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The Lee Path Connection Algorithm

FRANK RUBIN

Abstract-The Lee path connection algorithm is probably the most
widely used method for finding wire paths on printed circuit boards.
It is shown that the original claim of generality for the path cost
function is incorrect, and a restriction, called the pathconsistency
property, is introduced. The Lee algorithm holds for those path
cost functions having this property. Codings for the cells of the
grid are proposed which will allow the correct operation of the al-
gorithm under the most general path cost function, using the mini-
mum number of states possible, six states per cell. Then methods
for reducing the number of calculations by increasing the number of
states are presented.

Storing computed cell masses is introduced as a method for
reducing the amount of calculation for each iteration of the algorithm.
Adding the distance from the goal to the path cost function, and
expanding the most recently encountered cell, are shown to sub-
stantially reduce the number of iterations needed.

Index Terms-Cell coding, heuristic search, Lee algorithm, path
cost function, printed circuit board, rectangular grids, shortest path
problem, wire routing.

I. INTRODUCTION

tHE Lee path algorithm [9] is undoubtedly the most
-'widely used algorithm for finding paths in rectangular
grids, particularly those involved in printed circuit board
wiring. Indeed, most papers in the field describe their
routing algorithms as variants or extensions of the Lee
algorithm. The Lee algorithm is not inherently restricted
to rectangular grids, but is traditionally used for this
purpose, and will be so used in this paper because the
rectangular grid is the specific case of interest.
The Lee algorithm has the properties that a) it will

always find a path if one exists, and b) the path it finds
will always have the minimum possible cost. Only algo-
rithms with these properties will be discussed in this paper.
Path cost is any measure the user wishes to minimize,
and may include length, crossovers with' existing wires
(if permitted), nearness to other wires, penalties for enter-
ing congested areas, or number of vias (in the multilayer
case).
Among all known algorithms, Lee's algorithm and its

variants require the least storage. There is no matrix of
costs, nor are there any successor tables. Its single posi-
tional table can be reduced to as little as 2 bits/cell. This
is the primary reason for its wide use. For a large printed
circuit board may have from 104 to 0l cells, and some-
times more.
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In some of the heuristic wiring programs, such as those
by Aramaki et al. [2] and Fisk et al. [51, the Lee algorithm
is used as a "last resort" when the heuristic algorithm
fails to find a path.

II. SEARCH TECHNIQUES

The Lee algorithm is intended to operate on a very
general class of path cost functions called monotone path
functions. Such a function is a vector F =( f1,f2,... yf,)
of individual path cost functions each of which is mono-
tone. That is, if p is a subpath of q, then fi(p) < fi(q).
The entire vector is regarded as having a left-to-right
dominance order. That- is, F(p) > F(q) if and only
if f (p) = fi(q), f2(P) = f2(q), .* *, fk(p) = fk(q), and
fk+l(p) > fk+l(q) for some k, 0 < k < r. This ordering
on values of F is also called "lexicographic order."

Let the origin and goal for a particular path problem
be given, say o and x. Then the mass of a cell cn along a
path p = (o,c,c2 ..,cn) is defined as F(p), and the mass
of the cell c,, is its least mass along all paths.

In its original form, Lee's algorithm uses two lists, L,
the list of frontier cells whose masses are known, and L1,
the list of their neighbors. The principal iteration in the
algorithm involves the following four steps.

