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Abstract

Much empirical work indicates that there are common factors that drive the equity risk premium and credit
spreads. In this paper, we embed a structural model of credit risk inside a dynamic consumption-based
asset pricing model. That allows us to price equity, default-risky debt and study the co-movement of stock
and bond price variables in a single framework. This paves the way for a unified understanding of what
drives the equity risk premium and credit spreads. Our key economic assumptions are that the first and
second moments of macroeconomic variables, such as earnings and consumption growth, depend on the state
of the economy which switches randomly; agents prefer uncertainty about the future state of the economy
to be resolved sooner rather than later; they optimally choose capital structure and default times. Under
these assumptions the model generates co-movement between aggregate stock return volatility and credit
spreads, which is quantitatively consistent with the data, and resolves the equity risk premium and credit
spread puzzles. For relative risk aversion of 10 and elasticity of intertemporal substitution of 1.5, the model
implies a levered equity risk premium of about 4.5%, credit spreads for Baa debt of 180 basis points, and a
model-implied 4-year actual default probability of about 1.5%, which is realistically small.

JEL Classification Numbers: E44, G12, G32, G33
Keywords: Equity premium, corporate bond credit spread, predictability, macroeconomic conditions, jumps,
capital structure, default



A growing body of empirical work indicates that common factors may affect both the equity risk premium

and credit spreads on corporate bonds. In particular, there is now substantial evidence that stock returns

can be predicted by credit spreads,1 and that movements in stock-return volatility can explain movements

in credit spreads. For example, Tauchen and Zhou (2006) show from a regression of the Moody’s Baa bond

spread index against the jump-component in the volatility of returns on the S&P500, that a 1 percentage

point increase in jump volatility raises spreads by about 190 basis points. In essence, all these results

demonstrate that there is “overlap between the stochastic processes for bond and stock returns” (Fama and

French (1993, p. 26, our emphasis)).

The aim of this paper is to investigate two important ramifications of these results. First, the existence

of common factors indicate that the two well-known puzzles, the equity risk-premium puzzle and the credit

risk puzzle, are inherently linked. Much research has been devoted to finding an explanation of the equity

premium puzzle since the seminal paper of Mehra and Prescott (1985) and the credit risk puzzle has been

the subject of a great deal of attention since the first empirical evidence that contingent-claim models

of defaultable debt underpredict credit spreads,2 but there has been limited research on linking the two

puzzles. Second, there is evidence suggesting that common factors are likely to be related to fundamental

macroeconomic risks. For example, Bansal and Yaron (2004) show that a substantial fraction of the equity

risk premium could stem from exposure to long-run fluctuations in macroeconomic growth rates, but do not

study credit spreads. In credit risk, Collin-Dufresne, Goldstein, and Martin (2001) show that credit spread

changes across firms are driven by a single factor.

In this paper, we exploit an economically intuitive macroeconomic mechanism related to the business

cycle to generate a common factor linking both stock returns and credit spreads. We then use this mechanism

to explain why stock-return volatility co-moves with credit spreads and resolve both the equity risk premium

and credit spread puzzles.

In a nutshell, two main ideas underpin our approach. The first is that any claim, equity and debt alike,

can be priced in a consumption-based asset pricing model. The second is intertemporal macroeconomic risk :

the expected values and volatilities (first and second moments) of fundamental economic growth rates vary

with the business cycle, which is modeled by a regime-switching process.

We use the first idea to price corporate bonds in a consumption-based asset pricing model with a repre-

sentative agent. In particular, we assume aggregate consumption consists of wages paid to labor and firms’

earnings, and the division between wages and earnings is exogenous. Earnings are divided into coupon

1See Chen, Roll, and Ross (1986), Keim and Stambaugh (1986), Campbell (1987), Harvey (1989), Fama and French (1989),

Fama and French (1993), Ferson and Harvey (1991), Campbell and Ammer (1993), Whitelaw (1994), Jagannathan and Wang

(1996), Ferson and Harvey (1999) and Cremers (2002).
2The credit risk puzzle refers to the finding that structural models of credit risk generate credit spreads smaller than those

observed in the data when calibrated to observed default frequencies. Recent evidence is presented in Eom, Helwege, and Huang

(1999), Ericsson and Reneby (2003) and Huang and Huang (2003).



payments to bondholders and dividends to equityholders. Capital structure is chosen optimally by equity-

holders to maximize firm value which implies the endogeneity of both coupons and dividends. In addition,

equityholders choose a default boundary to maximize equity value so that the default boundary is also en-

dogenous. Thus, in our model, the prices of equity and debt are not only linked by a common state-price

density, but they are also affected by the optimal leverage and default decisions. Essentially, we embed the

contingent-claim models of Fischer, Heinkel, and Zechner (1989) and Leland (1994) inside an equilibrium

consumption-based model.3 We call the resulting framework a structural-equilibrium model.4

We then use the second idea and introduce intertemporal macroeconomic risk into our structural-

equilibrium model to capture a common macroeconomic factor that underlies both expected excess stock

returns and credit spreads. Modelling of intertemporal macroeconomic risk hinges on several critical and

intuitive features. Firstly, the properties of firms’ earnings growth change with the state of the economy, with

expected growth lower in recessions and volatility lower in booms. Secondly, the properties of consumption

growth also change with the state of the economy. As expected, first moments are lower in recessions, whereas

second moments are higher. We model switches in the state of the economy via a Markov chain.5 Thirdly,

we assume that the representative agent cares about the intertemporal composition of risk. In particular,

she prefers uncertainty about the future to be resolved sooner rather than later.6 In essence, she is averse

to uncertainty about the future state of the economy. We model this by assuming that the representative

agent has Epstein-Zin-Weil preferences.

The representative agent, of course, does not use actual probabilities to compute prices. Instead, she

uses risk-neutral probabilities. It is well-known that for a risk-averse agent, the risk-neutral probability of a

bad event occurring exceeds its actual probability. In the context of our model, asset prices will depend on

the risk-neutral probability (per-unit time) of the economy moving from boom to recession. Increasing the

risk-neutral probability of entering a recession increases the average duration of recessions in the risk-neutral

world. When the average time spent in recessions in the risk-neutral world increases, it is intuitive that

risk premia will go up. If the agent prefers earlier resolution of uncertainty, the risk-neutral probability of

3Since in contingent-claim models the state-price density is not linked to consumption, the asset prices they produce are

completely divorced from macroeconomic variables, such as aggregate consumption. Consequently, these models alone cannot

be used to find a macroeconomic explanation for a common factor behind stock returns and credit spreads.
4The germ of this idea is contained in within Goldstein, Ju, and Leland (2001). They state that their EBIT-based model

can be embedded inside a consumption-based model, where the representative agent has power utility, though they do not

investigate how credit spreads depend on the agent’s risk aversion.
5See Hamilton (1989). For applications which study the stock market see Cecchetti, Lam, and Mark (1993), Whitelaw (2000),

Calvet and Fisher (2005a), Calvet and Fisher (2005b) and Hansen, Heaton, and Li (2006). For option pricing applications see

Jobert and Rogers (2006). The Markov chain approach to modelling intertemporal macroeconomic risk is a variant of the

long-risk model of Bansal and Yaron (2004). We summarize the key economic differences in Section I.C.
6Kreps and Porteus (1978, p. 186) explain the intuition for modelling preferences in this way via a coin-flipping example:

“If . . . the coin flip determines your income for the next two years, you probably prefer to have the coin flipped now, so that

you are better able to budget your income for consumption purposes.”
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entering a recession exceeds the actual probability. Consequently, the agent prices assets as if recessions last

longer than is actually the case, which raises risk premia.

The same mechanism delivers high credit spreads. To see the intuition, observe that the credit spread

on default risky debt can be written as

s = r
lqD

1 − lqD

,

where r is the risk-free rate, l is the loss ratio for the bond (which gives the proportional loss in value if

default occurs) and qD is the price of the Arrow-Debreu security which pays out 1 unit of consumption at

default. Empirically, both the risk-free rate and loss ratio are too low to explain credit spreads. Thus, any

economic channel which generates realistic credit spreads must raise the value of the Arrow-Debreu default

claim. One of the novel results of this paper shows how qD can be decomposed into three factors, each with

an economically intuitive meaning:

qD = T R pD,

where pD is the actual probability of default, T is a downward adjustment for the time value of money and

R is an adjustment for risk. Actual default probabilities are small. Our decomposition then tells us that the

value of the Arrow-Debreu default claim will be high if the risk-adjustment, R, and the time-adjustment,

T , are high. So, why are they high in our model?

It is well known from Weil (1989) that using Epstein-Zin-Weil preferences makes it possible to obtain

a low risk-free rate, simply by increasing the elasticity of intertemporal substitution. When the risk-free

rate is low, the discount factor associated with the time-value of money will be high. Therefore, the time-

adjustment factor, T , is high. This happens even if there is no intertemporal macroeconomic risk. Combining

intertemporal macroeconomic risk with Epstein-Zin-Weil preferences increases the risk-neutral probability

of entering a recession, which increases the risk-adjustment factor, R. Thus, our model can generate high

credit spreads, while keeping the actual probability of default low, as observed in the data.

Since the same economic mechanism increases both credit spreads and the risk premium, co-movement

arises naturally between equity and corporate bond market values. In particular, our model generates co-

movement between credit spreads and stock return volatility as observed by Tauchen and Zhou (2006).

We now preview our quantitative results. For the benchmark case of relative risk aversion equal to 10

and an elasticity of intertemporal substitution of 1.5, the model delivers a credit spread of between 180

and 220 basis points (depending on the initial and current states of the economy), when the model-implied

4-year actual default probability is realistically low (slightly less than 1.5%, see Huang and Huang (2003)).

As macroeconomic conditions change, the levered equity risk premium varies between 3% and 6.5%, and

risk-free rate between 1.7% and 3.6%, which are close to empirical estimates (see Mehra and Prescott (1985),

Weil (1989) and Hansen and Jagannathan (1991)). Finally, the optimal static leverage ratio is between 37%

and 48%, lower than in most models of static capital structure (e.g. Leland (1994)).
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Our framework also delivers a number of testable implications. From an asset pricing perspective, the

most important implication concerns the cyclicality of the default boundary. When expressed in cash flow

terms the default boundary is countercyclical. But for values of risk aversion and elasticity of intertemporal

substitution which generate a realistic equity premium and credit spread, the asset-value default boundary

is procyclical. In contrast, Chen, Collin-Dufresne, and Goldstein (2006) show that in asset value terms,

a habit formation model with i.i.d. consumption growth must have a countercyclical default boundary to

generate a realistic credit spread. Thus, empiricists can study the default boundary to determine whether

a model with intertemporal macroeconomic risk and Epstein-Zin-Weil preferences (essentially a variant of

Bansal and Yaron’s long-run risk model) or a model with i.i.d. consumption and habit-formation preferences

offers the more plausible framework for jointly resolving the equity risk premium and credit spread puzzles.

There are also myriad implications for corporate financing. For example, defaults cluster and also can

occur simply because of worsening macroeconomic conditions, despite there being no change in earnings.

Financing decisions are subject to hysteresis effects, i.e. the timing of past financing decisions influences

default and leverage decisions, even though our model is fully rational. When capital structure is chosen in

recessions, the optimal leverage ratio is lower. However, once leverage has been chosen, market leverage is

lower in booms as in Korajczyk and Levy (2003). Taken together this implies that capital structures across

firms co-move and the macroeconomic conditions at previous financing dates are cross-sectional determinants

of current leverage ratios.

In the remainder of the introduction we discuss the relationship between our paper and the existing

literature. To provide a bird’s eye view of the field, we present an “anthropological” table showing how

the line of descent runs from previous papers to our paper (see Table I). On one side, our paper inherits

features of structural models of credit risk (Merton (1974), Fischer, Heinkel, and Zechner (1989), Leland

(1994), Goldstein, Ju, and Leland (2001), and Hackbarth, Miao, and Morellec (2006)). On the other side,

our model is deeply indebted to a different set of forebears: consumption-based asset pricing models (Lucas

(1978) and Bansal and Yaron (2004)).

We now discuss several papers with which our paper is particularly close. The contingent-claims, struc-

tural model that our paper is most closely related to is Hackbarth, Miao, and Morellec (2006).7 They also

study the influence of macroeconomic factors on credit spreads. Importantly, they are the first to show that

macroeconomic factors imply a countercyclical earnings default boundary. There are several key differences

between our models. Firstly, Hackbarth, Miao, and Morellec do not use a state-price density linked to

consumption and therefore do not study the equity risk premium and its relation to credit spreads. Also,

their model does not allow them to check the size of actual default probabilities. Finally, while we study

7We have recently become aware of contemporaneous, but independent, work by Chen (2007), who uses a similar modelling

framework to this paper. Chen (2007) seeks to resolve the low-leverage and credit spread puzzles, but does not address the

issues of co-movement between bond and stock markets and the equity premium puzzle.
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the impact of macroeconomic factors on both cash flows and discount rates, Hackbarth, Miao, and Morellec

focus purely on the cash flow channel by assuming that firms’ earnings levels jump down in recessions.

A second closely related paper is Chen, Collin-Dufresne, and Goldstein (2006). They study a pure

consumption-based model and use two distinct mechanisms to resolve the equity risk premium and credit

spread puzzles. The first mechanism is habit formation, which makes the marginal utility of wealth high

enough in bad states so that the equity risk premium puzzle is resolved. This does not resolve the credit

spread puzzle, because actual default probabilities and thus credit spreads are procyclical. To remedy this,

Chen, Collin-Dufresne, and Goldstein use a second mechanism: they force the asset-value default boundary

to be exogenously countercyclical. There are several key difference between our models. First, we only

need one economic mechanism to generate a realistic credit spread and risk premium, as outlined above.

Second, the asset-value default boundary in our model is endogenously procyclical. Third, the risk premium

in our model is directly affected by default risk creating a levered risk premium and capital structure is

endogenous. Finally, we obtain closed-form solutions for asset prices, which are natural extensions of the

formulae in Leland (1994) and the Breeden-Lucas model (see Lucas (1978) and Breeden (1979)).

