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THE LENGTH OF THE GRAPH OF A ONE
TO ONE FUNCTION FROM [0, 1] TO [0, 1]

Abstract

Upper and lower limits for the length of the graph of one to one,
onto, Baire one functions from the unit interval to itself are shown to
be infinity and one, respectively. Such functions having graphs of large
dimension and non-measurable functions are also considered.

For the length of a subset E of the plane, we will use the one dimensional
Hausdorff measure

Λ(E) = lim
δ→0

inf
∑

diam(Ei)

where the infimum is over all {Ei}∞i=1 with E ⊂ ∪Ei and diam(Ei) < δ. Some
well known facts which we will need are:

1. If E is the graph of a continuous function on [a, b] then Λ(E) agrees
with the length of E.

2. If projθ(E) is the perpendicular projection of E onto a line making an
angle θ with the x-axis then Λ(projθ(E)) ≤ Λ(E).

We will eventually also use the s-dimensional Hausdorff measure of E given
by

Λ∗s(E) = lim
δ→0

inf
∑

(diam(E))s

where the infimum is as above and Λs(E) replaces Λ∗s(E) when E is mea-
surable. By the dimension of E will be meant the Hausdorff dimension,
dim(E) = inf{s : Λs(E) = 0}. The s-dimensional measure can be estimated
by using squares from a sequence of regular nets and we will eventually use
nets on the unit square whose squares have vertices with coordinates m/Kn.
See e.g., [1] or [4].

For continuous one to one functions f taking [0, 1] onto [0, 1] it is well
known that f must be monotone and the length of the graph of such an f can
be any value in [

√
2, 2]. That the length must be at least

√
2 is due to the fact
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that the graph must have a point on each line perpendicular to y = x, x ∈ [0, 1]
(in the event that f is increasing) or y = 1−x, x ∈ [0, 1] (if f is decreasing) and
thus its length is at least that of its projection on this line segment; that is, is
at least

√
2. For the other extreme, any strictly increasing singular function

(see e.g. [5] p.101) from [0, 1] onto [0, 1] will have graph with length 2. Since
the derivative of such a function is zero a.e., the set of points on the graph
where the derivative is zero has length at least 1 (its projection on the x-axis
is almost all of [0, 1]). But the projection of this set on the y-axis has length
0 (see [5] p.227), and indeed the image of (f ′(x) = 0) is always of measure 0.
Then the set of points on the graph of f where the derivative is not 0 or does
not exist must have length 1 since its projection on the y-axis is of length 1.
But the length of the graph of f is given by sup

∑
(|In|2 + |f(In)|2)1/2 where

the supremum is over all partitions {In} of [0, 1]. Thus the length is less than
or equal to

∑
|In| + |f(In)| ≤ 2. And thus the length of the graph of such a

function is 2. That the length can be any value between
√

2 and 2 is easily
shown by a function whose graph consists of two line segments connecting
(0, 0) to (a, 1− a) and (a, 1− a) to (1, 1) for appropriately chosen a ∈ (0, 1).

The other extreme of one to one functions from [0, 1] onto [0, 1] is that of
a non-measurable function whose graph has two dimensional Lebesgue outer
measure 1. Such a function can be obtained by using the axiom of choice
and chosing the points of the graph so there is one point in each Gδ subset
of the square whose projection on the x-axis has cardinality c. Note that a
measurable function must have a graph whose area is 0 (see [5] p.89).

Here we will be interested in relaxing the continuity condition and seeing
what is possible for the measure of the graph. A weaker form of continuity,
such as Darboux continuity (the intermediate value property), does not result
in any new possibilities because a one to one function is Darboux continuous
iff it is continuous. If the classes of measurable functions and the Baire classes
are considered, it turns out that all the examples needed can be found among
the Baire 1 functions. We first consider whether it is possible to obtain a
function whose graph has length less than

√
2. Except for the obvious fact

that the length of the graph cannot be less than 1, there is no other lower
limit on the length of the graph of a one to one function from [0, 1] onto [0, 1].