Algorithm 1: Lee Path Algorithm
1) For each admissible (i.e., nonobstacle) neighbor of

a cell in, L, put the cell and its tentative cell mass in Li.
2) Adjoin to L all of those cells in L1 whose mass is

minimum. If any of these is the goal, we are done.
3) Delete from L any cell whose neighbors have all

been permanently labeled, and clear L1.
4) If L is empty, no path exists. Otherwise repeat from

Step 1.
The preceding procedure'uses a rather modest amount

of storage. At any given time only the cells on the frontier
and their immediate neighbors are stored, along with the
information concerning whether a cell has been expanded
(that is, the masses of its neighbors have been calculated
and placed in list L1) and what its minimum-cost prede-
cessor had'been. The number of cell cost calculations may
be reduced by Dijkstra's technique [4] of retaining the
cell costs in a separate table and recalculating only the
cost of the neighbors of minimum-cost cells selected in
Step 2. Since this table would replace the list L1, there is
no increase in storage for this method. Moreover, if one
cell at a time is chosen for expansion, lists L and L1 may
be merged into a single list, and Step 3 of Lee's algorithm
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is eliminated. A detailed survey of such methods for
minimum-path problems appears in [13, ch. 1].

III. MINIMAL-STATE CELL CODING

When Lee's algorithm is applied to a circuit board, the
number of cells is extremely large. Therefore, it is desir-
able to minimize the amount of storage needed for each
cell. At least the following must be recorded for each cell:
whether the cell is available or an obstacle, and from which
direction it was entered along a minimum-cost path. This
requires a minimum of five states, one to distinguish un-
expanded nonobstacle cells, and four to indicate direction
of entry. An obstacle cell could be distinguished from an
unoccupied cell simply by assigning it a direction. In the
expansion procedure obstacles and previously expanded
cells get the same treatment, namely, they are not con-
sidered as valid neighbors of a cell being expanded. Thus
during expansion they need not be distinguished.

There is another operation, normally ignored in most
papers, for which a sixth state should be added. This is
the operation of erasing the direction traces so that the
next wire path may be found. The sixth state is used to
distinguish obstacles due to fixed geometric properties
and old wires from cells expanded in the present search.
Those cells in the present optimal path are set to state 6
during the path tracing procedure. Then all cells at states
1 to 5 are reset to state 1.
When multiple target cells are possible, as in multipoint

nets, a seventh state to indicate a target cell is used.
A major factor in the cost of the algorithm is whether a

given cell is placed in list L once or many times. Unless
an indication exists in the cell that it has been already
placed on the list, the cell may be placed on the list as
many times as it is reached. To prevent this, an eighth
state "reached but not expanded" is used. This yields a
3-bit cell coding. The list L must now contain three data
for each frontier cell:

1) the identity of the cell, that is, its coordinates;
2) the cell mass;
3) the identity of its predecessor cell, or the direction

from which the cell was entered.
The corresponding search algorithm is as follows.

Algorithm 2: Modified Lee Path Algorithm
1) Place the initial cell(s) in the list.
2) Find the lowest cost cell c on the list. If it is a target

cell, go to Step 12.
3) If c was previously expanded, skip to Step 9.
4) Otherwise generate the first neighbor of c.
5) If the neighbor was previously expanded or it is an

obstacle cell, skip to Step 7.
6) Record the cost and predecessor direction of the

neighbor and add it to the list.
7) If any more neighbors of c exist, repeat from Step 5

for the next neighbor.

8) Record the direction of c in the cell matrix.
9) Delete c from the cell list.
10) If any more cells exist in L, repeat from Step 2.
11) No path exists. Stop.
12) Trace back along the path to its origin. Done.
This last step is discussed in more detail in Section V,

and modifications to reduce the size of the search are
presented in Section VII.

IV. DUPLICATE CELL LIST ENTRIES

For the most commonly used path cost functions, in-
cluding the five mentioned in the introduction, the cost
which a cell adds to a path is independent of the other
cells in the path. If that cell has been reached along some
path and an entry has been made in the cell list, then
any subsequent path to that cell must have at least as
great a cost. This means that it is not necessary to place
a new entry in the cell list.
However, in the general case, a subsequent path to a

cell may have lower cost. Adding a second entry to the
cell list will increase the time required to search that list
for minimum-cost cells. This may be prevented by remov-
ing or replacing the earlier entry in the cell list. That
would require a search of the list. The time for this search
may be reduced by hashing the cell list on the basis of cell
coordinates. The hashed list uses more space and takes
longer to search for minimum-cost cells. Thus, in general,
it has been found less time-consuming to leave the dupli-
cate entries in the cell list.

