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ABSTRACT

Designing and analyzing nuclear reactors requires the development of software tools for the
simulation of reactor physics. One of the most important aspects of reactor simulation is the deter-
mination of the distribution of neutrons in the system. This distribution is described by a Partial

Differential Equation (PDE) called the Neutron Transport Equation (NTE). Typical reactor sys-
tems are too complex to analytically solve the NTE, so instead computational methods of solving
the equation are developed and used.

A variety of methods to efficiently solve the 3D NTE for reactor systems have been devised.
Prominent among these methods are the 2D/1D methods. Traditional 2D/1D methods generate a
3D solution to the NTE by iteratively solving 2D radial transport equations coupled with 1D axial
PN equations.

The standard iterative methods to solve the traditional 2D/1D equations have inherent instabil-
ities. These instabilities can lead to divergence of the problem solution. The instabilities are of
particular concern in problems with neutronically important void-like regions adjacent fuel.

This work proposes to fill in these limitations of traditional 2D/1D methods in Michigan

PArallel Characteristics-based Transport (MPACT) for such problems using the axial expansion
method. Proposed by Argonne National Laboratory (ANL) and first implemented in Proteus-
MOC, axial expansion methods directly solve the full 3D NTE, but use Method of Characteris-

tics (MOC) for the discretization of the radial direction, while using discontinuous finite element
methods for the axial direction treatment. This work develops a new discretization using an explicit
Legendre polynomial form for the axial expansion, and introduces an alternative axial coupling
treatment to allow for non-extruded axial meshes.

One of the most computationally expensive portions of axial expansion methods involves the
calculation of matrix exponentials. While the matrix exponential is well defined, general explicit
forms are only known for up to 3 × 3 matrices. The explicit Legendre Polynomial Axial Ex-

pansion Method (LPAEM) formulation allowed investigation into the precise form of the matrix
exponentials present in the calculation. This investigation revealed a form that lent itself to matrix
exponential tables, which showed substantial speedup compared to analytic or iterative methods of
computing the matrix exponential.

xi



This work implements the LPAEM with non-extruded axial mesh coupling and matrix expo-
nential tables in the reactor physics code MPACT. Using this implementation, numerical inves-
tigations into the stability of the method in comparison to traditional 2D/1D are performed. The
investigations performed in this work demonstrate the stability of the axial expansion method in
systems with neutronically important void-like regions adjacent to fuel, that fail to converge using
traditional 2D/1D.
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CHAPTER 1

Introduction

This chapter describes the motivation for solving the 3D Neutron Transport Equation (NTE) using
the Legendre Polynomial Axial Expansion Method (LPAEM). This motivation is primarily found in
limitations present in traditional 2D/1D methods for solving the transport equation. A brief history
of some “2D/1D” like methods is then given to describe current methods of efficient deterministic
neutron transport in 3D. The uniqueness of the LPAEM lies in the fact that it solves only a single
set of axial moment equations for the system, so there exists no discontinuity between the axial and
radial solution, nor is there an independent axial equation to solve. At the end of this chapter, an
outline is given for the remainder of the dissertation, in which this method of solving 3D neutron
transport is developed and tested.

1.1 Motivation

Current nuclear reactors produce power through the fissioning of heavy particles of fuel material,
often unstable isotopes of Uranium [1]. In a reactor, this fission process is primarily driven by
incident collisions with free neutrons in the system [2]. We call the rate of fission incidents the
“reaction rate” for fission, and this rate is the primary determinant of power production in a nuclear
reactor. The interaction probability for a single incident is primarily dependent upon the speed, or
energy, of the free neutron [3]. The reaction rate as a whole is also determined by the number of
potential incidents, which is dependent upon the density of free neutrons and fissionable material
within a given region of space. The density of fissionable material in a given space is typically
known due to manufacturer specifications, or can be determined through depletion physics in
situations where the system has been irradiated for some time. As such, the primary unknown
needed to determine reactor power and spatial distribution of power production, is the energy and
spatial distribution of the density of free neutrons in the system [4].

The density distribution of neutrons can be described by the linearized Boltzmann equation,
often referred to as the NTE [5]. This seven dimensional Partial Differential Equation (PDE),
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which is also an integro-differential equation, is too complex to solve analytically for typical reactor
systems. As such, numerical methods are often used and the power of modern computers is applied
to solve the system. For reactor design, this solution typically comes in the form of a computational
deterministic solution to this equation. Stochastic methods can also be used, however the costs of
stochastic simulations for the level of accuracy needed is often prohibitive in large, complex reactor
systems.

The Method of Characteristics (MOC) is commonly used in reactor physics computations to
deterministically solve the NTE in 2D [6]. MOC involves using a change of variables in which a
multivariate PDE can be rewritten as a single-variable Ordinary Differential Equation (ODE) along
a track length for several rays in discrete angular ordinates, e.g. the characteristic directions of the
solution. In 2D, it is fairly simple to keep the number of rays relatively limited. However, in 3D,
despite recent work to improve the speed of 3D MOC [7], it can sometimes be untenable to perform
a full MOC calculation since the number of rays is increased geometrically and the cost of a single
iteration can be very expensive. This is especially true for complex reactor systems. To avoid this
issue, many MOC codes take advantage of the broadly invariant axial properties of typical reactor
designs by treating the axial direction differently, performing full 2D MOC in several radial slices
and using a simpler approximation to couple each slice together axially.

Many methods perform this coupling through an additional transverse leakage term in the
source, and the Michigan PArallel Characteristics-based Transport (MPACT) code is no exception.
MPACT’s current standard 2D/1D method uses a P3 angular approximation and a 4th order poly-
nomial to solve for a coarse axial shape in each pin cell. This approximation is fairly cheap and
allows pin cells to have Flat Source Region (FSR) variations without the need for cell extrusion.
However, this method does have several limitations. Inconsistencies between the radial and axial
solution methods occasionally cause negative fluxes that require nonphysical means of correction,
or may compound with other instabilities in the solution and cause the problem to fail to converge.

Perhaps most concerning, traditional 2D/1D methods rely on a pin cell radially homogenized
PN approximations [8] to solve the axial variance. The formulation and coupling of the axial
equations to the 2D radial MOC, can sometimes introduce instability in the iterative calculation.
One situation where this can occur is when neutronically important regions of void, or void-like low
density material, are present. Because low density materials are quite non-diffusive, they are not
well approximated by PN equations. This leads to the axial solver being unstable, increasing the
instability that can lead to solution break down in these types of problems.

One of the more interesting systems where these limitations are on display, are some critical
experiments that vary the water level to control criticality. One example is the KRITZ-2 experiments.
These were a series of critical configurations where an assembly of fuel rods were placed in a
containment vessel and the moderator height was adjusted along with boron concentration in order
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to achieve a critical configuration. This was done with multiple different temperatures for multiple
different fuel assemblies [9] [10] [11].

A side view of the KRITZ-2:1 experiment at 19.7° C is shown in Figure 1.1. It is here that it
can be observed that the system has large regions of importance above the water line. Indeed, in
the critical configuration, only 65.28 cm of the 200 cm of active fuel available is covered by the
moderator. For the rest of the fuel above the water line, the fuel pins are surrounded by air, which
given its low density, is very nearly approximated as void in the small gaps between the fuel pins.

Figure 1.1: KRITZ-2:1 Side-view [9]
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KRITZ-2 is a popular benchmark problem for both deterministic [12] [13] [14] and Monte
Carlo [15] codes because of its unique characteristics such as variable temperature. Benchmarking
for two of these configurations, KRITZ-2:1 and KRITZ-2:13, were attempted with MPACT [16].
Because traditional 2D/1D can be unstable in systems with voided regions that have non-negligible
neutronic importance, successful MPACT solutions to these configurations were limited to 2D
models with the reported axial critical buckling. While these 2D simulations were successful, they
left something to be desired in simulating the full 3D system. 3D models inspired by the KRITZ-2
experiments were created with the fuel above the water line removed from the model, however the
fuel above the water line is neutronically important and led to an underestimation of the eigenvalue.
Models were also made with artificially increased density for the air to avoid the void problem
in 2D/1D, however this led to additional moderation and reflection above the water line and an
overestimation of the eigenvalue.

The KRITZ-2 experiments are considered important evaluated reactor physics benchmarks
with criticality and reaction rate measurements. However, the data for the critical buckling is
not considered an acceptable benchmark experiment for critical buckling benchmarks. As such,
the limited benchmarking that MPACT has been able to perform on KRITZ-2 does not provide
a sufficient case of verification and validation of the code using KRITZ-2 since it is limited to
buckling calculations. This prevents the KRITZ-2 experiments from being added to the list of
critical experiments used to validate MPACT [17], though MPACT remains well validated with
conventional LWR type problems.

To address these limitations, an alternative method of 2D/1D was proposed to be added to
MPACT’s capabilities. Inspired by Proteus-MOC [18], this new method expands the axial compo-
nent of the transport equation by using an arbitrary number of Legendre polynomials. In this new
method, the unknowns of the system become the coefficients associated with these polynomials.
So now, the solution on a radial slice can give the leakage to adjacent slices for both upward and
downward traveling neutrons averaged over a coarse pin cell from the polynomial value at the
borders. This method should not break down for arbitrarily small slices compared with MPACT’s
current 2D/1D method due to the lack of transverse leakage from a separate equation. Additionally,
since the method directly approximates the transport equation, some instabilities introduced in
traditional 2D/1D are expected to be avoided for problems with void-like regions adjacent to the
fuel. The implementation in MPACT also does not require Coarse Mesh Finite Difference (CMFD)
acceleration for problems in which CMFD might not easily converge—a capability that MPACT
currently lacks for 3D systems, except when using prohibitively expensive full 3D MOC.

To demonstrate the viability of this method before MPACT implementation, an exploratory
2D code was created and directly compared with MPACT’s current method [19]. Referred to
as 1D/1D, these problems allowed for the investigation of method behaviors in a simple testing
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environment. This method was then implemented in MPACT and correctness of the method and
implementation is demonstrated by comparison to MPACT’s current 2D/1D implementation on a
variety of demonstration problems, among them configurations of KRITZ-2.

Following these initial exploratory studies, the axial expansion method was implemented into
MPACT and a fast method for the necessary matrix exponential computations was devised [20].
The implementation was tested on small scale systems to confirm correctness of the method and
implementation in 3D in MPACT. The implementation was later extended to include linkage with
CMFD and used in analysis of the KRITZ-2:1 experiment where it showed success in converging in
models where traditional 2D/1D failed.

1.2 History of 2D/1D Methods

The idea of splitting up the 3D transport equation in a 2D/1D like manner that treats the axial
portion in a distinct fashion from the radial portion has its roots in two independent publications
from 2002. These two methods were the “2D/1D” method developed by the Korea Atomic Energy

Research Institute (KAERI) to be used in DeCART [21] (and later nTRACER [22]) and the “2D/1D
Fusion” method developed by the Korea Advanced Institute of Science and Technology (KAIST)
for the CRX code [23] [24].

The original method implemented in MPACT used isotropic transverse leakage, which is the
leakage between axial slices determined by the 1D solution described further in Section 2.6, and
was similar to the method from KAERI. This method treats the axial component of the system
using nodal diffusion solvers to approximate the axial shape of the flux. Not content with the error
introduced by the isotropic treatment, later on, Stimpson [25] implemented a similar method in
MPACT that utilized anisotropic leakage making it more similar to the KAIST method. In order to
save memory from the explicit azimuthal treatment of the KAIST method, Stimpson’s solver used a
Fourier expansion in the azimuthal angle for the axial and radial transverse leakage. Additionally,
memory was saved in the solver by using P3 Legendre polynomial expansions of the polar angle
instead of the explicit treatment in the original KAIST method. Analysis of errors determined that
one of the most significant sources of error left in the 2D/1D method in MPACT was in the form of
the cross section homogenization in the nodal solver. To fix this, Jarrett [26] introduced anisotropic
cross sections with the anisotropic transverse leakage, which showed significant improvements in
the accuracy of the 2D/1D method in MPACT, primarily in the polar direction.

As MPACT was being developed, an alternative method at Argonne National Laboratory

(ANL), was being developed from the basic concepts in DeCART for use with the Proteus-MOC
code [18]. This method uses 2D MOC with a finite element discretization in the axial direction
to technically make it a 3D transport method. It can still be considered a type of 2D/1D method
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in the sense that it treats the axial and radial directions of the domain differently with respect
to the discretization method. However, it is distinguished from traditional 2D/1D methods in
that the 3D transport equation is treated and discretized directly, albeit differently in different
directions. This discretization also does not require the solving of a 1D homogenized problem.
Other codes that adopted similar methods to solve the 3D transport equation with 2D/1D like
methods through alternative axial discretization include APOLLO3 [27], PANX [28], NECP-X [29],
and STREAM [30]. These methods are disadvantaged in the fact that they tend to be computationally
more expensive on the same mesh due to their finer treatment of the axial direction and direct
discretization of the 3D transport equation.

Now, traditional 2D/1D methods can have stability issues in part due to the fact that the axial
portion of the calculation is not a different discretization of the axial direction, but instead an entirely
different equation [31]. In particular, the cross section homogenization in traditional 2D/1D methods
coupled with the 1D PN axial solution can be unstable in optically thin regions. Additionally, the
nodal methods used to solve the axial portion in traditional 2D/1D methods has stability issues in
the presence of axially thin radial slices in systems where they may be required. For systems where
large voided regions are unlikely, such as most Light Water Reactor (LWR) models, traditional
2D/1D methods have sufficient accuracy and stability while maintaining computational efficiency.

This dissertation focuses on extending the development of the direct 2D/1D method proposed
by ANL for use in more diverse meshes through the removal of fine mesh extrusion requirements.
Additionally, the re-development of the method here with explicit use of Legendre Polynomials
allows for further work on method performance enhancements both through fine mesh extrusion
removal as well as the introduction of matrix exponential tables. The method is also implemented in
MPACT to allow for development and testing by a more diverse set of scientists and engineers and
demonstrations on problems featuring void-like regions is performed to demonstrate the theorized
stability.

1.2.1 Failure in Void-like Regions

One of the largest concerns with traditional 2D/1D methods is failure in optically thin regions. In
general, PN approximations will do poorly in terms of accuracy when there is a lot of anisotropy,
like when a void-like region is connected to a non-void region. However, this lack of accuracy is
often not as relevant as the instability that traditional 2D/1D methods often face in these problems.
Regardless of the accuracy of the solution, if the solution method is not robust then a solution may
not be able to be reached at all. The axial transverse leakage can be very large at the interface
between void and non-void regions. A large negative transverse leakage could lead to instability
in the solver itself, and additionally since the scattering source in void is very small, a strong
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negative transverse leakage can also lead to negative fluxes, which may themselves cause additional
instability.

As mentioned in Section 1.1, instability of the 2D/1D method was examined in the particular
instance of the KRITZ-2 experiments. The lack of convergence in 2D/1D problems is due to at least
3 types of instability related to 2D/1D that can cause a solution to be non-convergent [31].

1. Instability arising from thin axial slices can cause the 2D/1D problem to diverge. Work has
been done to mitigate this to allow 2D/1D to typically converge even with very thin axial
slices [32].

2. CMFD acceleration may cause instability in situations where some coarse cells are too thick.
This concern can be solved by reducing the coarse cell size, but can pose a problem since that
2D/1D is almost exclusively solved using CMFD acceleration, and in fact can only be solved
using CMFD in the current MPACT implementation.

3. The axial transverse leakage can go negative in traditional 2D/1D. This is fine as it is just
the flow of neutrons normal to a surface. However, this can potentially produce a negative
source if the magnitude of the transverse leakage is large enough, and the remaining source in
a region is sufficiently small.

It is the third instability which can occur in systems with void-like regions that fail to converge. If the
transverse leakage is very strongly negative due to production in the non-void like region, then the
low void scattering source is unlikely to be large enough to overcome it. This can lead to the angular
source becoming negative in some regions and directions, and potentially even the scalar flux could
become negative in certain regions. Negative fluxes in a FSR could lead to the homogenized cross
section for that pin cell becoming non-physical during the cross section homogenization portion
of traditional 2D/1D methods described in Section 2.6.1. This non-physicality can be the result of
either a very small, or even negative, number in the denominator of Eq. 2.57.

A very large or negative homogenized cross section could cause instability in both the 1D axial
calculation and the CMFD acceleration. As such, even with the removal of CMFD in systems
where this instability prevents convergence, it is not guaranteed that the 2D/1D method alone will
converge. This problem can be exacerbated with a large number of energy groups since scattering
in these problems tends to be even lower for each individual group, but the transverse leakage may
still be non-negligibly negative. With less groups, the overall scattering source is more likely to
be large enough to overcome negative transverse leakage sources due to less spectrum peaking of
the scattering source. So this presents the problem that some systems may converge as few group
problems with void-like regions but then fail to converge when the number of groups is increased,
as may be necessary to obtain a sufficient accuracy.
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Furthermore, anisotropic transverse leakage can also make the instability more likely to occur.
Because the transverse leakage is now peaked along certain directions, negativity of the angular flux
has more opportunities to occur. This is especially a problem at an axial boundary between reflector
and void since the anisotropic peaking of the axial transverse leakage can be particularly high at
those locations. One of the standard ways to fix negative transverse leakage is to use transverse
leakage splitting. However, transverse leakage splitting is best used for isotropic transverse leakage,
since with anisotropic transverse leakage it will completely change the anisotropic distribution of
the leakage and defeat the purpose of anisotropic transverse leakage.

So this means that the two of the most important methods to increase problem accuracy, finer
energy groups and anisotropic axial leakage, both increase the likelihood of instability occuring in
2D/1D. Additionally, the fix for transverse leakage leaves anisotropic transverse leakage ineffective.

Some work has been done to fix some aspects of the instability here. Recently, a linearized
CMFD acceleration technique was developed [33] [34] to increase the stability of the solution in
systems where the CMFD homogenized cross sections, or fluxes, become very large or negative.
However, the homogenized cross sections for the 1D problem may still become negative or very
large, and may still lead to instability and non-convergence in the 2D/1D solution even if the
instability in CMFD is properly addressed. Additionally, an improved leakage splitting method
has been proposed to potentially resolve some of the instability caused by negative leakage while
maintaining some of the accuracy of anisotropic leakage [35]. But this leakage splitting method is
still relatively young and has yet to be tested in systems with void-like regions where the instability
is prominent.

1.3 Outline

This doctoral dissertation thesis seeks to present research in reactor physics that is both significant
and original. The significance of this work involves the implementation in MPACT of an alternative
to traditional 2D/1D that is more stable in some problematic systems. The originality of this
work is threefold. First, the new reformulation of the axial leakage term for the axial expansion
method allows the method to be used with meshes that do not possess extruded FSRs, which is
a common feature of LWR design models due to buffers of water above and below the fuel that
are not modeled well with the same FSR divisions found in fuel cells. This reformulation also
introduces significant memory savings since each FSR need not store a separate axial leakage term.
Second, the re-derivation of the axial expansion method explicitly using Legendre polynomials led
to an investigation of performance improvements, including the development of efficient matrix
exponential tables that provide significant speedup with minimal memory increase and negligible
pre-calculation computational costs. Third, while the axial expansion method had previously been
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reported to have additional stability in problems with void-like regions compared to traditional
2D/1D methods, the research performed here demonstrated this for the first time using original
models as well as international benchmark problems of the KRITZ-2:1 critical experiments. This
demonstration of stability represents a significant new capability for the MPACT code.

The remainder of this dissertation is structured as follows. Chapter 2 provides an overview
of neutron transport theory centered around the NTE. This chapter describes the equation and its
terms in a general time dependent system. The eigenvalue problems more commonly found in
computational codes are then introduced, with particular emphasis on the keff eigenvalue problem,
which is the problem that the method in this dissertation is used to solve. The two primary
computational methods for solving the transport equation are then briefly described and advantages
of both are discussed. Focus is then shifted solely to deterministic methods and common means of
discretization and solution computation and described.

Chapter 3 gives a mathematical foundation for the LPAEM. Here the method is derived from
the discretized transport equation by introducing the axial expansion approximation, taking axial
moments of the approximated equation, and finally reforming the equation in matrix-vector notation.
Balance equations are then derived to demonstrate that the approximation preserves neutron balance.
To close out the chapter, three forms of axial leakage treatments are introduced, and while all
three have been implemented in the exploratory code, it was determined that the integrated pin cell
method would serve as the primary axial leakage function for implementation in MPACT.

Chapter 4 describes numerical methods for solving the axial expansion method. Here is detailed
the 1D/1D equations used in the initial investigation into the method as well as the 2D/1D MOC
equations needed for a complete 3D simulation. Next, details for proper CMFD acceleration are
described to guarantee that the axial moments are properly updated from the CMFD solutions.
Afterwords a fast method for solving matrix exponentials is introduced in the form of matrix
exponential lookup tables. The chapter closes out with a detailed analysis of the predicted memory
usage for this method, as well as a comparison to the memory usage for traditional 2D/1D.

Chapter 5 describes the verification and validation campaigns performed for this dissertation.
In this chapter demonstration 1D/1D problems are described and their results analyzed from the
initial exploratory code. More complex 2D/1D problems are then introduced and their results in
MPACT using the axial expansion method are analyzed, including a B&W 1484 critical experiment.
The KRITZ-2 experiments are then introduced in more complete detail and their results in MPACT
using the axial expansion method are analyzed. To close out, the chapter investigates the speedup
provided by the matrix exponential tables introduced in chapter 4.

Finally, Chapter 6 presents the conclusion to the work. A summary of the motivation, method,
results, and analysis is reiterated. Concluding this chapter, potential future work and investigations
related to the LPAEM are described.
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CHAPTER 2

Neutron Transport Theory

This chapter describes neutron transport theory in nuclear reactor simulations. The NTE is intro-
duced and described physically. Additionally, the eigenvalue forms of this equation are described.
Computational methods for solving the equation are discussed and discretization methods are
presented. Finally, brief discussion of solution methods for deterministically solving the equation
are introduced.

The NTE itself has been well documented and constitutes one of the core equations of nuclear
engineering as it describes the distribution of neutrons throughout a system [36] [37] [38]. The
angular neutron flux, ψ, is the principal unknown in neutron transport theory and is defined as the
speed of the neutrons, v, multiplied by the density distribution of the neutrons, N . It is a seven di-
mensional distribution dependent on 3 spatial variables, r = (x, y, z), the neutron energy (or speed),
E = 1

2
mv2, the two variables describing direction of flight Ω̂ = (

√
1− µ2 cosω,

√
1− µ2 sinω, µ)

where µ is the polar angle cosine and ω is the azimuthal direction, and the time, t. The conglomera-
tion of these seven dimensional variables is often called “phase-space”.

2.1 The Boltzmann Transport Equation

We define the linear “loss” operator due to streaming and collision as:

Lψ(r, Ω̂, E, t) = Ω̂ ·∇ψ(r, Ω̂, E, t) + Σt(r, E, t)ψ(r, Ω̂, E, t) (2.1a)

Here Σt is the macroscopic total neutron cross section, independent of angular direction, which is a
good approximation in reactor like systems where molecular arrangements rarely take forms that
lend non-negligible angular dependence to cross sections.
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And the linear “secondary source” operator due to in-scattering and fission is defined as:

Sψ(r, Ω̂, E, t) =

∫
4π

∫ ∞
0

Σs(r, Ω̂ · Ω̂′, E ′ → E, t)ψ(r, Ω̂′, E ′, t) dE ′ dΩ′

+
χ(r, E, t)

4π

∫
4π

∫ ∞
0

νΣf (r, E
′, t)ψ(r, Ω̂′, E ′, t) dE ′ dΩ′ (2.1b)

Here Σs is the macroscopic scattering cross section, whose sole angular dependence is found in the
scattering cosine, Ω̂ · Ω̂′. νΣf is the macroscopic fission production cross section, and is the product
of the average neutron production per fission event, ν, and the macroscopic fission cross section, Σf .
χ is the fission production spectrum which, in reality, is not independent of incident neutron energy
and is not isotropic. However, at the neutron energies that produce the bulk of induced fissions in a
nuclear reactor, χ has very little dependence on incident neutron energy and is nearly isotropic, so it
is approximated as such.