Another related paper on credit spreads is David (2007). David prices corporate debt in a model where

the expected earnings growth rates and expected inflation follow a Markov switching process and are un-

observable. This framework generates realistic credit spreads. Since David (2007) focuses on corporate

bonds alone, he does not study the equity risk premium or co-movement between stock and bond markets.8

Furthermore, he does not endogenize corporate financing decisions.9

Our paper is not the first to consider default in a consumption-based model (see e.g. Alvarez and Jermann

(2000), and Kehoe and Levine (1993)). These papers focus on default from the viewpoint of households. They

assume households have identical preferences, but are subject to idiosyncratic income shocks. Households

can default on payments in the same way that people cannot always pay back credit card debt or a mortgage.

Chan and Sundaresan (2005) consider the bankruptcy of individuals in a production framework, looking at

its impact on the equity risk premium and the term structure of risk-free bonds. Unlike the above papers,

which look at personal bankruptcy, we look at firm bankruptcy and the pricing of corporate debt.

The remainder of the paper is organized as follows. Section I describes the structural-equilibrium model

with intertemporal macroeconomic risk and Epstein-Zin-Weil preferences. Section II explores the implica-

tions of the model for pricing corporate debt and levered equity and develops an intuitive decomposition for

the Arrow-Debreu default claim. Section III builds on Section II by calibrating the model. In Section IV,

8Since David (2007) restricts the state-price density to one that can be obtained from a representative agent with power

utility, the shifts in growth rates are not priced. Clearly, it is possible to use this framework to study the equity risk premium.

But it would be only be possible to generate a realistic premium with very high risk aversion.
9Tan and Yan (2006) use the same framework as David (2007), but with an observable mean-reverting growth rate for firm

earnings and without explicitly accounting for inflation.
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we strip down the model to see which assumptions drive which results. We conclude in Section V. Proofs

and other additional material are contained in the Appendices.

I Model

In this section we introduce the structural-equilibrium model with intertemporal macroeconomic risk. The

basic idea is simple: we embed a structural model inside a representative agent consumption-based model.

That allows us to price debt and levered equity using the state-price density of the representative agent.

Two consequences of this modelling approach are worth noting. Credit spreads depend on the agent’s

preferences and aggregate consumption, which is not the case in pure structural models. The equity risk

premium is affected by default risk, which is not the case in pure consumption-based models.

It is also important to mention what our structural-equilibrium model does not do. It does not account for

the impact of default on consumption, because we model consumption as an exogenous process. Furthermore,

our model ignores the impact of agency conflicts on the state-price density, because the state-price density

in our model is the marginal utility of wealth of a representative agent. Incorporating these two important

effects is beyond the scope of this paper.

We start by describing how firm earnings and aggregate consumption are modeled. Then we explain how

we introduce intertemporal macroeconomic risk by making the first and second moments of firm earnings

and aggregate consumption growth stochastic. We also give a brief description of the state-price density,

which arises from our choice to use a representative agent with Epstein-Zin-Weil preferences. The main

result of this section is Proposition 1, which explains how intertemporal macroeconomic risk combined with

Epstein-Zin-Weil preferences causes the agent to price securities as if recessions were of longer duration than

is actually the case. Intuitively, one would expect risk premia to be larger in an economy where recessions

last longer, so Proposition 1 provides a natural explanation of how our model can generate reasonable risk

premia. Finally, we give a precise quantitative definition of long-run risk.

I.A Aggregate Consumption and Firm Earnings

The are N firms in the economy. The output of firm n, Yn, is divided between earnings, Xn, and wages,

Wn, paid to workers. Aggregate consumption, C, is equal to aggregate output. Therefore,

C =
N∑

n=1

Yn =
N∑

n=1

Xn +
N∑

n=1

Wn.
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We model aggregate consumption and individual firm earnings directly, and aggregate wages,
∑N

n=1 Wn, are

just the difference between aggregate consumption and aggregate earnings.10

Aggregate consumption, C, is given by

dCt

Ct

= gtdt + σCt
dBC,t, (1)

where g is expected consumption growth, σC is consumption growth volatility and BC,t is a standard Brow-

nian motion.

The earnings process for firm n is given by

dXn,t

Xn,t

= θn,tdt + σid
X,ndBid

X,n,t + σs
X,n,tdBs

X,t, (2)

where θn is the expected earnings growth rate of firm n, and σid
X,n and σs

X,n are, respectively, the id-

iosyncratic and systematic volatilities of the firm’s earnings growth rate. Total risk, σX,n, is given by

σX,n =
√

(σid
X,n)2 + (σs

X,n)2. The standard Brownian motion Bs
X,t is the systematic shock to the firm’s

earnings growth, which is correlated with aggregate consumption growth:

dBs
X,tdBC,t = ρXCdt, (3)

where ρXC is the constant correlation coefficient. The standard Brownian motion Bid
X,n,t is the idiosyncratic

shock to firm earnings, which is correlated with neither Bs
X,t nor BC,t.

Importantly, to study credit spreads, we consider corporate bonds issued by individual firms, but to

study the aggregate equity premium we consider the levered equity claim for the aggregate firm, whose

earnings is equal to aggregate firm earnings. In Appendix A we state conditions under which we can obtain

the aggregate premium simply by setting σid
X,n = 0. For ease of notation, we omit the subscript n in the

remainder of the paper.

I.B Modelling Intertemporal Macroeconomic Risk

To introduce intertemporal macroeconomic risk into the structural-equilibrium model we assume that the

first and second moments of macroeconomic growth rates are stochastic. Specifically, we assume that g, θt,

σC,t and σs
X,t depend on the state of the economy, which follows a 2-state continuous-time Markov chain.11

Hence, the conditional expected growth rate of consumption, gt, can take two values, g1 and g2, where gi

is the expected growth rate when the economy is in state i. Similarly for θt, σC,t and σs
X,t.

12 State 1 is a

10In assuming so we follow such papers as Kandel and Stambaugh (1991), Cecchetti, Lam, and Mark (1993), Campbell and

Cochrane (1999), Brennan and Xia (2001) and Bansal and Yaron (2004).
11The extension to L > 2 states does not provide any further economic intuition and is straightforward.
12To ensure idiosyncratic earnings volatility, σid

X , is truely idiosyncratic, we assume it is constant and thus independent of

the state of the economy.
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recession and state 2 is a boom. Since the first moments of fundamental growth rates are procyclical and

second moments are countercyclical, we assume that g1 < g2, θ1 < θ2, σC,1 > σC,2 and σs
X,1 > σs

X,2.

The above set of assumptions introduces time variation into the expected values and volatilities of cash

flow and consumption growth rates. Random switches in the moments of consumption growth will only

impact the state price density if the representative agent has a preference for how uncertainty about future

growth rates is resolved over time. To ensure this, we assume the representative agent has the continuous-

time analog of Epstein-Zin-Weil preferences.13 Consequently, the representative agent’s state-price density

at time-t, πt, is given by

πt =
(
βe−βt

) 1−γ

1− 1
ψ C−γ

t

(
pC,te

∫ t
0

p
−1

C,sds
)−

γ−
1
ψ

1− 1
ψ , (4)

where β is the rate of time preference, γ is the coefficient of relative risk aversion (RRA), and ψ is the

elasticity of intertemporal substitution under certainty.14 Unlike the power-utility representative agent, the

Epstein-Zin-Weil representative agent’s state price density depends on the value of the claim to aggregate

consumption per unit consumption, i.e. the price-consumption ratio, pC .

I.C Booms and Recessions

Define the state of the economy as νt which is equal to 1 in a recession and 2 in a boom. The evolution

of νt is given by a 2-state Markov chain. The Markov chain is defined by λi, i = {1, 2} where λ1 is the

probability per unit time of switching from recession to boom and λ2 is the probability per unit time of

switching from boom to recession. This implies that the average duration of a recession is 1/λ1 and the

average duration of a boom is 1/λ2. Since empirically, recessions are shorter than booms (1/λ1 < 1/λ2),

the probability per unit time of switching from recession to boom must be higher than the probability per

unit time of switching from boom to recession (λ1 > λ2). This is in contrast with Bansal and Yaron (2004).

Bansal and Yaron assume growth rates and volatilities follow AR(1) processes. But the AR(1) process and

its continuous-time counterpart, the Ornstein-Uhlenbeck process, have symmetric transition probabilities.

That forces the probability of switching from a recession to a boom to equal the probability of switching from

a boom to a recession, implying booms and recessions are of equal duration, which increases risk premia.

When recessions are of lower duration, it is of course harder to generate a realistic equity risk premium.

We now provide some intuition for why our model can still generate realistically high risk premia. The

switching probabilities per unit time, λ1 and λ2, are not directly relevant for valuing securities. Since we

must account for risk, we use the risk-neutral switching probabilities per unit time, which we denote by λ̂1

and λ̂2. Intuitively, one would expect the risk-neutral probability per unit time of switching from a boom to

13The continuous-time version of the recursive preferences introduced by Epstein and Zin (1989) and Weil (1990) is known

as stochastic differential utility, and is derived in Duffie and Epstein (1992).
14Schroder and Skiadas (1999) provide a proof of existence and uniqueness for an equivalent specification of stochastic

differential utility.
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a recession to be higher then the actual probability, i.e. λ̂2 > λ2. Similarly, when considering the probability

of moving from recession to boom, λ̂1 < λ1. Using risk-neutral probabilities instead of actual probabilities

means securities are priced as if recessions last longer and booms finish earlier than they actually do, which

leads to a significant increase in credit spreads and the equity risk premium.

To compute λ̂1 and λ̂2 from λ1 and λ2, we need a state-price density to define a mapping from the actual

measure, P, to the risk-neutral measure, Q. When the representative agent has Epstein-Zin-Weil utility, her

state-price density is given by (4). When the economy changes state, the price-consumption ratio jumps

because the expected growth rate and volatility of consumption change. Therefore from (4), the state-price

density jumps. The size of this jump links the risk-neutral to the actual switching probabilities. We show

this in the proposition below. To distinguish between the state of the economy before and after the jump,

we denote the time just before the jump occurs by t−, and the time at which the jump occurs by t.15

Proposition 1 The risk-neutral switching probabilities per unit time are related to the actual switching

probabilities per unit time by the risk-distortion factor, ω,

λ̂1 = λ1ω
−1, (5)

λ̂2 = λ2ω, (6)

where ω measures the size of the jump in the state-price density when the economy shifts from boom to

recession, i.e.

ω =
πt

πt−

∣∣∣∣
νt−=2,νt=1

. (7)

The size of the risk-distortion factor depends on the representative agent’s preferences for resolving intertem-

poral risk:

1. ω > 1, if the agent is averse to intertemporal macroeconomic risk (γ > 1/ψ),

2. ω < 1, if the agent likes intertemporal macroeconomic risk (γ < 1/ψ), and

3. ω = 1, if the agent is indifferent to intertemporal macroeconomic risk (γ = 1/ψ).

Proposition 1 tells us that when the representative agent prefers intertemporal macroeconomic risk to

be resolved sooner than later (she has Epstein-Zin-Weil preferences with γ > 1/ψ), then ω > 1, and the

15To be more precise, suppose that during the small time-interval [t − ∆t, t), the economy is in state i and that at time t,

the state changes, so that during the next small time interval [t, t + ∆t), the economy is in state j. To distinguish between the

state of the economy before and after the jump, we define the left-limit of ν at time t as

νt− = lim
∆t→0

νt−∆t,

and the right-limit as

νt = lim
∆t→0

νt+∆t.

Therefore νt− = i, whereas νt = j, so the left and right-limits are not equal.
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duration of recessions under the risk-neutral measure is longer then their actual duration. Since the state-

price density jumps up in recessions, asset returns contain a premium for jump-risk. The premium for jump

risk is present in both credit spreads and equity risk premia. The presence of jump components forces the

stochastic processes for bond and stock returns to overlap, a feature of the data observed by Fama and French

(1993). As long as jump-risk is priced, there is a jump-risk component in credit spreads, which comoves with

the jump component in stock-return volatility, as documented in Tauchen and Zhou (2006).

The risk-distortion factor, ω, is the solution of the nonlinear equation (C4) in Appendix C. We can

compute the locally risk-free rate, the price-consumption ratio and the market price of risk in terms of the

risk-distortion factor (see Equations (C3), (C10) and (C16) in Appendix C).

When γ = 1/ψ, the risk-distortion factor does not impact the price-consumption ratio, but the price-

consumption ratio still jumps when the economy changes state. Because the agent is indifferent about when

she receives information concerning the future state of the economy, these jumps are not priced so jump-risk

premia vanish. But there are still jump components in volatilities, because volatility is a measure of total

risk not just priced risk.

We can also give a quantitative measure of long-run risk in our model. As time tends to infinity, the

Markov chain we use to model the state of the economy converges exponentially to a long-run distribution,

i.e. the probability of being in a given state becomes constant. We can show that the long-run risk-neutral

probability of being in state i is given by f̂i =
λ̂j

λ̂1+λ̂2

, j 6= i, i.e. lims→∞ P̂r(νt+s = i|νt = j) = f̂i, j ∈ {1, 2}.

Observe that the long-run probabilities do not depend on the initial state. The parameter p̂ = λ̂1 + λ̂2

tells us how quickly the risk-neutral distribution of the Markov chain approaches its long-run risk-neutral

distribution. To be precise, convergence to the long-run is exponential at a rate of p̂. The slower the

convergence (under the risk-neutral measure), the more long-run risk there is in the economy.16

II Asset Valuation

In this section we derive the prices of all assets in the economy and investigate the properties of credit

spreads and the equity premium.