V. PATH TRACING TECHNIQUES

MVost of the earliest shortest path solutions were graph
methods designed primarily for hand application. In these
methods, the technique for tracing out the minimum path
was usually to draw reversed arrows indicating the arc
by which a given node was entered. This is not suitable
for computer, use; however, several variants may be
adapted. For each node, the arc by which it was entered
could be recorded. It is easily seen that listing the set of
arcs by which all nodes were entered also uniquely defines
the shortest path, since each arc enters only one node.
When the graph is sparse and the connections are speci-

fied by a successor list, then the arc entering a node may
be represented by its sequential position in the row of
successors of the given node. The entering arc is guaran-
teed to be present whenever the graph is bilateral (un-
directed).
The most common method of tracing through a general

graph is to specify the predecessor of each node along the
shortest path so far. This method is totally general with
respect to graph configuration and cost function. For a
complete or near-complete graph the method is probably
the best possible. The only unessential information repre-
sented in this method is the set of predecessors for nodes
reached but not on the minimum path to any goal node.
Since the predecessor table is normally positional with
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Start Goal

Fig. 1. A path from cell A to cell C is desired. Cell costs are shown
in the upper left corner. Moore's path tracing algorithm will not
distinguish whether cell B or cell J is the correct predecessor of
cell C.

respect to nodes for speed, the storage for these data
probably cannot be deleted at reasonable cost, hence sup-
porting the claim of optimality.
Matrix methods for the shortest route problem for all

shortest paths between pairs of nodes admit forward
tracing by means of a successor matrix. Initially, the
successor si of node i on the path to node k will be k. When
the path from i to k is replaced by a two-part path, i to j
and j to k, then Sik will be replaced by sij (not byj itself).
This is possible because at each iteration only one path
is being considered for each pair of nodes, not a tree as
in the single-origin problem.
Another tracing method requires only that the distance

di from the origin be recorded for each node. The prede-
cessor of a node j, along the shortest path from the origin,
is that node i whose cost satisfies di + ciq = dj. This
method requires searching all predecessors of each node
on the minimum path, and is therefore considerably more
costly than other methods. Moreover, the number of bits
needed to retain the cost may far exceed the number of
bits to represent a node.

Specific types of graphs or cost functions allow special-
ized tracing techniques. Moore [10] has observed that
for the edge cardinality metric, the residue of the number
of arcs in the minimum-length path to the given node
taken mod 3 is an adequate indicator. This-is because the
cost of any predecessor of a node of cost c will have cost
c - 1 (mod 3), any successor will have cost c + 1 (mod 3),
and any other neighbor will have cost c. Hence three
distinct values serve to differentiate the three classes of
neighbors. This method is satisfactory for any graph, but
cannot be used with arbitrary arc lengths, for it is not
then guaranteed that neighbors which are neither suc-
cessors nor predecessors will have the same level number.

Fig. 1 illustrates this point. The path desired is from
A to C. The cells will have the following level numbers:
A-0, B-1, C-2, D-1, E-2, F-0, G-1, H-2, I-0, and J-1. Now
B and J have the same level number, so that it is ambigu-
ous whether B or J is the predecessor of C along the
minimum-length path.
An even more specialized tracing procedure has been

developed by Akers [1] for the edge cardinality metric in

rectangular grids. When the grid is rectangular, every
neighbor of a cell is either a predecessor or a successor.
Thus only two classes of neighbors exist, and only two
values are needed to distinguish them. The sequence
0,1,1,0,0,1,1,0,0,**- has the needed property that the
number following a given position in the sequence is dif-
ferent from that preceding. So this sequence assigned to
successive distances from the origin will serve to distin-
guish predecessors from successors of each cell reached in
the expansion process.
The property that every neighbor of a given node is

either a successor or predecessor of that node holds when-
ever all circuits (closed loops) in the graph have even
length. Assume the converse. Then there are two neighbor-
ing nodes x and y such that dr > d,- 1 and dx < d, + 1.
Thus dx = dy. Then the circuit from the origin to x by
any shortest path, to y, and to the origin by any shortest
path has length d. + d, + 1 = 2ds + 1 which is odd,
proving the assertion.
The Akers tracing method can be used to get a 2-bit

encoding for the cells in the grid, as follows:

00 = available;
01 = obstacle;
l0=reached, with trace bit 0;
11 = reached, with trace bit 1.

Since with edge cardinality metric it is unnecessary to
distinguish between cells reached but not expanded and
those expanded, the above coding will suffice for repre-
senting cells for this special case.
The Akers method, however, cannot be used with' arbi-

trary cost functions. Fig. 2, in which a path from A to F
is sought, illustrates this. The level numbers assigned to
the cells will be A-0, B-1, C-1, D-1, E-1, F-0. It is now
impossible to tell whether C or E is the predecessor of F.
Even if C was not expanded and marked with a level
number, it would not be possible to tell whether B or D is
the predecessor of E.
The inability of the Moore and Akers trace methods to

deal with more general cost functions will make them in-
adequate for many applications. For example, additional
cost may be assigned to wires passing through congested
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Fig. 2. A path from cell A to cell F is desired. Cell costs are shown
in the upper left corner. Akers' tracing algorithm will not show
whether cell E or cell C is the correct predecessor of cell F.

areas of the board, close to other wires or fixed obstacles,
or which use cells that could otherwise be used for drill-
throughs. A discussion of various path cost functions and
their uses appears in Rubin [13].
A trace technique presented by Lee [9] is specific to

rectangular grids, but can be used with any path cost
function whatever. It requires four values. The value
associated with a given cell specifies the direction from
which it was entered. The four possible directions may be
coded in any order. The order-left, right, up, down-has
been chosen to enforce the arbitrary decision that routing
of a wire shall begin in the horizontal direction.

VI. PATHS WITH MINIMUM TURNS

So far only one demand has been made upon the trace
procedure, that it be able to find any least cost path from
the goal to the start. There is a second function which
could logically be accomplished during this phase of the
path procedure. With many cost functions, notably edge
cardinality, there is a high likelihood of having many
equal-cost paths. In this case one could expect the trace
procedure to choose a "best" path according to some
additional criterion other than cost. A natural choice at
this stage is to select a path which has the fewest line
segments, hence the fewest turns.
A means of finding a minimum-cost and minimum-

segment path appears to be to add an additional cost
factor for turning corners. Unfortunately, the Lee algo-
rithm cannot cope with this type of cost factor. This is
because the algorithm (and Lee's proof of it) depends, at
least implicitly, upon the path-consistency property.

Definition 1 (Path-consistency property):

Let F be a path cost function, p any minimum-cost path
from A to B, and q any minimum-cost path from B to C.
If pq is a minimum-cost path from A to C, then F is called
consistent with respect to p and q. If F has this property
for all choices of A, B, C, p, and q, then F is called con-
sistent.
Such a property is not obeyed for a path with turn

penalties. In Fig. 3, whose path cost function includes
cell cost plus a turn penalty of 2, ABE is a minimum-cost
path from A to E, EF is a minimum-cost path from E to
F, but ABEF is not a minimum-cost path from A to F.
ADEF is the unique minimum-cost path from A to F.

Algorithms for dealing with turn penalties have been
devised by Caldwell [3], and by Kirby and Potts [8],
but they are extremely costly.

Start A B C

211
D E F Goal

Fig. 3. A path is desired from cell A to cell F using cell cost plus
two times the number of turns as the path cost function. Cell
cost is shown in the upper left corner. The Lee algorithm gives
the incorrect path ABEF because this path cost function does
not have the path consistency property.