Then the time dependent linearized 3D Boltzmann equation (NTE) is:

1

v

∂

∂t
ψ(r, Ω̂, E, t) + Lψ(r, Ω̂, E, t) = Sψ(r, Ω̂, E, t) +Q(r, Ω̂, E, t),

r ∈ V, Ω̂ ∈ 4π, 0 < E <∞
(2.1c)

Where Q is some known external source.
This equation can have general specified boundary conditions:

ψ(r, Ω̂, E, t) = Γ(r, Ω̂, E, t),

r ∈ ∂V, Ω̂ · n̂ < 0, 0 < E <∞
(2.1d)

Where n̂ is the outward normal unit vector of the system boundary surface. For this work we
will arbitrarily assume that the system volume V is a general right convex prism so that the “top”
and “bottom” of the system are at z = Zmax and z = 0 respectively and the system boundary is
∂V = ∂VR(x, y)∀ 0 < z < Zmax ∪ (x, y, 0) ∈ V ∪ (x, y, Zmax) ∈ V .

2.2 Eigenvalue Problems

Time dependence in neutron transport problems provides a unique issue since the equation is
often quite expensive and must normally be solved iteratively with temperature feedback in reactor
applications. However, most systems are time dependent. This prompts us to convert the equation
to an eigenvalue problem where the flux is now an eigenfunction in the system. As eigenvalues
problems, we must necessarily remove the external source, Q, from the problem.
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2.2.1 keff Eigenvalue

Perhaps the most common eigenvalue problem in neutron transport theory is the keff eigenvalue
problem. For this problem, the eigenvalue is defined as the value that when dividing the fission
source, causes total system integral of the flux to lose all time dependence:

Ω̂ ·∇ψ(r, Ω̂, E) + Σt(r, E)ψ(r, Ω̂, E) =

∫
4π

∫ ∞
0

Σs(r, Ω̂ · Ω̂′, E ′ → E)ψ(r, Ω̂′, E ′) dE ′ dΩ′

+
χ(r, E)

keff4π

∫
4π

∫ ∞
0

νΣf (r, E
′)ψ(r, Ω̂′, E ′) dE ′ dΩ′ (2.2)

So that now keff is the eigenvalue for the eigenfunction ψ.
The value of keff is then determined by the ratio of the neutron leakage and absorption loss to

the production of neutrons through fission. As such, for keff < 1 the actual system would be time
dependent with flux decreasing with time and the system is said to be sub-critical. For keff > 1 the
actual system would be time dependent with flux increasing with time and the system is said to be
supercritical. For keff = 1 the actual system would be steady state with constant flux in time and
the system is said to be critical. Distance of keff from 1 also determines the rate at which the flux is
changing and as such, keff is one of the most important parameters in reactor analysis. Finally, the
closer keff is to 1, the closer the eigenfunction ψ will be to the true flux distribution in terms of
spatial, directional, and energy shape.

2.2.2 α Eigenvalue

It is the keff eigenvalue problem that is most commonly solved by neutron transport codes, however,
other eigenvalue problems exist. Perhaps most notably, the α eigenvalue problem is often solved to
give a more precise asymptotic rate to the change in the flux for non steady state problems. This
problem assumes a time independent flux shape, the eigenfunction ψ, and that the time dependence
of the magnitude of that flux is exponential with a rate coefficient of α. So with this approximation,
the NTE becomes:

1

v

∂

∂t
ψ(r, Ω̂, E)eαt + Lψ(r, Ω̂, E)eαt = Sψ(r, Ω̂, E)eαt (2.3)

Which then gives the α eigenvalue problem:√
2E/m(S− L)ψ(r, Ω̂, E) = αψ(r, Ω̂, E) (2.4)

Now when α is negative, the system is sub-critical, when it is positive the system is supercritical,
and when it is 0 the system is critical. Similar to k, the closer α is to 0 (the critical value), the closer
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the true physical flux shape will be to the eigenfunction shape ψ. So now for a solved α eigenvalue
problem a relatively accurate description of the asymptotic rate of change in the flux magnitude in a
system is known.

2.3 Computational Methods

The NTE can be solved a variety of ways but every method of solving the equation falls into one of
two categories. The solutions are either computed stochastically or deterministically. Stochastic
methods for neutron transport are typically called “Monte Carlo” methods and simulate particles
individually as they move through the system. The solution is then composed of the distribution of
the simulated particles with some uncertainty dependent upon the number of particles simulated.
Deterministic methods instead attempt to solve the NTE as a differential equation directly through
some discretization approximations to the system. Typically deterministic methods are faster than
Monte Carlo methods, however discretization approximations may make them less accurate. For
design and reactor simulation purposes, deterministic methods are therefore more commonly used
as the systems are quite large and complex.

2.3.1 Monte Carlo Methods

Solutions of the NTE can be obtained without solving the actual PDE at all. These stochastic
methods of determining the neutron distribution in a system are referred to as Monte Carlo methods.

Monte Carlo methods involve direct simulation of particle histories, probabilistically sampling
particle creation, collision, scattering, and fission induction [39]. These simulations are normally
done in batches of neutrons born from fission, where a number of neutrons making up the batch are
followed and individually simulated until absorption. For this method, because it is unknown prior
to solving the system where fission neutrons will be born, typically a few uncounted batches are run
to approximate the fission source distribution. These uncounted batches are discarded in the tallied
data, but the fission source they estimate is used as the starting point for the counted batches.

Because these simulations follow individual particles, the need for discretization of phase-space
is removed unless phase-space specific values are sought. Not every point in phase-space will be
seen with a finite amount of particle histories, and technically some discretization is present due to
the finite precision nature of computers. However, it is approximately accurate to say that Monte
Carlo methods remove the need for discretization found in deterministic solutions, except in the case
when they are used for depletion and feedback modeling. As such, errors introduced by multi-group
cross sections, finite angular quadrature sets, and FSR approximations are all avoided by Monte
Carlo methods. This leads to Monte Carlo methods being considered highly accurate in comparison
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to deterministic methods.
Unfortunately, as a stochastic method, values tallied from results of Monte Carlo simulations are

subject to inherent statistical error since the number of particles simulated is necessarily finite. This
statistical error is proportional to 1√

N
, whereN is the number of particle histories simulated. As such,

the statistical error decreases increasingly slowly as the number of simulated particles increases,
making certain levels of error untenable in large reactor systems. This leads to Monte Carlo methods
being both less precise and much slower for sufficient precision compared to deterministic methods
in large systems.

One additional drawback of Monte Carlo methods is that the continuous nature of the calculation
does not naturally yield a phase space distribution for the neutron flux. Instead, integral quantities
must be tallied for some phase-space discretization that must be determined before the run so
that tallying may occur during the simulation. This requirement to predetermine phase-space
tallied values before the sweep comes from the fact that saving all particle history data would be
prohibitively expensive. The phase-space distribution values are essential for multi-physics and
depletion calculations, making this discretization still necessary for Monte Carlo methods used in
those contexts.

2.3.2 Deterministic Methods

Due to the computational costs of Monte Carlo simulations, for most reactor applications, the NTE
itself is typically solved using discrete numerical methods. These methods are called determin-
istic methods, and involve various approximations and discretization of phase-space [40]. This
discretization transforms the NTE from a PDE to a large algebraic system of equations. This system
of equations is then solved, typically using iterative methods.

The introduction of discretizations reduces the accuracy of the solution since the discrete
problem being solved no longer perfectly matches the true system that is being solved. However,
the precision of the solution of the new algebraic system is very good with the limit typically being
near machine precision. As such, the primary difficulty in deterministic methods is determination of
discretization schemes that will provide an optimal balance of accuracy to the original problem and
reasonable computational costs.

2.4 Discretization Methods

Perhaps the most important aspect of deterministic methods is the necessity of problem discretization.
While Monte Carlo methods typically treat the phase-space continuously, this treatment is not
possible in deterministic methods. As such, discretization schemes for energy, angle, and physical
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space are necessary for a deterministic steady state transport solution. How these discretizations
are developed has large impacts on both computational costs, as well as problem accuracy. As
such, one of the most challenging parts of deterministic methods is determination of appropriate
phase-space discretizations to give a problem that is computationally feasible, while still being
sufficiently accurate.

2.4.1 Multi-group Energy Approximation

(a) Reactor Energy Range

(b) Resonance Energy Range

Figure 2.1: U-235 Fission Cross Sections [41]

For deterministic methods, neutron energy is always treated discretely. To do this requires a multi-
group approximations to the neutron energy spectrum. Nuclear reaction cross sections [42] are
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highly dependent upon incident neutron energy and can be exceedingly complex, with academic
research in cross sections being a driving force of nuclear physics research. This is evidenced
by the fact that the subject of the very first dissertation in nuclear engineering was nuclear cross
sections [43]. Because reaction rates are the driving force of the neutron distribution in a system,
multi-group approximations attempt to capture effective cross sections in an energy range [44]. This
is complicated by the fact that cross section energy dependence for most materials is highly variant,
sometimes within a very small energy window as illustrated by Figure 2.1.

In particular, most cross sections feature resonance peaks and valleys within small neutron
energy ranges. In ranges featuring these tight resonances, neutron energy spectrum is very important
for accurate reaction rates. However, these resonances are too numerous to assign each an individual
energy group, as such the expected energy distribution within a given energy group is pre-computed
and used to reduce continuous energy cross sections to multi-group cross sections.

The total energy range of neutrons in the reactor is quite broad. Neutrons are found all the
way down from thermal energy around 10−2 eV, to fast fission neutrons which can be produced at
energies up to about 107 eV. The microscopic U-235 fission cross section for the full reactor energy
range is shown in Figure 2.1a and the complexity of these cross sections are further illustrated in the
resonance energy range in Figure 2.1b. It can be seen that the resonance energy range consists of a
large amount of variation in cross section magnitude, which makes up the primary complication in
multi-group energy discretizations.

To precisely define the multi-group flux and multi-group cross sections, consider the steady
state angular flux ψ(r, Ω̂, E). Define now a set of G energy groups with lower bounds ranging from
E0 →∞ (though E0 is practically more or less 20 MeV), and EG = 0 eV (though EG is practically
more or less 10 meV). Then the multi-group angular flux for energy group g is:

ψg(r, Ω̂) =

∫ Eg−1

Eg

ψ(r, Ω̂, E) dE (2.5)

For calculating multi-group cross section, it is assumed that the flux energy spectrum will be
separable from the angular portion. That is to say, it is assumed that the normalized energy spectrum
at a given point is roughly the same for every angle. This normalized energy spectrum is also
typically assumed to be weaker than ψ(r, Ω̂, E). This allows the multi-group cross sections to be
independent of incident angle.

ψ(r, Ω̂, E) ≈ ϕ(r, E)γ(r, Ω̂) (2.6)
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and the multi-group macroscopic cross sections (sans scattering) are:

Σx,g(r) =

∫ Eg−1

Eg
Σx(r, E)ϕ(r, E) dE∫ Eg−1

Eg
ϕ(r, E) dE

(2.7)

The scattering cross section however, does retain the scattering cosine angle dependence so that
it is defined as:

Σs,g′→g(r, Ω̂ · Ω̂′) =

∫ Eg′−1

Eg′

∫ Eg−1

Eg
Σs(r, Ω̂ · Ω̂′, E ′ → E)ϕ(r, E) dE dE ′∫ Eg−1

Eg
ϕ(r, E) dE

(2.8)

And the multi-group fission production spectrum is:

χg(r) =

∫ Eg−1

Eg

χ(r, E) dE (2.9)

Then the multi-group keff eigenvalue transport equation is:

Ω̂ ·∇ψg(r, Ω̂) + Σt,g(r)ψg(r, Ω̂) =
G∑
g=1

∫
4π

Σs,g′→g(r, Ω̂ · Ω̂′)ψg(r, Ω̂′) dΩ′

+
χg(r)

keff4π

G∑
g=1

νΣf,g(r)

∫
4π

ψg(r, Ω̂) dΩ (2.10)

Notice that the multi-group cross sections are independent of incident angle. This is due to the
assumed separability of the flux with respect to angular and energy distribution. This separability is
not true strictly speaking and is a source of error in the multi-group approximation.

2.4.2 Angular Discretization

For deterministic methods in neutron transport, the angular variable is universally approximated.
This is typically performed in one of two ways. The first way to approximate the angular variable is
to expand it into moments of the spherical harmonics. Once the spherical harmonics expansion is
applied, angular moments can be taken of the equation, with closure equations then the spherical
harmonics expansion can become finite. We call these finite closed equations PN methods, where
N is the order of the expansion before closure. The simplest case, P0, is also called the diffusion
equation after closure. Typically, spherical harmonics work best when the angular dependence of
the flux is low and the angular distribution is smooth. We call systems like this “diffusive”.
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Figure 2.2: Angular Variables

For non-diffusive systems where the flux is expected to be highly anisotropic, the discrete
ordinates approximation is used for the discretization of the angular variable. The discrete ordinates,
or SN methods, use an N th order quadrature set to discretize the angular variable. While these
discrete ordinates can introduce problems such as ray effects [45] in shielding and detection
problems [46], work has been done to mitigate such problems [47] [48] and they rarely plague
reactor systems, with the exception of fast reactors [49], due to the relatively small mean free path
in LWRs.

Because the transport equation is typically written in terms of neutron energy and direction
instead of velocity, the directional variable, Ω̂, has three terms but is only two dimensional in nature
since it is a unit vector. It is commonly written as:

Ω̂ = (Ωx,Ωy,Ωz) = (
√

1− µ2 cosω,
√

1− µ2 sinω, µ) (2.11)

Where µ is the polar cosine that ranges from −1 to 1 and ω is the azimuthal angle that ranges from
0 to 2π. The actual polar angle is θ that ranges from 0 to π so that cos θ = µ. The unit circle
coordinates are shown in Figure 2.2.

Now, a quadrature set is applied to discretize the angular directions. The two most commonly
used quadrature types in neutron transport theory are the level symmetric quadratures [50] and the
product quadratures [51]. Level symmetric quadratures, shown in Figure 2.3, uniformly distribute
the discrete directions across the unit sphere and are rotationally invariant. This works well in
systems that are closer to homogeneous without large discrepancies in directional variance. For

18



LWRs the variance in the axial direction is very different from the radial plane, so level-symmetric
are not always the best choice.

Figure 2.3: Level Symmetric Quadrature

For this work, and for most work done in MPACT, product quadratures are used due to the
increased efficiency product quadrature sets provide in 2D MOC. In these quadrature sets the two
angular variables are independently discretized so that the quadrature appears in axial layers and
each axial layer has identical azimuthal components as the axial layer below it. This is illustrated
in Figure 2.4, and has the additional benefit that the axial and azimuthal portions can be separated
during computation and each variable can have its own method of discretization.

Figure 2.4: Product Quadrature

With the angular discretization chosen, our discrete angles are indexed 1 ≤ m ≤ M for an
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angular quadrature set with M directions. This quadrature set will have angular weights wm for
each discrete angle:

Ω̂m = (Ωx,m,Ωy,m,Ωz,m) = (
√

1− µ2
m cosωm,

√
1− µ2

m sinωm, µm) (2.12)

Introducing this into the multi-group equation, Eq. 2.10, we get the discrete ordinates multi-group
equations:

Ω̂m ·∇ψm,g(r) + Σt,g(r)ψm,g(r) =
G∑
g=1

M∑
m′=1

Σs,m′→m,g′→g(r)ψm′,g(r)wm′

+
χg(r)

keff4π

G∑
g′=1

νΣf,g(r)
M∑

m′=1

ψm′,g(r)wm′ (2.13)

Anisotropic Scattering

The simplest scattering approximation for neutron transport problems is the approximation of
isotropic scattering. This approximation assumes that scattering events with neutrons and isotopes
have no angular dependence. In reality, neutron scattering is angularly dependent upon the scattering
cosine angle, Ω̂′·Ω̂. For LWR systems, the light elements present in the moderator lead to particularly
anisotropic scattering, making some accounting for anisotropic scattering important.

In order to facilitate anisotropic scattering in discrete ordinates calculations, the scattering cross
sections are typically expanded using Legendre polynomial moments of the scattering cosine:

Σs(E
′ → E, Ω̂ · Ω̂′) =

L∑
`=0

Σs`(E
′ → E)P`(Ω̂ · Ω̂′) (2.14)

Scattering approximated in this way is referred to as PL scattering, where L is the order of the
scattering Legendre polynomial cutoff, and it can be recognized that P0 is then isotropic scattering.
The Legendre components of the scattering cross sections are then defined as:

Σs`(E
′ → E) =

2`+ 1

2

∫ 1

−1

Σs(E
′ → E, Ω̂ · Ω̂′)P`(Ω̂ · Ω̂′) dµ (2.15)

Now, Legendre polynomials of the cosine between two angles can actually be expressed as the
sum of the real spherical harmonics functions, Rr

`(Ω̂) defined in [37], of those angles:

P`(Ω̂ · Ω̂′) =
∑̀
r=−`

Rr
`(Ω̂)Rr

`(Ω̂
′); ` ≥ 0 (2.16)
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So then applying the Legendre polynomial expansion of the scattering cross section to Equa-
tion 2.13, the scattering term becomes:

G∑
g′=1

M∑
m′=1

Σs,m′→m,g′→g(r)ψm′,g(r)wm′ =
G∑

g′=1

L∑
`=0

Σs`,g′→g(r)
∑̀
r=−`

Rr
`(Ω̂m)〈ψg(r)〉r` (2.17)

Where 〈ψg(r)〉r` are the spherical harmonic moments of the flux, defined as:

〈ψg(r)〉r` =
M∑

m′=1

Rr
`(Ω̂m′)ψm′,g(r)wm′ (2.18)

Using this expansion instead of isotropic scattering can add significant extra time and memory
to the computation due to the added requirement of computing and storing angular moments of the
flux and source. Commonly, when some of the additional accuracy given by anisotropic scattering
is desired, but computational capabilities are limited to isotropic scattering, the linear scattering
cross section, Σs1, is subtracted from the total cross section to create what is called the transport
cross section:

Σtr,g = Σt,g −
G∑

g′=1

Σs1,g→g′ (2.19)

The form shown here is the out-scatter approximation for Σtr, though other approximations such
as in-scatter and neutron leakage conservation are also used. This “transport cross section” is then
used in place of the total cross section in the calculation, and isotropic P0 expansion is still used for
scattering computations. This method of scattering computation is called transport corrected P0, or
TCP0.

2.4.3 Method of Characteristics

At this point the only part of phase-space still not discretized are the three locational variables. There
are a variety of methods to discretize the spatial component of the transport equation including
weighted diamond differencing techniques [40], finite element methods [52], and the Method of

Characteristics (MOC) [53]. For this work, the method of spatial discretization will come in the
form of the flat source approximation and constant cross section approximation applied to the MOC.
Strictly speaking, MOC methods need not be limited to spatial variables, however because the only
differential terms in the steady state NTE are spatial, it is only used for spatial variables here.

From the multi-group discrete ordinates equations, Eq. 2.13, we consider the advection gradient
term and expand it.

Ω̂m ·∇ = Ωx,m
∂

∂x
+ Ωy,m

∂

∂y
+ Ωz,m

∂

∂z
(2.20)
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Now we consider a discrete ray along the direction of a discrete angle. Let the distance along
the ray be the variable s where s = 0 at the ray start point located for some arbitrary location along
the ray at r0 = (x0, y0, z0). Then we can express any point r = (x, y, z) along the ray in terms of
the starting location and distance along the ray:

r = r0 + sΩ̂m (2.21)

Then we get the following relations for the partial derivatives of the spatial variables

x = x0 + sΩx,m ⇒
∂x

∂s
= Ωx,m (2.22a)

y = y0 + sΩy,m ⇒
∂y

∂s
= Ωy,m (2.22b)

z = z0 + sΩz,m ⇒
∂z

∂s
= Ωz,m (2.22c)

So then the gradient can be expressed as

Ω̂m ·∇ =
∂x

∂s

∂

∂x
+
∂y

∂s

∂

∂y
+
∂z

∂s

∂

∂z
=

d

ds
(2.23)

this amounts to a change of variables from (r, Ω̂) to s where s is the distance along the characteristic.
So then the discrete ordinates multi-group equation along the line can now be transformed from

the original PDE transport equation into an ODE differential. This form of the MOC equations has
a single independent variable, s:

d

ds
ψm,g(s) + Σt,g(s)ψm,g(s) =

G∑
g=1

M∑
m′=1

Σs,m′→m,g′→g(s)ψm′,g(s)wm′

+
χg(s)

keff4π

G∑
g=1

νΣf,g(s)
M∑

m′=1

ψm′,g(s)wm′ (2.24)

Now because the scattering and fission operators are generally not analytically invertible
functions, we cannot use a closed form integrating factor on the equation in its current form.
However, neutron transport computations often make use of source iterations where the source
is computed from the previous iteration and then treated as constant for the current iteration. So
rewriting the equation for a constant source we get:

d

ds
ψm,g(s) + Σt,g(s)ψm,g(s) = Qg,m(s) (2.25)
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Then we change from s to s′ and take an integrating factor to get

d

ds′

[
e
∫ s′
s0

Σt,g(s′′) ds′′
ψm,g(s

′)

]
= e

∫ s′
s0

Σt,g(s′′) ds′′
Qg,m(s′) (2.26)

Which can be solved by integrating s′ from s0 to s to get the integral form of the 3D MOC
equations:

ψm,g(s) = ψm,g(s0)e
−

∫ s
s0

Σt,g(s′′) ds′′
+

∫ s

s0

Qg,m(s′)e−
∫ s
s′ Σt,g(s′′) ds′′ ds′ (2.27)

2.4.4 Constant Cross Section and Flat Source Approximations

While the MOC allows us to express the solution as a set of functions along discrete characteristic
rays, the continuous nature of these functions can still make it difficult to solve. We desire to instead
transform Equation 2.27 into a set of coupled algebraic equations. To do this, the spatial domain
must be discretized. This is done using the flat source approximation [54]. While higher order
spatial approximations are sometimes used [55] [56], they are considered more advanced and will
not be introduced into this work.

Consider a discrete set of subdivisions of the system volume indexed i. We then approximate
these volume subdivisions as being constant in material. This then means that the volumes each
have spatially constant material cross sections. If we divide our system in such a way that division
boundaries do not cross material boundaries, then this becomes a very good approximation. In
particular, for 0 power systems with fresh fuel, this approximation is very nearly exact. In situations
of nonuniform depletion and material temperature gradients this approximation may become less
accurate, however this can be mitigated with smaller subdivisions. This is the constant cross section
approximation.

Consider these same volume subdivisions and approximate each volume as having spatially
uniform source throughout. This spatially uniform source is the result of flux in the volume being
cast as spatially uniform before source computation each iteration. Casting the flux as spatially flat
throughout the subdivision before source calculation means that the induced fission and scattering
source are necessarily spatially flat throughout the volume. This is the flat source approximation.
We call each of these subdivision a Flat Source Region (FSR).

Now consider again the integral form of the MOC equations established in Eq. 2.27. If we let
s0 = sin be the position where the characteristic ray enters the subdivision and s = sout be the
position where the ray exits the region, then we can get the following equation for the segment exit
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flux along the characteristic ray, where the segment length is ∆s = sin − sout.

ψm,g,out = ψm,g,ine
−∆sΣt,i,g +

Qi,g,m

Σt,i,g

(
1− e−∆sΣt,i,g

)
(2.28)

We can also integrate Eq. 2.27 over the segment length to get the segment integrated flux:

ψm,g,int =
1

Σt,i,g

(ψm,g,in − ψm,g,out +Qi,g,m∆s) (2.29)

Then each characteristic ray can be followed along the domain of the system, solving for the
segment exiting flux at each intersection and accumulating segment integrated flux to compute the
volume integrated flux in the FSRs. Notice that FSRs need not be convex, in fact a single ray may
have many segments in the same FSR for concave FSRs.

2.5 Deterministic Solution Methods

With the FSR approximation applied to the multi-group discrete ordinates transport equation in
Eq. 2.27, a large number of characteristic rays can be traced along the volume. With these rays
traced across the domain, the problem reduces to an algebraic system of equations. Strictly speaking,
this makes the problem now an invertible matrix-vector equation. However, the matrix is far too
complex and large to construct, so iterative methods are necessary to solve the system. The most
common iterative method for solving this form of the transport equation is called source iterations,
and it is almost universally accelerated since convergence can sometimes be quite slow.