We start by noting the following immediate implication of Proposition 1. Expressions for asset prices in

an economy where the first and second moments of consumption growth do switch can be obtained from

expressions for asset prices in an economy where the first and second moments of consumption growth

do not switch, without any further computations. All one must do is merely adjust the probability that

the economy changes state by the risk-distortion factor to get risk-neutral probabilities and replace the

constant expected consumption growth rate and volatility by the relevant state-dependent quantities. More

16Details of how this measure of long-run risk is related to the long-run risk model in Bansal and Yaron (2004) are available

upon request.
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formally, if Pi(λ1, λ2, g, σC) is the price of an asset when the economy is in state i and the first and second

moments of consumption do not switch, the corresponding asset price when the first and second moments

of consumption do switch is given by Pi(λ̂1, λ̂2, gi, σC,i). This observation demonstrates how Proposition 1

considerably simplifes the computation of asset prices.

We now use the state-price density in (4) to value the corporate debt and equity issued by firms. As

in EBIT-based models of capital structure (see Goldstein, Ju, and Leland (2001) and Strebulaev (2007)),

the earnings (or EBIT cash flow), X, of a firm is split between a constant coupon, c, paid to debtholders

and a risky dividend, X − c, paid to equityholders. Because of taxes paid at the rate η, equityholders

actually receive the amount (1 − η)(X − c). Default occurs at the moment earnings drop below a certain

threshold. The default boundary is state-dependent: default occurs in state i if X ≤ XD,i, i ∈ {1, 2}.

Further discussion of the default boundary is given in Section II.D. If the firm defaults, bondholders receive

what can be recovered of the firm’s assets in lieu of coupons, i.e. a fraction αt of the after-tax value of the

firm’s earnings at default, The recovery rate αt is assumed to be procyclical: αt ∈ {α1, α2}, where α1 < α2,

consistent with empirical findings in Thorburn (2000), Altman, Brady, Resti, and Sironi (2002) and Acharya,

Bharath, and Srinivasan (2002).

The debt and levered equity values for a firm can be written in terms of the prices of a set of Arrow-Debreu

default claims and unlevered firm value (after-tax). We now proceed to derive closed-form expressions for

these values.

II.A Arrow-Debreu Default Claims

The Arrow-Debreu default claim denoted by qD,ij,t is the value of a unit of consumption paid if default

occurs in state j and the current state is i. There are four such claims in our economy: {qD,ij}i,j∈{1,2}. In

other words, if the current date is t and earnings hit the boundary XD,j from above for the first time in state

j, one unit of consumption will be paid that instant. Since each Arrow-Debreu default claim is effectively

a perpetual digital put, their values can be derived by solving a system of ordinary differential equations,

derived from the standard equations

EQ
t [dqD,ij − riqD,ijdt] = 0, i, j ∈ {1, 2}. (8)

Closed-form solutions are given in (C28) in Appendix C.

To link the Arrow-Debreu default claims to the actual probability of default, we decompose the value

of the claims into three factors: a time-adjustment, a risk-adjustment and the actual default probability, as

shown in the proposition below.

Proposition 2 The price of the Arrow-Debreu default claim, which pays out one unit of consumption if

default occurs in state j and the current state is i, is given by

qD,ij = pD,ijTijRij , (9)
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where pD,ij is the actual probability of default occurring in state j, conditional on the current state being i,

Tij is a time-adjustment factor and Rij is a risk-adjustment factor.

The risk-neutral probability of default occurring in state j, conditional on the current state being i, p̂D,ij,

is given by

p̂D,ij = pD,ijRij . (10)

Proposition 2 tells us that the price of the Arrow-Debreu default claim is not equal to the risk-neutral default

probability, a fact not explicitly noted in the previous literature. Chen, Collin-Dufresne, and Goldstein (2006)

note that to resolve the credit spread puzzle, risk-neutral default probabilities must be high while actual

default probabilities are low. In fact, Arrow-Debreu default claims must have high prices, while actual

default probabilities are low. The decomposition in (9) tells us this can be achieved when the time- and

risk-adjustments factors are sufficiently high.

The time and risk adjustments are computed by solving for the actual and risk-neutral default probabil-

ities, because

Rij =
p̂D,ij

pD,ij

, (11)

and

Tij =
qD,ij

p̂D,ij

. (12)

The set of actual default probabilities can also be found by solving (8), but with the risk-free rate set equal

to zero to eliminate time effects and the risk-distortion factor set equal to one to eliminate risk effects.

Similarly, risk-neutral default probabilities are the solution of (8), but with just the risk-free rate set to zero.

II.A.1 No Intertemporal Macroeconomic Risk

To gain more intuition about the decomposition in (9), we compute the actual default probability, the

time- and risk-adjustments for the case when there is no intertemporal macroeconomic risk. (The case with

intertemporal macroeconomic risk is algebraically tedious and outlined in the proof of Proposition 2.) We

can show that the actual default probability is

pD (Xt) =

(
XD

Xt

) θ−
1
2

σ2
X

σ2
X
2 , (13)

where σX is total earnings volatility, given by σX =
√

(σid
X )2 + (σs

X)2. The risk-adjustment factor is

R (Xt) =

(
XD

Xt

)−γρXC σs
X σC

σ2
X

/2

, (14)
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and the time-adjustment factor is

T (Xt) =

(
XD

Xt

)(θ̂− 1
2
σ2

X)

√√√√√1+
2rσ2

X

[θ̂−
1
2

σ2
X ]

2
−1

σ2
X

, (15)

where r is the risk-free rate (given in Appendix C, Equation (C20)) and θ̂ = θ−γρXCσs
XσC is the risk-neutral

earnings growth rate.

The risk-adjustment factor is always greater than or equal to one and, as expected, is increasing in relative

risk aversion, γ. In particular, when the representative agent is risk-neutral (γ = 0), the risk associated with

not knowing the time of default is no longer priced, and the risk-adjustment factor reduces to unity. The

risk-adjustment also increases with systematic earnings volatility, and the volatility of consumption growth.

However, the risk-adjustment factor is lower when idiosyncratic risk is higher. The intuition is simple:

with more idiosyncratic earnings growth volatility, the actual default probability is raised. Because the

risk-neutral default probability must be less than one, it cannot rise by a proportionate amount. Thus the

risk-adjustment is squeezed downwards.

The time-adjustment factor is a downward adjustment, reflecting the time value of money. In particular,

it accounts for the distribution of default times in the risk-neutral world. Consistent with this interpretation,

the time-adjustment factor is decreasing in the risk-free rate and is equal to one when the risk-free rate is

zero.17 Consequently, the time-adjustment factor increases with both the EIS (consumption smoothing)

and relative risk aversion (precautionary savings). Higher earnings volatility, whether it be systematic or

idiosyncratic, makes earlier default more likely, which increases the time-adjustment factor. Also, the time-

adjustment factor decreases in the risk-neutral earnings growth rate, θ̂, since an increase in θ̂ delays default.

The above discussion implies that the value of the Arrow-Debreu default claim is high when relative

risk aversion is high (and therefore the risk adjustment is high) and when the EIS is high (and therefore

the time adjustment is high). We now analyze the credit spread puzzle in a way analagous to Mehra

and Prescott (1985)’s analysis of the equity risk premium puzzle by keeping the actual default probability

realistically low and varying preference parameters in the absence of intertemporal macroeconomic risk. To

do this, we consider Baa bonds, which according to Huang and Huang (2003) have spreads over treasuries

of 158 bp. We choose the coupon, c, and idiosyncratic earnings growth volatility to match the historical

4-year default probability of 1.24% and leverage of 43% (as reported in Huang and Huang (2003)), for given

relative risk aversion, γ, and EIS, ψ. The resulting model-implied credit spread shows the same comparative

statics behavior with respect to relative risk aversion and the EIS as the risk-free rate. When γ 6= 1/ψ, the

credit spread falls as risk aversion and the EIS increase. For the power utility case, γ = 1/ψ, spreads are

initially increasing in risk aversion, but then start to decrease when the precautionary savings effect becomes

17The standard condition, θ̂ − 1
2
σ2

X > 0, ensures that T (Xt) is less than one when r > 0.
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larger. Hence, even for very high risk aversion, the model-implied Baa credit spread is much less than in the

data, never above 30 b.p. when the actual default probability is realistically small. Using Epstein-Zin-Weil

preferences instead of power utility increases credit spreads, but not by enough. Separating relative risk

aversion from the EIS makes it possible to get a lower risk-free rate, and hence a larger time-adjustment

factor. But in the absence of intertemporal macroeconomic risk, the risk-adjustment factor is not large

enough to simultaneously produce a high value for the Arrow-Debreu default claim and a small actual

default probability.

II.A.2 Intertemporal Macroeconomic Risk

Introducing intertemporal macroeconomic risk allows us to increase the risk-adjustment factor without low-

ering the time-adjustment. When there is a greater aversion to intertemporal macroeconomic risk, the

risk-distortion factor, ω, increases as Proposition 1 shows, which leads to an increase in the risk-adjustment

factor. In Section III, we actually show that this can account for a large fraction of observed credit spreads.

Recent empirical work by Berndt, Douglas, Duffie, Ferguson, and Schranz (2005) focuses on estimating

the size of risk-neutral default probabilities relative to actual default probabilities, i.e. the risk-adjustment

factor. The decomposition in (9) emphasizes the importance of understanding not only the risk-adjustment

factor, but also the time-adjustment factor. Furthermore, by virtue of possessing analytical expressions for

risk- and time-adjustments, we can provide some theoretical underpinning for topics which the empirical

literature has not yet touched upon. For example, we can study how macroeconomic and firm-level factors

impact the risk and time adjustments. Our decomposition also applies for finite-horizon Arrow-Debreu

default claims and closed-form expressions can be obtained using the approach of Leland (1998), which we

check by simulation. In the discussion below, for concreteness we assume the time-horizon is 4 years.

The macroeconomic factors we focus on are the moments of consumption growth. Figure 1 shows that

increasing the expected consumption growth in the low state, g1, decreases R11(4) and R21(4), while R12(4)

and R22(4) increase. The intuition is that increasing g1 decreases the jump in the state-price density that

occurs when the economy moves into a recession, thus decreasing the risk-distortion factor ω. Therefore, the

risk-neutral probability of switching into the low state falls, whereas the risk-neutral probability of switching

into the high state rises. Consequently, the risk-adjustments associated with defaulting in the low state,

i.e. R11(4) and R21(4), decrease, whereas risk-adjustments associated with defaulting in the high state, i.e.

R12(4) and R22(4), increase. Note also that R11(4), R21(4) > 1, while R12(4), R22(4) < 1. Importantly,

risk-adjustments associated with defaulting in the low state dominate those associated with defaulting in

the high state, in the following sense. The risk-adjustment factors which are independent of the state in

which default occurs are both greater than 1, i.e. Ri(4) > 1, i ∈ {1, 2}, where Ri(4) = p̂D,i(4)/pD,i(4),

pD,i(4) = pD,i1(4)+pD,i2(4) is the 4-year actual probability of default when the current state is i and p̂D,i(4)

is the corresponding risk-neutral default probability . Conversely, as consumption growth volatility in the low
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state, σC,1, rises, the distortion factor increases. Therefore the risk adjustments associated with defaulting

in the low state increase and the risk adjustments associated with defaulting in the high state decrease. The

intuition behind the change in time-adjustments as g1 increases is straightforward: the risk-free rate in the

low state increases, thus decreasing all the time-adjustments.

At the firm level, we are interested in how expected earnings growth, systematic and idiosyncratic earnings

growth volatility and leverage impact the risk- and time-adjustments. It is intuitive that risk-adjustments

fall as the impact of the bad state of the economy lessens, i.e. expected earnings growth in the low state

increases or systematic earnings growth volatility in the low state falls. When there is an increase in id-

iosyncratic earnings growth volatility, risk-adjustments behave the same way as they did in the absence of

intertemporal macroeconomic risk—they fall. Increasing leverage raises the optimal default boundary, which

increases the actual default probability without a proportionate increase in the risk-neutral default proba-

bility. Consequently, risk-adjustments fall as leverage increases, as shown in Figure 2. Time-adjustments

show the same qualitative behavior with respect to the first and second moments of earnings growth as for

the case with no intertemporal macroeconomic risk. Increasing leverage increases the time-adjustments by

raising the optimal default boundary and hence making earlier default more likely, as shown in Figure 3.

II.B Abandonment Value

The firm’s state-conditional liquidation, or abandonment value, denoted by Ai,t, is the after-tax value of the

future unlevered firm’s earnings, when the current state is i:

Ai,t = (1 − η)XtEt

[∫ ∞

t

πsXs

πtXt

ds

∣∣∣∣ νt = i

]
, for i ∈ {1, 2}. (16)

The liquidation value in (16) is a function of the current earnings level and is time-independent, Ai,t = Ai(Xt).

The next proposition derives the value of Ai in terms of fundamentals of the economy.

Proposition 3 The liquidation value in state i ∈ {1, 2} is given by

Ai(Xt) =
(1 − η)Xt

rA,i

, (17)

where

rA,i = µi − θi +

(
µj − θj

)
− (µi − θi)

p̂ + µj − θj

p̂f̂j , j 6= i, (18)

and

µi = ri + γρXC,iσX,iσC,i, (19)

is the discount rate in the standard Gordon growth model.
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To understand the intuition behind (17), suppose the economy is currently in state i. Then, the risk-

neutral probability of the economy switching into a different state during a small time interval ∆t is λ̂i∆t

and the risk-neutral probability of not switching is 1− λ̂i∆t. We can therefore write the unlevered firm value

in state i as

Ai = (1 − η)X∆t + e−(µi−θi)∆t
[(

1 − λ̂i∆t
)

Ai + λ̂i∆tAj

]
, i, j ∈ {1, 2}, j 6= i. (20)

The first term in (20) is the after-tax cash flow received in the next instant and the second term is the

discounted continuation value. The continuation value is the average of Ai and Aj , weighted by the risk-

neutral probabilities of being in states i and j 6= i a small instant ∆t from now. For example, with risk-neutral

probability λ̂i∆t the economy will be in state j 6= i and the abandonment value will be Aj . The continuation

value is discounted back at a rate reflecting the discount rate µi and the expected earnings growth rate over

that instant which is θi.

