simply approximate the 
-1 

above transformation by replacing (~a(2,1)O'a(1,1) by 
-1 

[(Ya(Zlfyao,~], where [.] stands for "rounding to the nearest 

integer". This gives 

---- -1 " 
2' - [Oa(2,1)O~0,1)] 2 

The volume-preserving property is retained by this integer 

approximation. But the full decorrelation property is of 

course not retained. What remains to be verified therefore, is 

whether the above transformation still allows us to reduce the 

correlation between the ambiguities. In order to verify this, 

we first assume, as was done in our search algorithm of 

section 2.4, that the two ambiguities are ordered such that 

{~a(1,1) <~- {~e(2,2)" This implies that Ioe(zl)o;(IL/~] > 1(~a(1,2)1~)2,2) [ , 

We also assume that (Ya(2.1)~a~11)~(-1/2 +1/2]. Because, 
-1 

otherwise we would have [oa(zl)oe(1,)] =0, which would 

mean that the ambiguity transformation (31) reduces to the 

trivial identity transformation. Also an interchange of the two 
-1 

ambiguities would then not help, because if [(Yo(2 t)Oa(t 0] =0, 
(~ -1 -1 - , 

then also [ a(12)(Ya(2 2)] = 0 ,  since [oa(2,1)~a(kl)l_> [oao,2)o~z2)l 

It follows from the volume-preserving property of the 

ambiguity transformation that the determinant of the 

variance-covariance matrix of the original ambiguities d~ and 

cl 2 is identical to the determinant of the variance-covariance 

matrix of the transformed ambiguities 81 and @. We 

therefore have the following equality of determinants 

(32) oe(t.t>oa<2.2)(l _p2) = oa(1,t)(ya(2,20( 1 _p/2). 

From this equality we conclude that the correlation decreases 

whenever the variance of the transformed ambiguity a 2, is 

smaller than the variance of the original ambiguity 82 . Hence, 

by decreasing the variance we automatically reach a decrease 

in correlation, p~Z<f, and vice versa. Note, that this 

coupling between variance and correlation is a direct 

consequence of the volume-preserving property of the 

ambiguity transformation. We already know that the 

conditional least-squares estimate 821 , has the smallest 

variance attainable. What remains to be shown is therefore 

whether its integer approximation @ also has a variance that 

is smaller than the variance of ci 2. In order to show this, we 

express (81,a2,) in terms of (81,8211). With (31) and the 

inverse of (30), this gives 

(33) = ^ , with [e [_< 1/2. 

2, (%0 
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Application of the error propagation law gives then 

I {~a(I'2t) = ~{~a(1,1) (34) 

/ t %~',2'~ e 2%o.~ ~ + (1 - p~)%~,zr 

For the second equation we may also write 

-. - -  _~a(2~2~)=O'~3(2,2)-(l~2¢/(2,1)(~1,l)-e2){~e(1,1)' This shows, since 

o~ -2 (2,1){~a(1,1) -~ 1/4 and e 2 < 114 that 1~(2',2') <~ O'~(2,2)' with the 
-1 

equality only when Oa(2,1)Oa(L1) = - 1 / 2 .  The conclusion reads 

therefore, that the ambiguity transformation (31) indeed 

allows us to decrease the correlation between the two 

ambiguities. 

So far, we have only dealt with one of the two ambiguities, 

namely a 2. But now that d2 has been transformed into ~2,, we 

could think of interchanging the role of the two ambiguities 

and proceed with transforming the first ambiguity d~ into dl" 

The corresponding ambiguity transformation reads then 

(35) 
I~i,/ = l0 -I "~ /ig~ 1 

q -- [(3~e(1,2~)(~e(2,,2,)] t21 

1 

This transformation makes only sense however, when 

oe0,2~o~2,2~ (-1/2, +1/2]. It follows from the first equation 

of (34) that O~L2~CY~z,,2, ~ = eOe(~,~O~2,2 ~. We therefore have 
-1 -1 

oa(L2,)Oe(z,2~e ( -  1/2, + 1/2] and thus [oa(!,z~oa(~,2o] = 0 whenever 

~e(2,2~>%(la). This shows that it only makes sense to 

continue when cye(z,2~<creo,~ ~. And when one continues, one 

again will be able to obtain a further decrease in the 

correlation between the two ambiguities. In fact, one can 

proceed in this way and construct a concatenated form of 

ambiguity transformations 27, in which each individual 

transformation contributes to a lessening of the correlation. 