2.5.1 Source Iterations

Deterministic neutron transport calculations using MOC are necessarily iterative due to the size and
complexity of the algebraic set of equations [57]. The most common method for iteratively solving
this system is called the source iterations method. This method treats the source in the system as
fixed, and solves the fixed source MOC problem. With this new solution, the fixed source is updated
for the next iteration. Eventually, the iterative change to the source is small enough that the method
is said to have converged.

We also iteratively compute the eigenvalue keff for iteration l using the updated fission source
from each iteration.

kleff =

∑
i

∑G
g=1 νΣf,i,g

∑M
m=1 ψ

l
i,m,gwm∑

i

∑G
g=1 νΣf,i,g

∑M
m=1 ψ

l−1
i,m,gwm

(2.30)
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Algorithm 2.1 Source Iteration Solution to the Transport Equation
1: l = 0

2: while |kleff − kl−1
eff | ≥ εk & ‖ψl − ψl−1‖ ≥ εψ do

3: l = l + 1

4: Compute Eq. 2.28 to traverse each ray using Ql−1

5: Evaluate Eq. 2.29 and accumulate FSR integrated flux during traversal to get ψl

6: Evaluate Eq. 2.30 to get kleff
7: Compute new source Ql

8: end while

2.5.2 Coarse Mesh Finite Difference Acceleration

The source iteration method described in Algorithm 2.1 is valid and generally effective at iteratively
converging the solution to the multi-group discrete ordinates MOC form of the transport equation
with flat source approximations. However, this process can sometimes take a prohibitively large
number of iterations, sometimes requiring hundreds if not thousands of iterations. To reduce the
time spent solving the system, we often attempt acceleration of the solution through the use of low
order methods [58] [59] [60]. These methods can improve the convergence of the system, often
bringing the number of iterations down from O(1000) to O(10). Typically, the computational costs
added per iteration from solving the low order equations are quite minor. This makes the usage
of low-order acceleration schemes effective in more quickly solving large systems using modern
computational capabilities.

Of these low-order acceleration schemes, perhaps the most commonly used acceleration method
for solving the NTE for reactors is the CMFD scheme [59]. This method of acceleration makes use
of a diffusion equation on a coarse mesh with corrections to the diffusion coefficient to preserve
current between cells using the MOC computed fine mesh flux. CMFD also uses homogenized
cross sections in the coarse cells made using the computed fine mesh scalar flux from the MOC
calculation. This then leaves a coarse mesh diffusion equation that has been corrected by both the
angular dependence, as well as the fine mesh variance from the flux of the previous source iteration.
This diffusion equation is then solved for the given iteration parameters and the solution is projected
back onto the fine mesh such that the fine mesh data is scaled by the CMFD solution. This leads to
converged solutions with CMFD acceleration being necessarily exact to solutions converged with
pure source iterations, due to the equivalence of the corrected diffusion equation at each iteration.

The CMFD equations starts with the P0 equation, that is to say the 0th angular moment of the
transport equation integrated over a coarse cell. At this point the equation is still exact in comparison
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to the transport equation, but is not closed.

∑
s

Jnetj,g,sAj,s + Σt,j,gφj,gVj =
G∑

g′=1

(
Σs0,j,g′→g +

χj,g
keff

νΣf,j,g′

)
φj,g′ (2.31)

Where Aj,s is the area of the surface s and Vj is the volume of cell j. The equation is then closed
using Fick’s law with finite-difference spatial discretization for the first angular moment, the current
J , using the diffusion coefficient.

Jnetj,g,s = −D̃j,g,s(φj,g,s − φj,g,s) (2.32)

The diffusion coefficient here then takes the form of:

Dj,g =
1

3Σtr,j,g

(2.33a)

D̃j,g,s =
2Dj,gDjs,g

hj,s (Dj,g +Djs,g)
(2.33b)

However this approximation does not preserve current that would be computed in the actual
transport problem. This closed approximation can introduce error relative to transport since it is not
exact compared to the spatially discretized MOC equations unless the current is computed in a such
a way to match the transport equation and the cross sections are collapsed to preserve the spatial
distribution of the flux in the fine cells.

Instead, CMFD uses a corrected diffusion coefficient to preserve the net current across the coarse
cells. Using the iterative transport net current on surface s, the corrective diffusion coefficient, D̂, is
defined as:

D̂
l−1/2
j,g,s =

J
net,l−1/2
j,g,s + D̃j,g,s(φ

l−1/2
j,g − φl−1/2

j,g,s )

φ
l−1/2
j,g − φl−1/2

j,g,s

(2.34)

Where js is the index of the coarse cell bordering cell j across surface s, hj,s is the distance between
cell j and js across s, and Σtr = Σt − Σs1, or just Σt if P0 scattering is used. This correction
coefficient then makes it so that the new definition, below, of net current in CMFD preserves
equivalence between the fine mesh MOC equations and CMFD at convergence.

Jnetj,g,s = −D̃j,g,s(φj,g,s − φj,g,s) + D̂l
j,g,s(φj,g + φj,g,s) (2.35)

With this correction in place, homogenization of the coarse cell cross sections must also be
defined in terms of the fine mesh transport solution. The cross sections, fission spectrum, and scalar
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flux for coarse cell j is computed after source iteration l − 1 from the fine mesh values as:

φ
l−1/2
j,g =

∑
i∈j φ

l−1/2
i,g Vi∑

i∈j Vi
(2.36a)

Σ
l−1/2
x,j,g =

∑
i∈j Σx,i,gφ

l−1/2
i,g Vi∑

i∈j φ
l−1/2
i,g Vi

(2.36b)

χ
l−1/2
j,g =

∑
i∈j χi,g

∑G
g′=1 νΣf,i,g′φ

l−1/2
i,g′ Vi∑

i∈j
∑G

g′=1 νΣf,i,g′φ
l−1/2
i,g′ Vi

(2.36c)

In order for the changes from CMFD to be reflected in the transport sweeps, the solution is
projected back onto the fine mesh flux before sources are computed.

φli,g = φ
l−1/2
i,g

φlj,g

φ
l−1/2
j,g

, i ∈ j (2.37)

These new definitions of the net current and the coarse cell homogenized cross sections preserve
both the fine mesh spatial discretization and the angular variance of the MOC equation at conver-
gence. As such, CMFD accelerated neutron transport will converge to the exact same solution as
pure source iterations, but typically much faster.

With CMFD fully defined and consistent with neutron transport in convergence, Algorithm 2.1
is now modified to include CMFD acceleration:

Algorithm 2.2 CFMD Accelerated Source Iterations
1: l = 0

2: while |kleff − kl−1
eff | ≥ εk & ‖ψl+1/2 − ψl−1/2‖ ≥ εψ do

3: l = l + 1

4: Compute cell-averaged values for CMFD coefficients from Eqs. 2.36 and 2.34 using φl−1/2
i,g

5: Solve Eq. 2.31 for φlj,g
6: Project CMFD flux back onto the fine mesh with Eq. 2.37 using φlj,g and φl−1/2

j,g

7: Compute new source Ql

8: Compute Eq. 2.28 to traverse each ray using Ql

9: Evaluate Eq. 2.29 and accumulate FSR integrated flux during traversal to get ψl+1/2

10: Evaluate Eq. 2.30 to get kleff
11: end while
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2.6 Review of 2D/1D Methods For Neutron Transport

2D/1D methods in general split the transport equation into two separate equations. One for the
radial part and one for the axial part of the equations. Now to begin this discussion, start with the
3D Boltzmann transport equation

Lψ(r, Ω̂, E) = Sψ(r, Ω̂, E) (2.38)

The radial loss operator is then defined as:

LRψR(r, Ω̂, E) = Ωx
∂

∂x
ψR(r, Ω̂, E) + Ωy

∂

∂y
ψR(r, Ω̂, E) + Σt(r, E)ψR(r, Ω̂, E) (2.39a)

So that the transport equation for the radial problem is:

LRψR(r, Ω̂, E) = SψR(r, Ω̂, E)− Ωz
∂

∂z
ψZ(r, Ω̂, E) (2.39b)

ψR(r, Ω̂, E) = ΓR(r, Ω̂, E),

r ∈ ∂V, Ω̂ · n̂ < 0
(2.39c)

The axial loss operator is then

LZψZ(r, Ω̂, E) = Ωz
∂

∂z
ψZ(r, Ω̂, E) + Σt(r, E)ψZ(r, Ω̂, E) (2.40a)

So that the transport equation for the axial problem is is:

LZψZ(r, Ω̂, E) = SψZ(r, Ω̂, E))− Ωx
∂

∂x
ψR(r, Ω̂, E)− Ωy

∂

∂y
ψR(r, Ω̂, E) (2.40b)

ψZ(r, Ω̂, E) = ΓZ(r, Ω̂, E),

r ∈ ∂V, Ω̂ · n̂ < 0
(2.40c)

Now notice that since we have yet to introduce any approximations, we still have equivalence
among all transport equations:

ψR(r, Ω̂, E) = ψZ(r, Ω̂, E) = ψ(r, Ω̂, E) (2.41a)

ΓZ(r, Ω̂, E) = ΓR(r, Ω̂, E) = Γ(r, Ω̂, E) (2.41b)

We now define a set of axial coordinates 0 = z1/2 < z3/2 < · · · < zK−1/2 < zK+1/2 = Zmax,
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so that ∆zk = zk+1/2 − zk−1/2. Then if we average the values in the radial equation from zk−1/2 to
zk+1/2 for k = 1, 2, . . . , K, we get K equations for each axial slice:

LR,kψR,k(x, y, Ω̂, E) = SkψR,k(x, y, Ω̂, E) +QTL,k(x, y, Ω̂, E) (2.42a)

ψR,k(x, y, Ω̂, E) = ΓR,k(x, y, Ω̂, E),

(x, y) ∈ ∂VR(x, y), Ω̂ · n̂ < 0
(2.42b)

Where
ψR,k(x, y, Ω̂, E) =

1

∆zk

∫ zk+1/2

zk−1/2

ψR(r, Ω̂, E) dz (2.43a)

ΓR,k(x, y, Ω̂, E) =
1

∆zk

∫ zk+1/2

zk−1/2

ΓR(r, Ω̂, E) dz (2.43b)

QTL,k(x, y, Ω̂, E) = − 1

∆zk

∫ zk+1/2

zk−1/2

Ωz
∂

∂z
ψZ(r, Ω̂, E) dz

=
Ωz

∆zk

(
ψZ(x, y, zk−1/2, Ω̂, E)− ψZ(x, y, zk+1/2, Ω̂, E)

)
(2.43c)

SkψR,k(x, y, Ω̂, E) =

∫
4π

∫ ∞
0

Σs,k(x, y, Ω̂ · Ω̂′, E ′ → E)ψR,k(x, y, Ω̂
′, E ′) dE ′ dΩ′

+
χ(E)

4π

∫
4π

∫ ∞
0

νΣf,k(x, y, E
′)ψR,k(x, y, Ω̂

′, E ′) dE ′ dΩ′ (2.43d)

LR,kψR,k(x, y, Ω̂, E) = Ωx
∂

∂x
ψR,k(x, y, Ω̂, E) + Ωy

∂

∂y
ψR,k(x, y, Ω̂, E)

+ Σt,k(x, y, E)ψR,k(x, y, Ω̂, E) (2.43e)

Σs,k(x, y, Ω̂ · Ω̂′, E ′ → E) =

∫ z+1/2

z−1/2
Σs(r, Ω̂ · Ω̂′, E ′ → E)ψR(r, Ω̂′, E ′) dz

∆zkψR,k(x, y, Ω̂′, E ′)
(2.43f)

νΣf,k(x, y, E
′) =

∫ z+1/2

z−1/2
νΣf (r, E

′)
(∫

4π
ψR(r, Ω̂′, E ′) dΩ′

)
dz

∆zk
∫

4π
ψR,k(x, y, Ω̂′, E ′) dΩ′

(2.43g)

Σt,k(x, y, E) =

∫ z+1/2

z−1/2
Σt(r, E)

(∫
4π
ψR(r, Ω̂, E) dΩ

)
dz

∆zk
∫

4π
ψR,k(x, y, Ω̂, E) dΩ

(2.43h)

Note that thus far no approximations other than the initial assumptions have been made. Now, given
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an approximation for the transverse leakage source, QTL,k(x, y, Ω̂, E), then each of these axial slice
equations can be solved for ψR,k(x, y, Ω̂, E) with any desired 2D method. Normally these equations
are solved using 2D MOC methods with multi-group approximations. So the question is how to
best approximate the transverse leakage source. This then is one of the key differences between the
various traditional 2D/1D methods. Another difference is the homogenization in the radial direction.

2.6.1 MPACT

In MPACT [61] the axial flux terms are discretized over the pin cell j. So the transverse leakage
term takes on the form:

QTL,k,j(Ω̂, E) =
Ωz

∆zk

(
ψZ,j(zk−1/2, Ω̂, E)− ψZ,j(zk+1/2, Ω̂, E)

)
(2.44)

The original (and default) 2D/1D implementation in MPACT assumed an isotropic TL. This is
equivalent to averaging the leakage term over all angles:

QTL,k,j(Ω̂, E) =
1

4π∆zk

[
Jz,k−1/2,j(E)− Jz,k+1/2,j(E)

]
(2.45)

To solve for this leakage, the axial equations must be transformed into a new 1D problem. To
do this the axial transport equation, Eq. 2.40, is radially averaged over the pin cell j:

1

∂Vj

∫
∂Vj

LZψZ(r, Ω̂, E)dxdy =
1

∂Vj

∫
∂Vj

SψZ(r, Ω̂, E)dxdy

− 1

∂Vj

∫
∂Vj

Ωx
∂

∂x
ψR(r, Ω̂, E)dxdy − 1

∂Vj

∫
∂Vj

Ωy
∂

∂y
ψR(r, Ω̂, E)dxdy (2.46)

Which gives:

LZ,jψZ,j(z, Ω̂, E) = SjψZ,j(z, Ω̂, E) +QRL(z, Ω̂, E) (2.47a)

ψZ,j(z, Ω̂, E) = ΓZ,k(z, Ω̂, E),

(z) ∈ ∂[0, Z], Ω̂ · n̂ < 0
(2.47b)

In the original 2D/1D implementation in MPACT, the total cross section Σt was assumed to be
isotropic as was the axial source. Additionally, the radial transverse leakage is isotropized so that
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the radial leakage becomes:

QRL(z, Ω̂, E) ≈ − 1

∂Vj

∫
∂Vj

1

4π

∫
4π

(
Ωx

∂

∂x
+ Ωy

∂

∂y

)
ψR(r, Ω̂, E) dΩ dxdy

= − 1

∂Vj

∫
∂Vj

1

4π

(
∂

∂x
Jx(r, E) +

∂

∂y
Jy(r, E)

)
dxdy

=
1

4π
(Jx−,j(z, E)− Jx+,j(z, E) + Jy−,j(z, E)− Jy+,j(z, E)) dxdy (2.48)

where
Jx(r, E) =

∫
4π

ΩxψR(r, Ω̂, E) dΩ (2.49)

Making the 1D axial equation now

Ωz
∂

∂z
ψZ,j(z, Ω̂, E)+Σt,Z,j(z, E)ψZ,j(z, Ω̂, E) =

1

4π

(
Qj(z, E)−

∑
s=N,S,E,W

Jj,s(z, E)

)
(2.50)

where
Qj(z, E) =

1

4π

∫
4π

SjψZ,j(z, Ω̂, E) dΩ (2.51)

Then Eq. 2.50 is a 1D transport equation for ψZ,j that can be solved using 1D PN . This solution
then is fed back into the radial equations in terms of the axial transverse leakage in Eq. 2.43c. In
MPACT this is solved using a nodal expansion method with quadratic spatial expansion of the
source and quartic expansion of the flux.

This constitutes the basis for 2D/1D in MPACT, however, Stimpson built upon this method by
introducing azimuthal expansion of the transverse leakage [25]. To do this, the axial and radial
transverse leakage were treated with a Fourier expansion. This is sufficiently accurate in comparison
to maintaining full azimuthal dependence for the anisotropic TL and saves significant amounts of
memory, while still benefiting from the increased accuracy of some angular dependence. The 1D
axial angular flux with Fourier expansion in the azimuthal directional variable ω is:

ψZ,j(z, ω, µ, E) =
ψZ,0,j(z, µ, E)

2π
+

1

π

P∑
p=1

[ψZ,c,p,j(z, µ, E) cos(pω) + ψZ,s,p,j(z, µ, E) sin(pω)]

(2.52)
Each azimuthal moment, ψZ,c,p,j and ψZ,s,p,j , is then solved by a separate 1D transport equation

using a PN method. Typically this is done using P2 solutions since Stimpson showed this obtains
solutions close to explicit angular dependence. Inserting this expansion into Eq. 2.50 we get the
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new 1D equation

µ
∂

∂z

(
ψZ,0,j(z, µ, E)

2π
+

1

π

P∑
p=1

[ψZ,c,p,j(z, µ, E) cos(pω) + ψZ,s,p,j(z, µ, E) sin(pω)]

)

+ Σt,Z,j(z, E)

(
ψZ,0,j(z, µ, E)

2π
+

1

π

P∑
p=1

[ψZ,c,p,j(z, µ, E) cos(pω) + ψZ,s,p,j(z, µ, E) sin(pω)]

)

=
Qj(z, E)

4π
+ Q̃RL(z, µ, ω,E) (2.53)

where the radial transverse leakage is shortened as:

Q̃RL(z, µ, ω,E) = −TLR,0,j(z, µ, E)

2π

− 1

π

P∑
p=1

[TLR,c,p,j(z, µ, E) cos(pω) + TLR,s,p,j(z, µ, E) sin(pω)] (2.54)

and the expansion is also introduced into the radial transverse leakage terms:

TLR,0,j(z, µ, E) =
1

∂Vj

∑
s=N,S,E,W

∫
∂Vj

∫ 2π

0

(Ω̂ · n̂s)ψR(r, Ω̂, E) dω dxdy (2.55a)

TLR,c,p,j(z, µ, E) =
1

∂Vj2π

∑
s=N,S,E,W

∫
∂Vj

∫ 2π

0

cos(pω)(Ω̂ · n̂s)ψR(r, Ω̂, E) dω dxdy (2.55b)

TLR,s,p,j(z, µ, E) =
1

∂Vj2π

∑
s=N,S,E,W

∫
∂Vj

∫ 2π

0

sin(pω)(Ω̂ · n̂s)ψR(r, Ω̂, E) dω dxdy (2.55c)

These equations have P sine and cosine and taking the moments. As such, to form them in
solvable algebraic terms, the first P cosine and sine of µ moments of these equations will be taken
to yield: (

µ
∂

∂z
+ Σt,Z,j(z, E)

)
ψZ,0,j(z, µ, E) =

Qj(z, E)

2
− TLR,0,j(z, µ, E) (2.56a)

(
µ
∂

∂z
+ Σt,Z,j(z, E)

)
ψZ,c,p,j(z, µ, E) = −TLR,c,p,j(z, µ, E) (2.56b)(

µ
∂

∂z
+ Σt,Z,j(z, E)

)
ψZ,s,p,j(z, µ, E) = −TLR,s,p,j(z, µ, E) (2.56c)

Stimpson demonstrated substantial improvement over isotropic calculations using this method.
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Following up on this work, Jarrett extended this formulation to include polar angle expansion
using Legendre polynomials, as well as angular dependence in cross sections [26]. The angular
dependence for cross sections was originally considered for both the azimuthal and polar angles,
however, Jarrett showed that the error introduced by azimuthal homogenization for cross sections
was minimal [26]. Hence only polar angle dependence of cross sections are considered. Then in the
preceding equations Σt,Z,j(z, E) becomes Σ̃t,Z,j(z, µ, E)) and is homogenized as:

Σ̃t,Z,j(z, µ, E) =

∫
∂Vj

Σt(r, E)
∫ 2π

0
ψR(r, Ω̂, E) dω dxdy∫

∂Vj

∫ 2π

0
ψR(r, Ω̂, E) dω dxdy

(2.57)

Jarrett found that when using Legendre polynomial expansions for the polar variable, it was
often sufficient to truncate at L = 3 moments [26]. To do this both the angular flux and transverse
leakage sources were expanded in Legendre polynomials and the anisotropic component of the
cross section was collected with the source anisotropy and multiplied by the radial flux. This gives
the following equation:

µ
∂

∂z

(
ψZ,0,j(z, µ, E)

2π
+

1

π

P∑
p=1

[ψZ,c,p,j(z, µ, E) cos(pω) + ψZ,s,p,j(z, µ, E) sin(pω)]

)

+ Σt,Z,j(z, E)

(
ψZ,0,j(z, µ, E)

2π
+

1

π

P∑
p=1

[ψZ,c,p,j(z, µ, E) cos(pω) + ψZ,s,p,j(z, µ, E) sin(pω)]

)

=
Qj(z, E)

4π
+ Q̃RL(z, µ, ω,E)

+
[
Σt,Z,j(z, E)− Σ̃t,Z,j(z, µ, E)

](ψR,0,j(z, µ, E)

2π

+
1

π

P∑
p=1

[ψR,c,p,j(z, µ, E) cos(pω) + ψR,s,p,j(z, µ, E) sin(pω)]

)
(2.58)

Jarrett noted that the anisotropic azimuthal moments and anisotropic azimuthal angular fluxes
were small terms and their products could be safely be ignored in LWR problems [26]. So then
using a Legendre expansion in the polar angle µ, Eq. 2.56 with polar dependent cross sections for
the zeroth azimuthal moment becomes:

∂

∂z
φZ,1,j(z, E) + Σt,Z,j(z, E)φZ,0,j(z, E) = q0,j(z, E) (2.59a)

1

3

∂

∂z
φZ,0,j(z, E) +

2

3

∂

∂z
φZ,2,j(z, E) + Σt,Z,j(z, E)φZ,1,j(z, E) = q1,j(z, E) (2.59b)
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2

5

∂

∂z
φZ,1,j(z, E) +

3

5

∂

∂z
φZ,3,j(z, E) + Σt,Z,j(z, E)φZ,2,j(z, E) = q2,j(z, E) (2.59c)

3

7

∂

∂z
φZ,2,j(z, E) + Σt,Z,j(z, E)φZ,3,j(z, E) = q3,j(z, E) (2.59d)

where:

ql,j(z, E) =

∫ 1

−1

Pl(µ)

(
Qj(z, E)

2
− TLR,0,j(z, µ, E)

+
[
Σt,Z,j(z, E)− Σ̃t,Z,j(z, µ, E)

]
ψR,0,j(z, µ, E)

)
dµ (2.60)

This then is the most advanced form of traditional 2D/1D present in MPACT, with anisotropic
polar dependent cross sections, Fourier azimuthal expansion, and Legendre polynomial polar
expansion for the transverse leakage.

2.6.2 DeCART and nTRACER

DeCART [21] and nTRACER [22] essentially perform 2D/1D in much the same manner as the
original implementation in MPACT. They approximate the transverse leakage source by first
integrating the term over all angle and dividing by 4π so that it is isotropic:

QDeCART
TL,k (x, y, Ω̂, E) ≈ 1

4π

∫
4π

QTL,k(x, y, Ω̂, E) dΩ =
1

4π∆zk

∫ zk−1/2

zk+1/2

∂

∂z
Jz(r, E) dz

=
1

4π∆zk

[
Jz,k−1/2(x, y, E)− Jz,k+1/2(x, y, E)

]
(2.61a)

where
Jz,k+1/2(x, y, E) =

∫
4π

ΩzψZ(x, y, zk+1/2, Ω̂, E) dΩ (2.61b)

They then approximate the axial current term using Fick’s law as:

Jz,k+1/2(x, y, E) ≈ −Dk+1/2(x, y, E)
φk+1(x, y, E)− φk(x, y, E)

∆zk+1/2

(2.62a)

where
φk(x, y, E) =

∫
4π

ΨR,k(x, y, Ω̂, E) dΩ (2.62b)

∆zk+1/2 =
1

2
(∆zk+1 + ∆zk) (2.62c)

Dk+1/2(x, y, E) =
∆zk+1 + ∆zk

3Σtr,k+1(x, y, E)∆zk+1 + Σtr,k(x, y, E)∆zk
(2.62d)
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where Σtr,k can be estimated for the slice in any manner desired (though how it is defined will
affect the error of the solution), and can potentially just be set to Σt,k. Here ΨR,k(x, y, Ω̂, E) are the
solutions for the new radial equations:

LR,kΨR,k(x, y, Ω̂, E) = SkΨR,k(x, y, Ω̂, E) +QR,k(x, y, Ω̂, E) +QDeCART
TL,k (x, y, Ω̂, E) (2.63)

Which are now coupled to each other directly through the transverse leakage source and need no
solution for ψZ(r, Ω̂, E).