To gauge the intuition behind the discount rate, note that if the economy stays in state i forever, the

discount rate in the perpetuity formula (17) reduces to the standard expression

rA,i = µi−θi. (21)

To be concrete, assume we are in state 1. The discount rate in (18) is obtained by adjusting µ1−θ1 downwards

by the amount, (µ2−θ2)−(µ1−θ1)
p̂+µ2−θ2

p̂f̂2 < 0, to account for time spent in state 2 (a boom) at future times. The

magnitude of the adjustment increases with the growth rate in the boom state, θ2, and the risk-neutral

probability per unit time of switching into state 2, λ̂1. Note that as the economy is more likely to switch to

another state (i.e. p̂ becomes bigger), the adjustment approaches [(µ2 − θ2) − (µ1 − θ1)] f̂2 and the discount

rate approaches (µ1 − θ1) f̂1 +(µ2 − θ2) f̂2, which is the long-run risk-neutral mean of the difference between

the discount rate and the expected earnings growth rate.

II.C Credit Spreads and the Levered Equity Risk Premium

Turning now to corporate debt, the generic value of debt at time t, conditional on the state being i is denoted

by Bi,t and given by

Bi,t = Et

[∫ τD

t

πs

πt

cds

∣∣∣∣ νt = νi

]
+ Et

[
πτD

πt

ατD
AτD

∣∣∣∣ νt = i

]
, i ∈ {1, 2}. (22)

The first term in (22) is the present value of a perpetual coupon stream until default occurs at a random

stopping time τD. The second term is the present value at time t of the asset recovery value the debtholders

successfully claim upon default, where αt ∈ {α1, α2} is the date t recovery rate. We show (see Proof of

Proposition 4, Appendix C) that (22) reduces to

Bi,t =
c

rP,i



1 −

2∑

j=1

lij,tqD,ij,t



 , (23)
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where

lij,t =

c
rP,j

− αjAj (XD,j)
c

rP,i

is the loss ratio at default, when the current state is i and default occurs in state j. The first factor in (23)

is the price of the equivalent riskless consol bond, c/rP,i, and the second factor is a downward adjustment

for default risk, where lij,tqD,ij,t is present value of the loss ratio. The discount rate for a riskless perpetuity

when the current state is i is given by

rP,i = ri +
rj − ri

p̂ + rj

p̂f̂j , j 6= i. (24)

rP,i is not equal to the risk-free rate in state i, ri, because the risk-free rate is expected to change in the

future whenever the state of the economy switches.18

The next proposition gives the corporate bond spread and its volatility in terms of the discount rate for

a risk-free perpetuity, loss ratios and Arrow-Debreu default claims.

Proposition 4 The credit spread in state i, si,t, is given by

si,t =
c

Bi,t

− rP,i = rP,i

∑2
j=1 lij,tqD,ij,t

1 −
∑2

j=1 lij,tqD,ij,t

. (25)

The volatility of the credit spread in state i, σs,i, is given by

σs,i =

√(
(si + rP,i)

∂ lnBi

∂ lnX

)2

σ2
X,i + λi (sj − si)

2
, i ∈ {1, 2}, j 6= i, (26)

where, in state i, the elasticity of the bond price with respect to earnings is given by

∂ lnBi

∂ lnX
= −

si + rP,i

rP,i

2∑

j=1

(
∂ ln qD,ij

∂ lnX

)
qD,ij lij , i ∈ {1, 2}, j 6= i. (27)

The above proposition tells us that we can generate realistic credit spreads in three ways: a high risk-free

rate, high loss rates or high prices for Arrow-Debreu default claims. Empirically, we know both risk-free

rates and loss rates are too low. Therefore, the only way to generate high credit spreads is via high prices

for Arrow-Debreu default claims. But we know from Proposition 2 that Arrow-Debreu default claims are

just actual default probabilities adjusted for time and risk. Since actual default probabilities are low, the

time- and risk-adjustments factors need to be large for spreads to be large.

18Note that (24) can be obtained from the formula for the discount rate for a stochastically growing cash flow, (18), by

replacing the Gordon growth model discount rate, µi, with the risk-free rate, ri and setting the expected growth rate of

earnings, θi, equal to zero.
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Current levered equity value is given by the expected present value of future cashflows less coupon

payments up until bankruptcy, conditional on the current state:

Si,t = (1 − η)Et

[∫ τD

t

πs

πt

(Xs − c) ds

∣∣∣∣ νt = i

]
, i ∈ {1, 2}.

We can show (see Proof of Proposition 5, Appendix C) that the above equation simplifies to give

Si,t = Ai (Xt) − (1 − η)
c

rP,i

+

2∑

j=1

qD,ij

[
(1 − η)

c

rP,j

− Aj (XD,j)

]
, i ∈ {1, 2}. (28)

The first two terms in the above equation are the present after-tax value of future cashflows less coupon

payments, if the firm were never to default. The last term accounts for the fact that upon default shareholders

no longer have to pay coupons to bondholders and at the same time they lose the rights to any future cash

flows from owning the firm’s assets.

In the next proposition we derive the levered equity risk premium and levered stock-market return

volatility of an individual firm.

Proposition 5 The conditional levered equity risk premium in state i is

µR ,i − ri = γρXC,iσ
B,s
R,i σC,i + Λi, i ∈ {1, 2}, (29)

where Λi is the jump risk-premium in state i, given by

Λi =





(1 − ω−1)σP

R,1λ1, i = 1

(1 − ω)σP
R,2λ2, i = 2

, (30)

and

σP
R,i =

Sj

Si

− 1, i ∈ {1, 2}, j 6= i (31)

is the volatility of stock returns caused by Poisson shocks. σB,s
R,i is the systematic volatility of stock returns

caused by Brownian shocks, given by

σB,s
R,i =

∂ lnSi,t−

∂ lnXt

σs
X,i, i ∈ {1, 2} (32)

where

∂ lnSi,t−

∂ lnXt

=

Ai(Xt)
Xt

+
∑2

j=1 q′D,ij

[
(1 − η) c

rP,j
− Aj (XD,j)

]

Si,t−/Xt

, i ∈ {1, 2} (33)

is the elasticity of levered equity with respect to earnings.

Conditional levered stock return volatility in state i is

σR,i =

√(
σB,id

R,i

)2

+
(
σB,s

R,i

)2

+ λi

(
σP

R,i

)2

, i ∈ {1, 2}, (34)
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where

σB,id
R,i =

∂ lnSi,t−

∂ lnXt

σid
X,i, i ∈ {1, 2} (35)

is the idiosyncratic volatility of stock returns caused by Brownian shocks.

First we discuss how leverage affects the equity risk-premium of a firm. At first blush, one might expect

the levered equity risk-premium to be larger than the unlevered risk-premium, simply because the act of

paying coupons leaves behind less dividends for equity holders. But introducing leverage into a firm does

not simply reduce dividend payments; it also brings in default risk. As Equation (33) tells us, default risk

decreases the risk premium because the Arrow-Debreu default claim is a put and thus decreases in earnings.

Intuitively, default risk increases the value of the option to default, which increases equity value and hence

decreases the risk premium. When we calibrate the model, we revisit this issue (see Section III.C) to see

which effect dominates. The same argument applies to stock-return volatility, because both the premium

and volatility depend on the elasticity of levered equity with respect to earnings.

II.D Optimal Default Boundary and Optimal Capital Structure

Equityholders maximize the value of their default option by choosing when to default and also choose optimal

capital structure. Intuitively, the endogenous default boundary depends on the current state of the economy,

i.e. there is a set of default boundaries XD,i, i ∈ {1, 2}, where XD,i is the default boundary when the

economy is in state i. The default boundaries satisfy the following two standard smooth-pasting conditions:

∂Si (X)

∂X

∣∣∣∣
X=XD,i

= 0, i ∈ {1, 2}. (36)

In Appendix C we show that the default boundary is weakly countercyclical, i.e. XD,1 ≥ XD,2.

Equityholders choose the optimal coupon to maximize firm value at date 0. There are two important

features to note. First, by maximizing firm value equityholders internalize debtholders’ value at date 0.

However, in choosing default times they ignore the considerations of debtholders. This feature creates the

basic conflict of interest between equity and debtholders, which is standard in the optimal capital structure

literature. Second, the optimal coupon depends on the state of the economy at date 0. To make this

clear, we denote the date 0 coupon choice by ci,0, where i is the state of the economy at date 0. Therefore

equityholders choose the coupon to maximize date 0 firm value, Fi,0 = Bi,0 + Si,0. The choice of optimal

default boundaries will depend on the coupon choice. This implies hysteresis in the sense that the default

boundaries not only depend on the current state of the economy, but also on its initial state. For simplicity

we omit this in the notation for the default boundaries. We discuss the empirical implications of our model

for leverage decisions and default timing in Section III.E.
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III Calibration and Model Implications

In this section we analyze the quantitative implications of the model. We start by obtaining conditional

estimates of parameter values. Then, in Sections III.B and III.C, we see whether our model can resolve the

credit spread and equity risk premium puzzles, respectively. We also look at cross-market co-movement in

Section III.D and the implications of our model for corporate financing in Section III.E

III.A Calibration

To calibrate parameter values we use aggregate US data at quarterly frequency for the period from 1947Q1

to 2005Q4. Consumption is real non-durables plus service consumption expenditures from the Bureau of

Economic Analysis. Earnings data are from S&P and provided on Robert J. Shiller’s website. We delete

monthly interpolated values and obtain a time-series at quarterly frequency. The personal consumption

expenditure chain-type price index is used to deflate the earnings time-series. Unconditional parameter esti-

mates are summarized in Table II. In the presence of intertemporal macroeconomic risk, we need conditional

estimates, and their calibrated values are are given in Panel A of Table III. We now discuss the calibration

exercise in more detail.

We obtain estimates of λ1, λ2, g1, g2, θ1, θ2, σC,1, σC,2, σs
X,1, σs

X,2 and ρXC by maximum likelihood.

The approach is based on Hamilton (1989) and details specific to our implementation are summarized in

Appendix A. Our estimates are similar to those obtained by other authors who jointly estimate consumption

and dividends with a state-dependent drift and volatility, as opposed to consumption and earnings (see

Bonomo and Garcia (1996)). We calibrate idiosyncratic earnings volatility so that the model-implied 4-year

default probability is consistent with the observed 4-year cumulative default probability of 1.24% for Baa

bonds reported in Huang and Huang (2003), assuming a relative risk aversion of 10 and an EIS of 1.5. This

gives us an idiosyncratic earnings volatility of 32%. Andrade and Kaplan (1998) report default costs of

about 20% of asset value. Since the recovery rate for corporate bond holders is higher in a boom than in a

recession, we assume α1 = 0.7 and α2 = 0.9. The annualized rate of time preference β is 0.01.

III.B Corporate Bond Market

Proposition 4 links the credit spread and its volatility to the prices of Arrow-Debreu default claims. Therefore

we first focus on understanding their behavior and then use that understanding to explain the implications

of our model for corporate bond prices and corporate financing decisions, as shown in Table IV.

To highlight the role of the distortion factor, ω, the table uses three values of the EIS parameter ψ 0.1,

0.75, and 1.5. It is also important to be clear about the importance of the size of ψ for our model’s impli-

cations, because empirical estimates of its magnitude differ widely (Hansen and Singleton (1982), Attanasio

and Weber (1989), Vissing-Jorgensen (2002) and Guvenen (2006) estimate that ψ > 1, whereas Hall (1988)
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estimates that ψ is much less than one). As shown in Table V, when ψ = 0.1, ω = 1, because the represen-

tative agent is indifferent to whether intertemporal uncertainty is resolved sooner rather than later. When

ψ = 0.5, ω = 1.377 and for ψ = 1.5, ω = 1.424, reflecting an increasing preference for the early resolution of

intertemporal uncertainty. This is reflected in more long-run risk as measured by p̂, because p̂ decreases as

ω increases. Observe that this is purely a preference based effect, because while p̂ falls, the convergence rate

of the Markov chain under the actual probability measure, p, is constant.19

For simplicity, relative risk aversion is kept constant in Table IV, although we briefly describe the impact

of increasing it within the following discussion.

III.B.1 Arrow-Debreu Default Claims

The Arrow-Debreu default claims, qD,i = qD,i1 + qD,i2, which pay 1 unit of consumption if default occurs

conditional on the current state being i, increase both with risk aversion and the EIS.

Unsurprisingly the risk adjustments, Ri(4), increase with relative risk aversion, which drives up the

Arrow-Debreu default claim prices. Table IV also shows that the risk-adjustments increase with the EIS. The

intuition is that as ψ increases, the agent then has a stronger preference for earlier resolution of intertemporal

risk, which is reflected in a larger distortion factor, leading to higher state prices in recessions and more long-

run risk. When the EIS is 0.1, then ω = 1, and risk-adjustments are just above 1. Increasing the EIS to 1.5

increases risk-adjustments to around 1.4. This increase is large enough to counteract the decreasing actual

default probabilities and ensure that the Arrow-Debreu default claims increase with the EIS.

The risk-adjustment is procyclical with respect to the current state of the economy. While this may

initially seem surprising, this is a direct consequence of the countercyclicality of the actual default probabil-

ities and our definition of the risk-adjustment factor, Ri(4) = p̂D,i(4)/pD,i(4), as a ratio. Higher systematic

earnings volatility in recessions implies that the actual default probability is countercyclical. For example,

Table IV shows that when ψ = 1.5 actual default probabilities more than double in recessions. While risk-

neutral default probabilities also rise in recessions, they must increase by a lesser proportion to ensure that

they remain less than 1. Therefore, the ratio p̂D,i(4)/pD,i(4), which defines the risk-adjustment is lower in

recessions. Furthermore, the risk-adjustment depends on the optimal default boundary, which depends on

optimal leverage. Therefore, risk-adjustments depend on the state of the economy at the moment leverage is

chosen. Table IV shows that risk adjustments are higher when leverage is chosen in recessions. In particular

when ψ = 1.5, the risk-adjustment when the initial state was 1 (recession) and the current state is 2 (boom)

is 1.529, whereas when the initial state and current states are 2 (boom), the risk-adjustment is 1.437. This

dependence on the initial state stems from the effect of leverage on the default boundary. When optimal

leverage is chosen in a boom it is higher than when chosen in a recession. Consequently, when leverage is

19Note that p̂ = p(ω−1f1 + ωf2), where fi =
λj

p
, j 6= i and p = λ1 + λ2. It follows that p̂ < p and p̂ is decreasing in ω

provided that the average duration of recessions is less than booms, i.e. f1 < f2.
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chosen in a boom, default boundaries are higher, which makes early default more likely and risk-adjustment

factors larger.

