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Vladimir Andreevich Steklov, an outstanding Rus-

sian mathematician whose 150th anniversary is

celebrated this year, played an important role in the

history of mathematics. Largely due to Steklov’s ef-

forts, the Russian mathematical school that gave the

world such giants as N. Lobachevsky, P. Chebyshev,

and A. Lyapunov, survived the revolution and con-

tinued to flourish despite political hardships. Steklov

was the driving force behind the creation of the

Physical–Mathematical Institute in starving Petro-

grad in 1921, while the civil war was still raging

in the newly Soviet Russia. This institute was the

predecessor of the now famous mathematical insti-

tutes in Moscow and St. Petersburg bearing Steklov’s

name.

Steklov’s own mathematical achievements, albeit

less widely known, are no less remarkable than

his contributions to the development of science.

The Steklov eigenvalue problem, the Poincaré–

Steklov operator, the Steklov function—there exist

probably a dozen mathematical notions associated

with Steklov. The present article highlights some of
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the milestones of his career, both as a researcher

and as a leader of the Russian scientific community.
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Aleksandr Mikhaylovich Lyapunov in the 1900s.

The article is organized as follows. It starts

with a brief biography of V. A. Steklov written

by N. Kuznetsov. The next section, written by

N. Kuznetsov, A. Nazarov, and S. Poborchi, focuses

on Steklov’s work related to several celebrated

inequalities in mathematical physics. The remain-

ing two sections are concerned with some recent

developments in the study of the Steklov eigen-

value problem, which is an exciting and rapidly

developing area on the interface of spectral theory,

geometry and mathematical physics. The “high

spots” problem for sloshing eigenfunctions is

discussed in the section written by T. Kulczycki, M.

Kwaśnicki, and B. Siudeja. In particular, the authors

explain why it is easier to spill coffee from a mug

than to spill wine from a snifter. An overview of

some classical and recent results on isoperimetric

inequalities for Steklov eigenvalues is presented in

the last section, written by I. Polterovich.

Many topics to which Steklov contributed in a

major way are beyond the scope of the present

article. For further references, see [14], [24], [31]

and [64].

A Biographical Sketch of V. A. Steklov

Vladimir Andreevich Steklov was born in Nizhni

Novgorod on January 9, 1864 (=December 28, 1863,

old style). His grandfather and great-grandfather

on the father’s side were country clergymen.

His father, Andrei Ivanovich Steklov, graduated

from the Kazan Theological Academy and taught

history and Hebrew at the Theological Seminary

in Nizhni Novgorod. Steklov’s mother, Ekaterina

Aleksandrovna (née Dobrolyubova), was a daughter

of a country clergyman as well. Her brother, Nikolay

Aleksandrovich, was a prominent literary critic and

one of the leaders of the democratic movement

that aimed to abolish serfdom in Russia.

At ten years of age, Steklov enrolled into the

Alexander Institute (a gymnasium that had many

notable alumni, including the famous Russian com-

poser M. Balakirev) in Nizhni Novgorod. Steklov’s

critical thinking manifested itself at a very early

age. In his diaries, Steklov describes how he was

chastised by the school principal for a composi-

tion deemed “disrespectful” towards the Russian

empress Catherine II.

I said to myself: “Aha! It occurs to me that

I have my own point of view on historical

events which is different from that of my

schoolmates and teachers. […] It was the

principal himself who proved that I am, in

some sense, a self-maintained thinker and

critic.” This was the initial impact that led

to my mental awakening; I realized that I

am a human being able to reason and, what

is important, to reason freely. […] Soon, my

free thinking encompassed the religion as

well. […] Thus, the cornerstone was laid for

my future complete lack of faith.

After graduating from school in 1882, Steklov

entered the Faculty of Physics and Mathematics of

Moscow University. Failing to pass an examination

in 1883, he left Moscow and the same year

entered a similar faculty in Kharkov. There he

met A. M. Lyapunov, and this encounter became

a turning point in his life. Steklov graduated in

1887, but remained at the university working

under Lyapunov’s supervision towards obtaining

his Master’s Degree. In the beginning of 1890,

Steklov married Olga Nikolaevna Drakina, who was

a music teacher; their marriage lasted for 31 years.

In the fall of the same year, he was appointed

Lecturer in Elasticity Theory. In 1891, the Steklovs’

daughter Olga was born and, presumably, this

event delayed the defence of his Master’s thesis,

On the motion of a solid body in a fluid, until 1893.

The same year, Steklov began lecturing at Kharkov

Institute of Technology, combining it with his work

at the university; the goal was to improve his

family’s financial situation, given that his wife had

to leave her job after giving birth to their child.

The sudden death of their daughter in 1901 was a

heavy blow to Steklov and his wife, and caused a

six-month break in his research activities.

He was appointed to an extraordinary pro-

fessorship in mechanics in 1896. The first in a

series of full-length papers, which formed the

core of his dissertation for the Doctor of Science

degree, appeared in print the same year (not to

mention numerous brief notes in Comptes rendus).

The dissertation entitled General methods of solv-

ing fundamental problems in mathematical physics

was published as a book in 1901 by the Kharkov

Mathematical Society [53].

At the time of completing his DSc dissertation,

Steklov began to publish his results in French.