Motivation for the construction came from a subset of the plane with inter-
esting properties. Consider the following perfect set contained in an equilateral
triangle of side length 1. Start with the triangle and in each corner place an
equilateral triangle whose side length is 1/3. Call these three triangles along
with their interiors E1. Let E2 be the set consisting of nine triangles along
with their interiors of side length 1/9 located in the corners of the triangles
of E1. In general En consists of 3n triangles of side length 3−n located in
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the corners of the triangles of En−1. Then E = ∩En has length less than
or equal to 1 because for each natural number n it is contained in 3n sets of
diameter 3−n. That the length of E is equal to 1 can be seen by noting that
the projection of E onto one of the sides of the original triangle is all of the
side and thus the length of E must be at least 1. Actually, what is interesting
here is that E projects in each of three directions onto a line segment of length
equal to the length of E. A natural question is: In how many directions can
a set E of finite, non-zero length project onto a set with the same length as
E? (It is easy to observe that the same construction as above using pentagons
instead of triangles does not produce a set projecting in any direction onto one
of the same length as that of the set.) The fact that a set can project in three
directions onto one of the same length as the set suggests the possibility of a
function on [0, 1] which is one to one and onto [0, 1] which has graph of length
1. (For the graph of such a function would be a set which would project onto
a set of length one in each of two directions.)

Before constructing a function, we first create a set of length 1 whose
projection on each axis is [0, 1]. The basic idea is to keep the set at each stage
closer and closer to a collection of diamonds whose corners are the midpoints
of the squares of the previous stage. In particular, a square Q of side length s is
divided into 4n squares of side length 2−ns. Then let A be the set consisting of
all the points of the subsquares whose interiors meet the boundary of a square
whose corners are the midpoints of the sides of Q. Then the diameter of the
set A is 2

√
(s/2n)2 + (s/2)2 = 2

√
2−2n + 1/4 ·s. Note that this number tends

to s as n tends to∞. Also note that it is possible to choose 2n of these smaller
squares which project horizontally and vertically onto the side of the original
square. For each m satisfying 0 ≤ m ≤ 2n/2 and each choice of m squares from
the 2n/2 in the part of A in the upper left quarter of the main square, there is
a unique way to choose 2n/2−m from the part of A in the upper right quarter,
m from the part of A in the lower right, and 2n/2−m from the part of A in the
lower left so that the projections are as required. For a specific example, one
can start at the center of the left hand side of the original square and choose
m ≤ 2n/2 squares going upward and to the right, then starting at the midpoint
of the top choose 2n/2−m squares going downward to the right. Starting at
the midpoint of the righthand side of the original square one can choose m
squares going down to the left and finally 2n/2 − m squares starting at the
midpoint of the bottom of the original square and proceeding upward and to
the left. Specifically, one chooses 2n squares whose lower left hand corners in
the smaller square correspond to the subsquares of [0, 1]×[0, 1] whose lower left
hand corners are: (0, 1/2), (2−n, 1/2+2−n),..., ((m−1)2−n, 1/2+(m−1)2−n) or
(1/2, 1−2−n), (1/2+2−n, 1−2·2−n) ,..., (1/2+(2n−m)2−n, 1−(2n−1−m)2−n)
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or (1− 2−n, 1/2− 2−n) ,..., (1−m · 2−n, 1/2−m · 2−n) or (1/2− 2−n, 0) ,...,
(1/2− (2n−1 −m− 1)2−n, (2n−1 −m)2−n).

Now, let E1 consist of 2n1 squares along with their interiors in [0, 1]× [0, 1]
each of side length 2−n1 whose projection on each axis is [0, 1] constructed as
above. Continuing inductively, let Ei consist of 2ni squares in each square of
Ei−1 so that the projections horizontally and vertically of these squares are the
same as the projection of the square of Ei−1 containing them. Thus Ei projects
horizontally and vertically onto [0, 1] on the x and y axes. Let E = ∩Ei and
note that each Ei is contained in 2n1+n2+...+ni−1 sets in the squares of Ei−1

each having diameter 2
√

2−2ni + 1/4 · s where s = 2−n1−n2−...−ni−1 . Thus if
lim supni =∞ , the length of the set E = 1.