The last ambiguity transformation in this string of 

transformations will then reduce to the trivial identity 

transformation. And when this happens, we would have for 

the transformed ambiguities, denoted as g~ and z2, that 

[Oe(2,,)Oe-~Ll)] = 0 and [(~g,(1,2)l~g(12,2)] = 0, or that I%1>~)*~,,~1 
_< 1/2 and [Cre(L~)~e(12,~)l_< 1/2, from which it follows that 

(36) 
2 

p~ = °'e~L2~ < 1/4o 

O'S(l, 1 ){~(2,2) 

This is an important result, because it shows that we can 

transform the original ambiguities, which are usually highly 

correlated, into new ambiguities wh ich  are much less 

correlated and which also, because of the volume-preserving 

property, see (32), are more precise• From the above bound 
2 

it follows, together with ~zlLgll~=(1-pe)~z2~ and oeo,~ ~ 

-~ 1~(2,2) that 

(37) > 3 
O'~(2 [1,2 [1 ) ---~O'~(1,1) • 

Hence, the ambiguity transformation 27 guarantees that the 

transformed conditional variance ~all.211~ will never be 

much smaller than the variance ~ u ~ '  But this implies, that 

27 indeed removes to a large extent any discontinuity present 

in the original conditional variances, Oe~zll,zl~)<<Oe(u~. 

Geometrically, the above constructed sequence of ambiguity 

transformations can be given the following useful 

interpretation (see figure 3). Imagine the original two- 

Y 

Figure 3: Decorrelating ambiguities by pushing tangents. 

dimensional ambiguity searchspace centred at d. A full 

decorrelation between the two ambiguities can be realized, if 

we push the two horizontal tangents of the ellipse from the 

___(0e(2,2~2) 1/2 level towards t h e  "4"((Ya(211,211)~2) 1/2 level, while at 

the same time keeping fixed the volume (area) of the ellipse 

and the location of the two vertical tangents• Alternatively, 

one can also achieve a full decorrelation, if instead of the 

two horizontal tangents, the two vertical tangents are pushed 

from the -I-(O"4(1,1)%2) 1/2 level towards the ___(om 12,112)% 2)1/2 level. 

Unfortunately however, both these transformations are not 

admissible, since it is not guaranteed that they result in 

integer ambiguities. Therefore, instead of using these two 



transformations, we make use of their integer 

approximations. The first transformation (31) then pushes the 

two horizontal tangents of the ellipse from the+-(¢ya(2,2);(2) 1~2 

level towards the +_(c~e(2,2~Z2) m level, while at the same time 

keeping fixed the volume of the ellipse and the location of 

the two vertical tangents of the ellipse. The second 

transformation (35) then pushes the two vertical tangents 

from the "t'(~'a(1.1)~2) 1/2 level towards the "I-({~'a(IZli)Z2) 1/2 level, 

while at the same time keeping fixed the volume of the 

ellipse and the location of the two horizontal tangents. And 

this process is continued until the next transformation 

reduces to the trivial identity transformation. Since the 

volume of the ellipse is kept constant at all times, whereas 

the volume of the enclosing box is reduced in each step, it 

also follows that the ellipse is forced to become more 

sphere-like. 

Based on the variance-covariance matrix of example 1, the 

following example illustrates how the ambiguity 

transformation Z* succeeds in decorrelating the two 

ambiguities. 

Example 3 

When the values 

(38) <5 = 0.2 , [31 = 5.0 and [32 = 6.0 

are substituted into (20), we obtain 

(39) 25.04 30 1 

Qe = ~ 30 36.04 " 

From this it follows that the two ambiguities are highly 

correlated and that the with (39) corresponding ambiguity 

search space is very elongated. The correlation coefficientpe 

and elongation e d read 

(40) pe=0.999 and ee=39.064. 

Elongation is measured as the ratio of the lengths of the 

major and minor semi-axes of the ambiguity search ellipse. 

If we now apply our method of ambiguity decorrelation, the 

corresponding ambiguity transformation becomes 

(41) z l: :1 
The variance-covariance matrix of the transformed 

ambiguities reads therefore 
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2.44 -0.44 / 

(42) Qe=(-0.44 1.08)" 

This result shows, that the transformed ambiguities are 

indeed less correlated, more precise, and also have an 

ambiguity search space that is less elongated: 

(43) Pe = -0.271 and e e = 1.645. 