The primary concern with this method is that the approximation of the slice interaction is
basically just a finite difference approximation of the flux between slices, making it potentially
inaccurate and unstable.

2.6.3 MICADO

MICADO [62] does not assume that the transverse leakage source is isotropic and instead simply
carries out the integral of the original formulation:

QMICADO
TL,k (x, y, Ω̂, E) ≈ Ωz

∆zk

[
ΨZ(x, y, zk−1/2, Ω̂, E)−ΨZ(x, y, zk+1/2, Ω̂, E)

]
(2.64)

So now ΨZ is the solution to the transport equation:

LZΨZ(r, Ω̂, E) = SΨZ(r, Ω̂, E) +QZ(r, Ω̂, E) +QRL(r, Ω̂, E) (2.65)

With a radial leakage source that is axially constant over each slice. That is to say, for zk−1/2 <

z < zk+1/2:

QRL(r, Ω̂, E) = −
[
Ωx

∂

∂x
+ Ωy

∂

∂y

]
ΨR,k(x, y, Ω̂, E), zk−1/2 < z < zk+1/2 (2.66)

Here ΨR,k(x, y, Ω̂, E) are the solutions for the new radial equations:

LR,kΨR,k(x, y, Ω̂, E) = SkΨR,k(x, y, Ω̂, E) +QR,k(x, y, Ω̂, E) +QMICADO
TL,k (x, y, Ω̂, E) (2.67)

Which are now indirectly coupled to each other through the solution of the full axial transport
equation that depends on the flux in each slice.

The primary concern with this method is that the solution of the 1D MOC equation is not cheap
to compute compared to the other methods. Additionally, it requires axially extruded meshes and
the fact that the leakage must be stored for each FSR introduces memory concerns.
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2.6.4 NECP-X

Similar to MICADO, NECP-X [29] solves the full transport equation in the axial direction for the
neutron leakage. NECP-X also introduces a material leakage approximation for the axial calculation.
The traditional pin based leakage involves the radial equation with fully anisotropic axial leakage
for an axial equation similar that of MPACT with homogenized cross sections in the pin cell. In this
method, the radial leakage into the 1D equation for pin cell j is expressed as:

TLRadialj (z, Ω̂, E) =
Ωx

∆xj

[
ψj,x+(z, Ω̂, E)− ψj,x−(z, Ω̂, E)

]
+

Ωy

∆yj

[
ψj,y+(z, Ω̂, E)− ψj,y−(z, Ω̂, E)

]
(2.68)

and the cross sections are homogenized for the axial problem as:

Σj
t(E) =

∫
∆xj

∫
∆yj

Σt(x, y, E)φ(x, y, E) dy dx∫
∆xj

∫
∆yj

φ(x, y, E) dy dx
(2.69)

To increase discretization accuracy and avoid cross section homogenization, NECP-X instead
took a material leakage approach. First MOC is applied, and then the characteristic incoming and
outgoing fluxes in the segments are used to compute the material leakage, making the radial leakage
for material p in pin cell j now:

TLRadialj,p (z, Ω̂m, E) =

Lj,p,m∑
l=1

√
1− µ2dAm
Aj,p

[
ψl,out(z, Ω̂m, E)− ψl,in(z, Ω̂m, E)

]
(2.70)

where l is the index of the Lj,p,m characteristic segments for that angle intersecting the material
region, dAm is the ray spacing, and Aj,p is the total area of the material region.

So that now the axial equation is solved in each material region of each pin cell instead of the pin
cell as a whole, avoiding cross section homogenization. This method demonstrated some noticeable
improvement in eigenvalue accuracy for a BWR assembly case tested by NECP-X reducing the
pin based 2D/1D method error from 84 pcm down to 7 pcm, with a cost of adding an additional
10% run time and 9% memory usage. Additionally three C5G7 cases were tested, an unrodded case
and two cases of different rod insertions. The three cases showed improvement in the eigenvalue
from errors of 34, 63, and 72 pcm in the pin based calculation, to errors of 22, 33, and 24 pcm in
the material based method. The C5G7 results showed a similar time cost as the BWR assembly
had shown with additional sweep time of around 8% and additional memory usage of about 9%.
Overall this development suggests the viability of materials based traditional 2D/1D as a way to
both improve accuracy and perhaps reduce instability by avoiding cross section homogenization.
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Some concerns with this method is that the 1D axial equation must now be computed for each
material region in each pin cell, increasing the costs of axial calculation. Furthermore, while this
method does not strictly require axially extruded meshes, it is invalid for systems without axially
extruded materials unless an approximation between the material solutions is made. As such, any
model with water buffers above or below fuel cannot use the material leakage method introduced by
NECP-X as is.

2.6.5 Proteus-MOC

Proteus-MOC [18] [63] [64] [65] [66] discretizes the geometry into k = 1, 2, . . . , K planes and
j = 1, 2, . . . , J elements on each plane. As such, it is necessary that every single plane have the
same radial divisions. However, it is not a traditional 2D/1D method, and instead directly discretizes
the 3D transport equation, but treating the axial discretization independent of the radial discretization.
It assumes that the source is radially constant in each of the J elements, only depending on the axial
change, and that every single plane can have the axial dependence expressed by a set of orthogonal
basis functions (b1

k, b
2
k, . . . , b

I
k):

Qj,k(r, Ω̂, E) ≈ Qj,k(z, Ω̂, E) =
I∑
i=1

Qi
j,k(Ω̂, E)bik(z) (2.71)

It similarly expands the flux in each element, but makes no requirements on the radial dependence
in an element:

ψj,k(r, Ω̂, E) ≈
I∑
i=1

ψij,k(x, y, Ω̂, E)bik(z) (2.72)

So now the radial equation in an element is (assuming constant cross sections in the element
and no integration over z yet):

LR,j,k

I∑
i=1

ψij,k(x, y, Ω̂, E)bik(z) =
I∑
i=1

Qi
j,k(Ω̂, E)bik(z)− Ωz

I∑
i=1

ψij,k(x, y, Ω̂, E)
d

dz
bik(z) (2.73)

If we then multiply by blk and integrate from zk−1/2 to zk+1/2, we get:

[
LR,j,kψ

l
j,k(x, y, Ω̂, E)−Ql

j,k(Ω̂, E)
] ∫ zk+1/2

zk−1/2

(
blk(z)

)2
dz

+ Ωz

I∑
i=1

ψij,k(x, y, Ω̂, E)

∫ zk+1/2

zk−1/2

blk(z)
d

dz
bik(z) dz = 0 (2.74)
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We can use the product rule to get:

blk(z)
d

dz
bik(z) =

d

dz
bik(z)blk(z)− bik(z)

d

dz
blk(z) (2.75)

So the equation is now

[
LR,j,kψ

l
j,k(x, y, Ω̂, E)−Ql

j,k(Ω̂, E)
] ∫ zk+1/2

zk−1/2

(
blk(z)

)2
dz

− Ωz

I∑
i=1

ψij,k(x, y, Ω̂, E)

∫ zk+1/2

zk−1/2

bik(z)
d

dz
blk(z) dz

+ Ωz

I∑
i=1

ψij,k(x, y, Ω̂, E)

∫ zk+1/2

zk−1/2

d

dz
bik(z)blk(z) dz = 0 (2.76)

Taking the final integral using the fundamental theorem of calculus gives:

[
LR,j,kψ

l
j,k(x, y, Ω̂, E)−Ql

j,k(Ω̂, E)
] ∫ zk+1/2

zk−1/2

(
blk(z)

)2
dz

− Ωz

I∑
i=1

ψij,k(x, y, Ω̂, E)

∫ zk+1/2

zk−1/2

bik(z)
d

dz
blk(z) dz

+ Ωz

I∑
i=1

ψij,k(x, y, Ω̂, E)

[
bik(zk+1/2)blk(zk+1/2)− bik(zk−1/2)blk(zk−1/2)

]
= 0 (2.77)

But we know that from our flux expansion:

I∑
i=1

ψij,k(x, y, Ω̂, E)bik(zk+1/2) = ψj,k+1/2(x, y, Ω̂, E) = ψj(x, y, zk+1/2, Ω̂, E) (2.78)

Which is the top interface flux of the element. Then the equation is now:

[
LR,j,kψ

l
j,k(x, y, Ω̂, E)−Ql

j,k(Ω̂, E)
] ∫ zk+1/2

zk−1/2

(
blk(z)

)2
dz

− Ωz

I∑
i=1

ψij,k(x, y, Ω̂, E)

∫ zk+1/2

zk−1/2

bik(z)
d

dz
blk(z) dz

+ Ωz

[
ψj,k+1/2(x, y, Ω̂, E)blk(zk+1/2)− ψj,k−1/2(x, y, Ω̂, E)blk(zk−1/2)

]
= 0 (2.79)

So for Ωz > 0, we will need the flux at the bottom as a boundary condition (found by solving
the elements below it in the extruded mesh) so that now the equation is (moving all “source” like
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terms to the right hand side):

LR,j,kψ
l
j,k(x, y, Ω̂, E)

∫ zk+1/2

zk−1/2

(
blk(z)

)2
dz

− Ωz

I∑
i=1

ψij,k(x, y, Ω̂, E)

∫ zk+1/2

zk−1/2

bik(z)
d

dz
blk(z) dz

+ Ωz

I∑
i=1

ψij,k(x, y, Ω̂, E)bik(zk+1/2)blk(zk+1/2)

= Ql
j,k(Ω̂, E)

∫ zk+1/2

zk−1/2

(
blk(z)

)2
dz

+ Ωzψj,k−1/2(x, y, Ω̂, E)blk(zk−1/2) (2.80)

and similarly for Ωz > 0. Then this is a system of I coupled 2D transport equations in each element
in each axial plane and can be solved for each ψij,k(x, y, Ω̂, E) for i = 1, 2, . . . , I using any standard
2D method. Proteus-MOC then makes the expansion linear in z so that there are only two equations.

The primary concerns with this method is that it can be expensive to have to store the top and
bottom flux for every single element in every plane. Additionally, the method requires that the mesh
is extruded so that the radial discretization must be axially uniform. Furthermore, the full MOC
form of the equations that are actually solved by Proteus-MOC involve matrix exponentials, which
can be costly to compute.

Thus far, the primary benchmarking of Proteus-MOC has been limited to C5G7 problems.
While one C5G7 case was run with a void channel, no cases have been run with bare fuel pin cells
surrounded by void. As such, the ability of the Proteus-MOC method to maintain stability in cases
where bare fuel is exposed to void and neutronically important, has yet to be investigated. As the
method in this work is based on the Proteus-MOC method, these types of tests will constitute new
investigation into the method’s ability to mitigate this instability.

2.6.6 STREAM

Much like Proteus-MOC, STREAM [67] directly discretizes the 3D NTE with a different axial
discretization for a set of radial slices. STREAM uses diamond differencing to approximate the axial
variable in each radial slice, a method referred to as MOC/DD. To do so, STREAM constructs the
3D flux and source as a linear combination of 2D radial and 1D axial components by approximating
the flux in a given slice as follows:

ψk(r, Ω̂, E) ≈ ψ0
k(x, y, Ω̂, E) +

z

∆zk

(
ψ+
k (x, y, Ω̂, E)− ψ−k (x, y, Ω̂, E)

)
(2.81)
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Here ψ+
k is defined as the flux at the top of the slice and ψ−k is defined as the flux at the bottom

of the slice and −∆z
2
≤ z ≤ ∆z

2
. Using the diamond differencing scheme, the axially averaged flux

is expressed as:

ψ0
k(x, y, Ω̂, E) =

1

2

(
ψ+
k (x, y, Ω̂, E) + ψ−k (x, y, Ω̂, E)

)
(2.82)

Introducing this approximation to the radial NTE and integrating over the axial slice gives:

LR,kψ
0
k(x, y, Ω̂, E) = Skψ

0
k(x, y, Ω̂, E)− Ωz

∆z

(
ψ+
k (x, y, Ω̂, E)− ψ−k (x, y, Ω̂, E)

)
(2.83)

For upward moving flux, Ωz > 0, this is further simplified by adding 2Ωz

∆z
ψ0
k(x, y, Ω̂, E) to each

side to give:

LR,kψ
0
k(x, y, Ω̂, E) +

2Ωz

∆z
ψ0
k(x, y, Ω̂, E) = Skψ

0
k(x, y, Ω̂, E) +

2Ωz

∆z
ψ−k (x, y, Ω̂, E) (2.84)

So that now ψ−k (x, y, Ω̂, E) is the incoming flux from the slice below. For the boundary this
value is known through boundary conditions. For the slice above to be computed, the top flux
must be calculated by the results in this slice since ψ+

k (x, y, Ω̂, E) = ψ−k+1(x, y, Ω̂, E). Using the
diamond differencing scheme, that top flux (which acts as the leakage source for the slice above)
becomes:

ψ+
k (x, y, Ω̂, E) = 2ψ0

k(x, y, Ω̂, E)− ψ−k (x, y, Ω̂, E) (2.85)

The downward moving equations are analogously derived by instead subtracting 2Ωz

∆z
ψ0
k(x, y, Ω̂, E)

from each side of Equation 2.83.
This completes the diamond differencing discretization of the axial portion of the problem,

leaving only a 2D radial problem left. This radial problem can then be discretized using 2D MOC
to give the MOC/DD equations and the FSR divisions are used to compute and translate the axial
leakage to the FSR above and below. For the implementation in STREAM, the slices are swept up
and down so only one slice leakage need be stored at a time.

The diamond differencing scheme utilized by this method for discretization of the 3D transport
equation avoids the need for matrix exponential calculations that often appear in similar methods
such as the one in Proteus-MOC and presented in this work. Results from this method do appear
promising with respect to calculation time. C5G7 [68] was solved to an acceptable accuracy in 0.81
core hours and the BEAVRS [69] benchmark was solved in 477.28 core hours, which is comparable
to the speed of traditional 2D/1D methods.

Some concerns with this method is that it can be expensive to store the top and bottom flux for
every single element in a plane. Furthermore, the fact that the planes must be swept up and down
limits the potential of spatial domain decomposition for parallel implementations since each plane
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must be solved in order in the up and down sweeps. If the leakage were to be lagged, this limitation
to the domain decomposition could be avoided, but at the cost of the requirement of storing the
axial leakage for every single element of every single plane. However, radial decomposition is still
possible and utilized in STREAM with scaling efficiency of over 80% at just over 140 cores in the
BEAVRS benchmark. Additionally, the method requires that the mesh be axially extruded so that
the radial discretization must be axially uniform.

2.7 Summary

This chapter covered the basics of neutron transport theory from a NTE centered perspective. We
discussed the general transport equation as well as the eigenvalue problems that come out of it.
Methods for solving the NTE were also introduced, including 2D/1D methods. Most of the content
of this chapter is very well known in the nuclear engineering community and commonly used in
reactor physics work. The next chapter provides the derivation of the LPAEM as an alternative to
traditional 2D/1D methods.
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CHAPTER 3

The Legendre Polynomial Axial Expansion Method
for Neutron Transport

The focus of this dissertation is the development and implementation of the Legendre Polynomial

Axial Expansion Method (LPAEM) for solving the 3D NTE. In this chapter, the formulation of the
method is presented as are optional leakage approximation methods.

3.1 The Legendre Polynomial Axial Expansion Equations

We begin with the multi-group discrete ordinates eigenvalue problem:

Ω̂m ·∇ψm,g(r) + Σt,g(r)ψm,g(r) = Qm,g(r) (3.1)

Where the source is:

Qm,g(r) =
χg

4πkeff

G∑
g′=1

νΣf,g′(r)φg′(r) +
G∑

g′=1

M∑
m′=1

Σs,m′→m,g′→g,l(r)ψm′,g′(r)wm′ (3.2)

and:

φg(r) =
M∑
m=1

ψm,g(r)wm (3.3)

Writing the equation out a bit more shows the three differential terms to be dealt with:

Ωx,m
∂

∂x
ψm,g(r) + Ωy,m

∂

∂y
ψm,g(r) + Ωz,m

∂

∂z
ψm,g(r) + Σt,g(r)ψm,g(r) = Qm,g(r) (3.4)

We will now divide the system into k = 1, 2, . . . , K axial slices and assume that the slice
divisions are such that cross sections are axially invariant in a single slice. We will also divide the
radial system into j = 1, 2, . . . , J pin cells.
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3.1.1 Legendre Polynomial Axial Approximation

We will make the following approximation of the flux in a slice:

ψk,m,g(r) =
N∑
n=0

Ψk,m,g,n(x, y)Pn(ξzk) (3.5)

Where ξzk is the normalized z variable in each slice and ranges from −1 to 1 for every slice.
The desire here is that this expansion will result in better intra-nodal resolution of the flux to better
solve coarse axial sliced systems. So for a slice centered at zk with width ∆zk = zk+1/2 − zk−1/2,
then ξzk = 2(z−zk)

∆zk
for zk−1/2 ≤ z ≤ zk+1/2. This brings about an important observation. Due to

the change of variables necessary to compute the integral, we get the following from the Legendre
Polynomial orthogonality: ∫ zk+1/2

zk−1/2

Pn(ξzk)Pr(ξzk) dz =
∆zk

2r + 1
δn,r (3.6)

This should be kept in mind for future portions of the derivation.
We now introduce this approximation into our equation and consider it inside a single slice:

Ωx,m
∂

∂x

N∑
n=0

Ψk,m,g,n(x, y)Pn(ξzk) + Ωy,m
∂

∂y

N∑
n=0

Ψk,m,g,n(x, y)Pn(ξzk) + Ωz,m
∂

∂z
ψk,m,g(r)

+ Σt,k,g(x, y)
N∑
n=0

Ψk,m,g,n(x, y)Pn(ξzk) =
N∑
n=0

Qk,m,g,n(x, y)Pn(ξzk) (3.7)

notice that the axial streaming term has not yet had the approximation introduced. This will be done
later to keep the algebra simpler to follow.

Where:

Qk,m,g,n(x, y) =
χg

4πkeff

G∑
g′=1

νΣf,k,g′(x, y)φk,g′,n(x, y)

+
G∑

g′=1

∞∑
l=0

Σs,k,g′→g,l(x, y)
l∑

r=−l

Rl,r(Ω̂m)
M∑

m′=1

Rl,r(Ω̂m′)Ψk,m′,g′,n(x, y)wm′ (3.8)
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3.1.2 Reduced Moment Equations

We will then multiply the equation by some Legendre polynomial Pr(ξzk), where r ≤ N , and
integrate over the slice:

Ωx,m
∂

∂x
Ψk,m,g,r(x, y) + Ωy,m

∂

∂y
Ψk,m,g,r(x, y) + Σt,k,g(x, y)Ψk,m,g,r(x, y)

+
2r + 1

∆zk
Ωz,m

∫ zk+1/2

zk−1/2

Pr(ξzk)
∂

∂z
ψk,m,g(r) dz = Qk,m,g,r(x, y) (3.9)

We use integration by parts to evaluate that final term (remember also that Pn(1) = 1 and
Pn(−1) = (−1)n):∫ zk+1/2

zk−1/2

Pr(ξzk)
∂

∂z
ψk,m,g(r) dz = ψk,m,g(x, y, zk+1/2)− (−1)rψk,m,g(x, y, zk−1/2)

−
∫ zk+1/2

zk−1/2

ψk,m,g(r)
∂

∂z
Pr(ξzk) dz (3.10)

We will reintroduce the polynomial approximation to expand the final integral as:

∫ zk+1/2

zk−1/2

ψk,m,g(r)
∂

∂z
Pr(ξzk) dz =

N∑
n=0

Ψk,m,g,n(x, y)

∫ zk+1/2

zk−1/2

Pn(ξzk)
∂

∂z
Pr(ξzk) dz (3.11)

We use the following property of Legendre Polynomials:

d

dx
Pn(x) = (2(n−1)+1)Pn−1(x)+(2(n−3)+1)Pn−3(x)+(2(n−5)+1)Pn−5(x)+ · · · (3.12)

to further expand the individual integrals (notice use of the chain rule):∫ zk+1/2

zk−1/2

Pn(ξzk)
∂

∂z
Pr(ξzk) dz =

2

∆zk

∫ zk+1/2

zk−1/2

Pn(ξzk)

[
(2(r−1) + 1)Pr−1(ξzk) + · · ·

]
dz (3.13)

Now we recall the orthogonality of Legendre Polynomials, which then makes this integral:

∫ zk+1/2

zk−1/2

Pn(ξzk)
d

dz
Pr (ξzk) dz = 2

dr/2e∑
u=1

δr−2u+1,n =



0 n ≥ r

0 nodd & rodd

0 neven & reven

2 otherwise

(3.14)
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So our equation is now:

Ωx,m
∂

∂x
Ψk,m,g,r(x, y) + Ωy,m

∂

∂y
Ψk,m,g,r(x, y) + Σt,k,g(x, y)Ψk,m,g,r(x, y)

+
2r + 1

∆zk
Ωz,m

[
ψk,m,g(x, y, zk+1/2)− (−1)rψk,m,g(x, y, zk−1/2)

− 2
N∑
n=0

Ψk,m,g,n(x, y)

dr/2e∑
u=1

δr−2u+1,n

]
= Qk,m,g,r(x, y) (3.15)

The sum can then be simplified:

Ωx,m
∂

∂x
Ψk,m,g,r(x, y) + Ωy,m

∂

∂y
Ψk,m,g,r(x, y) + Σt,k,g(x, y)Ψk,m,g,r(x, y)

+
2r + 1

∆zk
Ωz,m

[
ψk,m,g(x, y, zk+1/2)− (−1)rψk,m,g(x, y, zk−1/2)

− 2

dr/2e∑
u=1

Ψk,m,g,r−2u+1(x, y)

]
= Qk,m,g,r(x, y) (3.16)

Now we will consider this equation differently for Ωz,m > 0 then for Ωz,m < 0. First, for
Ωz,m > 0 we will move the bottom flux to the RHS. We will also introduce the expansion of the
flux to the top flux:

Ωx,m
∂

∂x
Ψk,m,g,r(x, y) + Ωy,m

∂

∂y
Ψk,m,g,r(x, y) + Σt,k,g(x, y)Ψk,m,g,r(x, y)

+
2r + 1

∆zk
Ωz,m

[ N∑
n=0

Ψk,m,g,n(x, y)− 2

dr/2e∑
u=1

Ψk,m,g,r−2u+1(x, y)

]
= Qk,m,g,r(x, y) +

2r + 1

∆zk
Ωz,m(−1)rψk,m,g(x, y, zk−1/2), ∀Ωz,m > 0 (3.17)

Now for the lower boundary slice the bottom flux is given by the boundary condition. For non
boundary slices the bottom flux is determined by the solution of the slice below. We will also now
assume that we have divided the plane into regions where we will treat the incoming axial portion
of the flux as constant. What this division is has not yet been stated but we will assume it ranges
over some area ∂Vk,j and further radial divisions will not overlap with these divisions. That is to
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say that no radial division will have multiple flat axial incoming flux regions:

Ωx,m
∂

∂x
Ψk,m,g,r(x, y) + Ωy,m

∂

∂y
Ψk,m,g,r(x, y) + Σt,k,g(x, y)Ψk,m,g,r(x, y)

+
2r + 1

∆zk
Ωz,m

 N∑
n=0

Ψk,m,g,n(x, y)− 2

dr/2e∑
u=1

Ψk,m,g,r−2u+1(x, y)


= Qupk,m,g,r(x, y), ∀Ωz,m > 0 (3.18)

Where:
Qupk,m,g,r(x, y) = Qk,m,g,r(x, y) +

2r + 1

∆zk
(−1)rTLupk,j,m,g (3.19)

So that:

TLupk,j,m,g =


Ωz,m

∂Vk,j

∫
∂Vk,j

ψbg(x, y, 0, Ω̂m) dA k = 1

FΩz,mψk−1,m,g(x, y, zk−1/2) k 6= 1
(3.20)

where F is some as yet undetermined function that comes from various transverse leakage approxi-
mations discussed in Section 3.2. And similarly for Ω̂m,z < 0:

Ωx,m
∂

∂x
Ψk,m,g,r(x, y) + Ωy,m

∂

∂y
Ψk,m,g,r(x, y) + Σt,k,g(x, y)Ψk,m,g,r(x, y)

− 2r + 1

∆zk
Ωz,m

 N∑
n=0

(−1)r+nΨk,m,g,n(x, y) + 2

dr/2e∑
u=1

Ψk,m,g,r−2u+1(x, y)


= Qdownk,m,g,r(x, y), ∀Ωz,m < 0 (3.21)

where:
Qdownk,m,g,r(x, y) = Qk,m,g,r(x, y)− 2r + 1

∆zk
TLdownk,j,m,g (3.22)

TLdownk,j,m,g =


Ωz,m

∂Vk,j

∫
∂Vk,j

ψb(x, y, Zmax, Ω̂m, E) dA k = K

FΩz,mψk+1,m,g(x, y, zk+1/2) k 6= K
(3.23)

For vacuum BCs the incoming flux is 0 so we get:

TLup1,j,m,g = 0, TLdownK,j,m,g = 0 (3.24)

For reflective BCs the incoming flux is the downward moving flux of the same azimuthal angle
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at the bottom of the system.