The set E is a perfect set whose projection onto the x and y axis is [0, 1]
and the length of E is 1. However, E is not the graph of a function. But E is
almost the graph of a function; indeed, if the set of points E′ of E which have
one coordinate in D, the set of dyadic rational numbers, is removed from E
(there are only countably many such points), the set E \ E′ is the graph of a
one to one function from [0, 1] − D onto [0, 1] − D and it can be defined on
the dyadic rationals to be the identity, making it a one to one function from
[0, 1] onto [0, 1] whose graph has length 1. It is not difficult to see that the
image of each open interval differs from a closed set by a countable set and
thus is a Gδσ set which implies that the function is in Baire Class 2. (See e.g.,
[3] p.144.) A slight modification of the construction, keeping the value at the
dyadic rationals close to the set E \ E′ results in a function in Baire Class 1.
We illustrate this with a specific example.

Example 1. There is a function g in Baire Class 1 whose graph has length 1
(the example will also be constructed so thatg = g−1 by constructing the graph
of the function symmetric about y = x

Construction. One uses the same construction described above but with
m = 0 at each stage. One also redefines the function on the dyadic rationals
determined by the edges of the squares at each stage so that they lie inside
the squares of the previous stage and map into the set of these same dyadic
rationals. Thus, at the first stage g(i/2n) = i/2n, i = 0, 1, ..., n. At each
successive stage the dyadic rationals corresponding to new edges take on values
along the diagonal of the square of the previous stage parallel to y = x. In
this way the resulting function will satisfy g = g−1 and since g will only be
discontinuous on the countable set consisting of dyadic rationals, g will be in
Baire Class 1.

We now turn to the upper limit for the length. The goal is to produce one
to one onto functions with any given length graph among the Baire Class 1
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functions. To do this a method will be described to produce functions whose
graphs are of finite length as large as desired. Creating graphs of a given
length can then be done, for example, by putting shrunken copies of large
graphs in the squares at the various stages of the construction of Example
1. Perhaps it is not surprising that it is also possible to produce such graphs
having large dimensions. A construction of a graph of a one to one, onto
function with graph of dimension 2 will be sketched. Finally there will be
some consideration of non-measurable functions.

While it is worthwhile to draw some pictures of these constructions, the
constructions will be given in a strictly numerical fashion.

Example 2. There is a sequence of functions {gK} which are one to one
from [0, 1] onto [0, 1] which are in Baire Class 1 whose graphs have finite
length tending to infinity with K.

Construction. Given K ≥ 2 select the sequence of nets on the unit square
consisting of squares, half open on the right, whose projections on the axes
are of the form {[m/Kn, (m + 1)/Kn) : 0 ≤ m < Kn}∞n=1. Consider x and
y in [0, 1) written in the K-ary expansion: x =

∑∞
i=1 ai/K

i, y =
∑∞
i=1 bi/K

i

with 0 ≤ ai, bi < K. (Expressions for numbers which can be written two ways
are written terminating in 0′s.) The function gK will be defined by letting
gK(x) = y iff for the expansions of x and y, b2 = a1, a2n+1 = b2n−1, n > 0 and
b2n = a2n−2 (n > 1). The resulting function is one to one and belongs to Baire
Class 1 because the set of discontinuities is at most countable (the points x
where the ai defining x terminate in 0′s). The graph of gK can be contained
in Kn+1 squares of side length K−n where n is odd and n > 2; namely, those
squares with lower left hand corner given by (