A means for achieving approximate minimum-segment
paths is to control the order in which the neighbors of
each cell are generated and considered. Assume that the
neighbors of a frontier cell are placed in the cell list in
the order in which they are generated, and that the cell
list is processed in serial order. The first neighbor generated
during the expansion of a cell may be in the same direc-
tion as the direction from which that cell was entered.
Then the expansion of cells will tend in the same direction
as far as possible. This will produce an approximately
minimum number of segments in each path. Since the
direction is already recorded in the cell list, this method
adds very little cost.

VII. REDUCING THE SIZE OF THE SEARCH

One method for reducing the size of the search for a
shortest path, the two-ended search technique, has been
developed extensively by Pohl [11], [12]. Consider for
the moment just the edge cardinality metric, and two
cells distant from the edges of the rectangular grid. If the
Manhattan distance between the two cells is n, and all
cells of distance <n from the origin are expanded, then
the number of expanded cells will be 2n2 - 2n + 1. For
large n, this is roughly 2n2. However, if a two-ended
search is made, about (n/2) levels will be expanded on

both sides, so the number of cells expanded will be about
2*2 (n/2)2 = n2. This is half the number for a one-ended
search.
There is a drawback to the two-ended procedure just

described. It is necessary in this procedure to distinguish
cells expanded from the origin from those expanded from
the goal. Then, when a cell which has been previously
expanded is encountered, it is possible to determine
whether this is a path doubling back upon itself or the
completion of the search. Since expanded cells require
four values to represent the direction from which they
were reached, having two distinguished sets of these val-
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ues forces the cell representation to be increased to ten
states.
A somewhat lesser benefit can be obtained merely by

making a judicious choice of the endpoint from which to
begin the search. Whichever endpoint is nearer to one of
the four corners of the grid is likely to have a smaller
search space because the edges of the grid limit the expan-

sion. When the path cost function is the edge cardinality
metric, this reduction is certain.
The major difficulty with both the two-ended and the

start-in-the-corner search reduction procedures just men-

tioned is that the spreading of the frontier takes place in
all directions. That is, all cells at a given distance from
the origin are expanded whether they are near or far
from the goal. In a general graph this may be necessary

because there is no sense of whether two nodes are close
together or far apart. But in a rectangular grid the Man-
hattan distance gives an exact measure of how far apart
two given cells may be.

Let cii represent the Manhattan distance from cell i to
cell j, and dij the distance from i to j along the minimum-
cost path. Clearly, dij > cij. Assume that the path cost
function F(i) = (fi(i),f2(i),.. ,fr(i)) has components
of the form fk(i) = gk(i) + akd,,i where gk(i) is a mono-

tone path function, ak is a nonnegative constant, o is the
origin, and not all ak are 0. Let x be the goal cell and sup-

pose that the path from o to x passes through the cell i.
Then F(x) = (fi(x), * *,* f(x)) where each

fk(X) = gk(i) + (gk(X) - 2>(i)) + ak(doi + dix)

= fk(i) + (gk(X) - gk(i)) + akdix > fk(i) + akci.

The term akCix may be regarded as a rough prediction of
the cost of the path from i to x in the kth component of the
cost function.

Construct a new path function H(i) = (h1(i),...* ,h(i))
to be called the predicted path cost function where hk (i) -
fk (i) + akCix. The new function is monotone, for if j is a

successor of i then

fk(j) > fk(i)

and

ak(d,j + cj,) = ak((doi + 1) + Cjx)

> ak((do0 + 1) + (cx- 1)) -ak(do + cix).

There are two questions which must be settled before the
use of the predictor function can be reco nmended: Does
it give a correct minimnum path, and does it reduce the
size of the search?
Hart et al. [6] have developed a theory of heuristic

search which tends to answer the first question affirma-
tively. Their proof is unduly complex because they are

concerned with infinite graphs. In the present work, a

broader result is needed because such a wide variety of
algorithms is being used. This result is Theorem 1. The

second question is answered by Theorem 2 and the ensuing
discussion.