TLup1,j,m,g = FΩz,mψ1,m′,g(x, y, z1/2), Ωx,m = Ωx,m′ , Ωy,m = Ωy,m′ , Ωz,m = −Ωz,m′ (3.25a)

TLdownK,j,m,g = FΩz,mψK,m′,g(x, y, zK+1/2), Ωx,m = Ωx,m′ , Ωy,m = Ωy,m′ , Ωz,m = −Ωz,m′ (3.25b)

3.1.3 Matrix-Vector Form

We can now write these equations in matrix vector format. The notational convention used here
involves a single bar over 1D vectors, i.e. b̄, and two bars over 2D matrices, i.e. ¯̄A. All vectors here
are of size N + 1, and all matrices are of size (N + 1)× (N + 1). Define:

Ψ̄k,m,g(x, y) =
(
Ψk,m,g,0(x, y), . . . ,Ψk,m,g,N(x, y)

)T (3.26a)

Q̄k,m,g(x, y) =
(
Qk,m,g,0(x, y), . . . , Qk,m,g,N(x, y)

)T (3.26b)

ā =

(
1, 3, . . . , 2N + 1

)T
(3.26c)

b̄ =

(
1,−3, . . . , (−1)N(2N + 1)

)T
(3.26d)

Q̄downk,m,g(x, y) = Q̄k,m,g(x, y)−
TLdownk,j,m,g

∆zk
ā (3.26e)

Q̄upk,m,g(x, y) = Q̄k,m,g(x, y) +
TLupk,j,m,g

∆zk
b̄ (3.26f)

¯̄Sdownk,m,g(x, y) =
Ωz,m

∆zk
¯̄Cdown + Σt,k,g(x, y) ¯̄I (3.26g)

¯̄Supk,m,g(x, y) =
Ωz,m

∆zk
¯̄Cup + Σt,k,g(x, y) ¯̄I (3.26h)

¯̄Cdown = ¯̄Adown + ¯̄B (3.26i)

¯̄Cup = ¯̄Aup + ¯̄B (3.26j)

¯̄Adown =


−1 1 · · · (−1)N+1

3 −3 · · · 3(−1)N+2

...
...

...
...

(2N + 1)(−1)N+1 (2N + 1)(−1)N+2 · · · −(2N + 1)

 (3.26k)
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¯̄Aup =


1 · · · 1

3 · · · 3
...

...
...

2N + 1 · · · 2N + 1

 (3.26l)

¯̄B =



0 0 · · · . . . 0 0

−6 0
. . . 0 0 0

0 −10 0
. . . 0 0

−14 0 −14
. . . 0 0

... . . . . . . . . . . . . ...
· · · · · · −(4N + 2) 0 −(4N + 2) 0


(3.26m)

So then our matrix-vector equations are:

Ωx,m
∂

∂x
Ψ̄k,m,g(x, y) + Ωy,m

∂

∂y
Ψ̄k,m,g(x, y) + ¯̄Sdownk,m,g(x, y)Ψ̄k,m,g(x, y) = Q̄downk,m,g(x, y),

∀Ωz,m < 0 (3.27)

and:

Ωx,m
∂

∂x
Ψ̄k,m,g(x, y) + Ωy,m

∂

∂y
Ψ̄k,m,g(x, y) + ¯̄Supk,m,g(x, y)Ψ̄k,m,g(x, y) = Q̄upk,m,g(x, y),

∀Ωz,m > 0 (3.28)

3.2 Axial Leakage Treatment

The F function must now be specified. Multiple options exist for determining this function that will
couple the axial slices together. Presented here are 3 methods that were investigated in this work.

3.2.1 Extruded Mesh Method

Regardless of method, the axial slices must be divided into Ik FSRs on each slice. We will assume
that in the process of solving an axial slice we will end up with a cell averaged value of the flux
moments for each of these regions which we will refer to as follows:

Ψk,i,m,g,n =

∫
∂Vi

Ψk,m,g,n(x, y) dA∫
∂Vi

dA
(3.29)
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Now for the Extruded Mesh Method, the cells must be extruded so that each cell below matches
boundaries precisely with the cell above. This method then lines up the axial leakage regions with
the slice cells so that each cell has its own axial leakage region, hence the need for extrusion of the
mesh. Then the axial leakage contributor is defined as exactly the solution of the adjacent slice. For
Ωz,m < 0 then the function is:

TLdownk,i,m,g = FΩz,mψk+1,m,g(x, y, zk+1/2) = Ωz,m

N∑
n=0

(−1)nΨk+1,i,m,g,n, ∀Ωz,m < 0 (3.30a)

and for Ωz,m > 0:

TLupk,i,m,g = FΩz,mψk−1,m,g(x, y, zk−1/2) = Ωz,m

N∑
n=0

Ψk−1,i,m,g,n, ∀Ωz,m > 0 (3.30b)

So that reflective BCs give:

TLup1,i,m,g = Ωz,m

N∑
n=0

(−1)nΨ1,i,m′,g,n, ∀Ωz,m < 0, Ωx,m = Ωx,m′ , Ωy,m = Ωy,m′ , Ωz,m = −Ωz,m′

(3.31)
And for top reflective BCs given K slices:

TLdownK,i,m,g = Ωz,m

N∑
n=0

ΨK,i,m′,g,n, ∀Ωz,m < 0, Ωx,m = Ωx,m′ , Ωy,m = Ωy,m′ , Ωz,m = −Ωz,m′

(3.32)

3.2.2 Integrated Pin Cell Method

For this method the FSRs need not be extruded. Rather, each of the J “Pin Cells” (however they may
be defined) are considered to be the regions over which the axial leakage is constant using a spatially
averaging technique. These pin cells are then subdivided into FSRs for the radial transport solutions.
At each slice, this subdivision may be accomplished in any form desired so long as no subdivision
overlaps with multiple Pin Cells. As such, extrusion of the mesh is limited only to extrusion of
the Pin Cells and does not require storing of the leakage flux for every single subdivision. So now
instead, for Ωz,m < 0 the function is:

TLdownk,j,m,g = FΩz,mψk+1,m,g(x, y, zk+1/2) =
Ωz,m

∂Vj

∑
ik+1∈∂Vj

∂Vi

N∑
n=0

(−1)nΨk+1,i,m,g,n, ∀Ωz,m < 0

(3.33a)
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and for Ωz,m > 0:

TLupk,j,m,g = FΩz,mψk−1,m,g(x, y, zk−1/2) =
Ωz,m

∂Vj

∑
ik−1∈∂Vj

∂Vi

N∑
n=0

Ψk−1,i,m,g,n, ∀Ωz,m > 0

(3.33b)
Where multiple of the Ik subdivisions in each slice pull from the same axial leakage. So that

reflective BCs give:

TLup1,i,m,g =
Ωz,m

∂Vj

∑
i1∈∂Vj

∂Vi

N∑
n=0

(−1)nΨ1,i,m′,g,n,

∀Ωz,m < 0, Ωx,m = Ωx,m′ , Ωy,m = Ωy,m′ , Ωz,m = −Ωz,m′ (3.34)

And for top reflective BCs given K slices:

TLdownK,i,m,g =
Ωz,m

∂Vj

∑
iK∈∂Vj

∂Vi

N∑
n=0

ΨK,i,m′,g,n,

∀Ωz,m < 0, Ωx,m = Ωx,m′ , Ωy,m = Ωy,m′ , Ωz,m = −Ωz,m′ (3.35)

The primary advantage of this method is the lack of the need for fully extruded meshes. Instead
of the fine mesh divisions needing to be identical on every axial level, such as required in the method
described in Section 3.2.1, only the pin cell coarse mesh need be extruded. This means that disjoint
meshes, such as the one shown in Figure 3.1, can be used in situations where such meshes are
useful.

Figure 3.1: Disjoint Mesh
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3.2.3 Integrated Pin Cell Current Method

For the upward moving neutrons, we will integrate the leakage term over the upper unit half sphere
and divide by 2π, and similarly for the downward moving neutrons we will integrate over the
lower unit half sphere and divide by 2π. This is an angle averaging technique known as a DP0

approximation. These integrals will then serve as our “currents”:

TLdownk,j,m,g = FΩz,mψk+1,m,g(x, y, zk+1/2) =

1

2π∂Vj

∑
Ωz,m<0

Ωz,mwm
∑

ik+1∈∂Vj

∂Vi

N∑
n=0

(−1)nΨk+1,i,m,g,n (3.36a)

TLupk,j,m,g = FΩz,mψk−1,m,g(x, y, zk−1/2) =
1

2π∂Vj

∑
Ωz,m>0

Ωz,mwm
∑

ik−1∈∂Vj

∂Vi

N∑
n=0

Ψk−1,i,m,g,n

(3.36b)

There may be some argument for isotropizing this term over the entire unit sphere. Such an
argument would likely stem from the desire to only solve the flux for upward (or downward) moving
neutrons. However this approach by its very nature presumes axial symmetry of the flux in each
slice, exactly what we are trying to avoid! Even if we were to isotropize the axial leakage fully,
it would still be necessary to compute both the up and down moving flux. This is due to the
fundamental difference in the equations due to the difference in the attenuation coefficient matrices
( ¯̄Sup and ¯̄Sdown). Additionally the leakage source is subtracted from the downward equation and
added to the upward equation so even a fully isotropized leakage could not result in an equal source
for both the up and down equations. One intrinsic advantage of separating the two is that the
leakage term is fully up to date in every calculation while only needing the march up or down to be
separated.

3.2.4 Balance Equations and F Operator Conditions

We can take the first of the matrix vector equations (for the flat values) to get the upward 0th axial
moment:

Ωx,m
∂

∂x
Ψk,m,g,0(x, y) + Ωy,m

∂

∂y
Ψk,m,g,0(x, y) + Σt,k,g(x, y)Ψk,m,g,0(x, y)

+
Ωz,m

∆zk

N∑
n=0

Ψk,m,g,n(x, y) = Qk,m,g,0(x, y) +
1

∆zk
FΩz,mψk−1,m,g(x, y, zk−1/2) (3.37)
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and the downward 0th axial moment:

Ωx,m
∂

∂x
Ψk,m,g,0(x, y) + Ωy,m

∂

∂y
Ψk,m,g,0(x, y) + Σt,k,g(x, y)Ψk,m,g,0(x, y)

− Ωz,m

∆zk

N∑
n=0

(−1)nΨk,m,g,n(x, y) = Qk,m,g,0(x, y)− 1

∆zk
FΩz,mψk+1,m,g(x, y, zk+1/2) (3.38)

We can then add the two equations together and integrate over angles to get:

∂

∂x
Jx,k,g(x, y) +

∂

∂y
Jy,k,g(x, y) + Σt,k,g(x, y)Φk,g,0(x, y)

+
∑

Ωz,m>0

wm
Ωz,m

∆zk

N∑
n=0

Ψk,m,g,n(x, y)−
∑

Ωz,m<0

wm
Ωz,m

∆zk

N∑
n=0

(−1)nΨk,m,g,n(x, y)

= Qk,g,0(x, y) +
1

∆zk

∑
Ωz,m>0

wmFΩz,mψk−1,m,g(x, y, zk−1/2)

− 1

∆zk

∑
Ωz,m<0

wmFΩz,mψk+1,m,g(x, y, zk+1/2) (3.39)

We will then integrate over the rectangular domain for the j coarse cell:∫
∆yj

(Jx+,k,g(y)− Jx−,k,g(y)) dy +

∫
∆xj

(Jy+,k,g(x)− Jy−,k,g(x)) dx

+

∫
∂Vj

Σt,k,g(x, y)Φk,g,0(x, y) dA+
∑

Ωz,m>0

wm
Ωz,m

∆zk

N∑
n=0

∫
∂Vj

Ψk,m,g,n(x, y) dA

−
∑

Ωz,m<0

wm
Ωz,m

∆zk

N∑
n=0

(−1)n
∫
∂Vj

Ψk,m,g,n(x, y) dA =

∫
∂Vj

Qk,g,0(x, y) dA

+
1

∆zk

∑
Ωz,m>0

wm

∫
∂Vj

FΩz,mψk−1,m,g(x, y, zk−1/2) dA

− 1

∆zk

∑
Ωz,m<0

wm

∫
∂Vj

FΩz,mψk+1,m,g(x, y, zk+1/2) dA (3.40)

We again introduce the notion of the FSR averaged flux, as well as pin cell border averaged currents,
pin cell averaged flux, and pin cell averaged source i.e.:

Jx±,k,j,g =
1

∆yj

∫
∆yj

Jx±,k,g(y) dy
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Jy±,k,j,g =
1

∆xj

∫
∆xj

Jy±,k,g(x) dx

Ψk,j,m,g,n =
1

∂Vj

∫
∂Vj

Ψk,m,g,n(x, y) dA

Qk,j,g,0 =
1

∂Vj

∫
∂Vj

Qk,g,0(x, y) dA

Which can now make that equation:

∆yj(Jx+,k,j,g − Jx−,k,j,g) + ∆xj(Jy+,k,j,g − Jy−,k,j,g)

+
∑
ik∈∂Vj

∂Vk,iΣt,k,i,gΦk,i,g,0 +
∂Vj
∆zk

∑
Ωz,m>0

wmΩz,m

N∑
n=0

Ψk,j,m,g,n

− ∂Vj
∆zk

∑
Ωz,m<0

wmΩz,m

N∑
n=0

(−1)nΨk,j,m,g,n = ∂VjQk,j,g,0

+
1

∆zk

∑
Ωz,m>0

wm

∫
∂Vj

FΩz,mψk−1,m,g(x, y, zk−1/2) dA

− 1

∆zk

∑
Ωz,m<0

wm

∫
∂Vj

FΩz,mψk+1,m,g(x, y, zk+1/2) dA (3.41)

We recall that from the definitions of Legendre polynomials that those sums of Legendre moments
are top and bottom fluxes and we can again consider them pin cell averaged. So here we get:

∆yj(Jx+,k,j,g − Jx−,k,j,g) + ∆xj(Jy+,k,j,g − Jy−,k,j,g)

+
∑
ik∈∂Vj

∂Vk,iΣt,k,i,gΦk,i,g,0 +
∂Vj
∆zk

∑
Ωz,m>0

wmΩz,mΨtop
k,j,m,g,n

− ∂Vj
∆zk

∑
Ωz,m<0

wmΩz,mΨbot
k,j,m,g,n = ∂VjQk,j,g,0

+
1

∆zk

∑
Ωz,m>0

wm

∫
∂Vj

FΩz,mψ
top
k−1,m,g(x, y) dA

− 1

∆zk

∑
Ωz,m<0

wm

∫
∂Vj

FΩz,mψ
bot
k+1,m,g(x, y) dA (3.42)

This now gives a requirement on the operator F to preserve neutron balance in the coarse cell, an
important feature for both accuracy and effective CMFD acceleration. To preserve neutron balance,
the integral of the axial leakage in and out of the coarse cell at the top and bottom surface must equal
the axial currents for those surfaces. Recalling the definition of current, this gives the following
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requirements for F:

∑
Ωz,m>0

wm

∫
∂Vj

FΩz,mψ
top
k−1,m,g(x, y) dA = ∂Vj

∑
Ωz,m>0

wmΩz,mΨtop
k−1,j,m,g,n (3.43a)

∑
Ωz,m<0

wm

∫
∂Vj

FΩz,mψ
bot
k+1,m,g(x, y) dA = ∂Vj

∑
Ωz,m<0

wmΩz,mΨbot
k+1,j,m,g,n (3.43b)

If this condition is satisfied, then we can combine like terms and recalling the definition of
current yields:

∆yj(Jx+,k,j,g − Jx−,k,j,g) + ∆xj(Jy+,k,j,g − Jy−,k,j,g)

+
∂Vj
∆zk

(Jz+,k,j,g − Jz−,k,j,g)

+
∑
ik∈∂Vj

∂Vk,iΣt,k,i,gΦk,i,g,0 = ∂VjQk,j,g,0 (3.44)

Multiplying by ∆zk we can clean this up a bit and get:

∆yj∆zk(Jx+,k,j,g − Jx−,k,j,g) + ∆xj∆zk(Jy+,k,j,g − Jy−,k,j,g)

+ ∂Vj(Jz+,k,j,g − Jz−,k,j,g)

+
∑
ik∈∂Vj

Vk,iΣt,k,i,gΦk,i,g,0 = Vj,kQk,j,g,0 (3.45)

Which is the expected neutron balance equation, such that the sum of all net leakage out of the
domain and net collisions in the domain, balance exactly with the total source in the domain.

Each of the presented leakage methods in Section 3.2 are here investigated to show adherence to
the F operator requirement. Plugging in Equation 3.30 for the extruded mesh leakage method to the
balance condition integral yields:

∑
Ωz,m>0

wm

∫
∂Vj

FExtΩz,mψ
top
k−1,m,g(x, y) dA =

∑
Ωz,m>0

wm
∑

ik−1∈∂Vj

∂ViΩz,m

N∑
n=0

Ψk−1,i,m,g,n

(3.46a)∑
Ωz,m<0

wm

∫
∂Vj

FExtΩz,mψ
bot
k+1,m,g(x, y) dA =

∑
Ωz,m<0

wm
∑

ik+1∈∂Vj

∂ViΩz,m

N∑
n=0

(−1)nΨk+1,i,m,g,n

(3.46b)
which satisfies Equation 3.43 exactly. As such, it is shown that the extruded mesh leakage method
preserves neutron balance.
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Plugging in Equation 3.33 for the pin cell leakage method to the balance condition integral
yields:

∑
Ωz,m>0

wm

∫
∂Vj

FPinΩz,mψ
top
k−1,m,g(x, y) dA =

∑
Ωz,m>0

wmΩz,m

∑
ik−1∈∂Vj

∂Vi

N∑
n=0

Ψk−1,i,m,g,n

(3.47a)∑
Ωz,m<0

wm

∫
∂Vj

FPinΩz,mψ
bot
k+1,m,g(x, y) dA =

∑
Ωz,m<0

wmΩz,m

∑
ik+1∈∂Vj

∂Vi

N∑
n=0

(−1)nΨk+1,i,m,g,n

(3.47b)
which satisfies Equation 3.43 exactly. As such, it is shown that the pin cell leakage method preserves
neutron balance.

Plugging in Equation 3.36 for the pin cell current leakage method to the balance condition
integral yields:

∑
Ωz,m>0

wm

∫
∂Vj

FPinCurΩz,mψ
top
k−1,m,g(x, y) dA =

∑
Ωz,m>0

wm
1

2π

∑
Ωz,m′>0

Ωz,m′wm′
∑

ik−1∈∂Vj

∂Vi

N∑
n=0

Ψk−1,i,m′,g,n (3.48a)

∑
Ωz,m<0

wm

∫
∂Vj

FPinCurΩz,mψ
bot
k+1,m,g(x, y) dA =

∑
Ωz,m<0

wm
1

2π

∑
Ωz,m′<0

Ωz,m′wm′
∑

ik+1∈∂Vj

∂Vi

N∑
n=0

(−1)nΨk+1,i,m′,g,n (3.48b)

which satisfies Equation 3.43 exactly. As such, it is shown that the pin cell current leakage method
preserves neutron balance. It can now be observed that all three methods of axial leakage presented
Section 3.2 preserve neutron balance. Further methods of axial leakage may be investigated and
applied given that they satisfy Equation 3.43.

3.3 Summary

In this chapter we have formulated the LPAEM. In this formulation we define the axial expansion
equations in matrix vector form. Additionally, three methods of axial leakage treatment are
introduced. The first of these methods requires axial extrusion of the fine mesh, which can be
problematic for systems where different radial meshes may be desired on different axial levels.
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The second of these methods preserves angular dependence while requiring only the pin cells be
extruded. As such, the fine mesh may vary in each axial layer, so long as the coarse pin cells are
axially extruded, a capability already in place in MPACT. The third method also allows fine mesh
variation, however the nature of the use of current instead of angular flux does not preserve all
angular dependence for the advantage of some memory savings. In the next chapter, some numerical
methods for solving the axial expansion equations are investigated.

56



CHAPTER 4

Numerical Methods for Solving The Legendre
Polynomial Axial Expansion Equations

With the formulation of the LPAEM in Chapter 3, it now becomes important to investigate methods
for solving it, and inherent performance characteristics of the method.

4.1 1D/1D Equations

Our initial investigation of this method involved applying the principles laid out in section 3.1 to
simpler 2D problems mimicking the axial characteristics typical of a traditional LWR. Referred to
as 1D/1D, these problems show method behaviors in a simple testing environment.

For the 1D/1D method, we assume that the system is homogeneous and infinite in the y direction.
This means that all variables are independent of the y direction:

Ωx,m
∂

∂x
Ψ̄k,m,g(x) + ¯̄Sdownk,m,g(x)Ψ̄k,m,g(x) = Q̄downk,m,g(x), ∀Ωz,m < 0 (4.1)

Ωx,m
∂

∂x
Ψ̄k,m,g(x) + ¯̄Supk,m,g(x)Ψ̄k,m,g(x) = Q̄upk,m,g(x), ∀Ωz,m > 0 (4.2)

We will focus the rest of the discussion on the Ωz,m > 0 equation since further discussion is
easily seen to be analogous and can be translated for the downward moving flux. We can solve the
ODE to get:

Ψ̄k,m,g(x) = exp

(
−
∫ x

x0

¯̄Supk,m,g(x
′′)

Ωx,m

dx′′

)
Ψ̄k,m,g(x0)

+

∫ x

x0

1

Ωx,m

exp

(
−
∫ x

x′

¯̄Supk,m,g(x
′′)

Ωx,m

dx′′

)
Q̄upk,m,g(x

′) dx′ (4.3)

Now dividing the system into Ik cells on each slice (where no cell overlaps with multiple regions of
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axial leakage indexed by j) we will assume each cell has a spatially flat source and and a constant
cross section. This leaves us with equations for boundary flux moments:

Ψ̄k,i+1/2,m,g = exp

(
−∆xk,i

Ωx,m

¯̄Supk,i,m,g

)
Ψ̄k,i−1/2,m,g

+
(

¯̄Supk,i,m,g

)−1
[

¯̄I − exp

(
−∆xk,i

Ωx,m

¯̄Supk,i,m,g

)]
Q̄upk,i,m,g, ∀Ωx,m > 0 (4.4)

Ψ̄k,i−1/2,m,g = exp

(
∆xk,i
Ωx,m

¯̄Supk,i,m,g

)
Ψ̄k,i+1/2,m,g

+
(

¯̄Supk,i,m,g

)−1
[

¯̄I − exp

(
∆xk,i
Ωx,m

¯̄Supk,i,m,g

)]
Q̄upk,i,m,g, ∀Ωx,m < 0 (4.5)

And an equation for the cell integrated flux moments:

Ψ̄k,i,m,g = Ωx,m

(
¯̄Supk,i,m,g

)−1 (
Ψ̄k,i−1/2,m,g − Ψ̄k,i+1/2,m,g

)
+ ∆xk,i

(
¯̄Supk,i,m,g

)−1

Q̄upk,i,m,g (4.6)

4.2 2D/1D MOC Equations

We start with the 2D equations and again just consider upward moving neutrons for purposes of the
derivation.