The time-adjustments change very little as risk aversion changes, but Table IV shows that they do increase

as the EIS rises. When ψ = 0.1 the time adjustments are close to 0.5. Note also that they are countercylical,

because the risk-free rate is procyclical. Increasing ψ to 1.5 ensures the time adjustments are around 0.9.

We can also see that time-adjustments are lower when leverage is chosen in recessions. This reason is that

when chosen in recessions, leverage is lower. Thus the default boundary is lower and default is likely to occur

later, implying that the time-adjustment must be smaller.

While the actual default probabilities change very little with risk aversion, Table IV shows that they drop

steeply as the EIS falls. When ψ = 0.1, actual 4-year default probabilities are between 12% and 32%, which

is unrealistically high. For ψ to 1.5, we obtain realistic default probabilities, between 0.674% and 2.804%.

This effect is driven by leverage. As the EIS increases, so does the risk-adjustment, which is a measure of

default risk. Therefore Arrow-Debreu default claims become more expensive. Equations (23) and (28) show

that when Arrow-Debreu default claims rise in price, value is shifted from debtholders to equityholders,

which lowers leverage. In other words, the increase in default risk negatively impacts debt, but not equity.

Consequently, it is optimal to reduce the coupon and hence leverage. Lowering leverage decreases the default

boundary, which lowers actual default probabilities.

III.B.2 Credit Spreads

The credit spread increases with relative risk aversion. This is caused by larger risk-adjustment factors, which

drive up the prices of Arrow-Debreu default claims. In contrast, and perhaps surprisingly, Table IV shows

that increasing the EIS decreases the credit spread. When ψ = 0.1 credit spreads are in the range 260 to 530

b.p. With ψ = 1.5 spreads are between 180 and 223 b.p. This effect occurs because the risk-free perpetuity

discount rate and loss ratios fall as the EIS increases. Since the behavior of the risk-free perpetuity discount

rates, rP,i, is the same as the locally risk-free rate, ri, raising the EIS decreases rP,i. Equation (33) implies

that loss ratios are increasing in the optimal coupon and hence optimal leverage. Raising the EIS decreases

optimal leverage as discussed above. Thus loss ratios are decreasing in the EIS.

III.B.3 Credit Spread Volatilities

Credit spread volatility is barely changed by risk aversion. To see why, observe that credit spread volatility

is the instantaneous conditional standard-deviation of changes in the credit spread level, and while credit

spreads do go up slightly with risk aversion, they do not become more sensitive to changes in earnings or

the state of the economy.
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However, as the EIS increases, credit spread volatility falls substantially. This occurs because the credit

spread level decreases rapidly with the EIS. For larger values of the EIS credit spread volatility is closer to

its historical average of 39 b.p. for the period from 1946 to 2004.

III.B.4 Term Structure of Credit Spreads

We can extend our model to incorporate finite-maturity debt, based on the approach of Leland (1998) and

similar to Hackbarth, Miao, and Morellec (2006). Our model implies non-trivial credit spreads even for

short-maturity debt. In fact, as shown in Figure 4, when leverage is set equal to 43% and parameter values

are as in Table III, then with a risk aversion of 10 and an EIS of 1.5 the range of 4-year model-implied

credit spreads is 101-147 b.p. The 4-year Baa-treasury spread reported in Huang and Huang (2003) is 158

b.p. Some portion of this spread is not default related (e.g. De Jong and Driessen (2005) find evidence for a

liquidity component). Since it is thought that the Aaa-treasury spread is predominately due to non default

factors, a reasonable estimate of the default portion of the Baa-treasury spread is the Baa-Aaa spread. Huang

and Huang (2003) report the 4-year Baa-Aaa spread to be 103 b.p., consistent with our model-implied range.

The qualitative behavior of finite-maturity spreads with respect to macroeconomic conditions is the same as

for the infinite horizon case.

III.C Equity Market

Table VI shows the implications of our model for the equity risk premium, stock-market return volatility,

and the risk-free rate. We focus on the impact of leverage on the risk premium and understanding the

comparative statics of levered equity return volatility with respect to the EIS.

III.C.1 Leverage and the Risk Premium

Leverage has two effects on the risk premium. First, the dividend payment to equity holders is reduced by

the coupon. Second, the probability of default shifts value from debtholders to equityholders. To distinguish

between these two effects we compute not only the levered equity risk premium, but also the default-free

levered equity risk premium. The latter is obtained by setting the values of Arrow-Debreu default claims in

the levered premium equal to zero.

The act of paying coupons increases the risk premium, which can be seen by comparing the unlevered

premium (1.2 to 1.9%) with the default-free levered premium (3.5 to 8.7%). Default risk, however, increases

the value of equity via introducing a default option (which is the last term in (28)) and thus decreases the

premium (3.1 to 6.4%). Therefore, the coupon effect dominates the default risk effect and leverage increases

the risk premium.
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III.C.2 The Risk-Distortion Factor, Long-Run Risk and the Risk Premium

As is well-known, increasing risk aversion increases risk premia. Table VI shows that increasing the EIS also

increases the risk premia. This is a consequence of a stronger preference for earlier resolution of uncertainty,

which leads to a larger distortion factor and hence more long-run risk.

III.C.3 Levered Stock-Market Return Volatility

Volatility measures total risk, not just priced risk, so its behavior with respect to the EIS is quite different

from risk premia. Table VI shows that increasing the EIS decreases levered stock-market return volatility.

The effect is due to leverage. Equation (34) shows that levered stock return volatility depends on the

elasticity of equity with respect to earnings, given in (33). This elasticity equals unity in the absence of

leverage. However, in the presence of leverage this is not so. Crucially, the elasticity of equity with respect

to earnings is increasing in q′D,ij , the deltas of the Arrow-Debreu default claims. Because these claims are

digital puts, their deltas decrease as they get more in the money. Since increasing the EIS raises the values

of the Arrow-Debreu default claims it must also decrease their deltas. Therefore, the elasticity of equity with

respect to earnings and hence levered stock return volatility falls as the EIS rises.

III.D Cross-Market co-movement

Both earlier work by Fama and French (1993) and more recent work by Campbell and Taksler (2003), Zhang,

Zhou, and Zhu (2005) and Tauchen and Zhou (2006) finds evidence of co-movement between bond and stock

market variables. For instance, Campbell and Taksler find a 1 percentage point increase in the standard

deviations of excess returns increases corporate bond spreads by 14 b.p. Tauchen and Zhou regress Moody’s

Aaa and Baa credit spread on the jump-component of aggregate stock-return volatility and find significant

regression coefficients of 1.4998 and 1.9181, respectively. To replicate Tauchen and Zhou’s findings for Baa

credit spreads we simulate 100 panels each containing 3000 firms using parameter values as in Table III. We

simulate 5 years of monthly data and then regress the equally-weighted credit spread on the value-weighted

jump component of stock-return volatility for each panel in line with Tauchen and Zhou’s empirical exercise.

When relative risk aversion is 10 and the EIS is 1.5, Table IX shows that our model generates mean regression

coefficients of 1.786 and 2.296, depending on the initial state of the economy. These coefficients are very

close to the result Tauchen and Zhou obtained from the actual data.20

Our model’s results hinge crucially on intertemporal macroeconomic risk, which creates a jump-factor

in both stock-return volatility and credit spreads. Because we model intertemporal macroeconomic risk via

jumps in the drift and diffusion components of consumption and earnings growth, both equity and debt

20The regression coefficients we obtain from our simulated data are expressed in daily units so they can be compared directly

with the empirical estimates in Tauchen and Zhou.
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values jump. Jumps in equity value always create a jump component in stock-return volatility, but jumps in

debt value are not always priced in the credit spread. The jumps are priced if and only if there are correlated

jumps in the state-price density, i.e. the risk-distortion factor, ω, is not equal to one. If we want credit

spreads to move up at the same time as volatility, the state-price density must jump up when the economy

shifts into recession, i.e. ω > 1.

III.E Empirical Corporate Finance Implications

Our framework gives rise to a number of readily testable empirical implications on corporate default and

capital structure decisions. While both default and financing decisions are affected to some extent along

similar lines, for clarity in stating empirical predictions we start with the effect of macroeconomic conditions

on default decisions.

III.E.1 Optimal Default Timing

The model gives rise to the following four empirical predictions regarding the optimal default boundary and

macroeconomic conditions.

First and most importantly, the optimal earnings default boundary is higher in a recession. The intuition

is that in a boom the default option is larger and equityholders are ready to default only under particularly

bad earnings outcomes. Therefore default is more likely in bad times. As a result, the distribution of future

cash flow growth rates in a recession is wider and there is a noticeable time-variation in default propensity

as macroeconomic conditions change. Interestingly, when preference parameters are chosen to generate a

realistic risk premium and credit spread, discount rates, rA,i, are countercyclical, implying that the asset-

value default boundary is procyclical, i.e. A1(XD,1) < A2(XD,2). Chen, Collin-Dufresne, and Goldstein

(2006), however, demonstrate that habit formation preferences with i.i.d. consumption growth can only

generate a realistic spread with a countercyclical asset-value default boundary. Our result for the asset-value

default boundary thus offers empiricists in corporate finance a definitive way of contributing to the asset

pricing literature by determining which of the long-run risk or habit-formation classes of models are more

suitable for the joint valuation of debt and equity.

Second, when the economy switches into a recession, firms can default even if their earnings have not

changed recently. To see why, suppose that we are in state 2 (boom), with default boundary XD,2 and

XD,2 < X < XD,1. If the economy stays in a boom, the firm will stay solvent. But as soon as the economy

goes into recession, the firm will go bankrupt. Thus, in the presence of intertemporal macroeconomic risk

defaults cluster, consistent with empirical facts. The effect is similar to the one in Hackbarth, Miao, and

Morellec (2006), where defaults cluster because of jumps in cash flows. In our model, defaults cluster not

only because of a cash flow effect, but also because of jumps in the state-price density. Importantly, we will

observe a greater number of simultaneous defaults when the economy switches into a recession.
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Third, the decision to default is affected by the decreased present value of future cash flows, driven by

changes in growth rates, in contrast with Hackbarth, Miao, and Morellec (2006), where the earnings level

switches. Modelling the effect of future growth rates on the decision to default may partly explain why

defaults are observed on occasion to happen “too late” relative to a supposedly efficient timing outcome.

Last, but not least, default decisions are subject to a hysteresis effect: the propensity to default depends

on the macroeconomic conditions at the dates of past financing events. Firms which decide on their capital

structure in booms optimally choose higher leverage and are more likely to default, especially when the boom

gives way to a recession. Table IV demonstrates that the default probabilities of firms choosing leverage in

a boom are about twice those of firms choosing leverage in a recession.

III.E.2 Optimal Leverage

The relation between leverage and macroeconomic conditions has been investigated in recent empirical studies

(see Korajczyk and Levy (2003)), which find leverage is countercyclical. Our results show two effects, both

of which are testable empirically. First, when the economy switches from a boom into a recession, the market

value of equity drops more than the market value of debt, thus making leverage countercyclical. Second, if

a firm chooses its financing at the time of a recession, its choice will be driven more by financial flexibility

considerations and thus optimal leverage will be lower. Naturally, the latter effect will be more pronounced

for financially constrained firms, since they are more likely to suffer in a recession. It would be interesting

to study the relation between these two effects by considering historical evidence on capital structure over

the business cycle.

Importantly, there is substantial hysteresis in the model-implied leverage ratios.21 Table IV shows that

firms with identical cash flow processes, but subject to different macroeconomic conditions will optimally

choose different leverage ratios. One would also find that firms which choose lower leverage in a boom are

more likely to have lower debt capacity (e.g. they have higher volatility) and thus by choosing lower leverage

they protect themselves against adverse recession jumps. To sum up, we hypothesize that empirically one

would find that macroeconomic conditions during past financing events are an important determinant of

current capital structure.

At the same time, firms that decide to lever up in a recession for the first time are likely to be less affected

by negative economy-wide shocks. While the option to delay refinancing is not explicitly considered in our

model, it is intuitive that firms may prefer to delay financing decisions till a boom. Our results also point

to the co-movement of capital structure across firms over the business cycle. Moreover, this co-movement is

expected to be higher in bad times when equity values are affected by higher systematic volatility.

21Recent empirical evidence (see Lemmon, Roberts, and Zender (2006)) points to the existence of hysteresis consistent with

dynamic capital-structure models of infrequent refinancing (see Strebulaev (2007)).
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An empirical implication which is perhaps less easy to test because of data constraints, is the impact

of preferences on capital structure decisions. We find that if the economy consists of agents who prefer

the earlier resolution of temporal uncertainty, firms will issue lower leverage. While our setting employs a

representative agent, it is natural to expect that in a heterogeneous agent economy, firms run by managers

who prefer the earlier resolution of temporal uncertainty will opt for more conservative financial policies.

This observation adds a new cross-sectional determinant of capital structure. Since we find the effect to be

quantitatively important, we expect empiricists to be interested in investigating this issue further.

IV Stripping Down the Model: What Causes What?

In this section, we show how our each of our modelling assumptions impacts the credit spread and the equity

risk premium. We strip down the model by removing intertemporal macroeconomic risk in the first and

second moments of earnings and consumption growth and the representative agent’s preference about the

resolution of that risk over time. This leaves us with Model 1a, where aggregate consumption growth and

earnings growth is i.i.d. and the representative agent has power utility. We then rebuild the model piece-

by-piece. In Model 1b, we introduce Epstein-Zin-Weil preferences. In Model 2, we add Markov switching

in the first and second moments of earnings growth, but not to consumption growth. And finally, in Model

3, we rebuild the model fully by having Markov switching in the first and second moments of consumption

growth. To get a fair comparison across models, we calibrate them all to the same data on earnings and

consumption and use an optimal default boundary with a coupon chosen so leverage is the same in each

model. One consequence of this assumption is that we cannot choose idiosyncratic earnings volatility to get

a realistically low actual default probability across all models. Tables VII and VIII summarize our results

for the corporate bond and equity markets, respectively.