Definition 2:

A path algorithm is called admissible if, for every con-
sistent monotone path function F, the algorithm will find
a minimum-cost path to a goal cell whenever one exists.

Theorem 1:

Let A be an admissible path algorithm and F a mono-
tone path function, as previously shown. Then A applied
to the predicted path cost function H constructed from F
as above yields a path whose F cost is minimum whenever
a path exists.

Proof: Since A is admissible it will find a path whose
H cost is minimum whenever one exists. For each k,
1 < k < r, hk(x) = fk(x)-+ akc,-=fk(x). So F(x) =
H (x) along any path, and thus the path found will also
be a minimum-cost path under F.

Definition 3:

The search space SF for a path problem with origin o,
goal x, and cost function F is the set of cells i such that
F(i) < F(x) along minimum-cost paths.

Theorem 2:

The search space for a path algorithm with a predictor
is a subset of the search space for the same algorithm
without a predictor.

Proof: Let SF be the search space without the predictor
and SH be the search space with the predictor. Then i G SH
impliesH(i) < H(x).ButF(i) < H(i) < H(x) = F(x),
so i C SF implying SH C SF.

Notice that if a predictive path cost function H'(i)
were used, with hk'(i) = fk(i) + bkCi. and bk > ak, then
H' would no longer be monotone, and Theorem 1- would
not apply.
Although the search space for the predictor method is

smaller, it cannot be immediately established that the
actual search is smaller. This is because there may be
many synonyms, cells of equal cost, of the goal cell in
each algorithm. No order for the expansion of synonyms
has been given so far, because the matter has had little
significance in the total cost of an algorithm. With the
use of the predictor function, the number of synonyms
can increase considerably.

For example, consider the edge cardinality metric in
the absence of obstacles. Every minimum-length path to
a cell in the rectangle determined by the origin and goal,
hereafter called the primary rectangle, will have the same
predicted cost, namely H(i) = c,i + csZ = c0,. To find a
minimum-cost path it would be wasteful to expand every
cell in this rectangle. Indeed, only the cells on such a
path need be expanded, for there is no inherent order in
the modified Lee algorithm for selecting one equal-cost
cell in preference to any other.
Assume that the primary rectangle is nondegenerate,
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100 88 75 61 47 33 19 31 45 59 73 86 97 108 119 133 150 169 188 205

