

Title	The Lefschetz number for equivariant maps			
Author(s)	Komiya, Katsuhiro			
Citation	Osaka Journal of Mathematics. 24(2) P.299-P.305			
Issue Date	1987			
Text Version	publisher			
URL	https://doi.org/10.18910/9430			
DOI	10.18910/9430			
rights				
Note				

Osaka University Knowledge Archive : OUKA

 $\verb|https://ir.library.osaka-u.ac.jp/|$

Osaka University

THE LEFSCHETZ NUMBER FOR EQUIVARIANT MAPS

KATSUHIRO KOMIYA

(Received March 27, 1986)

1. Introduction and results

Let G be a compact Lie group. A G-ENR (Euclidean Neighborhood Retract) is a G-space which is a G-retract of some G-invariant open subspace in a Euclidean G-space. In this paper we will consider the Lefschetz number

$$\lambda(f) = \sum_{i} (-1)^{i} \operatorname{trace} f_{*,i} : H_{i}(X; Z) / \operatorname{Tor} \to H_{i}(X; Z) / \operatorname{Tor}$$

of a self G-map $f: X \to X$ of a compact G-ENR X. f restricts to the self map $f^{g}: X^{g} \to X^{g}$ of the G-fixed point set X^{g} of X. Then we will show

Theorem 1. Let $f: X \rightarrow X$ be a self G-map of a compact G-ENR X.

- (i) If X has only one isotropy type (H), then $\lambda(f) \equiv 0 \mod \chi(G/H)$ where $\chi()$ denotes the Euler characteristic.
 - (ii) If the G-action on X is semifree, then $\lambda(f) \equiv \lambda(f^c) \mod \chi(G)$.
 - (iii) If G is finite and of prime power order p^k , then $\lambda(f) \equiv \lambda(f^G) \mod p$.
 - (iv) If G is connected and abelian (i.e., torus), then $\lambda(f) = \lambda(f^c)$.

In section 4 we will prove this theorem by using the fixed point index defined by Dold [2]. (i) of the theorem is a special case of Dold [3; (8.18)]. If G is finite and the G-action is free, related results are in Nakaoka [9] and Gottlieb [5]. As a corollary of the theorem we obtain

- **Corollary 2.** (i) If the G-action on X is semifree and $\lambda(f) \equiv 0 \mod \chi(G)$, then f has a fixed point in X^G .
- (ii) If G is of prime power order p^k and $\lambda(f) \equiv 0 \mod p$, then f has a fixed point in X^G .
- Proof. In either case it follows $\lambda(f^c) \neq 0$ and by the Lefschetz fixed point theorem there exists a fixed point of $f^c: X^c \rightarrow X^c$. q.e.d.

If G is a compact monogenic Lie group (i.e., finite cyclic group, torus and product of these) and $f \in G$ is its generator, then we may regard f as a self G-map of a G-ENR X. In this case we can show, as in the proof of Theorem 1, that $\lambda(f) = \chi(X^G)$, although this has already appeared in the literature, tom

300 K. Komiya

Dieck [1; (5.3.11)] and Huang [6; Corollary 1] for G a finite cyclic group, Kobayashi [7; p. 63] for X a Riemannian manifold. As applications of this we will show the following two results.

Proposition 3. If X is a compact G-ENR and G is monogenic, then

$$|\chi(X^G)| \leq \sum_i \operatorname{rank} H_i(X; Z)$$
.

In connection with this we note that if G is finite and of prime power order p^k , Floyd [4] shows

$$|\chi(X^c)| \leq \sum_i \dim H_i(X^c; Z_p) \leq \sum_i \dim H_i(X; Z_p)$$
.

Proposition 4. Let G be of order 2 and f be its generator. Let M be a 2n-dimensional closed smooth G-manifold and orientable over Z. If f is orientation preserving, then

$$\chi(M^G) \equiv \operatorname{trace} f_{*,n} \mod 2$$
.

If f is orientation reversing, then

$$\chi(M^G) = \operatorname{trace} f_{*,n} = 0$$
.