IV.A Credit Spread Levels

When there is no intertemporal macroeconomic risk, using Epstein-Zin-Weil preferences instead of power

utility (moving from Model 1a to Model 1b) increases credit spreads. This increase stems purely from an

increase in the time-adjustment factor in the Arrow-Debreu default claim: separating relative risk aversion

from the EIS allows us to reduce the risk-free rate.

Adding Markov switching to the first and second moments of earnings growth, but not consumption

growth (moving from Model 1b to Model 2) does not impact the size of the credit spread much at all,

because these switches are not correlated with the state-price density, and are hence not priced. This is

summarized by the fact that the risk-distortion factor, ω, is 1.

Introducing switching in the moments of consumption growth (moving from Model 2 to Model 3) leads to

a significant increase in the spread. Switches in the moments of earnings growth are now correlated with the
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state-price density (ω > 1, so the state-price density jumps up whenever expected earnings growth/earnings

growth volatility jumps down/up), so they are priced into credit spreads. This is reflected by an increase in

the risk-adjustment factor.

In summary, two assumptions lie behind the model’s ability to generate high prices for Arrow-Debreu

default claims, without increasing actual default probabilities. The first is the use of Epstein-Zin-Weil

preferences, which increases the time-adjustment factor by lowering the risk-free rate. The second is the

assumption of switching in the first and second moments of both earnings and consumption growth rates

(intertemporal macroeconomic risk). When the representative agent is averse to the delayed resolution

of intertemporal risk (γ > 1/ψ), she dislikes intertemporal macroeconomic risk, which is reflected in an

increased risk-adjustment factor.

IV.B The Cyclicality of Credit Spreads

First, we note that in models 1a and 1b, credit spreads are not cyclical since there is no intertemporal

macroeconomic risk. Introducing switches in the first and second moments of earnings growth alone (Model

2) leads to countercyclical credit spreads. This countercyclicality is driven by countercyclical Arrow-Debreu

default claims, which are in turn countercyclical since actual default probabilities are. It is intuitive that in

the low state, when systematic earnings volatility is high, the actual default probability will also be high.

This underlines the importance of making volatilities change with macroeconomic conditions. Introducing

switching in the moments of consumption growth (Model 3) makes the time-adjustment countercyclical and

the risk-adjustment procyclical. Overall, the Arrow-Debreu default claims remain countercyclical. This is in

contrast with Chen, Collin-Dufresne, and Goldstein (2006), where the credit spread is procyclical, unless the

asset-value default boundary is countercyclical. The reason for this stems from the time-adjustment factor.

Chen, Collin-Dufresne, and Goldstein (2006) use Campbell-Cochrane habit formation to model preferences.

Therefore, the risk-free rate is constant, implying that the time-adjustment is constant. Furthermore, the

risk-adjustment is very procyclical. Consequently, the Arrow-Debreu default claims and hence the credit

spread are procyclical, unless an exogenously countercyclical asset-value default boundary is imposed.

IV.C Equity Market Variables and the Risk-Free Rate

Introducing Epstein-Zin-Weil preferences when there is no intertemporal macroeconomic risk decreases the

risk-free rate. This, however, has no impact on risk premia (see Kocherlakota (1990)). While switching in

the moments of earnings growth makes the price-earnings ratio procyclical, which implies risk premia are

countercyclical, risk premia remain small. Finally, introducing switching in the first and second moments of

consumption growth increases risk premia since upward jumps in the state-price density are now correlated

with downward jumps in price-earnings ratios, creating a jump-risk premium. We can see this clearly in
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the behavior of the risk-distortion factor, which is now greater than 1. That implies that the risk-neutral

probability of switching from a boom to a recession is now higher than the actual probability, which is

reflected in a higher risk premium.

V Conclusion

We develop a theoretical framework that jointly prices corporate debt and equity in order to deliver a unified

understanding of what drives the equity risk premium, credit spreads, and optimal financing decisions. To

this end, we embed a structural model of credit risk with optimal financing decisions inside a representative

agent consumption-based model. To study a common economic mechanism that affects both credit and

equity markets, we introduce intertemporal macroeconomic risk by allowing the first and second moments of

consumption and earnings growth processes to switch randomly. Furthermore, we ensure the representative

agent dislikes these regime shifts, by assuming she has Epstein-Zin-Weil preferences and prefers uncertainty

to be resolved sooner rather than later.

Intertemporal macroeconomic risk combined with an aversion to it makes the state-price density jump

upward in recessions, leading to jump-risk premia in asset returns. Jump risk impacts both credit spreads

and stock returns, generating co-movement between credit spreads and the jump component of stock-market

return volatility. The stock-market risk premium increases as the agent’s dislike for regime shifts increases.

The model can generate realistically high credit spreads without raising actual default probabilities and

leverage. This is crucial, because in the data expected default frequencies are very small and leverage is

relatively low. In essence, the framework can drive a wedge between the value of the Arrow-Debreu default

claim and actual default probabilities. To show this, we develop a novel understanding of the intuition

behind the Arrow-Debreu default claim. We decompose the claim into three components: the actual default

probability, a risk adjustment and a time adjustment. To increase credit spreads both the risk and time

adjustments must be larger than in standard structural models. We show how incorporating intertemporal

macroeconomic risk achieves this goal.

Our model also generates a number of testable corporate finance implications relating to the effect of

macroeconomic conditions on default and optimal financing decisions and can give rise to co-movement in the

time-variation of capital structure and default clustering. Importantly, for parameter values which generate

a realistic equity premium and credit spread, the asset-value default boundary is procyclical. This is in

contrast with Chen, Collin-Dufresne, and Goldstein (2006), who show that in a habit-formation model with

i.i.d. consumption growth, the asset value default boundary has to be countercyclical to obtain realistic

credit spreads. Hence, empirical studies of the default boundary would offer an appealing way to judge

whether long-run risk or habit-formation models are more promising for jointly pricing debt and equity.
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This paper is only a first step towards the development of a fully-fledged consistent framework for pricing

corporate equity and debt and the unification of existing asset pricing and corporate finance paradigms.

Interesting possibilities for further research include studying the effects of default on consumption and in-

troducing heterogeneous agents to distinguish between equity and debtholders.

A Appendix: Calibration Details

To estimate a Markov switching model as described in Hamilton (1989), we start by assuming that aggregate consumption, C,

is given by

ct+1 = ∆ log Ct+1 = gi −
1

2
σ2

C,i + σC,iεC,t+1, (A1)

and aggregate earnings, X =
∑N

n=1 Xn, by

xt+1 = ∆ log Xt+1 = θi −
1

2
(σs

X,i)
2 + σs

X,iεX,t+1, (A2)

where shocks to earnings growth and consumption growth are normally distributed with zero mean and unit variance and

correlation of ρXC . Equation (A1) is simply a discretized version of (1). To justify (A2), we prove that if θn,i = θi and

σs
X,n,i = σs

X,i for all i ∈ {1, 2} and n ∈ {1, . . . , N}, and there exists some ǫ > 0 independent of N , such that Xn
X

≤ ǫ
N

for all
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The proof proceeds by noting that
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from which it follows that
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which implies that

lim
N→∞
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Equation (A3) follows. Thus, (A2) is justified under the given assumptions if the number of firms N is large. As a consequence,

we can obtain the aggregate levered equity risk premium by setting σid
X,n = 0. The joint normal distribution for earnings growth

and consumption growth denoted by Φ

Φ(xt, ct|νt = i, Ωt−1; Γ) =
1

2πσs
X,i

σC,i

√
1 − ρ2

XC

exp{−1/2(ε2
X,t + ε2

C,t − 2ρXCεX,tεC,t)/(1 − ρ2
XC)}.

where Ωt denotes the set of all observations up to time t and Γ the set of unknown parameters. Having obtained our parameter

estimates by maximizing the log-likelihood, we must obtain the parameters of the continuous-time Markov chain from the

estimated discrete-time transition matrix

P =
(

P11 P12
P21 P22

)
,
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where Pij = P (νt+1 = θj |νt = θi) is the probability of switching from state i to j within a quarter. To do this note that the

matrix of quarterly transition probabilities, P , is related to the generator of the continuous-time chain

Λ =
( −λ1 λ1

λ2 −λ2

)

by

eΛ 1
4 = P.

Using standard techniques from linear algebra, we can show that

eΛ 1
4 =

(
f1 f2
f1 f2

)
+

(
f2 −f2−f1 f1

)
e−

1
4

p, (A4)

Where p = λ1 + λ2 and fi = λi
p

, i ∈ {1, 2}. Equating (A4) with P implies after some algebra:

f1 =

(
1 +

P12

P21

)−1

p = −4 ln

(
1 − P12

1 − f1

)
.

B Appendix: Derivation of the State Price Density

First, we introduce some notation. If some function E depends on the current state of the economy i.e. Et = E(νt), then E is

jump process which is right continuous with left limits, i.e. RCLL. If a jump from state i to j 6= i occurs at date t, then we abuse

notation slightly and denote the left limit of E at time t by Ei, where i is the index for the state. i.e. Et− = lims↑t Es = Ei.

Similarly Et = lims↓t Es = Ej . We shall use the same notation for all processes that jump, because of their dependence on the

state of the economy.

Using simple algebra we can write the normalized Kreps-Porteus aggregator in the following compact form:

f (c, v) = β
(
h−1 (v)

)1−γ
u

(
c/h−1 (v)

)
,

where

u (x) =
x
1− 1

ψ − 1

1 − 1
ψ

, ψ > 0,

h (x) =

{
x1−γ

1−γ
, γ ≥ 0, γ 6= 1.

ln x, γ = 1.

The representative agent’s value function is given by

Jt = Et

∫ ∞

t

f (Ct, Jt) dt. (B1)

Theorem 1 The state-price density of a representative agent with the continuous-time version of Epstein-Zin-Weil preferences

is given by

πt =






(
βe−βt

) 1−γ

1− 1
ψ C−γ

t

(
pC,te

∫ t
0

p
−1

C,s
ds

)−
γ−

1
ψ

1− 1
ψ , ψ 6= 1

βe−β
∫ t
0 [1+(γ−1) ln(V −1

s )]dsC−γ
t V

−(γ−1)
t , ψ = 1

. (B2)

When ψ 6= 1, the price-consumption ratio in state i, pC,i, satisfies the nonlinear equation system:

p−1
C,i

= ri + γσ2
C,i − gi −

(
1 − 1

ψ

)
λi




(
pC,j/pC,i

) 1−γ

1− 1
ψ − 1

1 − γ


 , i ∈ {1, 2}, j 6= i. (B3)
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where

ri = β +
1

ψ
gi −

1

2
γ

(
1 +

1

ψ

)
σ2

C,i, i ∈ {1, 2}. (B4)

When ψ = 1, define V via

J = ln(CV ). (B5)

Then Vi satisfies the nonlinear equation system:

β ln Vi = gi −
γ

2
σ2

C,i + λi
(Vj/Vi)

1−γ − 1

1 − γ
i ∈ {1, 2}, j 6= i. (B6)

Proof of Theorem 1

Duffie and Skiadas (1994) show that the state-price density for a general normalized aggregator f is given by

πt = e
∫ t
0

fv(Cs,Js)dtfc (Ct, Jt) , (B7)

where fc(·, ·) and fv(·, ·) are the partial derivatives of f with respect to its first and second arguments, respectively, and J is

the value function given in (B1). The Feynman-Kac Theorem implies

f (Ct, Jt−)|νt−=i dt + Et [dJt| νt− = i] = 0, i ∈ {1, 2}.

Using Ito’s Lemma we rewrite the above equation as

0 = f (C, Ji) + CJi,Cgi +
1

2
C2Ji,CCσ2

C,i + λi (Jj − Ji) , (B8)

for i, j ∈ {1, 2}, j 6= i. We guess and verify that

J = h(CV ), (B9)

where Vi satisfies the nonlinear equation system

0 = βu
(
V −1

i

)
+ gi −

1

2
γσ2

C,i + λi

(
(Vj/Vi)

1−γ − 1

1 − γ

)
, i, j ∈ {1, 2}, j 6= i. (B10)

Substituting (B5) into (B7) and simplifying gives

πt = βe
−β

∫ t
0

[
1+

(
γ− 1

ψ

)
u(V −1

s )
]
dt

C−γ
t V

−
(

γ− 1
ψ

)

t . (B11)

When ψ = 1, the above equation gives the second expression in (B2). We rewrite (B10) as

β

[
1 +

(
γ − 1

ψ

)
u

(
V −1

i

)]
= ri −

(
γ − 1

ψ

)
λi

(
(Vj/Vi)

1−γ − 1

1 − γ

)
−

[
γgi −

1

2
γ (1 + γ) σ2

C,i

]
, i, j ∈ {1, 2}, j 6= i, (B12)

where ri is given in (B4). Setting ψ = 1 in (B12) gives (B6).

To derive the first expression in (B2) from (B11) we prove that

Vi =
(
βpC,i

) 1

1− 1
ψ , ψ 6= 1. (B13)

We proceed by considering the optimization problem for the representative agent. She chooses her optimal consumption (C∗)

and risky asset portfolio (ϕ) to maximize her expected utility

J∗
t = sup

C∗,ϕ

Et

∫ ∞

t

f (C∗
t , J∗

t ) dt.
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Observe that J∗ depends on optimal consumption-portfolio choice, whereas the J defined previously in (B5) depends on

exogenous aggregate consumption. The optimization is carried out subject to the dynamic budget constraint, which we now

describe. If the agent consumes at the rate, C∗, invests a proportion, ϕ, of her remaining financial wealth in the claim on

aggregate consumption (the risky asset), and puts the remainder in the locally risk-free asset, then her financial wealth, W ,

evolves according to the dynamic budget constraint:

dWt

Wt−
= ϕt−

(
dRC,t − rt−dt

)
+ rt−dt −

C∗
t−

Wt−
dt,

where dRC,t is the cumulative return on the claim to aggregate consumption. We define Ni,t as the Poisson process which

jumps upward by one whenever the state of the economy switches from i to j 6= i. The compensated version of this process is

the Poisson martingale

NP
i,t = Ni,t − λit.