∑n
i=1 ai/K

i,
∑n
i=1 bi/K

i) with
b1, ..., bn−1 determined by a1, ..., an−2 and an and both an−1 and bn taking any
value from 0 to K − 1. Thus the Hausdorff measure of the graph is at most
K
√

2. That the length of the graph is at least K/
√

2 can be seen by considering
the K parts of the graph above each of the intervals [m/K, (m+ 1)/K). First
note that each of these sets can be obtained by a translation of the points
above [0, 1/K) since f(.a1a2a3...an) = f(.0a2a3...an) + a1K

−2. To complete
the argument, we show that every z ∈ [0, 1) is of the form x+f(x) for suitable
x ∈ [0, 1/K) and thus the graph above [0, 1/K) projects perpendicularly on the
line y = x onto an interval of length at least 1/

√
2. To see that each z ∈ [0, 1) is

of the form x+f(x) for some x ∈ [0, 1/K), note that if x = .0a2a3a4a5a6a7a8...,
then we have f(x) = .a30a5a2a7a4a9a6... and it follows that x + f(x) = (1 +
K2)(a3K

−3+a2K
−4+a5K

−5+a4K
−6+a7K

−7+a6K
−8+.... Thus if z ∈ [0, 1)

and y = z/(1 +K2), and if y =
∑
bnK

−n where, necessarily, b1 = b2 = 0, and
if an = bn+2 when n is even and an = bn when n is odd, then z = x + f(x)
where x =

∑
anK

n ∈ [0, 1/K).
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Regarding the size of the graph, the example below shows how it is pos-
sible to create one to one, onto, Baire one functions whose graph has large
dimension. We sketch how to produce a graph whose dimension should be 2.
We show only that its box dimension is 2. (Cf. [2] p.38) That is, it will be
shown that for every fixed s < 2, the limit of the sums of the diameters to the
power s of the binary net elements which meet the graph is infinite.

The natural coverings of the graph we will produce are as follows:

At each stage, the interval [0, 1] is to be divided into 2Nk intervals. At
the first stage the graph will be contained in the unit square considered as
24 squares of side length 2−2 yielding a total area of 1. At the second stage
there will be 230 squares distributed equally among the squares of the previous
stage of side length 2−16 for a total area of 2−2 (here the total area at this
stage is the side length at the previous stage). At the Nth stage, there will
be 2MN squares of side length 2−KN for a total area of 2−KN−1 where MN =
2(N+1)2 · 2 − 2N

2
= 2N

2
(22n+2 − 1) and KN = 2(N+1)2 . If these squares are

considered as approximating the dimension of the graph, then for fixed s and
large N , we have 2MN (2−KN )s ≤ 1 iff MN ≤ s ·KN iff s ≥ 2− 1/22N+1 which
implies that this holds for all large N iff s = 2. (Actually, the referee has
pointed out that for KN any strictly increasing sequence of positive integers
for which KN > 2N holds for each N and KN has a strictly higher rate of
growth than N would work.)

The graph of a one to one onto function can be made requiring the number
of squares of these magnitudes by considering x =

∑
ai/2i and y =

∑
bi/2i

with numbers having two representations written with terminating 0′s. Con-
sider the numbers of the form KN and let {BN} be all other numbers written
in their natural order. Let f(x) = y if bKN

= aBN
or if bBN

= aKN
in the

binary expansions for x and y. Then the number of squares at the MN th
stage needed to cover the graph of f will be of the order given above. To
see this, consider the squares from the net whose side lengths are 2−n which
meet the graph of the function. These are the squares whose lower left hand
corner (x, y) is of the form x = .a1a2...an where there are n choices of 0’s or
1’s to determine x and thus at least n−Ki−1 choices of 0’s and 1’s for y where
n is the least integer larger than Ki−1. That is, when n = KN , there are
at least MN = 2KN − KN−1 choices for squares of side length 2−KN which
meet the graph. Considering other covers from the sequence of binary nets,
at each stage after the KN th and before the KN+1st the number of squares
needed from a given net is 4 times the number needed at the previous stage.
Each time 4 times the number of squares is required, the estimate of the s
dimension increases. This continues to the MN+1st stage. Since the estimate
of the dimension using the net elements at the MN th stage is less then that of
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the MN+1st stage, for each s < 2, and since this estimate approaches infinity
for each fixed s less than 2, it follows that the graph has box dimension 2.