Since then, most of his papers were written in

French — the language widely used by Russian

mathematicians to make their results accessible
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in Europe. Unfortunately, this did not prevent

some of his results from remaining unnoticed. In

particular, this concerns the so-called Wirtinger’s

inequality which was published by Steklov in 1901

in Annales fac. sci. Toulouse (see details in the next

section). Even before that, Steklov became very

active in corresponding with colleagues abroad

(J. Hadamard, A. Kneser, A. Korn, T. Levi-Civita, E.

Picard, S. Zaremba, and many others were among

his correspondents); these contacts were of great

importance for him, residing in a provincial city.

In 1902, Steklov was appointed to an ordinary

professorship in applied mathematics and was

elected a corresponding member of the Academy

of Sciences in St. Petersburg the next year.

In 1903, the Steklovs went on a summer vacation

to Europe. Some details of this trip are described in

one of Steklov’s letters to Lyapunov (see [60], letter

29). In particular, the meeting with J. Hadamard in

Paris:

Somehow, Hadamard found me himself;

presumably, he had learned my address

from A. Hermann [the well-known publisher].

Once he missed me, but the next day he

came at half past eight in the morning

when we had just awakened. He arrived

to Paris to stay for two days examining

for “baccalauréat” [at some lycée]; on the

day of his returning to the countryside,

where he spends summer, he called on me

before examination. His visit lasted only

half-an-hour, but he told as much as another

person would tell in a whole day. He is a

model Parisian, very agile and swift to react;

he behaved so as we are old friends who

had not seen each other for some time.

In 1908, the Lyapunovs and the Steklovs travelled

to Italy together, where A. M. and V. A. participated

in the Rome ICM. At the Cambridge ICM (1912),

Steklov was elected a vice president of the congress

(Hadamard and Volterra were the other two vice

presidents). The Toronto ICM (1924) was the third

and the last one for Steklov.

Let us turn to the Petersburg–Petrograd–Lenin-

grad period of Steklov’s life. In 1906, he succeeded

(after several attempts) in moving to St. Petersburg.

It is a remarkable coincidence that a group of very

talented students entered the university the same

year. In the file of M. F. Petelin, who was one of

them, this fact was commented on by Steklov as

follows:

I should note that the class of 1910 is

exceptional. In the class of 1911 and among

the fourth-year students who are about to

graduate there is no one equal in knowledge

and abilities to Messrs. Tamarkin, Fried-

mann, Bulygin, Petelin, Smirnov, Shohat, and

Aleksandr Aleksandrovich Friedmann in the

1920s.

others. There was no such case during the

fifteen years of teaching at Kharkov Univer-

sity either. This favorable situation should

be used for the benefit of the University.

Steklov had done his best to nurture his students

(see [66]). His dedication as an advisor was rewarded

by the outstanding achievements of the members of

his group, the most famous of which is Friedmann’s

solution of Einstein’s equations in the general

theory of relativity. The future fate of Steklov’s

students varied greatly; two of them (Bulygin

and Petelin) died young. Tamarkin and Shohat

emigrated to the USA and became prominent

mathematicians there. It is worth noting that

J.D. Tamarkin has more than 1500 mathematical

descendants, and through him the St. Petersburg

mathematical tradition had a profound impact

on the American mathematics. Tamarkin’s escape

from the Soviet Union was quite an adventure.

While secretly crossing the frozen Chudskoe Lake

in order to reach Latvia, he was fired on by the

Soviet border guards. As E. Hille wrote:

One of J. D.’s best stories told how he tried

to convince the American consul in Riga

of his identity: the consul attempted to

examine him in analytic geometry, but ran

out of questions and gave up.

Friedmann and Smirnov became prominent

scientists staying in Leningrad. Together with their

colleagues and students (N. M. Günther, A. N. Krylov,

V. A. Fock, N. E. Kochin, S. G. Mikhlin, and S. L. So-

bolev to name a few) they organized the school of

mathematical physics in Leningrad–St. Petersburg,

the foundation of which was laid by Steklov.
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Vladimir Ivanovich Smirnov in the 1950s.

Steklov’s scientific career was advancing. In

1910, he was elected an adjunct member of the

Academy of Sciences; two years later he was

elected extraordinary and then ordinary academi-

cian within a few months. After his election to

the executive committee of the Academy in 1916,

Steklov reduced his work at the university and

abandoned it completely in 1919, being elected

vice president of the Academy. It would take too

much space to describe everything he had accom-

plished at this post by the time of his unexpected

and untimely death on May 30, 1926. (His wife

died in 1920 from illness caused by undernourish-

ment.) Therefore, only his role in establishing the

Physical–Mathematical Institute—the predecessor

of institutes named after him—will be outlined.

In January 1919, a memorandum was submitted

to the Academy in which Steklov, A. A. Markov

Sr., and A. N. Krylov proposed to establish a

Mathematical cabinet as an initial stage in further

development of the Academy’s Department of

Physics and Mathematics (the Physical cabinet

existed in the Academy since its foundation in

1724, and it was reorganized into a laboratory

in 1912). Later the same year, the initiative was

supported, and Steklov became the head of the

new institution named after P. L. Chebyshev and

A. M. Lyapunov. In January 1921, Steklov submitted

another memorandum, pointing out the necessity

to merge the Physical laboratory and the recently

established Mathematical cabinet. As he writes,

“Mathematics and physics have now merged to such

an extent that it is sometimes difficult to find the

line that divides them.” Nowadays, this viewpoint

is shared by many mathematicians; however, at

the time it was quite unusual.

The same January 1921, Steklov, S. F. Oldenburg

(the Permanent Secretary of the Academy), and V. N.