It follows from applying Ito’s Lemma to P = pCC, that the cumulative return on the claim to aggregate consumption is

dRC,t =
dPt + Ctdt

Pt−
= µRC ,t−dt + σC,t−dBC,t + σP

RC ,t−dNP
νt−,t,

where

µRC ,t−

∣∣
νt−=i

= µRC ,i = gi +
1

2
σ2

C,i + λi

(
pC,j

pC,i

− 1

)
+

1

pC,i

,

σC,t−

∣∣
νt−=i

= σC,i,

σP
RC ,t−

∣∣∣
νt−=i

= σP
RC ,i =

pC,j

pC,i

− 1,

for i ∈ {1, 2}, j 6= i. The total volatility of returns to holding the consumption claim, when the current state is i, is given by

σRC ,i =

√
σ2

C,i
+ λi

(
σP

RC ,i

)2
.

Note that C∗ is the consumption to be chosen by the agent, i.e. it is a control, and at this stage we cannot rule out the

possibility that it jumps with the state of the economy. In contrast, C is aggregate consumption, i.e. the dividend received by

an investor who holds the claim to aggregate consumption. Because aggregate consumption, C, is continuous, it’s left and right

limits are equal, i.e. Ct− = Ct.

The system of Hamilton-Jacobi-Bellman partial differential equations for the agent’s optimization problem is

sup
C∗,ϕ

f
(
C∗

t−, J∗
t−

)∣∣
νt−=i

dt + Et [dJ∗
t | νt− = i] = 0, i ∈ {1, 2}.

Applying Ito’s Lemma to J∗
t = J∗ (Wt, νt) allows us to write the above equation as

0 = sup
C∗

i ,ϕi

f (C∗
i , J∗

i ) + WiJ
∗
i,W

(
ϕi

(
µRC ,i − ri

)
+ ri −

C∗
i

Wi

)
+

1

2
W 2

i J∗
i,WW ϕ2

i σ2
RC ,i +

+λi

(
J∗

j − J∗
i

)
, i ∈ {1, 2}, j 6= i.

We guess and verify that

J∗
t = h (WtFt) ,

where Fi satisfies the nonlinear equation system

0 = sup
C∗

i ,ϕi

βu

(
C∗

i

WiFi

)
+

(
ϕi

(
µRC ,i − ri

)
+ ri −

C∗
i

Wi

)
− 1

2
γϕ2

i σ2
RC ,i + λi

(
(Fj/Fi)

1−γ − 1

1 − γ

)
, i ∈ {1, 2}, j 6= i.
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From the first order conditions of the above equations, we obtain the optimal consumption and portfolio policies:

C∗
i = βψF

−(ψ−1)
i Wi, i ∈ {1, 2},

ϕi =
1

γ

µRC ,i − ri

σ2
RC ,i

, i ∈ {1, 2}.

The market for the consumption good must clear, so ϕi = 1, Wi = Pi, C∗
i = C (and thus J = J∗). Note that this forces the

optimal portfolio proportion to be one and the optimal consumption policy to be continuous. Hence

µRC ,i − ri = γσ2
RC ,i,

and

pC,i = β−ψF 1−ψ
i . (B14)

The above equation implies that for ψ = 1, pC,i = 1/β. The equality, J = J∗, implies that CVi = WFi. Hence, Fi = p−1
C,i

Vi.

Using this equation to eliminate Fi from (B14) gives (B13). Substituting (B13) into (B11) and (B12) gives the expressions in

(B2) for ψ 6= 1 and (B3), after some algebra.

C Appendix: Proofs

Proof of Proposition 1

We start by proving that the state-price density satisfies the stochastic differential equation

dπt

πt−

∣∣∣∣
νt−=i

= −ridt +
dMt

Mt−

∣∣∣∣
νt−=i

, (C1)

where M is a martingale under P such that

dMt

Mt−

∣∣∣∣
νt−=i

= −ΘB
i dBt + ΘP

i dNP
i,t, (C2)

ri is the risk-free rate in state i given by

ri =






r1 + λ1

[
γ− 1

ψ

γ−1

(
ω
− γ−1

γ−
1
ψ − 1

)
−

(
ω−1 − 1

)
]

, i = 1

r2 + λ2

[
γ− 1

ψ

γ−1

(
ω

γ−1

γ−
1
ψ − 1

)
− (ω − 1)

]
, i = 2

, (C3)

and

ω2 = ω−1
1 = ω,

where ω is the solution of

G (ω) = 0, (C4)

and

G (x) =






x
−

1− 1
ψ

γ−
1
ψ −

r2+γσ2
C,2−g2+λ2

1− 1
ψ

γ−1


x

γ−1

γ−
1
ψ −1




r1+γσ2
C,1

−g1+λ1

1− 1
ψ

γ−1


x

−
γ−1

γ−
1
ψ −1




, ψ 6= 1

ln x
1

γ−1 − g2−
1
2

γσ2
C,2+λ2(x−1)

g1−
1
2

γσ2
C,1

+λ1(x−1−1)
, ψ = 1

. (C5)
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ΘB
i is the market price of risk due to Brownian shocks in state i, given by

ΘB
i = γσC,i. (C6)

and ΘP
i is the market price of risk due to Poisson shocks when the economy switches out of state i:

ΘP
i = ωi − 1. (C7)

We begin the proof by noting that if we define

ωi =
πt

πt−

∣∣∣∣
νt−=i,νt=j

, j 6= i, (C8)

then (B2) implies that

ωi =






(
pC,j

pC,i

)−
γ−

1
ψ

1− 1
ψ , ψ 6= 1.

(
Vj

Vi

)−(γ−1)
, ψ = 1.

(C9)

The above equation implies that ω2 = ω−1
1 , so we can set ω2 = ω−1

1 = ω, where ω is determined below. Using (C9) we can

rewrite (B3) and (B6) as

pC,i =
1

ri + γσ2
C,i

− gi + λi

1− 1
ψ

γ−1

(
ω

γ−1

γ−1/ψ

i − 1

) , i ∈ {1, 2}, (C10)

and

β ln Vi = gi −
1

2
γσ2

C,i + λi
ωi − 1

1 − γ
, i ∈ {1, 2}, (C11)

respectively. Therefore, from (C9) and the above two equations it follows that ω is the solution of Equation (C4). Ito’s Lemma

implies that the state-price density evolves according to

dπt

πt−
=

1

πt−

∂πt−

∂t
dt +

1

πt−
Ct

∂πt−

∂Ct

dCt

Ct

+
1

2

1

πt−
C2

t

∂2πt−

∂C2
t

(
dCt

Ct

)2

+λνt−

∆πt

πt−
dt +

∆πt

πt−
dNP

νt−,t, (C12)

where

∆πt = πt − πt−.

The definition (C8) implies

∆πt

πt−

∣∣∣∣
νt−=i, νt=j

= ωi − 1, j 6= i.

Together with some standard algebra that allows us to rewrite (C12) as

dπt

πt−

∣∣∣∣
νt=νi

= −
(

κi + γgi −
1

2
γ (1 + γ) σ2

C,i + λi (1 − ωi)

)
dt − γσC,idBC,t + (ωi − 1) dNP

i,t.

Comparing the above equation with (C1), which is standard in an economy with jumps, gives (C6) and (C7), in addition to

ri = κi + γgi −
1

2
γ (1 + γ) σ2

C,i + λi (1 − ωi) ,
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where

κi =






β

[
1 +

(
γ − 1

ψ

)
(βpC,i)

−1
−1

1− 1
ψ

]
, ψ 6= 1

β
[
1 + (γ − 1) ln

(
V −1

i

)]
, ψ = 1

. (C13)

We use Equations (C10) and (C11) to eliminate pC,i and Vi from (C13) to obtain

κi =






ri −
(
γ − 1

ψ

)
λi



 ω

γ−1

γ−1/ψ
i −1

1−γ



 −
[
γgi − 1

2
γ (1 + γ) σ2

C,i

]
, ψ 6= 1

ri + λi (ωi − 1) −
[
γgi − 1

2
γ (1 + γ) σ2

C,i

]
, ψ = 1

, (C14)

so

ri =





ri −

(
γ − 1

ψ

)
λi



 ω

γ−1

γ−1/ψ
i −1

1−γ



 + λi (1 − ωi) , ψ 6= 1.

ri, ψ = 1.

(C15)

Taking the limit of the upper expression in the above equation gives the lower expression, so (C3) follows. The total market

price of consumption risk in state i accounts for both Brownian and Poisson shocks, and is thus given by

Θi =

√(
ΘB

i

)2
+ λi

(
ΘP

i

)2
, i ∈ {1, 2}. (C16)

Because the Poisson and Brownian shocks in (C2) are independent and their respective prices of risk are bounded, M is a

martingale under the actual measure P. Thus M defines the Radon-Nikodym derivative dQ

dP
via

Mt = Et

[
dQ

dP

]
.

It is a standard result (see Elliott (1982)) that

λ̂i = λiEt

[
Mt

Mt−

∣∣∣∣ νt− = i, νt = j

]
, j 6= i.

The jump component in dπ comes purely from dM . Thus, using (C8), we can simplify the above expression to obtain

λ̂i = λiωi,

which implies (5) and (6).

We deduce the properties of the risk distortion factor, ω, from the properties of the function g defined in (C5). We restrict

the domain of G to x > 0. First we consider the case where ψ 6= 1. We assume that the price-consumption ratios, pC,i, i ∈ {1, 2}
are strictly positive. Therefore, G is continuous. We observe that if G is monotonic, then by continuity, G(1) and G′(1) are of

the same sign iff ω < 1 and G(1) and G′(1) are of different signs iff ω > 1. Clearly, in both cases, ω is unique. To establish

monotonicity note that

G′(x) = −
1 − 1

ψ

γ − 1
ψ


x

−
1− 1

ψ

γ−
1
ψ

−1

+
1

(
r1 + γσ2

C,1 − g1 + λ1
1− 1

ψ

γ−1

(
x
− γ−1

γ−
1
ψ − 1

))2

(
r1 + γσ2

C,1 − g1 + λ1

1 − 1
ψ

γ − 1

(
x
− γ−1

γ−
1
ψ − 1

)
λ2x

1/ψ−1

γ−1/ψ

+

(
r2 + γσ2

C,2 − g2 + λ2

1 − 1
ψ

γ − 1

(
ω

γ−1

γ−
1
ψ − 1

))
λ1x

−
1/ψ−1

γ−1/ψ
−2

)]
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The above equation implies that for x > 0, if pC,1 and pC,2 are strictly positive, then G′(x) does not change sign. Therefore,

G must be monotonic. Now we use the following expressions:

G(1) = 1 −
r2 + γσ2

C,2 − g2

r1 + γσ2
C,1 − g1

,

and

G′(1) = −
1 − 1

ψ

γ − 1
ψ

[
1 +

(r1 + γσ2
C,1 − g1)λ2 + (r2 + γσ2

C,2 − g2)λ1

(r1 + γσ2
C,1 − g1)2

]
,

to relate the signs of G(1) and G′(1) to the properties of the agent’s preferences. Note that G′(1) < 0, (G′(1) > 0) iff

1− 1
ψ

γ− 1
ψ

> 0,

(
1− 1

ψ

γ− 1
ψ

< 0

)
. We assume that ri +γσ2

C,i − gi > 0 for i ∈ {1, 2}, which is equivalent to assuming that if the economy

were always in state i, then the price-consumption ratio would be positive. Simple algebra tells us that ri + γσ2
C,i − gi =

β +
(

1
ψ

− 1
) (

gi − 1
2
γσ2

C,i

)
. We know that g1 − 1

2
γσ2

C,1 < g2 − 1
2
γσ2

C,2. Therefore G(1) < 0, (G(1) > 0) iff ψ > 1, (ψ < 1).

Consequently, G(1) and G′(1) are of the same sign iff γ < 1/ψ and G(1) and G′(1) are of different signs iff γ > 1/ψ. It then

follows that ω > 1 iff γ > 1/ψ and ω < 1 iff γ < 1/ψ, assuming that ψ 6= 1.

Similarly, when ψ = 1, if we assume that Vi > 0 for i ∈ {1, 2}, then we can prove that: ω > 1 if γ > 1 and gi − 1
2
γσ2

C,i,

i ∈ {1, 2} are of the sign and ω > 1 if γ < 1 and gi− 1
2
γσ2

C,i, i ∈ {1, 2} are of opposite sign. Now, if γ < 1, then r1+γσ2
C,1−g1 > 0

implies g1 − 1
2
γσ2

C,1 > 0, which means gi − 1
2
γσ2

C,i, i ∈ {1, 2} cannot be of opposite sign. Therefore, ω > 1 iff γ > 1.

So, for ψ > 0, ω > 1 iff γ > 1/ψ and ω < 1 iff γ < 1/ψ. It follows that ω = 1 iff γ = 1/ψ.

Derivations of Equations (13), (14) and (15)

The actual probability of default occuring within the time interval [t, T ], if current earnings are Xt, is given by

pD,T−t (Xt) = P

(
inf

s∈[t,T ]
Xs ≤ XD

)
.

It is a standard result that

pD,T−t (Xt) = N (−d+ (θ)) +

(
XD

Xt

) θ−
1
2

σ2
X

σ2
X
2 N (−d− (θ)) , (C17)

where

σX =

√(
σid

X

)2
+

(
σs

X

)2
,

and

d± (θ) =
ln

(
Xt
XD

)
±

(
θ − 1

2
σ2

X

)
(T − t)

σX

√
T − t

. (C18)

The risk-neutral probability of default occuring within the time interval [t, T ], if current earnings are Xt, is given by

p̂D,T−t (Xt) = Q

(
inf

s∈[t,T ]
Xs ≤ XD

)
.