And because of this result, the gap in the conditional 

variances has been largely removed: (Ye(1,1)=25"04,~Ye(2tl,261) = 

0.098 versus ~m.1) =2.44, cye(211.21~) = 1.00. Also note that the 

determinant of the variance-covariance matrix remained 

invariant under the ambiguity transformation. Both Qe and 

Qe have a determinant equal to 2.442. This invariance is due 

to the volume-preserving property of (41). []  

3.3 Flattening the Spectrum of Ambiguity Conditional 

Variances 

As it was shown in section 2.5, it is the large discontinuity 

in the spectrum of ambiguity conditional variances, that 

forms a hindrance for the efficient search of the integer least- 

squares ambiguities. A flattened spectrum will therefore be 

very beneficial indeed for our search. Having a flattened 

spectrum automatically implies, when n > 3, that the three 

large variances in the spectrum get significantly smaller. This 

can be seen as follows. Since the ambiguity transformation 

is volume-preserving, the determinant of the ambiguity 

variance-covariance matrix remains invariant under the 

transformation. Hence, since the determinant of the lower 

triangular matrix L in (14) equals one, it follows that also the 

determinant of the diagonal matrix D and therefore the 

product of all conditional variances remains invariant under 

the transformation. Compare with (32) of section 3.2. But 

this implies, that by flattening the spectrum, the very small 

conditional variances in the spectrum automatically allow us 

to significantly decrease the three large conditional variances. 

And as a result of this, our search for the integer least- 

squares ambiguities would then already commence with a 

very tight bound, thus assuring with a very high likelihood 

that the first chosen integer candidate is indeed already the 

one sought. 

The fact that the very small conditional variances in the 

spectrum allow us to significantly decrease the three large 

conditional variances, now also makes quite clear what role 

is played by satellite redundancy and dual frequency data. 

When both are absent, we have n=3. In that case, the 



78 

absence of very small conditional variances prohibits us to 

a high degree from "pulling down" the large variances in the 

spectrum. In case of satellite redundancy and/or dual 

frequency data however, we have n > 3. Now the presence 

of very small conditional variances does allow us to bring 

the large variances down to much smaller values. And the 

larger n-3 is, the more we are able to bring the flattened 

spectrum to a lower level. 

In the previous section it was shown how to decorrelate the 

two ambiguities, thereby removing the gap between 

6~(1,1~ and (YB(2[1,211). The two-dimensional ambiguity 

transformation was constructed from a sequence of 

transformations of the following two types: 

(44) Iz i 1)' 

in which z21 and z12 are appropriately chosen integers. To 

generalize this to the n-dimensional case, we first need to 

generalize these type of transformations accordingly. Here 

however, we are faced with a difficulty, since one can think 

of different generalizations all of which reduce to one of the 

above when n=2. One rather straightforward generalization 

follows however, when one considers the bounding of the 

triangular factor that is achieved by Z~* for -1 
z2i=-[tse~zi)c~a0,1~] . From an application of the error 

propagation law to (33) follows namely 

l{~t~(1,l) l~(l,2Z)1___ I 1 011 /(~ ~1 0 l(1 01 ' 
oe(2tl.21~ ) 1 

(45) 

with le]_<1/2. In order to generalize this result to 

dimensions higher than two, we start from Qe = LDL*. Note 

that if the entries of L would be integer, then so would the 

entries of its inverse L-I be. In fact, the inverse L-I , being 

integer and volume-preserving, would then be the perfect 

candidate to diagonalize Qe- One would then be able to fully 

decorrelate all ambiguities in just one step. This observation 

suggests, even though the entries of L will be non-integer in 

general, that we choose the n-by-n matrix Z~" as a lower 

triangular matrix, with integer entries and with one's on its 

diagonal. Matrix Z] can then be constructed from subtracting 

suitable integer multiples of the first (i-1) rows of L from 

row i of L for i=n ..... 2. Using this matrix Z~, one obtains the 

triangular decomposition Z~ QaZ 1 = ( ZI L )D( Z~ L ) * , in which, 

in analogy with (45), the absolute values of all non-diagonal 

entries of Z~L are guaranteed to be bounded by a half. This 

bounding of the triangular factor Z~L implies, when the non- 

diagonal entries of L are larger than a half in absolute value, 

that the precision of all but the first transformed ambiguity 

will be improved. And this improvement will be more 

noteworthy, the more the non-diagonal entries of L are 

decreased in size. 

Although the above bounding of the triangular factor does 

allow for some decorrelation and some improvement of 

precision, one should note however, that all conditional 

variances remain invariant under the transformation Z1. 