Tonkov (Head of the Military Medical Academy)

visited V. I. Lenin in Moscow. In his recollections

about Lenin, Maxim Gorky (the famous Russian

writer close to the Bolsheviks), who had been

present at this meeting, wrote (see also [67]):

They talked about the necessity to reor-

ganize the leading scientific institution in

Petersburg [the Academy]. After seeing off

his visitors, Lenin said with satisfaction.

‘What clever men! Everything is simple for

them, everything is formulated rigorously;

it is clear immediately that they know well

what they want. It is a pleasure to work with

such people. The best impression I’ve got

from …’

He named one of the most prominent Rus-

sian scientists; two days later, he told me

by phone.

‘Ask S[teklov] whether he is going to work

with us.’

When S[teklov] accepted the offer, this was

a real joy for Lenin; rubbing his hands, he

joked.

‘Just wait! One Archimedes after the other,

we’ll gain support of all of them in Russia

and in Europe, and then the World, willingly

or unwillingly, will turn over!’

Indeed, after the Bolshevik government declared

the so-called “New Economic Policy”, the deadlock

over Academy funding was broken thanks to

the improving economic situation in the country.

This resulted in the creation of the Physical–

Mathematical Institute later in 1921, and Steklov

was appointed its first director. In his recollections

[59] completed in 1923, he writes:

Another achievement of mine for the ben-

efit of the Academy and the development

of science in general is establishing the

Physical–Mathematical Institute with the

following divisions: mathematics, physics,

magnitology and seismology. Its work is

still in the process of being organized, the

funding is scarce and difficult to obtain.

The number of researchers is still negligible

[…], but a little is better than nothing.

After Steklov’s death the institute was named

after him. In 1934, simultaneously with reloca-

tion of the Academy from Leningrad to Moscow

the Physical–Mathematical Institute was divided

into the following two: the P. N. Lebedev Physi-

cal Institute and the V. A. Steklov Mathematical

Institute (even before that the division of seismol-

ogy became a separate institute). The Leningrad

(now St. Petersburg) Department of the latter was

founded in 1940, and it is an independent institute

since 1995. To summarize, it must be said that

the role of V. A. Steklov in Petrograd was similar

to that of R. Courant who organized mathematical

institutes, first in Göttingen and then in New York.

In 1922 and 1923, Steklov’s monograph [58]

was published; it summarizes many of his results

in mathematical physics. Based on the lectures
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The title page of Steklov’s monograph [58].

given in 1918–1920, this book is written in Russian,

despite the fact that the corresponding papers

originally appeared in French. More material was

presented in the lecture course than was included

in [58], and Steklov planned to publish the 3rd

volume about his results concerning “fundamen-

tal” functions (that is, eigenfunctions of various

spectral problems for the Laplacian) and some

applications of these functions. Unfortunately,

the administrative duties prevented him from

realizing this project. However, one gets an idea

about the probable contents of the unpublished

3rd volume from the lengthy article [55], in which

Steklov developed his approach to “fundamental”

functions (it is briefly outlined by A. Kneser [28],

section 5). It is based on two different kinds

of Green’s function, and this allowed Steklov to

apply the theory of integral equations worked out

by E. I. Fredholm and D. Hilbert shortly before

that. It is worth mentioning that [58] was listed

among the most important mathematical books

published during the period from 1900 to 1950

(see “Guidelines 1900–1950” in [45]; another item

concerning mathematical physics published the

same year is Hadamard’s Lectures on Cauchy’s

problem in linear partial differential equations).

A great part of the material presented in the

second volume of [58] is taken from the article

[54], which is concerned with boundary value

problems for the Laplace equation. It is Steklov’s

most cited work, but, confusingly, his initials are

given incorrectly in many citations of this paper.

Indeed, R. Weinstock found the following spectral

problem

(1) ∆u = 0 in D,
∂u

∂n
= λϕu on ∂D,

in [54], and for this reason he called it the Stekloff

problem; here n is the exterior unit normal on ∂D
and ϕ is a non-negative bounded weight function.

In fact, Steklov introduced this problem in his talk

at a session of the Kharkov Mathematical Society

in December 1895; it was also studied in his DSc

dissertation. Nowadays, it is mainly referred to as

the Steklov problem, but, sometimes, is still called

the Stekloff problem. In [69], Weinstock initiated

the study of this problem, but, unfortunately, citing

[54], he supplied Steklov’s surname with wrong ini-

tials, which afterwards were reproduced elsewhere.

Weinstock’s result and its later developments are

discussed in detail in the last section.

It must be emphasized that the legacy of Steklov

is multifaceted (see [67]). He wrote biographies

of Lomonosov and Galileo, an essay about the

role of mathematics, the travelogue of his trip to

Canada, where he participated in the 1924 ICM,

his correspondence—published (see [60] and [61])

and unpublished; the recollections [59] and still

unpublished diaries. Fortunately, many excerpts

from Steklov’s diaries are quoted in [66] and some

of them appeared in [43]. The most expressive

is dated September 2, 1914, one month after the

Russian government declared war:

St. Petersburg has been renamed Petrograd

by Imperial Order. Such trifles are all our

tyrants can do—religious processions and

extermination of the Russian people by all

possible means. Bastards! Well, just you

wait. They will get it hot one day!