89 76 62 48 34 20 9 17 29 43 57 71 84 95 106 117 131 148 167 186

77 63 49 35 21 10 3 7 15 27 41 55 69 82 93 104 115 129 146 165

64 50 36 22 11 4 1 2 6 14 26 40 54 68 81 92 103 114 128 145

78 65 51 37 23 12 5 8 16 28 42 56 70 83 94 105 116 130 147 166

90 1 79 66 52 1 38 24 1 3 18 30 44 58 72 85 96 107 118 132 149 168 187

101 91 80 67 53 39 25 32 46 60 74 -87 98 109 120 134 151 170 189 206

112 102 - 99 110 121 135 152 171 190 207 221

125 113 126 142 161 181 195 176 156 138 123 111 122 136 153 172 191 208 222 235

141 127 143 162 182 200 212 196 1177 157 139 124 137 154 173 192 209 223 236 248

160 144 163 183 201 216 226 213 197 178 158 140 155 174 193 210 224 237 249 260

180 164 184 202 217 230 239 227 214 198 179 159 175 194 211 225 238 250 261 272

199 185 203 218 231 243 251 240 228 273 284

215 204 219 232 244 256 262 252 241 253 264 276 287 298 311 323 308 296 285 295

229 220 233 245 257 268 274 263 254 265 277 288 299 312 327 340 324 309 297 307

242 234 246 258 269 280 286 275 266 278 289 300 313 328 344 358 341 325 310 322

255 247 314 329 345 362 375 359 342 326 339

267 259- 270 281 291 302 316 332 350 365 347 330 346 363 379 391 376 360 343 357

279 271 282 292 303 317 333 351 368 382 366 348 364 380 395 406 392 377 361 374

290 283 293 304 318 334 352 369 385 398 383 367 381 396 410 407 393 378 390

301 294 305 319 335 353 370 386 401 399 384 397 411 _= 408 394 405

315 306 320 336 354 3 71 387 402 400 409

331 321 337 355 372 388 403 _

349 338 356 373 389 404

Fig. 4. Order of expanding cells in a single-ended Lee algorithm search. Comparison of search sizes.

that is, has both dimensions greater than 1. When the
origin is expanded, two of its neighbors will be nearer to
the goal than it is, and two further away. Choose one of
the nearer neighbors. Two of its neighbors will be nearer
the goal, and two further away. This process continues
until a cell on the boundary of the primary rectangle oppo-
site the origin is reached. Then one neighbor of this cell
is nearer the goal and three are further away.

Suppose now that after expanding the origin, one of its
neighbors nearer to the goal is chosen. This will define a
direction toward the goal. If this cell is expanded next,
then its neighbors can be generated in an order so that
the next cell to be considered is the neighbor in the direc-
tion towards the goal. This procedure can be continued
until the opposite boundary of the primary rectangle is
reached. If the order for choosing the next cell to expand
requires that all neighbors of the last-expanded cell are
checked first, then at this point the single neighbor which
is nearer to the goal will be chosen, which establishes the
preferred direction for the remaining cells.

Since all of the cells which are considered in the preced-
ing procedure are synonyms, the procedure cannot be more
costly than the predictor algorithm just presented. The in-
dicated order for expanding the cells will be called depth-
first search. This term is used in the field of artificial intelli-
gence in a somewhat different sense. There, depth-first
search indicates a partial search of a problem space to find
any solution path, regardless of cost. Here, only minimum-
cost paths will be found, as proven in Theorem 1.

The following algorithm incorporates the aforemen-
tioned improvements into the Lee algorithm.

Algorithm 3: Depth-First Predictor Search

1) Place the initial cell(s) on the list. Set the direction
entered to 0 and the cost threshold to 0.

2) Find the last cell c whose predicted cost equals the
threshold.

3) If none, set the threshold to the least predicted cost
of any cell on the list, and repeat Step 2.

4) If c is a target cell, skip to Step 11.
5) If c was previously expanded, skip to Step 8.
6) Otherwise, let d be the direction from which the cell

was entered, and consider its neighbors in directions
d + 17d + 2,d + 3,d + 4(mod 4).

a) If the neighbor was previously expanded, or it is
an obstacle, skip it.

b) Otherwise record its predicted cost and direction
entered at the end of the cell list.

7) Record the direction of c in the cell matrix.
8) Delete c from the cell list.
9) If any more cells exist in the list, repeat from Step 2.
10) No path exists. Stop.
11) Trace back along the path to its origin. Done.

Figs. 4-7 show how the same problem is solved using
four variant search procedures. The order in which the
cells are expanded is explicitly shown. The size of the
search for each of the four methods is summarized:
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213 183 151 118 87 58 32 56 85 116 149 181 210 237 262 289 318 350 382