Ωx,m
∂

∂x
Ψ̄k,m,g(x, y) + Ωy,m

∂

∂y
Ψ̄k,m,g(x, y) + ¯̄Supk,m,g(x, y)Ψ̄k,m,g(x, y) = Q̄upk,m,g(x, y),

∀Ωz,m > 0 (4.7)

Now we know that by convention we consider

Ω̂ = (Ωx,Ωy,Ωz) = (
√

1− µ2 cosω,
√

1− µ2 sinω, µ) (4.8)

where µ is the polar cosine (−1 ≤ µ ≤ 1) and ω is the azimuthal angle (0 ≤ ω < 2π). So
for a product quadrature angular discretization, we use the variable s to denote the total distance
traveled along a 2D characteristic line r = (x, y) for a given 2D angular direction Ω̂r = (Ωr

x,Ω
r
y) =

(cosω, sinω):
r = r0 + sΩ̂r (4.9)
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Where r0 is the starting point of the line. So that now:

x = x0 + sΩr
x ⇒

∂x

∂s
= Ωr

x (4.10)

y = y0 + sΩr
y ⇒

∂y

∂s
= Ωr

y (4.11)

So that the 2D gradient is now:

df

ds
=
∂x

∂s

∂f

∂x
+
∂y

∂s

∂f

∂y
= Ωr

x

∂f

∂x
+ Ωr

y

∂f

∂y
(4.12)

So now we have the ODE:

d

ds
Ψ̄k,m,g(x0 + sΩr

x, y0 + sΩr
y) +

¯̄Supk,m,g(x0 + sΩr
x, y0 + sΩr

y)√
1− µ2

Ψ̄k,m,g(x0 + sΩr
x, y0 + sΩr

y)

=
Q̄upk,m,g(x0 + sΩr

x, y0 + sΩr
y)√

1− µ2
, ∀Ωz,m > 0 (4.13)

So we recognize that this is now just a function of s:

d

ds
Ψ̄k,m,g(s) +

¯̄Supk,m,g(s)√
1− µ2

Ψ̄k,m,g(s) =
Q̄upk,m,g(s)√

1− µ2
, ∀Ωz,m > 0 (4.14)

Which we take an integrating factor with to get:

d

ds′

[
exp

(∫ s′
s0

¯̄Supk,m,g(s
′′) ds′′√

1− µ2

)
Ψ̄k,m,g(s

′)

]

= exp

(∫ s′
s0

¯̄Supk,m,g(s
′′) ds′′√

1− µ2

)
Q̄upk,m,g(s′)√

1− µ2
, ∀Ωz,m > 0 (4.15)

We then integrate over s′ from s0 to s:

∫ s

s0

d

ds′

[
exp

(∫ s′
s0

¯̄Supk,m,g(s
′′) ds′′√

1− µ2

)
Ψ̄k,m,g(s

′)

]
ds′

=

∫ s

s0

exp

(∫ s′
s0

¯̄Supk,m,g(s
′′) ds′′√

1− µ2

)
Q̄upk,m,g(s′)√

1− µ2
ds′, ∀Ωz,m > 0 (4.16)
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So that from the fundamental theorem of calculus, we can get:

Ψ̄k,m,g(s) = exp

(
−
∫ s
s0

¯̄Supk,m,g(s
′′) ds′′√

1− µ2

)
Ψ̄k,m,g(s0)

+ exp

(
−
∫ s
s0

¯̄Supk,m,g(s
′′) ds′′√

1− µ2

)∫ s

s0

exp

(∫ s′
s0

¯̄Supk,m,g(s
′′) ds′′√

1− µ2

)
Q̄upk,m,g(s′)√

1− µ2
ds′, ∀Ωz,m > 0 (4.17)

But the first exponential from the left in the source term is independent of s′ so it can be moved
inside of the integral to give:

Ψ̄k,m,g(s) = exp

(
−
∫ s
s0

¯̄Supk,m,g(s
′′) ds′′√

1− µ2

)
Ψ̄k,m,g(s0)

+

∫ s

s0

exp

(
−
∫ s
s′

¯̄Supk,m,g(s
′′) ds′′√

1− µ2

)
Q̄upk,m,g(s′)√

1− µ2
ds′, ∀Ωz,m > 0 (4.18)

We now divide the characteristic line up into discrete segments, where each segment is in a discrete
radial region, indexed i = 1, 2, . . . , I , where we treat both the cross sections and the sources as
spatially invariant. We take s = sout to now be the position on the line where it exits the region,
and s0 = sin to be the position on the line where it enters, so that the total distance traveled in the
region by the line is ∆s = sout − sin This now leads to the following:

Ψ̄k,m,g,out = exp

(
−

¯̄Supk,i,m,g∆s√
1− µ2

)
Ψ̄k,m,g,in

+
(

¯̄Supk,i,m,g

)−1
[

¯̄I − exp

(
−

¯̄Supk,i,m,g∆s√
1− µ2

)]
Q̄upk,i,m,g, ∀Ωz,m > 0 (4.19)

and similarly for downward traveling flux

Ψ̄k,m,g,out = exp

(
−

¯̄Sdownk,i,m,g∆s√
1− µ2

)
Ψ̄k,m,g,in

+
(

¯̄Sdownk,i,m,g

)−1
[

¯̄I − exp

(
−

¯̄Sdownk,i,m,g∆s√
1− µ2

)]
Q̄downk,i,m,g, ∀Ωz,m < 0 (4.20)
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We will also integrate Eq. 4.18 over the segment to get the segment integrated flux moments:

Ψ̄k,m,g,int =

(
¯̄Supk,i,m,g√
1− µ2

)−1 [
¯̄I − exp

(
−

¯̄Supk,i,m,g∆s√
1− µ2

)]
Ψ̄k,m,g,in

+

(
¯̄Supk,i,m,g√
1− µ2

)−1
 ¯̄I∆s−

(
¯̄Supk,i,m,g√
1− µ2

)−1 [
¯̄I − exp

(
−

¯̄Supk,i,m,g∆s√
1− µ2

)] Q̄upk,i,m,g√
1− µ2

, ∀Ωz,m > 0

(4.21)

We can rearrange and plug in the definition of Ψ̄k,m,g,out to get:

Ψ̄k,m,g,int =

(
¯̄Supk,i,m,g√
1− µ2

)−1

Ψ̄k,m,g,in + ∆s

(
¯̄Supk,i,m,g√
1− µ2

)−1
Q̄upk,i,m,g√

1− µ2

−

(
¯̄Supk,i,m,g√
1− µ2

)−1

Ψ̄k,m,g,out, ∀Ωz,m > 0 (4.22)

Which can be rearranged to give:

Ψ̄k,m,g,int =

(
¯̄Supk,i,m,g√
1− µ2

)−1 [
Ψ̄k,m,g,in − Ψ̄k,m,g,out + ∆s

Q̄upk,i,m,g√
1− µ2

]
, ∀Ωz,m > 0 (4.23)

and similarly for downward traveling flux

Ψ̄k,m,g,int =

(
¯̄Sdownk,i,m,g√
1− µ2

)−1 [
Ψ̄k,m,g,in − Ψ̄k,m,g,out + ∆s

Q̄downk,i,m,g√
1− µ2

]
, ∀Ωz,m < 0 (4.24)

4.3 CMFD Linkage

To link the CMFD implementation in MPACT with the axial expansion transport solution requires
communication of the scalar flux and current between the two solvers. The iterates of the fine mesh
scalar flux is passed to the CMFD solver as the 0th axial moment scalar flux. The radial currents on
the coarse mesh are similarly computed using the 0th axial moment flux at the coarse mesh cell
boundaries. So that the net radial current for the cell boundary between pin cells j and j′ across
surface p in plane k is

Jnet,radk,g,p =
∑
m

n̂p · Ω̂mwmΨk,j,m,g,0 +
∑
m

n̂p · Ω̂mwmΨk,j′,m,g,0 (4.25)

Where n̂p is the unit normal vector to surface p between the two coarse cells.
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For the net axial current, the solution is taken at the top and bottom of the pin cell j in planes k
and k + 1 for horizontal surface p.

Jnet,axj,g,p =
∑
m

Ωz,mwm

N∑
n=0

Ψk,j,m,g,n +
∑
m

Ωz,mwm

N∑
n=0

(−1)nΨk+1,j,m,g,0 (4.26)

Once the CMFD equation is solved, the solution is projected back onto the fine mesh transport
problem. This projection is done identically for each axial moment to insure that the relative axial
variation is preserved in the CMFD acceleration. So for iteration l in the MOC solution, the updated
flux moments for fine cells i in coarse cell j become:

Φl
k,i,g,n = Φ

l−1/2
k,i,g,n

φlk,j,g

φ
l−1/2
k,j,g

, i ∈ j (4.27)

Since the axial leakage is best accumulated in the transport sweep, the leakage must also be
projected at this time since it will not inherit the projection of the flux. The projection must be done
so that the cell that provides the axial leakage is the one doing the projection. This means that for
downward moving leakage it is:

TLdown,lk,j,m,g = TL
down,l−1/2
k,j,m,g

φlk+1,j,g

φ
l−1/2
k+1,j,g

(4.28)

And similarly for upward moving leakage:

TLup,lk,j,m,g = TL
up,l−1/2
k,j,m,g

φlk−1,j,g

φ
l−1/2
k−1,j,g

(4.29)

4.4 Matrix Exponential Lookup Tables

LPAEM presents the relatively rare problem of needing to compute matrix exponentials. Indeed,
the computation of these exponentials represents perhaps the most computationally expensive part
of this calculation, having to be performed in the innermost loop for every single ray segment
and energy group. While a large degree of research has been done into the computation of matrix
exponentials [70] [71] [72], their actual evaluation can still be quite expensive, especially beyond
3×3 sized matrices, where cheap and general analytic solutions are not known. For that reason, many
matrix exponential calculations rely on iterative methods such as Padé approximations [73]. While
these methods can be relatively fast, they are still quite slow in comparison to scalar exponential
calculations.

However, the matrices that have their exponentials computed for this problem take on particular
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forms that can be separated to vary by scalar variables. As such, the exponentials can be formulated
in such a way that a set of matrix exponential tables may be formed, allowing the computation
of matrix exponentials to be pre-calculated and then quickly looked up and interpolated using
the pre-computed tables. This represents a substantial improvement in implementation speed and
performance and a drastic improvement in matrix exponential cost scaling that could allow for much
higher order polynomial approximations to be used by the method.

First, the definition of a matrix exponential is given by the convergent power series:

exp
(

¯̄A
)

=
∞∑
l=0

¯̄Al

l!
(4.30)

We consider only the matrices from the up moving equations since the concept will be identical
for the downward moving equations. Considering Eq. 3.26h and Eq. 4.19, the matrix exponential
takes the form:

exp

(
−

¯̄Sup√
1− µ2

∆s

)
(4.31)

Where the S matrix is:
¯̄Sup =

µ

∆z
¯̄Cup + Σt

¯̄I (4.32)

So let us now define:
γ = − µ∆s

∆z
√

1− µ2
(4.33)

ζ = − Σt∆s√
1− µ2

(4.34)

Then the matrix exponential now can be expressed as:

exp

(
−

¯̄Sup√
1− µ2

∆s

)
= exp

(
γ ¯̄Cup + ζ ¯̄I

)
(4.35)

But notice that the final matrix is the identity matrix, so it is commutative with all other matrices.
Now if two matrices are commutative then it can be seen from the power series definition that the
exponential can be split in a manner identical to scalar exponentials. So we get:

exp

(
−

¯̄Sup√
1− µ2

∆s

)
= eγ

¯̄Cup

eζ
¯̄I (4.36)

First, notice that the fact that the second matrix is a matrix exponential of a factor of the identity
matrix, then it will simply be the diagonal matrix where every diagonal term is eζ so we can pull
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that factor out and treat it as a scalar to avoid some matrix-matrix multiplication:

eζeγ
¯̄Cup

(4.37)

Now consider γ1 and γ2 such that γ1 − γ2 ∼ ε. Then we see:

e(γ1−γ2) ¯̄Cup

=
∞∑
k=0

(γ1 − γ2)k

k!

(
¯̄Cup
)k

(4.38)

If ε� 1 then we see that the importance of the terms geometrically decreases so that we can
ignore high order terms to get:

eγ1
¯̄Cup

e−γ2
¯̄Cup ≈ ¯̄I + (γ1 − γ2) ¯̄Cup ⇒ eγ1

¯̄Cup ≈ eγ2
¯̄Cup

+ (γ1 − γ2) ¯̄Cupeγ2
¯̄Cup

(4.39)

So if we have already determined the matrix eγ2
¯̄Cup and ¯̄Cupeγ2

¯̄Cup then we can do a linear
calculation and matrix addition to compute an approximation to eγ1

¯̄Cup . This prompts us to create a
table of matrix exponentials for varying values of γi associated with eγi

¯̄Cup and ¯̄Cupeγi
¯̄Cup that is

used in the sweep to give the desired matrix exponentials at a fraction of the cost of computing those
same matrix exponentials using traditional methods. Additionally, this innovation precludes the need
for further research into efficient methods of computing matrix exponentials for this method, since
the computation of the matrix exponential tables is front-loaded and computationally inexpensive.

For the actual implementation of the matrix exponential tables in MPACT, the minimum and
maximum value of the unitless variable γ is computed for the given problem. Investigating γ,
we see that it will be symmetric due to the symmetric nature of angular quadrature sets. That is
to say, for every direction m in a quadrature set, there will be some m′ such that ωm = ωm′ and
µm = −µm′ . This means that the minimum value of γ will be the negative of the maximum value

of γ. Furthermore, γ is the multiple of the two ratios µ√
1−µ2

and ∆s
∆z

. Now,
∣∣∣∣ µ√

1−µ2

∣∣∣∣ is less than 1

unless |µ| ≥ 1√
2

and will still be small unless |µ| is close to 1. For most angular quadrature sets
used in reactor physics problems this ratio stays small. Additionally,

∣∣∆s
∆z

∣∣ is typically less than 1
since slice sizes are normally around 10 cm whereas most segment lengths are much shorter than 1
cm. As such, the upper bound for |γ| will be much less than 1 in most reactor physics problems.

Once the bounds of γ have been computed, the bounds are rounded up to the next integer,
typically 1. Following this, a uniform grid of points, indexed i here, between the two integers is
made, each 0.0001 away from each other. This spacing was determined by comparing the accuracy
of the linear interpolation halfway between the grid points and a 12th order Padé approximation
of that exponential. The sufficient accuracy was determined such that it would be similar that
of the difference between a 6th order and 12th order Padé approximation, since 6th order Padé
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approximations are typically considered to be of sufficient accuracy in general matrix exponential
calculations. Once the grid spacing is set, the values of eγi

¯̄Cup and ¯̄Cupeγi
¯̄Cup are computed for each

positive grid point, and the values of eγi
¯̄Cdown and ¯̄Cupeγi

¯̄Cdown are computed for each negative grid
point. These grid point matrix exponentials are computed using a 12th order Padé approximation.
Notice that e0 ¯̄Cup

= e0 ¯̄Cdown
= ¯̄I .

The tables for ζ were similarly constructed using an identical grid, but ranging from 0 to the
minimum computed value since ζ is universally negative. Optical thickness of a ray segment, Σt∆s,
is typically much less than 1 in most reactor physics meshes. Additionally, 1√

1−µ2
is relatively

small except for values of |µ| near 1, which is uncommon in angular quadrature sets. As such, the
minimum value of ζ is often above −1. The creation and use of these tables is identical to the
matrix exponential tables except for scalar exponentials instead of matrix exponentials.

With the tables now made, in the axial expansion sweep γ and ζ is computed for each segment
and the associated matrix exponential is linearly interpolated with the nearest grid point, γi, as
described in Equation 4.39. Similarly, the ζ exponential is also computed using the nearest grid
point, ζi′ , and the interpolated matrix exponential is multiplied by the resulting scalar to give the

complete matrix exponential table calculation of exp

(
− ¯̄Sup√

1−µ2
∆s

)
or exp

(
− ¯̄Sdown√

1−µ2
∆s

)
.

Track Renormalization Investigation

During the implementation phase of this method, some investigation was made into the consistency
of the “seen” area of a FSR, that is to say the sum of ray segment areas (ray spacing width multiplied
by segment length) for a given discrete angle, with the known FSR area. This investigation led to the
observation that if ray spacing was too large, a non-negligible discrepancy between angularly seen
area and true area could occur. To fix this, a renormalization area was pre-computed for each FSR
in each direction. This area was used to correct the relative amount of source contribution compared
to material and geometric attenuation in the matrix exponential for each angle in a given FSR.
Unfortunately, application of this correction introduced inconsistencies in the neutron balance of the
calculation. These inconsistencies added instability to the calculation particularly when attempting
to couple it with CMFD. Additionally, it was determined that for most typical ray spacings used in
reactor physics problems, that the “seen” area was relatively close to the true area. As such, no track
renormalization is currently used in the MPACT implementation of the axial expansion method.

Since the implementation relies on MPACT’s ray tracing, the track renormalization capabilities
of MPACT’s modular ray tracing calculation can be utilized by the axial expansion method in
MPACT. However, no track renormalization is currently the default method for the LPAEM in
MPACT and those renormalization’s effects on the method have yet to be thoroughly explored.
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4.5 Memory Usage Analysis

Memory usage is one of the primary computational concerns in solving neutron transport problems.
Even if a method of solving the system is efficient with respect to solution time, if it is expensive
in terms of memory usage it may not be usable for large problems. To determine the memory
cost of this method, analysis was performed to estimate the memory usage of the primary memory
contributing terms for the method beyond the standard memory required by traditional 2D/1D
methods.

For a general problem, the primary memory scaling factors for axial expansion specific terms
are as follows:

1. NFSR - Number of FSRs

2. NPC - Number of pin cells

3. K - Number of axial slices

4. NG - Number of energy groups

5. Np - Number of polar angles

6. Na - Number of azimuthal angles

7. NSegMax - Maximum number of segments in a modular ray

8. NRadFSR - Maximum number of radial FSRs

9. Nsurf - Number of coarse mesh surfaces

10. Nrays - Number of rays

11. Npoly - Number of axial Legendre polynomials

These factors then are components of the primary additional memory added by the axial
expansion method. In Table 4.1 the functional forms of the largest additional memory terms are
recorded. Additionally, the added memory for the small 9× 9 fuel array detailed in Section 5.2.2 is
both computed and the full increase recorded for a run with Npoly = 2.
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Component Function 9× 9 Array Memory [MB]
Radial Boundary Values 2KNGNpNraysNpoly 250

Leakage Incremental Source 8NGNpNaNRadFSRNpoly 40.9

Sweep Leakage Accumulation 8NGNpNaNRadFSRNpoly 13.6

Axial Leakage 16KNPCNGNpNa 8.86

Sweep Computed Matrices 4NGNpNaNRadFSRN
2
poly 3.83

Matrix Exponential Tables 20000N2
poly 1.37

Sweep Intermediate Flux 4NGNpNRadFSRNpoly 1.28

Stored Source NFSRNGNpoly 0.807

Scalar Flux NFSRNGNpoly 0.807

Sweeper Source NFSRNGNpoly 0.807

Sweep Exponent Matrices NGNpNSegMaxN
2
poly 0.227

Sweep Surface Flux 2NGNsurf 0.0644

Sweep FSR Flux NGNRadFSRNpoly 0.0532

Sweep Segment Flux NG(NSegMax + 1)Npoly 0.0256

Percent Additional Memory N/A 195.21%

Table 4.1: Memory Analysis.

It can be observed in Table 4.1 that the bulk of the memory increase comes from the radial
boundary storage. Because the ray boundary values must be stored for each axial moment, there is
unfortunately no real way to mitigate this. Unfortunately, it does appear that the axial expansion
method requires significantly more memory than traditional transport. However, one positive thing
to note is that the matrix exponential tables are relatively cheap with respect to memory, and scale
only with number of axial moments, independent of problem size.

Alternatively, using the FSR extruded leakage, which was not implemented in MPACT but
was investigated in the 1D/1D exploratory code, the axial leakage term becomes 16NFSRNGNpNa.
With this formulation, the memory usage for the axial leakage term in the 9 × 9 array increases
to 413 MB, which would be nearly 50 times the memory usage found in the pin cell averaged
implementation and make it the largest single source of additional memory introduced by the axial
expansion method. Fortunately, analysis in Section 5.1.1 reveals that FSR extruded leakage provides
minimal benefits in terms of accuracy.
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4.6 Summary

In this chapter we investigated a number of numerical aspects and methods for solving the LPAEM.
1D/1D equations were derived and similarly MOC was applied to the full 3D axial expansion
equations to provide an algebraic set of equations for the axial expansion method. The requisite
linkage with CMFD was introduced including the necessary projection of the coarse mesh leakage.
Matrix exponential lookup tables are also introduced and formed in such a manner that they can be
used for this method. Finally, memory usage of the method is introduced and analyzed for a small
array of pin cells. The next chapter describes some of the computational campaigns performed
using the axial expansion method and their results.
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CHAPTER 5

Method Demonstration and Numerical Results

5.1 1D/1D Demonstrations

To demonstrate the method’s capabilities, limitations, and correctness, it is useful to start with
investigations involving 2D systems with axial characteristics similar to those in an LWR. These
tests capture some of the fundamental behaviors of the method, but must be necessarily limited
in their demonstrative capabilities by the lack of y direction radial variability. As such, these
investigations, whether performed using an exploratory code or using the full implementation in
MPACT, can serve to demonstrate useful characteristics of the method but need to be followed up
on with full 3D problems.

5.1.1 Exploratory Code Demonstration

These demonstrations took place using an exploratory code explicitly implemented for the 1D/1D
method described in Section 4.1. The code was written in modern Fortran and made use of multi-
threading for parallelism. This section describes the primary models run in this exploratory code.
All future sections involving 1D/1D models involve computations performed using the full axial
expansion method implemented in MPACT.

The basis of the exploratory code test problem designs is an assembly of six pairs of fuel slabs,
each surrounded by moderator on both sides. At the center there is a fission chamber surrounded by
alternating fuel and guide tubes where each guide tube is separated by two slabs of fuel.

1. The first pair is separated from the second by a guide tube.

2. The second pair is separated from the third by another guide tube.

3. The third pair is separated from the fourth by a fission chamber

4. The fourth pair is separated from the fifth by another guide tube.
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5. The fifth pair is separated from the sixth by another guide tube.

Control rods replace the guide tubes in the design in some problems. The assembly is then
surrounded above, below, and on both sides by moderators. The design is made to mimic some
aspects of the traditional test problem C5G7 [68]. The cross sections of the system are those of the
3D C5G7 problem.

Four variations on the test problem are used. The first two variations are axially and radially
symmetric all rods out (ARO) and all rods in (ARI) configurations. These configurations are shown
in Figure 5.1.

ARO. ARI. RSAARI. RAAARI.

Figure 5.1: Symmetric assembly configurations.

The third configuration is the radially symmetric but axially asymmetric rod insertion (RSAARI).
The fourth configuration features a radially asymmetric and axially asymmetric rod insertion
(RAAARI). These configurations are both shown in Figure 5.1.

The meshes are identical for all configurations and are extruded, but need not be since the
method requires extruded coarse pins, not extruded meshes. The extrusion allows comparison of
pin leakage to cell leakage on identical meshes.

The meshes had slice heights of 3.57 cm and pin cell widths of 1.87 cm. An important note
is that all configurations ran for a case where a single slice 100 times thinner is inserted into the
interior of the reactor configuration; in this case, MPACT’s 2D/1D calculation failed to converge,
but the axial expansion calculation did converge.

Reference calculations for this testing were performed by laying the system on its side and
performing an ultra-fine mesh 2D MPACT calculation. The 1D/1D calculations for these tests were
performed on a small independent code written specifically for this initial testing.

A comparison of the global eigenvalue errors is shown in Table 5.1.
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Solver/Case ARO ARI RSAARI RAAARI
Ref 2D MPACT keff 1.03528 0.63391 0.99988 0.96280

MPACT 1D/1D -93 -433 -116 -206

Pin Cell Leakage N=4 -16 -398 17 -47

FSR Leakage N=4 -32 -179 -6 -31

Table 5.1: Eigenvalues and eigenvalue errors in [pcm].