What happened in Russia during several years

after that confirms clearly how right was Steklov

in his assessment of the Tsarist regime. In his

recollections [59] written in 1923, he describes

vividly and, at the same time, critically “the

complete bacchanalia of power” preceding the

collapse of “autocracy and [Romanov’s] dynasty” in

February 1917 (old style), “the shameful Provisional

government headed by Kerensky, the fast end of

which can be predicted by every sane person”, and

how “the Bolshevik government […] decided to

accomplish the most Utopian socialistic ideas in

the multi-million Russia.” The list can be easily

continued.

The pinpoint characterization of Steklov’s

personality was given by A. Kneser (see [28]):
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Everybody who maintained contact with

Steklov was impressed by his personality.

He was highly educated in the traditions

of the European culture, but at the same

time maintained distinctive features char-

acteristic to his nation. He was not only a

deep mathematician, but also a connoisseur

of music and art. […] Besides, he was a

skillful mediator between scientists and the

new government in Moscow. Thus, his role

was crucial for the survival of the Russian

science and its restoration (predominantly,

in the Academy and its institutes) after the

revolutions and the Civil War.

To conclude this section, we list some of

Steklov’s awards and distinctions. He was a

member of the Russian Academy of Sciences,

a corresponding member of the Göttingen Acad-

emy of Science, and a Doctor honoris causa of

the University of Toronto. The mathematical So-

cieties in Kharkov, Moscow, and St. Petersburg (in

Petrograd, it was reorganized into the Physical–

Mathematical Society) counted him among their

members, as well as the Circolo Matematico di

Palermo.

V. A. Steklov and the Sharp Constants in
Inequalities of Mathematical Physics

In 1896, Lyapunov established that the trigono-

metric Fourier coefficients of a bounded function

that is Riemann integrable on (−π,π) satisfy the

closedness equation. He presented this result at

a session of the Kharkov Mathematical Society,

but left it unpublished. The same year, Steklov

had taken up studies of the closedness equation

initiated by his teacher; Steklov’s extensive work

on this topic lasted for 30 years until his death.

For this reason A. Kneser [28] referred to this

equation as “Steklov’s favorite formula”. It should

be mentioned that the term closedness equation

was introduced by Steklov for general orthonormal

systems, but only in 1910 (see brief announcements

[56] and the full-length paper [57]).

The same year (1896), Steklov [50] proved that

the following inequality (nowadays often referred

to as Wirtinger’s inequality)

(2)

∫ l

0
u2(x)dx à

(
l

π

)2 ∫ l

0
[u′(x)]2 dx

holds for all functions which are continuously

differentiable on [0, l] and have zero mean. For this

purpose, he used the closedness equation for the

Fourier coefficients of u (the corresponding system

is {cos (kπx/l)}∞k=0 normalised on [0, l]). Inequality

(2) was among the earliest inequalities with a

sharp constant that appeared in mathematical

physics. It was then applied to justify the Fourier

method for initial-boundary value problems for

the heat equation in two dimensions with variable

coefficients independent of time. Later, Steklov

justified the Fourier method for the wave equation

as well. The fact that the constant in (2) is

sharp was emphasized by Steklov in [52], where

he gave another proof of this inequality (see

pp. 294–296). There is another result proved in

[52] (see pp. 292–294); it says that (2) is true for

continuously differentiable functions vanishing at

the interval’s end-points, and again the constant

is sharp. In the first volume of his monograph

[58], Steklov presented inequality (2) along with its

generalization.

The problem of finding and estimating sharp

constants in inequalities attracted much attention

from those who work in theory of functions

and mathematical physics (see, for example, the

classical monographs [20] and [49]). It is worth

mentioning that in the famous book by Hardy,

Littlewood, and Polya [20, section 7.7], inequality (2)

is proved under either type of conditions proposed

by Steklov; however, the authors call it Wirtinger’s

inequality and refer to the book of Blaschke (who

was a student of Wirtinger) published in 1916 [5, p.

105], twenty years after the publication of Steklov’s

paper [50]. This terminology became standard.

However, the controversy does not end here; we

refer to [41] for other historical aspects of this

inequality.

S. G. Mikhlin (he graduated from Leningrad

University a few years after Steklov’s death; see his

recollections of student years [40]) emphasized

the role of sharp constants in his book [39]. Let

us quote the review [44] of the German version of

[39]:

[This book] is devoted to appraising the

(best) constants—exact results or explicit

(numerical) estimates—in various inequali-

ties arising in “analysis” (=PDE). […] This is

the most original work, a bold attack in a

direction where still very little is known.

In 1897, Steklov published the article [51], in

which the following analogue of inequality (2) was

proved:

(3)

∫

D
u2 dx à C

∫

D
|∇u|2 dx.

Here ∇ stands for the gradient operator and the

integral on the right-hand side is called the Dirichlet

integral. The assumptions made by Steklov are as

follows: D is a bounded three-dimensional domain

whose boundary is piecewise smooth and u is a

real C1-function on D̄ vanishing on ∂D. Again,

inequality (3) was obtained by Steklov with the

sharp constant equal to 1/λD1 , where λD1 is the

smallest eigenvalue of the Dirichlet Laplacian in

D. In the early 1890s, H. Poincaré [46] and [47]

obtained (3) using different assumptions, namely, u
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Figure 1. High spot in a coffee cup.

has zero mean over D which is a union of a

finite number of smooth convex two- and three-

dimensional domains, respectively. In the latter

case, the sharp constant in (3) is 1/λN1 , where λN1 is

the smallest positive eigenvalue of the Neumann

Laplacian in D.

Ifu vanishes on ∂D (this is understood as follows:

u can be approximated in the norm ‖∇u‖L2(D) by

smooth functions having compact support in a

domain D ⊂ Rn, n á 2, of finite volume), then (3)

is often referred to as the Friedrichs inequality.