Hence, not only the variance cre(1,1~ remains large, but the 

complete spectrum of ambiguity conditional variances, 

including its discontinuity, remains untouched. One should 

therefore not expect too much from the single transformation 

Z1. This suggests, in analogy with the two-dimensional case, 

that one tries, in one way or another, to set up a sequence of 

n-by-n transformations. But here, the problem of dimension 

takes its revenge in the sense that one can try to pursue 

many different alternatives. Fortunately, there is no need to 

follow this line of thought, since excellent results can already 

be obtained when we keep ourselves to the two-dimensional 

ambiguity transformation of the previous section and apply 

it to the n-dimensional case as well. 

Transformations of the type (44) are known as Gauss- 

transformations and they are considered to he the basic tools 

for zeroing entries in matrices [25]. In our case, due to the 

integer nature of z12 and z21, they will be used to decrease the 

conditional correlations instead of zeroing them, thereby 

trying to flatten the spectrum of ambiguity conditional 

variances. In order to see how we can construct the overall 

n-dimensional ambiguity transformation on the basis of the 

two-dimensional transformation of the previous section, 

consider the discontinuity in the spectrum. The discontinuity 

is located at the two neighbouring conditional variances 

~(il1,ill) and ~(e.ir*÷l,i+ltm) for i=3. Hence, if we let 

Clil I and c~i+llZ, for i=3, play the role of our two ambiguities 

41 and a2 of the previous section, we should be able to 

remove this discontinuity from the spectrum by using the 

decorrelating two-dimensional ambiguity transformation of 

the previous section. Thus, instead of applying the two- 

dimensional ambiguity transformation to the unconditional 

least-squares ambiguities, it is applied to the conditional 

least-squares ambiguities. This would then give, in analogy 

to (37), 

(46) (~£(i+i[l+l,i+l]I+i) > 3 ( y  -- "~ £(i]I,i[1) ' 

for i=3. Note, that as a consequence of the fact that we are 

transforming conditional least-squares ambiguities, the other 

conditional variances remain unaffected by this 



transformation. Now, in order to construct and apply the 

two-dimensional transformation, we need the variance- 

covariance matrix of ailz and d~+~l I. In addition, we also need 

to know how the transformation affects the variance- 

covariance matrix Qa. We will therefore again make use of 

the sequential conditional least-squares decomposition (14). 

To consider what happens to (14) when the two-dimensional 

ambiguity transformation is applied to t~ and dt~+~, we 

partition the lower triangular matrix L and diagonal matrix 

D of Qa = LDL* as 

(47) 
L=I[2~ L~ and D= D22 , 

31 L32 L33 033 

in which LI~ is of order (i-1), L22 is of order 2 and L33 is of 

order (n-i-l). The dimensions of the other submatrices in L 

and D are determined accordingly. Note that (L~aD~L2~* + 
L22D2zL J)  is the variance-covariance matrix of the least- 

squares ambiguities ai and a/+l, whereas L22D22Lj is the 

variance-covariance matrix of the conditional least-squares 

ambiguities ~lI and d~+W' It is this last matrix that is now 

used for the construction of the two-dimensional ambiguity 

transformation. Hence, the conditional variance-covariance 

matrix L22D22L22 * now plays the role of the variance- 

covariance matrix in (29). The two-dimensional ambiguity 

transformation will be denoted as Z22". With Z~2* determined 

from L22D22L22*, we can Zj - t ransform the unconditional 

least-squares amNguities d~ and di+l, while leaving the other 

least-squares ambiguities unchanged. As a result we obtain 

the transformed ambiguity vector dz = (d~ .... ~i.1,~,£g.~,~+2, 

..,~)*, with corresponding variance-covariance matrix Qa,. 

This matrix will have a new triangular-decomposition 

Q~, = L/D~L/, with 

(48) 
LI=IL21 L~2 and D/= D22 

3t L32 L33 D33 

and where 

(49) 
£:, --z;2c~1 

L32 =L32(Z22L22)-[/]22 • 

Note that the transformation of d~ and ai+l with Z22", only has 

an effect on the ith and (i+l)th row and column of L and D. 
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Hence, the recovery of the triangular decomposition after the 

two-dimensional transformation has been applied, is rather 

straightforward. This is also understandable, considering the 

properties of sequential conditional least-squares estimation. 