The eigenvalue errors are smaller when using the axial expansion methods than when using
MPACT’s current axial approximation. The ARI case seems to be an outlier in terms of eigenvalue
errors for all three methods. This may be because this case is the only case that is more than
10,000 pcm away from criticality so that smaller relative errors in difference from the criticality
will result in larger absolute errors. Ignoring this outlier, the pin and cell leakage errors in cases in
which the system is fairly close to critical are nearly identical and are both more than five times
smaller than the error from MPACT’s approximation.

A plot of eigenvalue error progression vs. the order of axial polynomial expansion is shown in
Figure 5.2.

Figure 5.2: Legendre order effect on eigenvalue error.

The linear approximation appears good, and higher order approximations seem to have little
improvement on eigenvalue errors for these problems.

Fast and thermal flux profiles from the reference calculation for the RAAARI case are shown in
Figure 5.3.
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Group 1 flux. Group 7 flux.

Figure 5.3: Asymmetric insertion (RAAARI) flux profiles.

The asymmetry of the flux profiles is on display, and sudden flux gradients are much more
noticeable in the thermal flux than in the fast flux, likely due to the large poisoning effect that
control rod materials have on thermal flux.

Figure 5.4 shows a comparison of the errors from the reference of the axial local pin power
profiles for the fourth fuel pin in the asymmetric insertion (i.e., the fuel pin immediately to the
left of the longest inserted control rod) for the three calculation methods. This pin was chosen
because it was determined to be the most abnormal and sharply changing of the fuel pins, as
shown in Figure 5.3, making it the most likely candidate for noticeable errors coming from axial
approximations.

Figure 5.4: RAARI fuel pin four power profile errors.
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The cell and pin leakage calculations are both performed for the case in which the Legendre
polynomial expansion uses N = 4. So, the matrices used for the transport system are 5× 5, and
the vectors similarly have a length of five. Although the MPACT axial approximation has lower
error across a longer portion of the axial profile, the areas of largest error are much larger than
those found in the axial expansion approximation. Additionally, this area of highest error is lower
on the axial length, which is the location at which the flux is much higher for this configuration
(Figure 5.3) and at which the local accuracy plays a much more important role in bulk system
behavior. Although the cell-leakage method shows lower local errors than the pin-leakage method,
the error bears roughly the same shape in both situations.

5.1.2 Thin Slice Stability Demonstration

Over the course of the implementation, a number of regression tests were created in order to
determine robustness of the method in various circumstances. Some of these tests included thin
axial slices for an axially thin problem to prove the ability of the method to converge in such
circumstances. As mentioned in Section 1.2.1, traditional 2D/1D methods can have instability in
such systems so this can provide a useful demonstration for the adaptability of the axial expansion
method.

The models tested for this purpose were intentionally simple to minimize confounding factors.
For this test 6 different models were made, three of which used 1 group cross sections, and three
of which used seven group cross sections from C5G7. All of these demonstrations used a single
fissionable material, a single pin cell, and two 1 cm thick axial slices.

The first system, 1GIH, was a one group system which was infinite and homogeneous in all
directions, and therefore had no spatial variation axial or otherwise. The second system, 1GHS, was
a one group system with vacuum boundary conditions at the top and reflective boundary conditions
everywhere else, and therefore had solely axial variation centered about the bottom of the model.
The third system, 1GS, was a one group system with vacuum boundary conditions at the top and
bottom, and reflective boundary conditions everywhere else, and therefore had solely axial variation
centered about the middle of the model. The last three systems (7GIH, 7GHS, and 7GS) were the
exact same as the first three systems except with 7 group cross sections from C5G7. All models
were given a maximum of 100,000 iterations to converge. The convergence results demonstrating
the stability of the method are shown for runs without CMFD in Table 5.2 and with CMFD in
Table 5.3. By necessity, traditional 2D/1D must be run with CMFD in MPACT.

The convergence in Table 5.2 and 5.3 results show an interesting trend. The fact that the
convergence greatly slowed down with the addition of CMFD in the axial expansion systems
that had axial variability, indicates that some of the instability in these systems are present in
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CMFD itself. However, the observation that traditional 2D/1D with with CMFD enabled still did
not converge, indicates that the traditional 2D/1D method introduced additional instability not
found in the axial expansion method. Whether that instability alone would be sufficient to prevent
convergence with CMFD disabled is difficult to determine due to limitations preventing MPACT
from running traditional 2D/1D without CMFD. Regardless, these results demonstrate that the
axial expansion method is convergent both with and without CMFD in thin slice systems where
traditional 2D/1D is not.

Case N = 0 no CMFD N = 1 no CMFD N = 2 no CMFD
1GIH 23 25 31

1GHS 90 131 139

1GS 48 38 37

7GIH 6562 6558 6558

7GHS 32 34 34

7GS 18 16 16

Table 5.2: Convergence Iterations for Thin Slice Problems.

Case N = 0 CMFD N = 1 CMFD N = 2 CMFD Traditional 2D/1D
1GIH 2 2 2 2

1GHS 146 313 341 Did not converge

1GS 65 77 169 Did not converge

7GIH 7 8 8 7

7GHS 69 310 Did not converge Did not converge

7GS 41 75 125 Did not converge

Table 5.3: Convergence Iterations for Thin Slice Problems.

Additionally, in this discussion of instability for thin slices, the 1D/1D case with an inserted thin
slice in Section 5.1.1 was rerun in MPACT with axial expansion and exhibited the same behavior.
Failure to converge in traditional 2D/1D and convergence with the axial expansion method. CMFD
in this case did improve convergence, reducing the number of iterations to converge from O(1000)

to O(100). Furthermore, the RAARI case described in Section 5.1.1 was run in MPACT where all
3.57 cm slices were replaced with four 1 cm slices. This case also failed to converge in traditional
2D/1D but converged both with and without CMFD using axial expansion with a similar speedup to
the thin slice insertion case.

These results indicate that some of the instability in thin slice problems can come from CMFD,
however not all of it does. And even with CMFD, the axial expansion method seems capable of
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converging in these systems, while traditional 2D/1D does not always converge in these types
of systems. Indeed, even in systems where CMFD speeds up the convergence, and is therefore
presumed to be relatively stable, traditional 2D/1D is still not necessarily convergent.

5.1.3 Void Stability Demonstration

In order to demonstrate the axial expansion method’s capabilities in systems with void-like regions
surrounding fuel, a 1D/1D pin-cell like model was created. The axial properties of the model
mirrored the cold KRITZ-2:1 case described in Section 5.3.1, while the radial portion of the model
involved infinite slabs of fuel surrounded by either moderator or air depending on the axial position.
51 group MPACT cross sections were used for this problem. The geometry for this model is shown
in Figure 5.5.

Figure 5.5: 1D/1D Void Demonstration Model (Not to Scale, Rotated)

Convergence results for the model are shown in Table 5.4. The results show that the axial
expansion method universally converges for this voided problem, while traditional 2D/1D failed to
converge. Furthermore, CMFD is shown to be effective in accelerating the convergence of the axial
expansion method even in void-like systems. The stability of CMFD in the axial expansion calcula-
tion would seem to indicate that the instability of traditional 2D/1D is either exclusive to 2D/1D for
this void problem, or is a result of the interaction between traditional 2D/1D and CMFD. Either
way, the voided problem demonstrates the improved robustness of the axial expansion compared to
traditional 2D/1D in problems with neutronically important void-like regions surrounding fuel.

CMFD? AxExp N = 0 AxExp N = 1 AxExp N = 2 Traditional 2D/1D
CMFD 21 90 90 Did not converge

No CMFD 216 407 402 Not Available

Table 5.4: 1D/1D Void Convergence
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5.2 2D/1D Demonstrations

With the method fully implemented in MPACT, 2D/1D runs using the method could be made. Initial
runs featured pure source iterations to converge the system, but eventually CMFD was implemented
and used for later runs. Initial runs were used to demonstrate correctness in comparison with
traditional 2D/1D, and during the development of CMFD balance tests were made and used.
Eventually, demonstration of capabilities in problems with void-like regions was performed with
and without CMFD acceleration.

5.2.1 Pin Cell Demonstration

For confirmation that the method was implemented correctly in MPACT, three models of gradually
increasing complexity were tested. This testing involved first running a reference calculation using
MPACT’s traditional 2D/1D method on a very fine axial grid. Next both the traditional 2D/1D and
the axial expansion method are both run on identical meshes and compared. If the error from the
axial expansion is similar or less than the error from the traditional 2D/1D, then it is determined to
have succeeded the comparison test and confidence in the implementations correctness is increased.

The first model was that of a one group homogeneous 1 cm cube with reflective BCs (boundary
conditions) on all sides except the top which has vacuum BCs. The one group cross sections were
simple and formulated such that the eigenvalue for an infinite homogeneous system was 1.425.
Since the system is equivalently a 1D slab system, the reference calculation was done exclusively
using the radial solver by making the model a single slice and moving the vacuum BC to the right
side. Then 20 equal sized 0.05 cm slices in the x direction were used for the radial solver. For
the comparison calculations, the slice size was 0.5 cm with no radial divisions since the system is
radially invariant. This model was run to test simple single region leakage.

The second model was of an extruded fuel pin cell model based off of the C5G7 [68] UO2-3.0
pin cells. The cross sections were similarly sourced from the C5G7 benchmark, and as such were 7
group cross sections. The pin cell was given reflective BCs on all sides except the top which had
vacuum BCs and had a axial length of 15 cm. The reference mesh had 100 axial slices of 0.15 cm
thickness each. The comparison calculations had 3 slices of 5 cm thickness each. This model was
run to test more complex multi-region/multi-group leakage. An illustration of the radial divisions
within the pin cell is shown in Figure 5.6.
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Figure 5.6: Pin Cell Divisions

The third model identical to the pin cell from the second model but with the addition of an
non-extruded 1 cm buffer of pure moderator at the top before the vacuum BCs. The system was
given reflective BCs on all sides except the top which had vacuum BCs. The reference mesh had
100 axial slices of 0.15 cm thickness each in the fuel, and 10 slices of 0.1 cm thickness each in
the moderator. The comparison calculations had 3 slices of 5 cm thickness each in the fuel, and a
single slice of 1 cm thickness in the moderator. This model was run to test leakage for situations
without purely extruded meshes and where not all slices are of equal thickness. An illustration of
the disjoint nature of the mesh is shown in Figure 5.7.

Figure 5.7: Disjoint Mesh

For analysis of the implementation, we are investigating comparison of the globally calculated
eigenvalue. The eigenvalue results from this computations for all 3 models are shown in Table 5.5.
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Method/Case One Group Block Pin Cell No Buffer Pin Cell With Buffer
Reference 1.350394 0.987853 1.015915

Traditional 2D/1D 302 694 467

Axial Expansion -2 122 252

Table 5.5: Eigenvalue results and errors in pcm.

So it can be observed that the one group homogeneous system is quite far from criticality, while
the pin cell with no buffer and the pin cell with moderator buffer are both near criticality, being just
subcritical and just supercritical respectively.

The associated eigenvalue errors compared to the reference calculation are shown in Table 5.5.
These results show that the axial expansion method consistently performs about as well or better
than traditional 2D/1D.

The axial expansion calculations are all performed for the case in which the Legendre polynomial
expansion uses N = 3. So, the matrices used for the transport system are 4 × 4, and the vectors
similarly have a length of four. All models used a Chebyshev-Yamamoto product quadrature for
angular discretization with 16 azimuthal angles per quadrant and 2 polar angles per half sphere with
0.05 cm ray spacing.

5.2.2 Small Array Demonstration

A small pin cell array model was tested as an intermediate system before testing a larger assembly
level system. The model used pins from the C5G7 [68] benchmark. The pin cell grid is shown in
Figure 5.8

Figure 5.8: Small Pin Cell Array

All fuel pins were 42.84 cm tall with a buffer of 21.42 cm of water above them. All fuel pins
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were 1.08 cm in diameter with a fuel pitch of 1.26 cm. The fuel rod extended from the top of the
model to one of three locations for three different tests. The first test extended it to 10.71 cm above
the bottom in order to make the model as close to critical as possible with this configuration and
these slice sizes. The second test extended it all the way into the bottom of the system. The third test
fully withdrew it to the top of the fuel, but not out of the water. The model had reflective boundary
conditions on all sides except the top.

The mesh axial slices were all 3.57 cm tall, except for the reference test case which used an
axial slice size of 0.357 cm. The mesh had pin cells composed of 8 radial divisions in total, 5 of fuel
and 3 of moderator. The fuel pins also used 8 azimuthal divisions for a total of 64 regions in each
fuel pin. The moderator pins had 5 equal divisions in the x direction and 5 in the y for 25 regions in
each moderator pin. The model was run with 16 azimuthal angles and 2 polar angles per octant.
This equates to 32 total angles per octant of the unit sphere. The model was run with 0.05 cm ray
spacing. 7 group C5G7 cross sections were used.

The eigenvalue results from this computations for all 3 test cases are shown in Table 5.6.

Method/Case Fully Inserted Fully Withdrawn Partially Inserted
Reference 0.830497 1.186888 1.0320475

Traditional 2D/1D -0.14 4.82 52.36

Axial Expansion -405.58 -22.21 -42.51

Table 5.6: Eigenvalue results and errors in PCM.

So it can be observed that all cases behaved roughly along expectations with the fully withdrawn
control rods being very supercritical, the fully inserted being subcritical, and the fine tuned insertion
being nearly critical.

The associated eigenvalue errors compared to the reference calculation are shown in Table 5.6.
These results show that the axial expansion method consistently performs about as well as traditional
2D/1D, except in the situation of the fully inserted calculation. What is most surprising about this
calculation is that the traditional method did so well when this eigenvalue was so far from criticality.
Previous experience has shown that the coarser meshes tend to do worse when further from criticality.
As of yet, no explanation has been discovered for why the axial expansion calculation performed so
poorly on this calculation or why coarse meshed traditional 2D/1D performed so well. It is likely
this was the result of some form of cancellation of error.

The axial expansion calculations are all performed for the case in which the Legendre polynomial
expansion uses N = 2. So, the matrices used for the transport system are 3 × 3, and the vectors
similarly have a length of three. All models used a Chebyshev-Yamamoto product quadrature for
angular discretization with 16 azimuthal angles per quadrant and 2 polar angles per half sphere with
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0.05 cm ray spacing.

5.2.3 B&W 1484 Demonstration

The B&W 1484 Core 1 [74] critical experiment shown in Figure 5.9 is a popular benchmarking
problem for neutron transport codes [75]. Core 1 is not an exact model of the critical experiment
since an extra column of pin cells was added in the center of the core so that the core was fully
quarter core symmetric.

Figure 5.9: B&W 1484 Core 1 [74]

The model was run with 16 azimuthal angles and 2 polar angles per octant. This equates to 32
total angles per octant of the unit sphere. The model was run with 0.05 cm ray spacing. 51 group
MPACT cross sections were used.

The mesh had pin cells composed of 4 radial divisions in total, 1 of fuel, 1 of gap, 1 of clad, and
1 of moderator. The fuel pins also used 8 azimuthal divisions for a total of 32 regions in each fuel
pin. The moderator pins had 2 equal divisions in the x direction and 2 in the y for 4 regions in each
moderator pin. These pin cell divisions are then identical to those shown in Figure 5.7. This results
in a total of 5,384 source regions in the model.

Due to the large nature of the assembly sized B&W model and current issues involving present
inefficiencies in the axial expansion implementation in both speed and memory usage, the B&W
model was only run for the standard mesh and conditions. The axial expansion calculation resulted
in a computed eigenvalue of 0.9987379 and the MPACT 2D/1D resulted in a computed eigenvalue
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of 1.0029452 representing a disparity of about 400 pcm. Which is roughly consistent with the
disparities we have observed in other tests.

As a critical experiment, the expectation is that the result with be critical with an eigenvalue of
1. In this regard, the axial expansion method was 126 pcm off of criticality while traditional 2D/1D
was 295 pcm off criticality. This indicates an improvement in accuracy using the axial expansion
method over 2D/1D for the same mesh.

5.2.4 Void Stability Demonstration

Building upon the 1D/1D work in Section 5.1.3, a 3D pin cell model were created from the KRITZ-
2:1 model at 19.7°C described in Section 5.3.1. The pin cell model was an exact copy of the pin
cell found in the full KRITZ-2:1 model and as such, the axial shape matches that represented in
Figure 5.5. 51 group MPACT cross sections were used for this problem. The model had varying
slice sizes, all on the order of 10 cm. The FSR divisions and radial geometry for this model is
shown in Figure 5.10.

Figure 5.10: 2D/1D Void Model Radial FSR Division. To Scale

Convergence results for the model are shown in Table 5.7. The results show that the axial
expansion universally converges for this voided problem, while traditional 2D/1D failed to converge.
In fact, these results almost exactly mirror the results shown in Table 5.4, indicating that the
conclusions drawn from the 1D/1D investigations into uncovered fuel hold true in full 3D neutron
transport.
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CMFD? AxExp N = 0 AxExp N = 1 AxExp N = 2 Traditional 2D/1D
CMFD 20 50 91 Did not converge

No CMFD 219 409 404 Not Available

Table 5.7: 1D/1D Void Convergence

We once again observe that the axial expansion method is stable for this problem for N = 0 to
N = 2 expansions while traditional 2D/1D is not. Additionally, CMFD is effective at accelerating
the axial expansion calculation, indicating that the instability does not solely lie in CMFD for this
problem.

Submerged Fuel Thermal Flux Bare Fuel Thermal Flux

Figure 5.11: Void Test Thermal Flux.

Figure 5.11 shows radial slices of the thermal flux distribution in both submerged and bare
portions of the fuel pin. It can be observed that the radial distribution is very similar for the thermal
flux both above and below the water line. As expected, thermal flux is very low inside the fuel
where thermal neutrons would be expected to quickly be removed either through absorption or
fission. Also unsurprisingly, the thermal flux is greater in magnitude below the water line, where
the moderator is dense enough to produce a lot of thermal flux. It can also be observed that in the
bare fuel portion, the relative magnitude difference between the thermal flux in the fuel and the
thermal flux outside the fuel is much smaller compared to the submerged fuel. This is likely due to
the fact that the void surrounding the bare fuel is very low in density and therefore does very little
to moderate neutrons, resulting in the majority of thermal flux likely coming from axial leakage.

Figure 5.12 shows radial slices of the fast flux distribution in both submerged and bare portions
of the fuel pin. This distribution shows an interesting reversal in trends. Fast flux is higher inside
the fuel where fission is expected to occur in the submerged region, however it is very spatially

82



invariant, and in fact slightly higher outside the fuel in the bare region. This reversal seems to
indicate two things. First, as expected there is little moderation in the void region, resulting in little
loss of fast neutrons outside the fuel. Second, the fact that the fast flux is actually slightly higher in
the void would not be expected even without much moderation in the void unless another source of
fast flux was dominant over the fission production. This other dominant source of fast flux could
only be the axial leakage, which must be translated using the 1D portion of the method. As such, it
can be observed that void-like regions above moderated regions can lead to situations where the
dominant source of flux in some groups is the axial leakage of that flux, not the production within
the coarse cell. As explained in Section 1.2.1, this can potentially lead to instability of traditional
2D/1D and lead it to fail, which is exactly what is observed in this test.

Submerged Fuel Fast Flux Bare Fuel Fast Flux

Figure 5.12: Void Test Fast Flux.

Void Models Axial Expansion Convergence

The convergence of the axial expansion order was investigated for the fuel pin models with void-like
regions described in Sections 5.1.3 and 5.2.4. Figure 5.13 shows the convergence of the the keff
eigenvalue for both the 2D and 3D void stability models. It can be seen in this figure that the
eigenvalues of both models converge to around 1.14.

In Figure 5.14, the pcm difference between each axial expansion order and the N = 10 run
is plotted. For both the 2D and 3D void stability problems, quick convergence is achieved, with
N = 1 differing by about 45 pcm in both models, and N = 4 being sufficient to achieve less than
1 pcm difference from the N = 10 model for both the 2D and 3D fuel pin models. This is quite
consistent with the change in errors observed in Figure 5.2, so this result indicates that the method
is well behaved in terms of axial expansion convergence even for problems with void-like regions
surrounding fuel.
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Figure 5.13: Void Stability Models keff Convergence

Figure 5.14: Void Stability Models Absolute keff Difference from N = 10

5.3 KRITZ-2:1 Experiments

From 1972 to 1973, various experiments using the KRITZ-2 system were performed at Studsvik,
Sweden. These experiments were designed to create critical configurations of rectangular (often
square) arrangements of uranium or MOX Zircaloy-2 clad fuel rods in light water. This criticality
was achieved by adjusting the water level in the core and the boron concentration in the moderator.
These experiments were performed to achieve criticality at both room temperature (called cold)
conditions, around 20°C, as well as hot conditions, around 250°C.
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As critical configurations, the keff eigenvalue for these systems is necessarily known to be 1.
Additionally, axial critical buckling was determined as were relative rod powers for fission rate
distributions in selected fuel rods.

Several experiments were performed in KRITZ including the subject of this section, KRITZ-2:1.
The top view of the layout is shown in Figure 5.15. KRITZ-2:1 was a square 44× 44 array of LEU
fuel pins surrounded by water. The square lattice pitch was 18-mm and the UO2 fuel in the fuel
rods had a density of 10.415 g/cm3 with a U235 enrichment of 1.86 wt% and negligible plutonium
oxide. The cold experiment for KRITZ-2:1 was performed at 19.7°C while the hot experiment was
performed at 248.5°C. Since the experimental design had a negative thermal reactivity coefficient
(which is to say that increases in temperature will decrease the eigenvalue [76]), the moderator
height is increased for the hot run and the boron concentration is further diluted. For both these
critical configurations, a non-negligible amount of fuel was exposed above the water line surrounded
by a void-like material of saturated steam.

Figure 5.15: Top View of KRITZ-2:1 Experiment [9]

However, this region of the fuel is still neutronically important to the solution of the transport
equation. As such, modeling of this region is important in order to obtain accurate simulation results
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for the KRITZ-2:1 experiments. Unfortunately, traditional 2D/1D can be unstable for systems with
neutronically important void-like regions adjacent to fuel regions. This is the case with KRTIZ-2:1
and, as such the 3D simulation of these critical configurations has previously been limited in MPACT
to either simulation of the covered fuel, which underestimates the eigenvalue due to missing a
large portion of the active fuel, or simulation of the system with artificially increased steam density
in order to maintain stability in the bare fuel region which overestimates the eigenvalue due to
additional moderation. Additionally, 2D axial buckling cases can be performed for the KRITZ-2:1
experiment, but the data is not considered acceptable as a buckling benchmark experiment.

5.3.1 KRITZ-2:1 Cold (19.7°C)

For the cold KRITZ-2:1 experiment, the reactor was operated at a temperature of 19.7°C. At this
temperature criticality was achieved at a moderator height of 652.8 mm and a moderator boron
concentration of 217.9 ppm. Since the active fuel was 2000 mm in total height, this left 1347.2
mm of fuel bare and uncovered, surrounded by saturated vapor which neutronically is considered a
void-like material. The radial distribution of the flux is shown in Figure 5.16 and Figure 5.17.

Figure 5.16: KRITZ-2:1 19.7°C Thermal Flux
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Figure 5.17: KRITZ-2:1 19.7°C Fast Flux

This model was run for 2D axially buckled cases for three different levels of anisotropic
scattering. Eigenvalues are shown in Table 5.8.

Scattering TCP0 P1 P2 P3

Eigenvalue 1.0252118 0.9903782 0.9910047 0.9908927

Table 5.8: 2D Axial Buckling Eigenvalue Results

These results demonstrate a significant dependence of the system eigenvalue on anisotropic
scattering. Indeed, TCP0, which is often expected to be very similar to P1 scattering in LWR
systems, is 3483 pcm different from P1 scattering and 3431 pcm different from the P3 scattering.
These results also demonstrate that the axial buckling data for KRITZ-2:1 is not sufficient to create
accurate 2D simulations since even the P3 scattering results are 911 pcm off of criticality.

Traditional 2D/1D cases were run for a cutoff, covered, and voided model. The cutoff model
involves only modeling the axial portion of the fuel which is below the water line in the original
experiment. The covered model involves modeling the entire system, but artificially increases the
steam density to match the density of moderator and avoid void-like regions. Finally, the voided
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model is the entire experiment, modeling the bare fuel true to experimental specifications with
saturated steam surrounding it instead of water.