In fact K. O. Friedrichs [13] obtained a slightly

different inequality under the assumption that

D ⊂ R2. Namely, he proved:

(4)

∫

D
u2 dx à C

[∫

D
|∇u|2 dx+

∫

∂D
u2 dS

]
,

where dS denotes the element of length of ∂D.

Generally speaking, (4) holds for all bounded

domains in Rn for which the divergence theorem

is true (see [38], p. 24).

Inequality (3) for functions u with a zero mean

value over D is equivalent to the following one (it

is called the Poincaré inequality):

‖u− 〈u〉‖L2(D) à C‖∇u‖L2(D),(5)

where 〈u〉 =
∫
D u(x)dx
measn D

,

here measnD is the n-dimensional measure of

D. Note that the sharp constant here is 1/
√
λN1 .

Some requirements must be imposed on D for the

validity of (5). Indeed, as early as 1933 O. Nikodým

[42] (see also [38], p. 7) constructed a bounded

two-dimensional domain D and a function with

finite Dirichlet integral over D such that inequality

(5) is not true. Another example of a domain with

this property is given in the classical book [10] by

Courant and Hilbert (see ch. 7, sect. 8.2).

In conclusion, we consider the following “bound-

ary analogue” of inequality (5):

‖u− 〈u〉G‖L2(G) à C‖∇u‖L2(D),

where 〈u〉G =
∫
G u(x)dS

measn−1 G
.

Figure 2. High spot in a snifter.

HereD is a bounded Lipschitz domain inRn, n á 2,

whereas G is a part of ∂D possibly coinciding

with ∂D. The sharp constant in this inequality is

equal to 1/
√
λS1 , where λS1 is the smallest positive

eigenvalue of the following mixed (unless G = ∂D)

Steklov problem:

∆u = 0 in D,
∂u

∂n
= λu on G,

∂u

∂n
= 0 on ∂D \G.

If D is a special two- or three-dimensional domain

with a particular choice of G, then the eigenvalues

of this problem give rise to the sloshing frequencies,

that is, the frequencies of free oscillations of a

liquid in channels or containers; see, for example,

[35, Chapter IX]. The sloshing problem is discussed

in detail in the next section.

Spilling from a Wineglass
and a Mixed Steklov Problem

The 2012 Ig Nobel Prize for Fluid Dynamics was

awarded to R. Krechetnikov and H. Mayer for their

work [37] on the dynamics of liquid sloshing. They

investigated why coffee so often spills while people

walk with a filled mug. In their study, oscillations

of coffee are modeled by an appropriate mixed

Steklov problem which is usually referred to as

the sloshing problem. They realized that within

this model one of the main reasons for spilling

coffee can be described as follows. In a typical mug,

the sloshing mode corresponding to the lowest

eigenfrequency of the problem tends to get excited

during walking.

However, there is another reason for spilling

coffee from a mug of typical shape. Namely, a high

spot is present on the boundary of the free surface,

that is, the maximal elevation of the surface is

always located on the mug’s wall (see Figure 1),

provided oscillations are free and their frequency

is the lowest one. The latter effect (combined with

that described in [37]) makes it even easier to

spill coffee from a mug. On the other hand, in a
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high spots

(a) (b)

Figure 3. A schematic sketch of location of high

spots in a coffee cup (a) and in a snifter (b).

bulbous wineglass both antisymmetric sloshing

modes corresponding to the lowest eigenfrequency

are such that their maximal elevations (high spots)

are attained inside the free surface, but not on

the wall (see Figure 2). This reduces the risk of

spilling from a snifter. Thus, the position of a

high spot depends on the container’s shape as is

schematically shown in Figure 3 for a coffee cup

(a) and a snifter (b); theorems guaranteeing these

kinds of behavior are proved in [34].

The natural limiting case of bulbous containers

is an infinite ocean covered by ice with a single

circular hole (the corresponding sloshing problem

is usually referred to as the ice-fishing problem).

The question about the shape of the free surface

when water oscillates at the lowest eigenfrequency

in an ice-fishing hole was answered in [30]. This

shape is similar to that in a snifter (see Figures 2

and 3 (b)). The highest free surface profile existing

in radial directions of an ice-fishing hole was

computed numerically and is plotted in Figure 4.

One finds that the maximal amplitude is attained

at some point located approximately
2
3
r away from

the hole’s center (r is the hole’s radius). This

amplitude is over 50% larger than at the boundary.

Let us turn to the exact statement of the sloshing

problem which is the mathematical model describ-

ing small oscillations of an inviscid, incompressible

and heavy liquid in a bounded container. The liquid

domain W is bounded by a free surface (its mean

position F is horizontal) and by the wetted rigid

part of ∂W , say B (bottom). Choosing Cartesian

coordinates (x, y, z) so that the z-axis is vertical

and points upwards, we place the two-dimensional

domain F into the plane z = 0.

The water motion is assumed to be irrotational

and the surface tension is neglected on F . In the

framework of linear water wave theory, one seeks

sloshing modes and frequencies as eigenfunctions

and eigenvalues, respectively, of the following

0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

Figure 4. The highest radial free surface profile

in an ice-fishing hole.

mixed Steklov problem:

∆ϕ = 0 in W,
∂ϕ

∂z
= νϕ on F,(6)

∂ϕ

∂n
= 0 on B,

∫

F
ϕdxdy = 0.(7)

The last condition is imposed to exclude the eigen-

function identically equal to a non-zero constant

and corresponding to the zero eigenvalue that

exists for the problem including only the Laplace

equation and the above boundary conditions.