The two two-dimensional matrices /]22 and/~22 follow from 

the unique triangular decomposition of Zz*2(L22D22Lz2)Z22. 
m 

Matrix Lz2 is lower triangular, having ones on its diagonal 

and o~(i+1.~l/fy~-(Ikz.~lo as its off-diagonal entry. This off-diagonal 

entry is in absolute value less than or equal to 1/2. Compare 

with the triangular factor of (45). The diagonal matrixD22 

has the conditional variances l~.2(ill,ill) and O2(i+tll+l,i+alI+l) as its 

entries and they satisfy the inequality (46). 

The above result implies for i=3, that we are able to close 

the large gap between the third and fourth conditional 

variance in the spectrum. But of course, after the 

transformation has been applied, other, but smaller 

discontinuities emerge. For instance, if the transformation has 

been applied for i=3, then (~(312,1;312,1)<1~t~(211,211) and 

13"~(514,.,1;514,.A ) < ~(413,2,1;413,2,1 ), But also they can be removed 

by applying the two-dimensional transformation. The idea is 

therefore to continue applying the transformation to pairs of 

neighbouring ambiguities until the complete spectrum of 

conditional variances is flattened and (46) holds true for all 

i, Once this has been completed, the n-dimensional ambiguity 

transformation Z* is known and the original least-squares 

ambiguity vector ~ can be transformed as ~=Z*~. Its 

variance-covariance matrix is given as Q~=Z*QaZ and the 

entries of the diagonal matrix /~ of its triangular 

decomposition Q~ = LDL* will then contain the transformed 

spectrum of conditional variances. The following example 

illustrates how the ambiguity transformation Z* succeeds in 

flattening the spectrum of conditional variances. 

Example 4 

This example is based on the same data as example 2. Figure 

4 shows both the conditional standard deviations of the 

original least-squares ambiguities d i, as well as the 

conditional standard deviations of the transformed least- 

squares ambiguities ~i. We clearly observe a dramatic 

improvement in the spectrum. The discontinuity has been 

removed and the transformed conditional standard deviations 

are all of about the same small order. The dramatic decrease 

in value of the first three conditional standard deviations and 

their  levelling with the remaining conditional standard 

deviations, now implies that our search for the integer least- 

squares ambiguities already commences with very tight 

bounds, thus assuring with a very high likelihood that the 

first chosen integer candidates are indeed the coordinates of 
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the sought for integer least-squares ambiguity vector ~. 

100 

10 

1 

0.1 

0,01 I , I , I , I , I 

2 4 6 8 10 12 

Figure 4: The original and transformed spectrum of 

conditional standard deviations. 

Together with a bounding of the triangular factor as 

discussed above, the very low level of the transformed 

spectrum also allows us to assure that all unconditional 

variances of" the transformed ambiguities are of the same 

small order. [] 

To conclude this chapter, the following section will show 

how the spectrum of conditional variances can also be used 

to determine the gain in baseline precision that is achieved 

through the fixing of the ambiguities. 

3.4. On the Spectrum and the Gain in Baseline 

Precision. 

As it was remarked in section 2.2, the purpose of ambiguity 

fixing is to improve the precision of the baseline solution. 

This suggests that the precision of the least-squares 

ambiguities can be seen as an indicator of the amount of 

improvement one can achieve in the baseline precision. This 

indicator-property will be proven by showing the relation that 

exists between the determinants of Q~, Q~ and Q~la" 

For the conditional variance-covariance matrices Qfilo and 
I -1 -1 Oalb we may write: Qbla = ( - Q ~ Q e  "Qa6Q~ )Q;, and 

-1 
Qalb = (I-Qa~Q?b I"Q~aQa )Qa" From this follows, together 

with the determinant identity det(1-Q~aQ2~.Qa~QJb 1) = 

det(I-  Q o~,Q ?b 1 . Q &Q ?1) , that 

(50) det(Q~) = det(Qa) 

det(Q~;la) det(Qalb) 

This relation is generally valid and it is independent of 

whether one is dealing with a single baseline model or a 

model where several baselines are adjusted for 

simultaneously. Note that det(Qa) equals the product of all 

ambiguity conditional variances cy~(ilz.il ~ for i = 1 ..... n. Also 

note that one may replace the dependence on the original 

ambiguities in (50) by the transformed ambiguities. 