Here $f_{*,n}$ is the automorphism of $H_n(M;Z)$ induced from f.

These two propositions will be proved in section 5.

2. A lemma

If M is a G-space and $x \in M$, then G(x) denotes the orbit of x and G_x the isotropy subgroup at x. The conjugacy class (G_x) of an isotropy subgroup G_x is called an isotropy type. For a subgroup H of G let $M_{(H)} = \{x \in M \mid (G_x) = (H)\}$. If N is a G-invariant subspace of M and $h: N \to M$ a G-map, then the fixed point set Fix(h) of h is a union of orbits. If N and M are smooth G-manifolds, then for any fixed orbit $G(x) \subset Fix(h)$ we may take G-invariant tubular neighborhoods T and T' of G(x) such that $T \subset T'$ and $h(T) \subset T'$. We decompose T into $T = T_t \oplus T_n$, where $T_t = T \cap N_{(H)}$, $H = G_x$, is the component tangent to $N_{(H)}$, and T_n the component normal to $N_{(H)}$. Similarly we decompose T' into $T' = T' \oplus T'_n$. Then we see $h(T_t) \subset T'_t$. We may regard T and T' as G-vector bundles over $G(x) \approx G/H$.

- **Lemma 5.** Let M be a smooth G-manifold and N a G-invariant codimension 0 submanifold of M with finite isotropy types. If $f: N \rightarrow M$ is a G-map with Fix(f) compact, then there exists a G-map $h: N \rightarrow M$ such that
- (i) h is G-homotopic to f relative to the outside of some G-invariant compact neighborhood of Fix(f),
 - (ii) Fix(h) consists of a finite number of orbits,

- (iii) if $f(N_{(H)}) \cap M_{(H)} = \phi$ then $h(N_{(H)}) \cap M_{(H)} = \phi$ and hence $Fix(h) \cap N_{(H)} = \phi$,
- (iv) for any fixed orbit $G(x) \subset Fix(h)$ if $T = T_i \oplus T_n$ and $T' = T'_i \oplus T'_n$ are G-invariant tubular neighborhoods of G(x) as above, then $h \mid T : T \to T'$ is fibre preserving and decomposes into $h \mid T = (h \mid T_i) \oplus 0$ where $0 : T_n \to T'_n$ maps any vector to 0.
- Proof. (I) The case in which the G-action on N is free. $N \times M$ is a G-manifold with diagonal G-action, and its action is also free. Thus the orbit spaces N/G and $N \times_G M$ are smooth manifolds. Define a G-map $\tilde{f}: N \to N \times M$ by $\tilde{f}(x) = (x, f(x))$ for $x \in N$. Passing to the orbit spaces, \tilde{f} induces a map $\tilde{f}/G: N/G \to N \times_G M$. By the transversality theorem we obtain a smooth map $h_1: N/G \to N \times_G M$ such that
 - (i) h_1 is transverse to Δ/G , where Δ is the diagonal set in $N \times M$, and
- (ii) h_1 is close enough and homotopic to \tilde{f}/G relative to N-V/G, where V is some G-invariant compact neighborhood of Fix(h).
- By the dimension reason $h_1^{-1}(\Delta/G)$ is a finite set, in particular it is empty if $\dim G > 0$. If $f(N) \cap M_{(1)} = \phi$ where $M_{(1)}$ is the points of M with the identity isotropy subgroup, then $\operatorname{Fix}(f) = \phi$, $\tilde{f}/G(N/G) \cap \Delta/G = \phi$ and hence we may take $h_1 = \tilde{f}/G$. By the equivariant covering homotopy property we may lift the homotopy of (ii) and obtain a G-map $h_2 \colon N \to N \times M$ G-homotopic to \tilde{f} relative to the outside of some G-invariant compact neighborhood of $\operatorname{Fix}(f)$. $h_2^{-1}(\Delta)$ consists of a finite number of orbits. Let $p_1 \colon N \times M \to N$ and $p_2 \colon N \times M \to M$ be the projections. $p_1h_2 \colon N \to N$ is a diffeomorphism since it is close enough to $p_1\tilde{f} = \operatorname{identity}$. Let $h_3 = h_2(p_1h_2)^{-1} \colon N \to N \times M$ and $h = p_2h_3 \colon N \to M$. then $h_3(x) = (x, h(x))$ and $\operatorname{Fix}(h) = h_3^{-1}(\Delta) \approx h_2^{-1}(\Delta)$. h is a desired G-map.
- (II) The general case. Let $\{(H_1), (H_2), \dots, (H_a)\}$ be the set of isotropy types on N ordered in such a way that if H_i is conjugate to a subgroup of H_j then $j \le i$. Consider the following assertion A(i) for $0 \le i \le a$:
- A(i). There exist a G-map $h_i: N \to M$ and a G-invariant neighborhood U_i of $X_i = N_{(H_i)} \cup \cdots \cup N_{(H_i)}$ such that
- (i) h_i is G-homotopic to f relative to the outside of some G-invariant compact neighborhood of $Fix(f|X_i)$,
 - (ii) $\operatorname{Fix}(h_i) \cap (U_i X_i) = \phi$,
 - (iii) $h_i | U_i : U_i \rightarrow M$ satisfies the conditions (ii), (iii) and (iv) of the lemma.
- If i=0, then $X_i=\phi$ and hence we may take $U_i=\phi$, $h_i=f$. Thus A(0) is valid. A(a) is equivalent to the lemma since $X_a=N$. Thus, to prove the lemma it suffices to prove that A(i) implies A(i+1).