In terms of (ν,ϕ) found from problem (6), (7),

the velocity field of oscillations is given by

cos(ωt +α)∇ϕ(x, y, z).

Here α is a certain constant, t stands for the time

variable andω = √νg is the radian frequency of os-

cillations (as usual, g denotes the acceleration due

to gravity). Furthermore, the elevation of the free

surface is proportional to sin(ωt + α)ϕ(x, y,0),
and so high spots are located at the points, where

the restriction of |ϕ| to F attains its maximum

values.

It is known that if W and F are Lipschitz

domains, then problem (6), (7) has a sequence of

eigenvalues:

0 < ν1 à ν2 à . . . νn à . . . , νn →∞.

For all n, ϕn ∈ H1(W), whereas their restrictions

to F form (together with a non-zero constant) a

complete orthogonal system in L2(F). In hydrody-

namics, eigenfunctions corresponding to ν1 play

an important role because the rate of their decay

(which is caused by non-ideal effects for real-life

liquids) is least.

Modelling a mug by the following vertical-walled

containerW = {(x, y, z) : x2+y2 < 1, z ∈ (−h,0)},
in which case F = {(x, y,0) : x2 + y2 < 1} (cf. [37]),

one finds all solutions of problem (6), (7) explicitly.

In particular, there are two linearly independent
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Figure 5. A body of revolution (left) and its radial

cross-section (right).

eigenfunctions

ϕ1 = J1(j
′
1,1r) sinθ cosh j′1,1(z + h),

ϕ2 = J1(j
′
1,1r) cosθ cosh j′1,1(z + h),

corresponding to ν1 = ν2 = j′1,1 tanh j′1,1h. Here

(r , θ, z) are the cylindrical coordinates such that θ
is counted from the x-axis (see the left-hand side

of Figure 5), J1 is the Bessel function of the first

kind and j′1,1 ≈ 1.8412 is the first positive zero of

J′1. It is clear that ϕ1(x, y,0) is an odd, increasing

function of y , and so it attains extreme values

(high spots) at the boundary points (0,1) and

(0,−1); similarly, ϕ2 has its high spots at (1,0)
and (−1,0). Moreover, all linear combinations of

ϕ1 and ϕ2 have high spots on the boundary of F .

Using the finite element method, one can obtain

approximate positions of high spots for more

complicated domains. We used FEniCS [36] to

implement a trough (see [33] for the corresponding

rigorous result), which is short and has a hexagonal

cross-section. Such a trough is shown in Figure

6, where several level surfaces of the lowest-

frequency mode ϕ1 are also plotted. It is clear

Figure 6. A short trough and level surfaces of its

fundamental eigenfunction.

Figure 7. The cross-section of a channel is given

by solid segments. The length of the free

surface (respectively, bottom) is equal to 2

(2 (x+ 1), respectively); the depth of the channel

(respectively, its rectangular part) is equal to

x+ 1 (x, respectively). The free surface profile

plotted in blue corresponds to an isosceles

trapezoid which is 50% wider at the top than at

the bottom; other profiles correspond to the

shown hexagonal cross-section with

x = 0.1,1,10.

that the maximum of ϕ1(x, y,0) is not on the

boundary.

Since the previous example is essentially two-

dimensional (see [33]), we exploited this reduction

to obtain numerically more accurate free surface

profiles plotted in Figure 7. The blue curve cor-

responds to an isosceles trapezoid which is 50%

wider at the top than at the bottom; its maximum

is on the boundary (as for a coffee mug). Other

profiles correspond to hexagons with different

slopes of side walls. Notice that the point of

maximum moves towards the center for more

horizontal slopes, whereas the high spot becomes

more pronounced.

Photos of water oscillations in bulbous and

other containers were made (examples are given in

Figures 1 and 2). It proved difficult to illustrate the

high spot effect by photographing in a conventional

way because of the nonlinearity caused by relatively

large amplitude of oscillations and non-ideal nature

of liquid. Therefore, along with photos shown in

Figures 1 and 2, we also photographed a reflection

of a dotted piece of paper on a slightly disturbed

surface of the liquid (see Figure 8, bottom). Images

produced using sufficiently long exposure time

mostly consist of blurred segments with just a few

clearly visible dots (see Figure 8, top). The reason

for this is the fact that planes tangent to the water

surface oscillate almost everywhere creating a

segment path for each dot. The exceptional points

are those where the sloshing surface has its local

extrema, and so the corresponding tangent planes
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sloshing tank

camera

dotted paper

Figure 8. (top) Image of reflected light from the

sloshing surface of water in a fish bowl. (middle)

Similar image for a cocktail glass, showing no

points with vanishing gradient. (bottom) Setup

for photos.

are always horizontal, which makes these dots

sharp. The image obtained for a bulbous container

(a fish bowl) has two clearly visible points of

extrema located away from the boundary (see

Figure 8, top), which is in agreement with Figures 2

and 3 (b). The similar image for a conical tank

(a cocktail glass) consists exclusively of almost

the same blurred segment paths for all dots (see

Figure 8, middle), and this agrees with Figures 1

and 3 (a).

Let us turn to discussing results proved rigor-

ously for bodies of revolution. If W is obtained

by rotating a two-dimensional domain D that has

a horizontal segment on the top and is attached

to the z-axis around this axis (see Figure 5), then

the free surface F is a disk in the (x, y)-plane.