Case/Scattering TCP0 P1 P2 P3
Cutoff Did not converge Did not converge Did not converge Did not converge

Covered 1.0881198 1.0525992 1.053239 1.0531229

Voided Did not converge Did not converge Did not converge Did not converge

Table 5.9: Traditional 2D/1D Eigenvalue Results

Results for traditional 2D/1D cases in Table 5.9 for these models demonstrate three things.
First, as expected the fully covered model greatly over-predicts the eigenvalue with the P3 case
being 5312 pcm over criticality. Second, we again observe that for this problem, TCP0 scattering
over-predicts the eigenvalue compared to P3, being 3500 pcm over the P3 result which is pretty
consistent with the 3431 pcm over-prediction observed from the 2D axial buckling results. Third,
these models do appear to be relatively unstable using traditional 2D/1D with not only the voided
model failing to converge, which was expected, but also the axial variance is large enough in the
shorter cutoff model that the calculation for that model still failed to converge.

For the axial expansion model of this experiment, the full active fuel length was modeled. This
includes both the 65.28 cm of submerged fuel, as well as the 134.72 cm of uncovered bare fuel
above it. The axial expansion cases were limited to TCP0 scattering since anisotropic scattering
has not yet been implemented for the axial expansion method in MPACT. All cases were run with
CMFD enabled, this is especially important in a large system like this where the flat error modes
may take a very long time to converge. Due to implementation limitations in both time and memory
efficiency, the axial expansion calculations were limited to N = 0 and N = 1. From the results
in Figures 5.2, 5.13, and 5.14, the difference between N = 1 and higher order axial expansion is
expected to be well under 100 pcm. Eigenvalues are shown in Table 5.10.

Solver AxExp N = 0 AxExp N = 1 Traditional 2D/1D

Eigenvalue 0.9684086 1.0389560 Did not converge

Table 5.10: 3D Eigenvalue Results

In these results, it can be observed that the N = 0 axial expansion shows an expected large
difference relative to the N = 1 calculation of 7055 pcm, which is quite close to the 3D model
difference of 6203 pcm shown in Figure 5.14 from the void stability demonstration. One thing of
note is that while the N = 1 result is 3896 pcm above the ideal result of criticality, this is actually
quite close to the difference observed in the 2D results of TCP0 being 3431 pcm above the P3
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scattering results from Table 5.8 and the traditional 2D/1D difference of TCP0 being 3500 pcm over
P3 scattering from Table 5.9. While this trend should not be expected to exactly hold when moving
from 2D axially buckled or traditional 2D/1D to axial expansion 3D neutron transport, it may be an
indicator that near critical results could be achieved using the axial expansion method with higher
order scattering for this simulation.

5.3.2 KRITZ-2:1 Hot (248.5°C)

For the hot KRITZ-2:1 experiment, the reactor was operated at a temperature of 248.5°C. At this
temperature criticality was achieved at a moderator height of 1055.2 mm and a moderator boron
concentration of 26.2 ppm. Since the active fuel was 2000 mm in total height, this left 944.8 mm
of fuel bare and uncovered, surrounded by saturated vapor which neutronically is considered a
void-like material. The radial distribution of the flux is shown in Figure 5.18 and Figure 5.19.

Figure 5.18: KRITZ-2:1 248.5°C Thermal Flux
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Figure 5.19: KRITZ-2:1 248.5°C Fast Flux

This model was run for 2D axially buckled cases for three different levels of anisotropic
scattering. Eigenvalues are shown in Table 5.11.

Scattering TCP0 P1 P2 P3

Eigenvalue 1.0331942 0.9918227 0.9926015 0.9924803

Table 5.11: 2D Axial Buckling Eigenvalue Results

These results demonstrate a significant dependence of the system eigenvalue on anisotropic
scattering. Indeed, TCP0, which is often expected to be very similar to P1 scattering in LWR
systems, is 4137 pcm different from P1 scattering and 4071 pcm different from the P3 scattering.
These results also demonstrate that the axial buckling data for KRITZ-2:1 is not sufficient to create
accurate 2D simulations since even the P3 scattering results are 752 pcm off of criticality.

Traditional 2D/1D cases were run for a cutoff, covered, and voided model. The cutoff model
involves only modeling the axial portion of the fuel which is below the water line in the original
experiment. The covered model involves modeling the entire system, but artificially increases the
steam density to match the density of moderator and avoid void-like regions. Finally, the voided
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model is the entire experiment, modeling the bare fuel true to experimental specifications with
saturated steam surrounding it instead of water.

Case/Scattering TCP0 P1 P2 P3
Cutoff 1.0238304 0.9902754 0.9908828 0.9907986

Covered 1.0406973 1.0068462 1.0074712 1.007359

Voided Did not converge Did not converge Did not converge Did not converge

Table 5.12: Traditional 2D/1D Eigenvalue Results

Results for traditional 2D/1D cases in Table 5.12 for these models demonstrate four things.
First, the fully covered model over-predicts the eigenvalue with the P3 case being 736 pcm over
criticality, much closer than the results in Table 5.9. This is likely explained by the fact that the
bare region is as smaller percentage of the active fuel length in the hot case than the cold case so
increase in moderation in that region will have less of an impact on the eigenvalue. Second, the
cutoff model is stable enough to converge in traditional 2D/1D and the eigenvalue is under-predicted
as expected. The under-prediction is 920 pcm, which indicates that the neutronic value of the bare
fuel is still significant. Third, we again observe that for this problem, TCP0 scattering over-predicts
the eigenvalue compared to P3, being 3303 pcm over the P3 result for the cutoff case and 3334
pcm over the P3 case for the covered case, which is pretty close to the 4071 pcm over-prediction
observed from the 2D axial buckling results.

For the axial expansion model of this experiment, the full active fuel length was modeled. This
includes both the 105.5 cm of submerged fuel, as well as the 94.48 cm of uncovered bare fuel above
it. The axial expansion cases were limited to TCP0 scattering since anisotropic scattering has not
yet been implemented for the axial expansion method in MPACT. All cases were run with CMFD
enabled, this is especially important in a large system like this where the flat error modes may take a
very long time to converge. Due to implementation limitations in both time and memory efficiency,
the axial expansion calculations were limited to N = 0 and N = 1. From the results in Figure 5.2,
the difference between N = 1 and higher order axial expansion is expected to be well under 100
pcm. Eigenvalues are shown in Table 5.13.

Solver AxExp N = 0 AxExp N = 1 Traditional 2D/1D

Eigenvalue 0.9765394 1.0363372 Did not converge

Table 5.13: 3D Eigenvalue Results

In these results, it can be observed that the N = 0 axial expansion shows an expected large
difference relative to the N = 1 calculation of 5980 pcm, which is quite close to the 3D model
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difference of 6203 pcm shown in Figure 5.14 from the void stability demonstration. One thing of
note is that while the N = 1 result is 3634 pcm above the ideal result of criticality, this is actually
quite close to the difference observed in the 2D results of TCP0 being 4071 pcm above the P3
scattering results from Table 5.11 and the traditional 2D/1D difference of TCP0 being both 3303
pcm and 3334 pcm over P3 scattering from Table 5.12. While this trend should not be expected
to exactly hold when moving from 2D axially buckled or traditional 2D/1D to axial expansion 3D
neutron transport, it may be an indicator that near critical results could be achieved using the axial
expansion method with higher order scattering for this simulation.

5.4 Matrix Exponential Tables Speedup

The speedup capabilities of the matrix exponential calculation tables mentioned in Section 4.4 were
tested on the third pin cell model described in Section 5.2.1. The model was tested for a set number
of iterations for axial polynomial expansion from N=0 to N=10. Calculation walltime is shown in
Figure 5.20.

Figure 5.20: Axial Expansion Calculation Times

Relative calculation speedup is shown in Figure 5.21. It can be noticed that the speedup exhibits
strange behaviors prior to N=2. This is due to the fact that the implementation of the matrix
exponential calculations is analytic for N=0 and N=1. After this, the calculation uses a 6th order
Pade approximation, so the comparison then becomes directly between Pade approximations and
matrix exponential tables.
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Figure 5.21: Matrix Exponential Tables Speedup

Both methods result in identical calculations, however, the exponential tables are universally
faster. Additionally, they scale much better with higher order polynomials with wall-time scaling
roughly as N1.4 when calculating matrix exponentials and scaling roughly as N0.85 when using the
matrix exponential tables. This implies that using matrix exponential tables can allow for much
higher order axial approximations if they are determined useful or necessary in certain problems,
while paying a much smaller price in runtime.

Figure 5.22: Axial Expansion Tables Memory Usage

An analysis of the memory usage by the matrix exponential tales was performed. As explained
in Section 4.5, memory usage for the matrix exponential tables is invariant of problem size and
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depends solely on order of the Legendre polynomial axial expansion being use. Figure 5.22 shows
the memory usage for the axial expansion tables for up to N = 20. It can be observed that the
memory usage does not exceed 1 MB until N = 2 and does not exceed 10 MB until N = 8. The
memory scaling for the matrix exponential tables is known to be N2 per Table 4.1

Figure 5.23: Axial Expansion Pre-Computational Time

The pre-computational timing costs of computing the matrix exponential tables were also
measured. Figure 5.23 demonstrates the pre-computational time costs for up to N = 20. Since
these tables are independent of problem size or cross sections, this calculation only needs to be
performed once, even for multiphysics problems, and the pre-computational time is invariant with
respect to system model. It can be observed that the pre-computational time is quite small even for
large values of N . Indeed, the pre-computational time for the matrix exponential tables does not
exceed 0.1 seconds until N = 5 and is not more than 1 second until N = 15. The pre-computational
time scaling is measured to be roughly N1.6.

5.5 Summary

In this chapter computational experiments using the axial expansion method were performed. The
method was initially tested for viability in an exploratory 1D/1D code that revealed that axial
mesh extrusion was unnecessary. In 1D/1D explorations using MPACT, stability of the method
for contrived problems with thin slices and void-like regions was devised and the method was
demonstrated to be more stable than traditional 2D/1D even in cases where CMFD introduced some
instability. The 2D/1D implementation in MPACT was then more fully tested from a pin cell up to
a large B&W 1484 experiment core.
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Additionally, stability of problems with void-like regions in 2D/1D was investigated and the
axial expansion method was shown to be stable with CMFD providing effective acceleration, while
the traditional 2D/1D failed to converge. This failure was investigated further by analyzing the
radial flux distribution both in the submerged and bare portions of the fuel rod. It was observed
that the fast flux in the bare fuel portion of the model showed characteristics consistent with axial
leakage dominance of the flux, which can cause instability in traditional 2D/1D calculations.

Next, the KRITZ-2:1 experiments were investigated and the stability of the axial expansion
method was demonstrated. While the accuracy was not ideal given that the current implementation
is limited to isotropic scattering, the error seemed consistent with what could be expected given
the difference between isotropic and anisotropic scattering calculations performed using 2D axial
buckling calculations and traditional 2D/1D calculations in altered systems without bare fuel.

Finally, the speedup from the matrix exponential tables was demonstrated and the tables were
shown to effectively produce a notable speedup in computational time. The cost of this speedup in
terms of memory and pre-computational time was analyzed, and the costs of the matrix exponential
tables was determined to be quite small.
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CHAPTER 6

Conclusions

This chapter provides a brief summary of the work in this thesis. The motivation is reiterated
and computational demonstrations are reviewed. Conclusions from these demonstrations are also
discussed and possible subjects of future research related to the LPAEM are explored.

6.1 Summary and Conclusions

In this work the problem of instability of the traditional 2D/1D method was explored and difficulties
involving use of the method in solving models based on the KRITZ-2 experiments were introduced.
While instability in traditional 2D/1D calculations can come from a variety of sources, the primary
one believed to be destabilizing these systems is the potential negativity, or even just very small
magnitude, of the flux in a coarse cell for some groups. This can lead to destabilizing and non-
physical cross section homogenization necessary in the 1D nodal sweep for traditional 2D/1D
methods. This potential instability is particularly likely in systems with sharp axial changes to the
flux solution and systems with regions of low local sources. Both of these situations are found
in systems with bare fuel above submerged fuel since the axial shape of the flux will be rapidly
changing at the water-air interface, and the void-like nature of air results in low source production
in air regions. This is exactly the physical characteristics present in the KRITZ-2 experiments as
they chose to reach criticality by leaving part of the fuel uncovered.

To fill this limitation of traditional 2D/1D methods, an alternative Legendre Polynomial Axial

Expansion Method (LPAEM) is proposed. The LPAEM explicitly solves the 3D transport equation,
albeit with a different spatial discretization method for the axial variable, the same as STREAM
and Proteus-MOC but with avoidance of axially extruded FSRs. This is compared to the solving
separate equations for the radial plane and the axial direction that is characteristic of traditional
2D/1D methods. Since the method requires no homogenization of cross sections for the axial
solution, and since the axial portion of the solution is full transport instead of a lower order PN
equation, it was conjectured that the axial expansion method would not suffer the same instability
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in problems with bare fuel. Additionally, the lack of a nodal solver in the axial direction led to
predictions that the method would not suffer from the same instability present in traditional 2D/1D
for problems with very thin axial slices due to how the transverse leakage is interpolated.

The axial expansion method is then formulated in this work. The derivation is performed from
the base transport equation and the axial expansion equations are composed in a matrix-vector form.
MOC is then applied to this form of the equations to give the algebraic system of equations that can
be solved. In addition, the necessary considerations for CMFD linkage are described. Following
this, the matrix exponentials present in the MOC form of the equations were investigated and a
faster method to solve them was created in the form of matrix exponential tables. The additional
memory needed by these tables and other aspects of the method was then investigated. It was
determined that the additional memory needed by the LPAEM could potentially be substantial, but
the additional memory needed by the matrix exponential tables was relatively negligible.

The results from Table 5.1 show that the axial expansion method is about as accurate as
the current MPACT default isotropic leakage 2D/1D approximation for the 1D/1D problems.
Furthermore, the results show that the difference in extruded cell leakage vs. pin cell leakage is
small. These results suggest that the axial expansion method is competitive in terms of accuracy
with the current MPACT 2D/1D approximation for identical meshes.

The results from Figures 5.2, 5.13, and 5.14 show that axial expansion greater than linear is
likely unnecessary for most problems. The difference quickly becomes quite small for the examined
problems, becoming less than 10 pcm different after N = 2 and less than 1 pcm after N = 4. This
suggests that linear axial expansion alone might be a preferable alternative to MPACT’s current
2D/1D approximation for systems where it breaks down.

The results from Figure 5.4 show that the axial expansion methods experience more consistent
and smooth local pin-profile errors compared with MPACT, and although the extruded cell leakage
results in slightly lower errors, the shape is similar to that of the pin-leakage method. This suggests
that local effects will likely be improved, or at least be competitive, by using the axial expansions
rather than the traditional 2D/1D method in MPACT. The nature of the axial expansion gives
additional intra-slice power resolution (not shown explicitly here) through the non-flat nature of the
axial flux solution that is not present in results from the traditional 2D/1D method in MPACT.

So, for the 2D pseudo-reactor system configurations, the axial expansion methods are compet-
itive with MPACT’s 2D/1D in terms of accuracy. Additionally, the naturally created intra-nodal
power resolution for pin cells due to the non-flat axial expansion might lead to some improvements
in multi-physics calculations, which rely on accurate axial power shapes.

Results in Tables 5.2 and 5.3 demonstrated the stability of the axial expansion method in
contrived systems with thin axial slices. These systems showed the instability that thin slices can
create, and while some of the instability seemed to come from CMFD, which is a requirement for
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a traditional 2D/1D calculation in MPACT, the ability of the axial expansion method to converge
in those problems with CMFD enabled indicates that at least some of the instability is inherent in
traditional 2D/1D methods themselves.

In Table. 5.4, the stability of the method in systems with void-like regions surrounding fuel
was demonstrated. In these results, CMFD seemed effective at accelerating the axial expansion
method indicating that any instability from CMFD was likely minor. The fact that traditional 2D/1D
methods were unable to converge for this problem demonstrates the theory that void-like regions
surrounding fuel can cause instability in traditional 2D/1D. Along with the thin slice results, these
results demonstrate robustness of the axial expansion method in systems where traditional 2D/1D
fails to converge for a 1D/1D problem.

Results in Tables 5.5 and 5.6 show good agreement between the axial expansion implementation
and the reference calculation. This agreements indicate the implementation is correct and further
comparisons can be done using the new axial expansion capabilities in MPACT.

In Tables 5.5 and 5.6, we also see that the errors from the axial expansion method are close to
those observed in the traditional 2D/1D calculation for the same mesh. In fact, these results show
that the axial expansion method results in similar global eigenvalue calculations as had previously
been seen. So, for these 3D configurations, the axial expansion methods are competitive with
MPACT’s 2D/1D in terms of accuracy.

Table 5.7 demonstrates the stability in problems with void-like regions for a 3D pin cell problem.
Again, we observe that traditional 2D/1D fails to converge in these problems, yet the axial expansion
method both converges and is effectively accelerated by CMFD. The radial slices of the fast flux
shown in Figure 5.12 indicate that the dominant source of fast flux in the bare fuel region of the
pin cell is from the axial leakage. This dominance of the axial leakage over the local coarse cell
production is a driving force of the instability in traditional 2D/1D, and is predicted to occur in
systems with bare fuel above moderated fuel.

Results in Tables 5.9 and 5.10 demonstrate the ability of the LPAEM to converge in the cold
version of KRITZ-2:1, a system that has been previously attempted to be used as a validation
problem for MPACT. This stability extends the previous results if the 1D/1D pincell with void
as well as the 3D KRITZ-2 pin cell model, both of which showed these same improved stability
properties. These results now show those same stability properties, but on a much larger scale with
the full KRITZ-2:1 cold critical experiment. Along with Table 5.8, the eigenvalue error present in
the axial expansion calculation seems to be in line with the error caused by using TCP0 scattering
instead of higher order anisotropic scattering. Since the implementation in MPACT is limited to
TCP0, this error is presently necessary in axial expansion calculations.

Results in Tables 5.11, 5.12, and 5.13 reiterate those same results with the hot KRITZ-2:1
system. The only additional observation is that this problem is a bit more stable for traditional
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2D/1D since it converges for the bare fuel cutoff case, which the cold KRITZ-2:1 model did not.
This is likely the result of the increased water height resulting in smoother axial variation of the
flux in the submerged fuel. Similarly the eigenvalue error present in the axial expansion calculation
seems to again be in line with the error caused by using TCP0 scattering instead of higher order
anisotropic scattering.

Results in Figures 5.20 and 5.21 show that the calculation of matrix exponentials is much faster
than the originally implemented Pade approximations. In fact, these results show us that even
for both cases where the matrix exponential calculations were analytic, up to the 2 × 2 matrix,
we still observe that the matrix exponential tables are far faster. Furthermore, the additional pre-
computational time and required additional memory is shown to be negligible even for relatively
large values of N in Figures 5.22 and 5.23 As such, it was determined that matrix exponential tables
would take over as the primary method of computing matrix exponentials for this method.

This work has shown a limitation of traditional 2D/1D and proposed an alternative method to
fill this limitation based upon the axial expansion method developed by ANL for Proteus-MOC.
The method derived here uses a new higher-order discretization and the axial coupling has been
reformulated to reduce memory usage and allow it to be compatible with non-extruded FSR
meshes. Additionally, the explicit use of Legendre polynomials in the new discretization lead
to the development of matrix exponentials that have demonstrated significant time savings with
minimal computational costs, even when compared to analytic computations possible for lower
order expansions. The method has been demonstrated to be effective with respect to accuracy
compared to traditional 2D/1D, but more importantly it has been shown to be stable for problems
with bare fuel above submerged fuel, which was the limitation we desired to fill. Overall, the hope is
that this method will provide a robust alternative in systems where traditional 2D/1D is too unstable
to converge.

6.2 Future Work

The theoretical progress for this project is mostly limited to the contents of Chapters 3 and 4 of this
document. The discovery of the viability of matrix exponential tables for these problems precludes
the need for additional research in efficient matrix exponential calculations for this problem, and
the method is complete in terms of derivation.

The implementation aspect of this project currently exists in a relatively robust, if somewhat
inefficient, state. The method is implemented in MPACT with full support for ray-wise multi-
threading and spatial message passing parallelism. The implementation now makes use solely of the
matrix exponential tables method for matrix exponential calculations. Matrix exponential tables are
computed once at the start of problem (which takes on the order of 0.01 seconds) and never need to
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be computed again. The tables are cross section independent, so multi-physics calculations do not
need additional table computations after each multi-physics step. Implementation is properly linked
to MPACT’s CMFD and can run in 3D with or without CMFD acceleration (traditional 2D/1D
requires CMFD acceleration in MPACT). The implementation is properly linked with MPACT’s
shielding calculations and can accept cross sections that require shielding computations.

With the implementation completed in MPACT, further work can be done in the investigation
of the effectiveness of the method as well as investigation of various approximations that can be
introduced to decrease computational costs. The following are proposed areas of further investigation
for this work should there exist desire to pursue the method further:

1. Despite some optimizations and adoption of matrix exponential tables, the implementation still
needs more thorough optimization to make appropriate timing and memory comparisons with
traditional 2D/1D in MPACT. Included in this is the fact that the implementation currently
requires a fully anisotropic storage of the coarse cell axial leakage in between iterations. This
represents a nontrivial amount of additional memory. Investigation of potentially reducing
the leakage to net current, or more likely angular moments, to reap the computational savings
should be performed to determine the consequences of such an approximation.

Additionally, it is observed in Figures 5.2 and 5.14 thatN = 1 orN = 2 seem to provide good
convergence for the eigenvalue result in most problems. It should be investigated whether
higher order axial expansion approximations provide better accuracy offset by computational
costs, when compared to lower order axial expansions on a finer axial mesh.

Currently, N = 1 runs can be between 2 and 16 time slower than N = 0 and N = 2 runs can
be between 2 and 18 times slower still than N = 1 runs. The exact additional computational
cost varies greatly with size of the problem. Where exactly the additional costs are seen should
be profiled and the reason for nonlinear dependence on problem size should be investigated.
This could further aid decisions involving higher order axial expansions versus finer axial
meshes.

2. It is believed that the axial expansion method does in fact spatially converge to the transport
solution as the slice sizes go to 0 along with other spatial refinement such as ray spacing going
to 0 and FSR size going to 0. This is because it is a direct discretization of the 3D transport
equation. An analytic proof of this is a step that could potentially give further insight into
the difference between the axial expansion method and traditional 2D/1D. Additionally, such
a proof may reveal where exactly errors in the approximation are pronounced and aid with
optimal balance between expansion order and mesh thickness.

3. One of the largest limiting factors of the method in terms of accuracy at this point appears
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to be the lack of anisotropic scattering. Results indicate that the implementation may in
fact serve to sufficiently validate MPACT using the KRITZ-2 experiments if anisotropic
scattering were available. Implementation of anisotropic scattering for this method should be
pursued in MPACT, but due to the current computational costs of the method, it is suggested
that optimization work is first attempted since anisotropic scattering can add significant
computational costs.

4. The axial expansion method implicitly gives an intra-nodal axial shape in each slice. This
could be of value in multi-physics computations if properly utilized since higher order
coupling between the transport solution and the other multi-physics solutions, such as the
thermal hydraulics or depletion, could potentially provide increased accuracy. Thus far, all
LPAEM runs in MPACT have been single-physics neutron transport calculations, but further
investigation into potential multi-physics implications could be useful.
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Polytechnique, 2009.

[38] A.K. Prinja and E.W. Larsen. “Handbook of Nuclear Engineering”. In: Springer, 2010.
Chap. General Principles of Neutron Transport, pp. 427–542.

[39] I. Lux and L. Koblinger. Monte Carlo Particle Transport Methods: Neutron and Photon

Calculations. Boca Raton, FL, USA: CRC Press, 1991.

104



[40] E.E. Lewis and W.F. Miller. Computational Methods of Neutron Transport. La Grange Park,
Illinois, USA: John Wiley & Sons, Inc., 1993.

[41] N. Soppera, M. Bossant, and E. Dupont. “JANIS 4: An Improved Version of the NEA Java-
based Nuclear Data Information System”. In: Nuclear Data Sheets 120 (2014), pp. 294–
296.

[42] R.C. Block et al. “Handbook of Nuclear Engineering”. In: Springer, 2010. Chap. Neutron
Cross Section Measurements, pp. 1–81.
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