Now suppose A(i). As in the author [8; Lemma 3.1] there exists a G-invariant codimension 0 submanifold P (with boundary) of N such that $X_i \subset I$ Int $P \subset P \subset I$ Int U_i . Let Q = N - I Int P and $K = H_{i+1}$. Consider an N(K)-map

302 К. Коміуа

 $h_i|Q^K\colon Q^K\to M^K$, where N(K) is the normalizer of K in G. $h_i|Q^K$ may also be considered as an N(K)/K-map. Since K is the maximal isotropy subgroup on Q, then the action of N(K)/K on Q^K is free. Thus we may apply the preceding argument (I) to the N(K)/K-map $h_i|Q^K$, and obtain a resulting N(K)/K-map $Q^K\to M^K$. By G-equivariancy it extends to a G-map $f_1\colon Q_{(K)}=G(Q^K)\to M$, which satisfies the conditions (i)—(iv) of the lemma. To be precise for the condition (i) it says that f_1 is G-homotopic to $h_i|Q_{(K)}$ relative to the outside of some G-invariant compact neighborhood (in $Q_{(K)}$) of $Fix(h_i|Q_{(K)})$. Moreover its G-homotopy may be so taken as to be relative to a neighborhood of $\partial Q_{(K)}$, since h_i has no fixed point in a neighborhood of $\partial Q_{(K)}$. Let G be the projection. Then we may extend G to a G-map G: G-map G-map

- (i) for some two neighborhoods $U \subset U'$ (U' compact) of Fix(f_1) in $Q_{(K)}$, $f_2=f_1\circ\pi$ on $T\mid U$ and $f_2=h_i$ on $T\mid Q_{(K)}-U'$,
- (ii) Fix $(f_2) \cap (T Q_{(K)}) = \phi$. From $h_i \mid Q$ and f_2 , as in the author [8; Lemma 3.2], we obtain a G-map $f_3: Q \rightarrow M$ such that
- (i) $f_3=h_i$ on a neighborhood A of ∂Q , $f_3=f_2$ on a neighborhood of $Q_{(K)}$, $f_3=h_i=f$ on the outside of a G-invariant compact neighborhood B of $\operatorname{Fix}(f_1)$ (=Fix(f_2)),
 - (ii) f_3 is G-homotopic to $h_i | Q$ relative to $A \cup (Q-B)$.