We assume that the fundamental modes are an-

tisymmetric; many domains have this property

(see below). Nevertheless, examples of rotationally

symmetric fundamental eigenfunctions also exist.

For example, this takes place for the following

domain: halves of a ball and a spherical shell joined

by a small vertical pipe so that all of them are

coaxial.

Under antisymmetry assumption about the

fundamental modes, there are two of them

ϕ1 = ψ(r, z) cosθ, ϕ2 = ψ(r, z) sinθ,

that correspond to ν1 = ν2 and are linearly

independent; here ψ(r, z) is defined on D.

In [34] (see Theorems 1.1 and 1.2), the following

is proved. If W is a convex body of revolution

confined to the cylinder {(x, y, z) : (x, y,0) ∈
F, z ∈ R} (this condition was introduced by

F. John in 1950), then three assertions hold: (i)

ν1 = ν2; (ii) the corresponding eigenfunctions ϕ1

and ϕ2 are antisymmetric; (iii) the high spots of

these modes are attained on ∂F .

On the other hand (see [34], Proposition 1.3), if

the angle between B and F is bigger than
π
2

and

smaller than π then ϕ1(x, y,0), ϕ2(x, y,0) attain

their extrema inside F as is shown in Figure 8, top.

The proof of (ii) and (iii) is based on the technique

of domain deformation used by D. Jerison and

N. Nadirashvili [26], who studied the hot spots

conjecture. The latter was posed by J. Rauch

in 1974 (see a description by I. Stewart in his

Nature article [62], and Terence Tao’s Polymath

project [65] for current developments). Roughly

speaking, the hot spots conjecture states that

in a thermally insulated domain, for “typical”

initial conditions, the hottest point will move

towards the boundary of the domain as time

passes. The mathematical formulation of the hot

spots conjecture is as follows: every fundamental

eigenfunction of the Neumann Laplacian in an n-

dimensional domain D attains its extrema on ∂D. It

was proved for sufficiently regular planar domains

(see, for example, [3] and [26]), disproved for some

domains with holes (see, for example, [7]) and is

still open for arbitrary convex planar domains.

There is a remarkable relationship between high

and hot spots (see, for example, [32], Proposition

3.1). If ϕ1, . . . ,ϕk are the sloshing eigenfunctions
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corresponding to an eigenvalue ν in a vertical

cylinder W = {(x, y, z) : (x, y) ∈ F, z ∈ (−h,0)},
then µ is an eigenvalue of the Neumann Laplacian

inD = F , if and only if ν = √µ tanh
√
µh. Moreover,

every eigenfunction ψ(x, y) corresponding to µ is

defined by some ϕj , j = 1, . . . , k, in the following

way: ϕj(x, y, z) = ψ(x, y) cosh
√
µ(z + h). This

relationship between the two problems implies,

in particular, that the results obtained in [3]

and [26] for planar convex domains with two

orthogonal axes of symmetry (e.g., ellipses) can

be reformulated as follows. In a vertical-walled,

cylindrical tank with such free surface, high spots

of fundamental sloshing modes are located on the

free surface’s boundary.

Isoperimetric Inequalities
for Steklov Eigenvalues

It was mentioned above that Steklov’s major contri-

bution to mathematical physics appeared in 1902,

namely, the article [54], in which he introduced

an eigenvalue problem (1). This problem with

the spectral parameter in the boundary condition

turned out to have numerous applications. More-

over, the Steklov problem—as it is referred to

nowadays—provides a new playground for exciting

interactions between geometry and spectral theory,

exhibiting phenomena that could not be observed

in other eigenvalue problems. For the sake of

simplicity, it is assumed throughout this section

that ϕ ≡ 1 in formula (1).

In two dimensions, problem (1) can be viewed

as a “cousin” of the Neumann problem in a

bounded domain D. Indeed, the latter problem

describes the vibration of a homogeneous free

membrane, whereas the Steklov problem models

the vibration of a free membrane with all its mass

concentrated along the boundary (see [2], p. 95).

Steklov eigenvalues

0 = λ0 < λ1(D) à λ2(D) à λ3(D) à · · · ր ∞
correspond to the frequencies of oscillations. As

in the Neumann case, the Steklov spectrum starts

with zero, and in order to ensure discreteness of

the spectrum it is sufficient to assume that the

boundary is Lipschitz.

Isoperimetric inequalities for eigenvalues is

a classical topic in geometric spectral theory

that goes back to the ground-breaking results of

Rayleigh–Faber–Krahn and Szegő–Weinberger on

the first Dirichlet and the first non-zero Neumann

eigenvalues. The problem is to find a shape

that extremizes (minimizes for Dirichlet and

maximizes for Neumann) the first eigenvalue

among all shapes of fixed volume. In both cases,

the unique extremal domain is a ball, similarly to

the classical isoperimetric inequality in Euclidean

geometry.

Szegő’s proof of the isoperimetric inequality

for the first Neumann eigenvalue on a simply con-

nected planar domain D is based on the Riemann

mapping theorem and a delicate construction of

trial functions using eigenfunctions on a disk

[63]. In 1954 (the same year Szegő’s paper was

published), R. Weinstock [69] realized that this

approach could be adapted to prove a sharp isoperi-

metric inequality for the first Steklov eigenvalue.

Weinstock showed that the first nonzero Steklov

eigenvalue is maximized by a disk among all sim-

ply connected planar domains of fixed perimeter.