The variance-covariance matrix Q~lb in (50) describes the 

precision of the least-squares double-difference ambiguities 

conditioned on a fixing of the baseline(s). Hence, Q~tb does 

not depend on the relative receiver-satellite geometry. Its 

determinant is therefore easily determined. For a single 

baseline model, where an s-number of satellites are tracked 

over a k-number of epochs, we have for the single-frequency 

and dual-frequency case 

S(O" 1 ]k~,l)' (51) Ll: det(Q~/b) = 2 2 ,-1 

S((Y 1 [ k~,x) ~ - s(O~22/ k~z), , L1,L2: det(Q~jb ) = z 2 ~ I 2 ~-l 

in which 621 and cy~ are the a-priori variances of the single- 

differenced carrier-phase observables on L 1 and L 2. This 

result can now be used in combination with (50) to show 

how the gain in baseline precision is governed by the 

spectrum of conditional variances. For instance, for the 

single-frequency single baseline case we get 

(52) det(Q~;) n 2 2 

= [Yl(k),l(y:.cirl.ill)/~a)]/(n+l ). 
det(Ql;pa) i=1 

Note that the square-root of the left-hand side of this 

expression equals the volume of the three-dimensional 

standard ellipsoid of the "floated" baseline, divided by the 

volume of the three-dimensional standard ellipsoid of the 

"fixed" baseline. Also note, since the left-hand side of (52) 

is independent of the chosen reference satellite in the double- 

difference ambiguities, that also the right-hand side must be 

independent of this choice. Hence, although the individual 

conditional variances are dependent on the choice of 

reference satellite, their product is not. 

4. Summary and Concluding Remarks 

In this contribution a method for the fast estimation of the 

integer least-squares ambiguities has been introduced. The 

basic idea that lies at the root of the method is that integer 

ambiguity estimation becomes trivial once the ambiguities 

are decorrelated. The approach followed is therefore to aim 

at decorrelating the least-squares ambiguities, while retaining 

their intrinsic integer nature. The method consists of two 

steps, a transformation step and a search step, both of which 

rely on the results of a sequential conditional least-squares 

ambiguity adjustment. The transformation-step starts from 

extending current usage of single-channel integer ambiguity 



linear combinations to invertible multi-channel linear 

combinations. The importance of this extension is, that it 

provides significant leeway to influence the dependence of 

the ambiguity variance-covariance matrix on the designmatrix 

containing the receiver-satellite geometry. For short 

observational timespans, this dependence has been identified 

as a discontinuity in the spectrum of ambiguity conditional 

variances. As a consequence a direct search for the original 

integer least-squares ambiguities will be rather 

timeconsuming. Based on an integer approximation of a fully 

decorrelating transformation, transformed conditional least- 

squares ambiguities were recovered having an almost 

flattened spectrum. As a result, the search for the 

transformed integer least-squares ambiguities already 

commences with tight bounds, thus assuring that the solution 

can be found in a highly efficient manner. 

As it was stressed in the introduction, our method is 

concerned with the estimation problem and not with the 

validation problem. Hence, a proper validation should still be 

used after the integer least-squares ambiguities have been 

identified. And since the quadratic forms which are usually 

used for validation purposes are invariant to our 

2 II~-~ll~),any of the existing reparametrization (e.g. IIc~ - allQ~ = 

validation procedures can be used. Also note, that one can 

use, if so desired, ones own search procedure. But instead of 

applying it to the original ambiguities, it should then be 

applied to our transformed ambiguities. 

We would also like to remark that the ambiguity 

transformation used, is completely determined by the 

variance-covariance matrix of the ambiguities. Even the a 

posteriori variance-factor need not be known. This stipulates 

that actual measurements are not needed for the 

transformation-step. Hence, the necessary computations for 

this step can be done in principle at the designing stage, 

prior to the actual measurement stage. 

In sections 2.1 and 2.2 we have followed the customary 

practice of working with the double-difference version of the 

carrier-phase observation equations. This however, is not 

really necessary. One could as well work with the 

undifferenced version of the carrier-phase observation 

equations, as long as the original set of undifferenced 

noninteger ambiguities is reparametrized into a set of integer 

ambiguities plus a remaining set of noninteger parameters. In 

fact, this is precisely the approach used in our numerical 

software implementation. Similar approaches have been 

advocated in [13] and [30]. In sections 2.1 and 2.2 we have, 

for reasons of simplicity, also restricted ourselves to a 
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parametrization in which only the ambiguities and baseline 

components appear as parameters. But if needed and when 

estimable, additional parameters (e.g. different types of 

delays) can be included without affecting the principle of the 

approach. On the observational side, the method is also 

independent in principle, on whether code data are used or 

not, and on whether dual-frequency data are used or not. And 

when dual-frequency data are used, one could also apply the 

method to other type of ambiguities, such as the wide-lane 

or narrow-lane ambiguities. 
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