Define $h_{i+1}: N \to M$ as $h_{i+1} = h_i$ on P and $h_{i+1} = f_3$ on Q. Then h_{i+1} is a G-map required in A(i+1).

3. Fixed point index

We first recall the definition of the fixed point index from Dold [2]. Let $F \subset N \subset R^n \subset R^n \cup \{\infty\} = S^n$, where F is compact and N is open. The fundamental class $a_F \in H_n(N, N-F; Z)$ is the image of 1 under the composite homomorphism

$$Z = H_n(S^n; Z) \rightarrow H_n(S^n, S^n - F; Z) \cong H_n(N, N - F; Z)$$
.

Let $h: N \to R^n$ be a map with Fix(h) compact. Define the map $1-h: (N, N-F) \to (R^n, R^n-0)$ by (1-h)(x)=x-h(x) for $x \in N$. Then the fixed point index ind(h) of h is defined as ind(h)= $(1-h)_{*^0F} \in H_n(R^n, R^n-0; Z)=Z$. Dold uses the symbol I_h for the index, but we use the symbol ind(h) to facilitate the printing.

Let R^n be a Euclidean G-space, N be a G-invariant open subspace of R^n , and $h: N \to R^n$ be a G-map satisfying the conditions (ii) and (iv) of Lemma 5. Let $Fix(h) = G(x_1) \cup G(x_2) \cup \cdots \cup G(x_a)$ with $G_{x_i} = H_i$ $(1 \le i \le a)$. If T_i is a small G-invariant open tubular neighborhood of $G(x_i)$ in N, then by the additivity of the index [2; (1.5)] it follows that

$$\operatorname{ind}(h) = \sum_{i=1}^{a} \operatorname{ind}(h \mid T_i)$$
.

For a while let $x=x_i$, $H=H_i$, $T=T_i$. We may consider that a fibre in T over $g(x) \in G(x)$ is a subspace in R^n which is a parallel translation to g(x) of (a small open disc in) a linear subspace through the origin. Let $\pi: T \to G(x) \subset R^n$ be the projection, and T' be the other G-invariant open tubular neighborhood of G(x) as in (iv) of Lemma 5. Define $1-h+\pi: T\to T'$ as $(1-h+\pi)(v)=v-h(v)+\pi(v)$. This map is fibre preserving, and the following diagram is commutative for any $g\in G$.

$$H_{n}(T, T-G(x)) \xrightarrow{j_{*}} H_{n}(T, T-g(x)) = Z$$

$$\downarrow (1-h+\pi)_{*} \qquad \qquad \downarrow (1-h+\pi)_{*}$$

$$H_{n}(T', T'-G(x)) \xrightarrow{j_{*}} H_{n}(T', T'-g(x)) = Z,$$

where $j: (T, T-G(x)) \to (T, T-g(x))$ is the inclusion. Let $a = a_{G(x)} \in H_n(T, T-G(x))$ be the fundamental class. Let $\alpha_g = j_*(1-h+\pi)_*a \in Z$. By the commutativity of the diagram, $\alpha_g = (1-h+\pi)_*j_*a$ and $j_*a = 1$ in $H_n(T, T-g(x)) = Z$. Since $1-h+\pi$ is G-equivariant, α_g are all equal for every $g \in G$. So, if α is its the same value, then we see that $(1-h+\pi)_*a = \alpha \cdot a$ in $H_n(T', T'-G(x))$.

$$(1-h)_*: H_n(T, T-G(x)) \to H_n(R^n, R^n-0)$$

factors as

$$H_n(T, T-G(x)) \xrightarrow{(1-h+\pi)_*} H_n(T', T'-G(x)) \xrightarrow{(1-\pi)_*} H_n(R^n, R^n-0)$$
.

Thus we see that in $H_n(R^n, R^n-0)$

$$(1-h)_{*a} = (1-\pi)_{*}(1-h+\pi)_{*a} = \alpha \cdot (1-\pi)_{*a}$$

and hence $\operatorname{ind}(h|T) = \alpha \cdot \operatorname{ind}(\pi)$. Since $\operatorname{ind}(\pi) = \chi(G/H)$ by [2; (4.1)], it follows that $\operatorname{ind}(h|T_i)$ is a multiple of $\chi(G/H_i)$ for $i=1, 2, \dots, a$.