Note that for the Steklov problem, the perimeter

is proportional to the mass of the membrane,

like the area in the Neumann problem. In fact,

Weinstock’s proof is easier than Szegő’s, because

the first Steklov eigenfunctions on a disk are just

coordinate functions, not Bessel functions as in

the Neumann case. In a way, Weinstock’s argument

is a first application of the “barycentric method”

that is being widely used in geometric eigenvalue

estimates.

The analogy between isoperimetric inequalities

for Neumann and Steklov eigenvalues is far from

being complete, which makes the study of Steklov

eigenvalues particularly interesting. For instance,

as was shown by Weinberger [68], Szegő’s inequality

for the first Neumann eigenvalue can be generalized

to arbitrary Euclidean domains of any dimension.

At the same time, Weinstock’s result fails for

non-simply connected planar domains: if one digs

a small hole in the center of a disk, the first

Steklov eigenvalue of the corresponding annulus,

normalized by the perimeter, is bigger than the

normalized first Steklov eigenvalue of a disk [19].

Another major distinction from the Neumann

case is that for simply connected planar domains,

sharp isoperimetric inequalities are known for

all Steklov eigenvalues. It was shown in [16] that

the inequality λn(D)L(∂D) à 2πn, n = 1,2,3 . . . ,
proved in [23] is sharp, with the equality attained

in the limit by a sequence of domains degenerating

to a disjoint union of n identical disks; here

L(∂D) denotes the perimeter of D. For Neumann

eigenvalues, a similar result holds for n = 2 [15],

but the situation is quite different for n á 3 (see

[1] and [48]).

In 1970, J. Hersch [22] developed the approach

of Szegő in a more geometric direction. He proved

that among all Riemannian metrics on a sphere

of given area, the first eigenvalue of the corre-

sponding Laplace–Beltrami operator is maximal

for the standard round metric. Note that the first

eigenspace on a round sphere is generated by

coordinate functions, which allows one to prove

Hersch’s theorem in a similar way as Weinstock’s

inequality [17]. The result of Hersch stimulated a
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whole direction of research on extremal metrics

for Laplace–Beltrami eigenvalues on surfaces.

Recently, Fraser and Schoen (see [11] and

[12]) extended the theory of extremal metrics to

Steklov eigenvalues on surfaces with boundary.

They have studied extremal metrics for the first

Steklov eigenvalue on a surface of genus zero

with l boundary components, and proved the

existence of maximizers for all ℓ á 1. Weinstock’s

inequality covers the case ℓ = 1, but already

for ℓ = 2 the result is quite unexpected. The

maximizer is given by a “critical catenoid”; it is a

certain metric of revolution on an annulus such

that the first Steklov eigenvalue has multiplicity

three. Interestingly enough, this is the maximal

possible multiplicity for the first eigenvalue on

an annulus (see [12], [27] and [25]). The critical

catenoid admits the following characterization:

it is a unique free boundary minimal annulus

embedded into a Euclidean ball by the first Steklov

eigenfunctions [12].

Maximizers for higher Steklov eigenvalues on

surfaces, as well as sharp isoperimetric inequalities

for eigenvalues on surfaces of higher genus, are

still to be found. Some bounds were obtained in

[11], [29], [18], [21] in terms of the genus and the

number of boundary components. At the same

time, it was shown in [9] that there exists a

sequence of surfaces of fixed perimeter, such that

the corresponding first eigenvalues of the Steklov

problem tend to infinity.

Apart from the two-dimensional vibrating mem-

brane model discussed above, there is another

physical interpretation of the Steklov problem,

which is valid in arbitrary dimension. It describes

the stationary heat distribution in a body D, un-

der the condition that the heat flux through the

boundary is proportional to the temperature. In

this context, it is meaningful to use the volume of

D as a normalizing factor. Weinstock’s inequality

combined with the classical isoperimetric inequal-

ity implies that the disk maximizes the first Steklov

eigenvalue among all simply connected planar do-

mains of given area. Generalizations of this result

were obtained in [6] and [4]. In particular, it was

shown that in any dimension, the ball maximizes

the first Steklov eigenvalue among all Euclidean

domains of given volume.

Yet another interpretation of the Steklov spec-

trum involves the concept of the Dirichlet-to-Neu-

mann map (sometimes called the Poincaré–Steklov

operator), which is important in many applications,

such as electric impedance tomography, cloak-

ing, etc. The Dirichlet-to-Neumann map acts on

functions on the boundary of a domain D (or,

more generally, of a Riemannian manifold), and

assigns to each function the normal derivative of

its harmonic extension into D. The spectrum of

this operator is given precisely by the Steklov eigen-

values. Since the Dirichlet-to-Neumann map acts

on ∂D, it is natural to normalize the eigenvalues by

the volume of the boundary. If the volume of ∂D
is fixed, the corresponding Steklov eigenvalues λn
of a Euclidean domain D can be bounded in terms

of n and the dimension [8]. However, no sharp

isoperimetric inequalities of this type are known

at the moment in dimensions higher than two.

Mathematical notions often lead a life of their

own, independent of the will of their creators.

When Steklov introduced the eigenvalue problem

that now bears his name, he was motivated mainly

by applications. It is hard to tell whether he

could foresee the interest in the problem coming

from geometric spectral theory. There is no doubt,

however, that the past and future work of many

mathematicians on isoperimetric inequalities for

Steklov eigenvalues owes a lot to Steklov’s insight.
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