184 152 119 88 59 33 14 30 54 83 114 147 179 208 235 260 287 316 348 380

153 120 89 60 34 15 4 12 28 52 81 112 145 177 206 233 258 285 314 346

121 90 61 35 16 5 1 3 11 27 51 80 111 144 176 205 232 257 284 313

154 122 91 62 36 17 6 13 29 53 82 113 146 178 207 234 259 286 315 347

185 155 123 92 63 37 18 31 55 84 115 148 180 209 236 261 288 317 349 381

214 186 156 124 93 64 38 57 86 117 150 182 211 238 263 290 319 351 383

241 215 >-212 239 264 291 320 352 384

268 242 269 298 329 362 389 357 324 294 266 240 265 292 321 353 385

297 270 299 330 363 394 390 358 325 295 267 293 322 354 386

328 300 331 364 395 391 359 326 296 323 355 387 400

361 332 365 396 _1= = 369 402 360 327 356 388 = = 401 368 399

393 1366 3 97 l3l7l0l 13T335 i 334 367

398 371 336 303 274 247 222 195 166 194 221 246 273 302 333

=== 372 337 304 275 248 223 196 167 134 165 193 220 245 272 301

373 338 305 276 249 224 197 168 135 102 133 164 192 219 244 271

>< 136 103 72 101 132 163 191 218 243

_ 374 339 306 277 250 225 198 169 137 104 73 44 7 99 130 161 189 216

375 340 307 278 251 226 199 170 138 105 74 45 22 42 68 97 128 159 187
376 34 308 279 252 227 200 171 139 106 75 46 23 8 20 40 66 95 126 157

342 309 280 253 228 201 172 140 107 76 47 24 9 2 7 19 39 65 94 125

377 343 310 281 254 229 202 173 141 108 77 48 25 10 21 41 67 96 127 1158

378 344 311 282 255 230 203 174 142 109 78 49 26 43 69 98 129 160 188

379 345 312 283 256 231 204 175 143 110 79 50 71 100 131 162 190 217

Fig. 5. Order of expanding cells in a two-ended search using Pohl's algorithm. Comparison of search sizes.

100 104 106 108 110 111 112 116

101 73 76 78 80 82 83 84 87 115

102 74 48 50 52 54 56 57 58 60 86 114 =

103 75 49 1 2 4 7 11 15 19 23 59 85 113

105 77 51 3 5 8 12 16 20 24 27 61 88 117 =_ =

107 79 53 6 9 13 17 21 25 28 30 62 89 118

109 81 55 10 14 18 22 26 29 31 33 63 90 119 __ =

32 34 36 65 92 121 ===

120 91 64 35 37 39 67 94 123

122 93 66 38 40 42 69 96 125

124 95 68 41 43 45 71 98 _127

126 97 70 44 46 47 72 99 128

7 ~~~~~130131 133 136 139 142_
=== = = = = = ~~~~~~132134 137 140 143_ 145 == -

=== = = = = = ~~~~~~135138 141 144 146 148 = __X - X X - X ~~~~~~~~~~~147 149 151
= === = = = = = = = ~~~~~~~~150152 154 ===

_ === = = = < < = = ~~~~~~~~153155 157 = __= == ~~~~~~~~~~~~~~156 158 160
Fig. 6. Order of expanding cells in a Lee algorithm search guided by the predictor function. Comparison of search

sizes.
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78 79 80 81 82 83 84 85

77 71 70 69 68 67 66 65 64 86

73 72 I 2 3 4 5 6 7 8 63

74 50 45 42 39 36 33 25 17 9 62 88

75 49 46 43 40 37 34 26 18 10 61 89

76 48 47 44 41 38 35 27 19 11 60 90 _

=<= 2 ><>< ><>< 28 20 12 59 91

96 54 Z9 Z1 13 58 92

97 53 30 22 14 57 93 = = = =

98 52 31 23 15 56 94

100 99 51 32 24 16 55 95

.. 101~~~~~~~~l'5X X 5 < R5
=== = = = = = ~~~~~~~102= == = == = = =

_~~~~~~~104 105 106 107 108 109=

X><><5X iioR11
. ~~~~~~~~~~~~~~~~~~112

Fig. 7. Order of expanding cells in a depth-first search guided by the predictor function. Comparison of search
sizes.

Size of Search Method
411 Single-ended Lee algorithm.
402 Two-ended Lee search (Pohl).
162 Search with predictor function.
114 Depth-first search guided by the predictor

function.

The degree of improvement in the two latter methods is
apparent.
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