Let $\operatorname{Fix}(h) \cap N^G = \{x_1, x_2, \dots, x_b\}$ $(1 \le b \le a)$. For $1 \le i \le b$ the tubular neighborhood T_i is a disc with x_i as its center. As before T_i decomposes into the direct sum $T_i = T_{i,i} \oplus T_{i,n}$ where $T_{i,i} = T_i^G$ is the component tangent to N^G and $T_{i,n}$ is the component normal to N^G . Then, from the condition (iv) of Lemma 5 we see that h on T_i decomposes into h(u, v) = (h(u), 0). Thus, by [2; (1.4), (1.6)], $\operatorname{ind}(h \mid T_i) = \operatorname{ind}(h \mid T_i^G)$ and hence

$$\sum_{i=1}^b \operatorname{ind}(h | T_i) = \operatorname{ind}(h^G)$$
.

From the above argument it follows the following.

- (i) If $\operatorname{Fix}(h) \subset N^G \cup N_{(H)}$, then $\operatorname{ind}(h) \equiv \operatorname{ind}(h^G) \mod \chi(G/H)$.
- (ii) If G is finite and of prime power order p^k , then $ind(h) \equiv ind(h^c)$ mod p. For $\chi(G/H) \equiv 0 \mod p$ for any proper subgroup H of G.

304 K. Komiya

(iii) If G is connected and abelian, then $\operatorname{ind}(h) = \operatorname{ind}(h^{G})$. For $\chi(G/H) = 0$ for any proper subgroup H of G.

4. Proof of Theorem 1

Let $f: X \to X$ be as in the theorem. Let N be a G-invariant open subspace in a Euclidean G-space R^n , and $i: X \to N$, $r: N \to X$ be G-maps such that ri=identity. We easily see that X^H is also an ENR for any H < G. We apply Lemma 5 to the G-map $ifr: N \to R^n$ and obtain a G-map $h: N \to R^n$ satisfying the conditions (i) \sim (iv). By [2; (1.7), (4.1)] it follows that $\lambda(f^H) = \operatorname{ind}((ifr)^H) = \operatorname{ind}(h^H)$. From this and (ii), (iii) in the preceding section, (iii) and (iv) of the theorem immediately follow. If X has only one isotropy type (H), then $(ifr)(N_{(H)}) \subset R^n_{(H)}$ for any K < G. Thus, from (iii) of Lemma 5 it follows $\operatorname{Fix}(h) \subset N_{(H)}$ and from (i) in the preceding section it follows $\lambda(f) = \operatorname{ind}(h) \equiv 0 \mod \chi(G/H)$. This proves (i) of the theorem. If the G-action on X is semifree, from (iii) of the lemma it follows $\operatorname{Fix}(h) \subset N^G \cup N_{(1)}$. Thus (ii) of the theorem follows from (i) in the preceding section.

5. Proof of Proposition 3 and 4

Let X be a compact G-ENR and N, i, r be as in section 4. If G is a compact monogenic Lie group, we regard a generator f of G as a G-map $f: X \to X$. Then $Fix(f) = X^G$. Let $h: N \to R^n$ be a G-map obtained by Lemma 5 from the G-map $ifr: N \to R^n$. In this case we may construct h satisfying the additional condition $Fix(h) \subset N^G$. This is ensured by the fact $Fix(ifr) = i(X^G) \subset N^G$. Then we see that $\lambda(f) = \operatorname{ind}(h) = \operatorname{ind}(h^G) = \lambda(f^G)$. Since f^G is the identity map of X^G , it follows $\lambda(f) = \chi(X^G)$. As noticed in Introduction this has already appeared in the literature. Using this result, Proposition 3 and 4 are proved as follows.