It remains to determine how small the graph of a one to one function f
from [0, 1] onto [0, 1] can be if f is non-measurable. Since the graph could
simply be non-measurable on a small subinterval and then have a graph of
length as close to one as desired, we will be interested only in such f which
are not measurable on any perfect subset of [0, 1] of positive measure. The next
theorem shows that it is not possible to have such a non-measurable function
with graph of length 1. The example which follows it shows how to produce a
one to one function, not measurable on any perfect subset of positive measure
whose graph has outer one dimensional measure 2.

Theorem. If f is one to one from [0, 1] onto [0, 1] and the length of the graph
of f is 1, then f is a measurable function. Also, for each interval I ⊂ [0, 1],
m(f(I)) = |I|.

Proof. Let g = f−1 and J0 = [c, d] ⊂ [0, 1]. Let J1 = [0, c] and J2 = [d, 1] and
let Ei be the graph of g on the intervals Ji with i = 0, 1, 2. Then Λ∗(Ei) ≥ |Ji|
and

Λ∗(E1) + Λ∗(E0) + Λ∗(E2) = 1

and outer length measure adds on these three sets. It is not possible that
Λ∗(E0) > |J0| for if it were, |J1| + |J0| + |J2| would be less than 1, a con-
tradiction. But then m∗(f−1(Ji)) ≤ Λ∗(Ei) = |Ji| for i = 0, 1, 2. There-
fore,

∑
m∗(f−1(Ji)) ≤ 1. But since the opposite inequality always holds,∑

m∗(f−1(Ji)) = 1 and f−1(J0) is measurable and since J0 is an arbitrary
interval in the range of f , it follows that f is a measurable function. Further-
more, g is measurable and applying the above to g we have for each I ⊂ [0, 1]
that m(f(I)) = |I|.

Example 3. There is a function which is one to one from [0, 1] onto [0, 1]
which is non-measurable on each perfect subset of positive measure and has
graph of outer linear measure equal to 2.

Construction. Let g be the one to one function from [0, 1] onto [0, 1] de-
scribed above with g in Baire Class 1, g(1/2) = 1/2, and g = g−1. Note that
1 − g(x) = g(1 − x) at each x ∈ [0, 1]. Choose S so that both S and Sc are
totally imperfect subsets of [0, 1] satisfying x ∈ S iff g(x) ∈ S, 1− x ∈ S and
g(1 − x) ∈ S. This can be done by well ordering the non empty perfect sets
contained in [0, 1] and choosing elements x for S and for Sc at each stage with
g(x), 1−x, g(1−x) also in Ṡ or Sc, respectively. Then let f(x) = g(x) if x ∈ S
and f(x) = 1− g(x) if x ∈ Sc. Then f−1([0, 1/2]) is the union of S ∩ [0, 1/2]
and Sc∩ [1/2, 1] and thus it has non-measurable intersection with each perfect
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set of positive measure. To see that f is one to one, suppose f(a) = f(b) with
a 6= b. Note that g(x) = 1 − g(x) iff g(x) = 1/2, and then x = 1/2. Since g
is one to one, if f(a) = g(a), then f(b) = 1− g(b) or if f(a) = 1− g(a), then
f(b) = g(b). In the former case a ∈ Sc and b ∈ S; in the latter a ∈ S and
b ∈ Sc; in neither case can f(a) equal f(b) since a ∈ S iff g(a) ∈ S , 1− a ∈ S
and 1− g(a) = g(1− a) ∈ S.

The author wishes to thank the referee for his patience with the two drafts
of this paper and for his many helpful suggestions and corrections.
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