(1) Proof of Proposition 3. Let $f_{*,i}: H_i(X; C) \to H_i(X; C)$ be the automorphism induced from f, where C is the complex numbers. Let $z_1, z_2, \dots, z_r \in C$ be the eigenvalues of $f_{*,i}$ where $r = \dim H_i(X; C) = \operatorname{rank} H_i(X; Z)$. Since the $\chi(G)$ times composition of $f_{*,i}$ is the identity, then $z_j^{\chi(G)} = 1$ and thus $|z_j| = 1$ for $1 \le j \le r$. We see that

$$|\operatorname{trace} f_{*,i}| = |\sum_{j=1}^{r} z_j| \leq \sum_{j=1}^{r} |z_j| = \operatorname{rank} H_i(X; Z),$$

and

$$|\chi(X^G)| = |\lambda(f)| \leq \sum_i \operatorname{rank} H_i(X; Z).$$
 q.e.d.

(2) Proof of Proposition 4. Let G, f and M be as in the proposition. Note that a smooth G-manifold with a finite number of isotropy types is a G-ENR. Let $z \in H_{2n}(M; \mathbb{Z})$ be the fundamental class defined from an orientation of M for which f is either orientation preserving or reversing. Consider the following commutative diagram.

$$\begin{array}{ccc}
H_{i}(M; Z) & \xrightarrow{\bigcap z} & H^{2n-i}(M; Z) \\
f_{*,i} \downarrow & & \uparrow f^{*,2n-1} \\
H_{i}(M; Z) & \xrightarrow{\bigcap f_{*,2n}(z)} & H^{2n-i}(M; Z),
\end{array}$$

where \cap denotes the cap product and the horizontal homomorphisms are the isomorphisms of the Poincaré duality. Note that the inverse of the isomorphism $f^{*,2n-i}$ is itself since f is an involution. It follows that if f is orientation preserving then trace $f_{*,i} = \operatorname{trace} f^{*,2n-i}$, and if f is orientation reversing then trace $f_{*,i} = -\operatorname{trace} f^{*,2n-i}$. From the universal coefficient theorem it follows that trace $f^{*,i} = \operatorname{trace} f_{*,i}$. It thus follows that if f is orientation preserving then $\lambda(f) \equiv \operatorname{trace} f_{*,n} \mod 2$, and if f is orientation reversing then $\lambda(f) = \operatorname{trace} f_{*,n} = 0$. Thus $\lambda(f) = \chi(M^c)$ implies the proposition.

In case M is odd dimensional in Proposition 4, we then easily see that $\lambda(f) = \chi(M^c) = 0$ if f is orientation preserving, and $\lambda(f) = \chi(M^c) \equiv 0 \mod 2$ if f is orientation reversing.

References

- [1] T. tom Dieck: Transformation groups and representation theory, Lecture notes in Math. 766, Springer-Verlag, Berlin, Heidelberg and New York, 1979.
- [2] A. Dold: Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1-8.
- [3] A. Dold: The fixed point transfer of fibre-preserving maps, Math. Z. 148 (1976), 215-244.
- [4] E.E. Floyd: On periodic maps and the Euler characteristics of associated spaces, Trans. Amer. Math. Soc. 72 (1952), 138-147.
- [5] D.H. Gottlieb: The Lefschetz number and Borsuk-Ulam theorems, Pacific J. Math. 103 (1982), 29-37.
- [6] W.-H. Huang: Equivariant method for periodic maps, Trans. Amer. Math. Soc. 189 (1974), 175-183.
- [7] S. Kobayashi: Transformation groups in differential geometry, Springer-Verlag, Berlin, Heidelberg and New York, 1972.
- [8] K. Komiya: Equivariant immersions and embeddings of smooth G-manifolds, Osaka J. Math. 20 (1983), 553-572.
- [9] M. Nakaoka: Coincidence Lefschetz numbers for a pair of fibre preserving maps,
 J. Math. Soc. Japan 32 (1980), 751-779.

Department of Mathematics Yamaguchi University Yamaguchi 753 Japan