Therefore,

p̂D,T−t (Xt) = N
(
−d+

(
θ̂
))

+

(
XD

Xt

) θ̂−
1
2

σ2
X

σ2
X
2 N

(
−d−

(
θ̂
))

, (C19)
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Taking the limits of (C17) and (C19) as T → ∞ gives the actual and risk-neutral default probabilities

pD (Xt) =

(
XD

Xt

) θ−
1
2

σ2
X

σ2
X
2 ,

and

p̂D (Xt) =

(
XD

Xt

) θ̂−
1
2

σ2
X

σ2
X
2 ,

respectively. It is a standard result that the price of the Arrow-Debreu default claim is given by

qD(Xt) =

(
XD

Xt

) 1

σ2
X

[
θ̂− 1

2
σ2

X+
√

(θ̂− 1
2

σ2
X)2+2rσ2

X
)

]

.

where r is the risk-free rate when there is no intertemporal macroeconomic risk, i.e.

r = β +
1

ψ
g − 1

2
γ

(
1 +

1

ψ

)
σ2

C . (C20)

The above result is a special case of (C15). The ratio of the risk-neutral to actual default probability, q̂D/pD, is the risk-

adjustment factor, R (Xt), i.e. Equation (14). The time-adjustment factor is given by the ratio qD/q̂D, i.e. Equation (15).

Proof of Proposition 2

No-arbitrage principle gives (8), which using Ito’s Lemma can be rewritten as the following ordinary differential-equation system:

dqD,ij,t

dXt

θ̂iXt +
1

2

d2qD,ij,t

dX2
t

σ2
X,iX

2
t + λ̂i

(
qD,kj,t − qD,ij,t

)
= riqD,ij,t, i, j ∈ {1, 2}, k 6= i, (C21)

where

σX,i =
√

(σid
X

)2 + (σs
X,i

)2 (C22)

is total earnings growth volatility in state i and

θ̂i = θi − γρXC,iσ
s
X,iσC,i

is the risk-neutral earnings growth rate in state i. The definitions of the payoffs of the Arrow-Debreu default claims give us the

following boundary conditions:

qD,ij (X) =

{
1, j = i, X ≤ XD,i
0, j 6= i, X ≤ XD,i

. (C23)

Value-matching and smooth-pasting give us the remaining boundary conditions: for j ∈ {1, 2}

lim
X↓XD,j

qD,2j = lim
X↑XD,j

qD,2j ,

lim
X↓XD,j

q′D,2j = lim
X↑XD,j

q′D,2j .

Expressing (C21) in matrix form gives:

(
1

2

[
σ2
1,X 0

0 σ2
2,X

]
X2 d2

dX2
+

[
θ̂1 0
0 θ̂2

]
X

d

dX
−

[
r1 0
0 r2

]
+

[
−λ̂1 λ̂1

λ̂2 −λ̂2

]) [
qD,11 qD,12
qD,21 qD,22

]
=

[
0 0
0 0

]
.

(C24)
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From (C23) it follows that

qD,ij

∣∣
X=XD,i

=
{

1, j = i
0, j 6= i . (C25)

We first solve (C24) subject to the conditions above for the region X > XD,1. We seek solutions of the form

qD,ij = hijXk i, j ∈ {1, 2}.

Hence,

(
1

2

[
σ2

X,1 0

0 σ2
X,2

]
k (k − 1) +

[
θ̂1 0
0 θ̂2

]
k +

[
−λ̂1 − r1 λ̂1

λ̂2 −λ̂2 − r2

]) [
h11 h12
h21 h22

]
=

[
0 0
0 0

]
. (C26)

A solution of the above equation exists if

det

(
1

2

[
σ2

X,1 0

0 σ2
X,2

]
k (k − 1) +

[
θ̂1 0
0 θ̂2

]
k +

[
−λ̂1 − r1 λ̂1

λ̂2 −λ̂2 − r2

])
= 0.

Therefore, k is a root of the quartic polynomial

[
1

2
σ2

X,1k (k − 1) + θ̂1k +
(
−λ̂1 − r1

)] [
1

2
σ2

X,2k (k − 1) + θ̂2k +
(
−λ̂2 − r2

)]
− λ̂2λ̂1 = 0, (C27)

which is the characteristic function of (C24). The above quartic has 4 distinct real roots, two of which are positive, provided

that σX,i, ri, λ̂ij > 0 for i ∈ {1, 2} and j 6= i (see Guo (2001)). Therefore the general solution of is

qD,ij =
4∑

m=1

hij,mXkm ,

where km is the m’th root (ranked in order of increasing size, accounting for sign) of (C27). To ensure that qD,ij , i, j ∈ {1, 2}
are finite as X → ∞, we set hij,3 = hij,4 = 0, i, j ∈ {1, 2}, so we use only the two negative roots: k1 < k2 < 0. From equation

(C26), it follows that

h21,m

h11,m

=
h22,m

h12,m

= ǫ (km) , m ∈ {1, 2},

where

ǫ (k) = − λ̂2

1
2
σ2

X,2k (k − 1) + θ̂2k +
(
−λ̂2 − r2

) = −
1
2
σ2

X,1k (k − 1) + θ̂1k +
(
−λ̂1 − r1

)

λ̂1

.

Therefore

qD,1j =

2∑

m=1

h1j,mXkm , j ∈ {1, 2},

qD,2j =
2∑

m=1

h1j,mǫ (km) Xkm , j ∈ {1, 2}.

We now solve (C24) subject to the relevant boundary conditions for the region X2 < X ≤ X1. We know

qD,11 = 1,

qD,12 = 0.

Therefore
(

1

2
σ2

X,2

[
1 0
0 1

] d2

dX2
+ θ̂2

[
1 0
0 1

] d

dX
−

(
λ̂2 + r2

) [
1 0
0 1

]) [
qD,21,t
qD,22,t

]
+

[
λ̂2
0

]
= 0.
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We can show (using the same method we used to solve (C24)) that the general solution of the above equation is

qD,21 =
λ̂2

r2 + λ̂2

+ s1,1Xj1 + s1,2Xj2 ,

qD,22 = s2,1Xj1 + s2,2Xj2 ,

where ji, i ∈ {1, 2} are the roots of the quadratic

1

2
σ2

X,2j (j − 1) + θ̂2j −
(
λ̂2 + r2

)
= 0,

such that j1 < j2. In summary

qD,11 =

{ ∑2
m=1 h11,mXkm , X > XD,1.

1, XD,2 < X ≤ XD,1.
1, X ≤ XD,2.

qD,12 =

{ ∑2
m=1 h12,mXkm , X > XD,1.

0, XD,2 < X ≤ XD,1.
0, X ≤ XD,2.

qD,21 =






∑2
m=1 h11,mǫ (km) Xkm , X > XD,1.

λ̂2

r2+λ̂21

+
∑2

m=1 s1,mXjm , XD,2 < X ≤ XD,1.

0, X ≤ XD,2.

qD,22 =






∑2
m=1 h12,mǫ (km) Xkm , X > XD,1.∑2

m=1 s2,mXjm , XD,2 < X ≤ XD,1.
1, X ≤ XD,2.

(C28)

To find the 8 constants: h11,1, h11,2, h12,1, h12,2, s1,1, s1,2, s2,1, s2,2, we use the following 8 boundary conditions:

qD,11

∣∣
X=XD,1

= 1, qD,12

∣∣
X=XD,1

= 0,

lim
X↑XD,1

qD,21 = lim
X↓XD,1

qD,21, lim
X↑XD,1

qD,22 = lim
X↓XD,1

qD,22,

lim
X↑XD,1

q′D,21 = lim
X↓XD,1

q′D,21, lim
X↑XD,1

q′D,22 = lim
X↓XD,1

q′D,22,

and

qD,21

∣∣
X=XD,2

= 0, qD,22

∣∣
X=XD,2

= 1.

The first set being applied at X = XD,1 and the second set at X = XD,2. The 8 boundary conditions give 8 linear

equations, which can be solved in closed-form (using a computer algebra package such Mathematica or Maple) to give

h11,1, h11,2, h12,1, h12,2, s1,1, s1,2, s2,1, s2,2.

We obtain {p̂D,ij}i,j∈{1,2} and {pD,ij}i,j∈{1,2}, by setting r1 = r2 = 0, and r1 = r2 = 0, γ = 1/ψ = 0, respectively. Then

we can compute the risk- and time-adjustments via Equations (11) and (12).

Proof of Proposition 3

We take the limits of (20) as ∆t → 0, to obtain

0 = (1 − η) X − (µi − θi)Ai + λ̂i (Aj − Ai) , i ∈ {1, 2}, j 6= i.

To obtain the solution of the above linear equation system, we define

pi =
1

(1 − η)

Ai

X
,

the before price-earnings ratio in state i. Therefore

(
diag (µ1 − θ1, µ2 − θ2) − Λ̂

) ( p1p2

)
=

(
1
1

)
, (C29)

where diag (µ1 − θ1, µ2 − θ2) is a 2 × 2 diagonal matrix, with the quantities µ1 − θ1 and µ2 − θ2 along the diagonal and

Λ̂ =

(
−λ̂1 λ̂1

λ̂2 −λ̂2

)
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is the generator matrix of the Markov chain under the risk-neutral measure. Solving (C29) gives (18), if det
(
diag (µ1 − θ1, µ2 − θ2) − Λ̂

)
6=

0. We now define P X
i = piX, the before-tax value of the claim to the earnings stream X in state t. Hence, from the basic asset

pricing equation

Et

[
dP X + Xdt

P X
− rdt

∣∣∣∣ νt− = i

]
= −Et

[
dM

M

dP X

P X

∣∣∣∣ νt− = i

]
,

we obtain the unlevered risk premium:

Et

[
dP X + Xdt

P X
− rdt

∣∣∣∣ νt− = i

]
= γρXCσs

X,iσC,idt −
(
λ̂i − λi

) (
pj

pi

− 1

)
dt, i ∈ {1, 2}, j 6= i.

Applying Ito’s Lemma,

dP X = pidXt + λi (pj − pi) dt + (pj − pi) dNP
i,t, i ∈ {1, 2}, j 6= i.

Thus, the unlevered volatility of returns on equity in state i is given by

σR,i =

√

σ2
X,i

+ λi

(
pj

pi

− 1

)2

, j 6= i,

where σX,i is defined in (C22).

Proof of Proposition 4

First we show that (23) holds. The central part of our proof consists of proving that

Et

[ ∫ τD

t

πs

πt

ds

∣∣∣∣ νt = i

]
=

1

rP,i

−
2∑

j=1

qD,ij

rP,j

, (C30)

where

rP,i =

(
Et

[ ∫ ∞

t

πs

πt

ds

∣∣∣∣ νt = i

])−1

, (C31)

and

Et

[
πτD

πt

ατD AτD (XτD )

∣∣∣∣ νt = i

]
=

2∑

j=1

αjAj

(
XD,j

)
qD,ij . (C32)

Using the above result, (23) follows immediately from (22). First, we observe that

qD,ij,t = Et

[
Pr (νt = i| ντD = j)

πτD

πt

∣∣∣∣ νt = i, ντD = j

]
. (C33)

To prove (C30), we note that

Et

[ ∫ τD

t

πs

πt

ds

∣∣∣∣ νt = i

]
= Et

[ ∫ ∞

t

πs

πt

ds

∣∣∣∣ νt = i

]
− Et

[
πτD

πt

∫ ∞

τD

πs

πτD

ds

∣∣∣∣∣ νt = i

]
,

and conditioning on the event {ντD = j}, we obtain

Et

[
πτD

πt

∫ ∞

τD

πs

πτD

ds

∣∣∣∣∣ νt = i

]
=

2∑

j=1

Et

[
Pr (ντD = j| νt = i)

πτD

πt

∫ ∞

τD

πs

πτD

ds

∣∣∣∣∣ νt = i, ντD = j

]
.
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What happens from date τD onwards is independent of what happened before, so

Et

[
Pr (ντD = j| νt = i)

πτD

πt

∫ ∞

τD

πs

πτD

ds

∣∣∣∣∣ νt = i, ντD = j

]

= Et

[
Pr (ντD = j| νt = i)

πτD

πt

∣∣∣∣ νt = i, ντD = j

]
Et

[ ∫ ∞

τD

πs

πτD

ds

∣∣∣∣∣ ντD = j

]
.

Therefore

Et

[ ∫ τD

t

πs

πt

ds

∣∣∣∣ νt = i

]
= Et

[ ∫ ∞

t

πs

πt

ds

∣∣∣∣ νt = i

]
(C34)

−
2∑

j=1

Et

[
Pr (ντD = j| νt = i)

πτD

πt

∣∣∣∣ νt = i, ντD = j

]
Et

[ ∫ ∞

τD

πs

πτD

ds

∣∣∣∣∣ ντD = j

]
.

Conditional on being in state i, the value of a claim which pays one risk-free unit of consumption in perpetuity is Et

[ ∫ ∞
t

πs
πt

ds
∣∣∣ νt = i

]
,

so the discount rate for this perpetuity, rP,i, is given by (C31). Consequently, (C34) implies

Et

[ ∫ τD

t

πs

πt

ds

∣∣∣∣ νt = i

]
=

1

rP,i

−
2∑

j=1

Et

[
Pr (νt = i| ντD = j)

πτD
πt

∣∣∣ νt = i, ντD = j
]

rP,j

. (C35)

Using the definition of the Arrow-Debreu default claim, qD,ij , given in (C33), (C30) follows. We do not have to evaluate rP,i

from scratch based on (C31), because we can infer its value from (18), by setting θi = σX,i = ρXC,i = 0, ∀i ∈ {1, 2} to obtain

(24). To prove (C32), we condition on the event {ντD = j} to obtain

Et

[
πτD

πt

ατD AτD (XτD )

∣∣∣∣ νt = i

]
=

2∑

j=1

αjAj (Xj) Et

[
Pr (ντD = νj | νt = i)

πτD

πt

∣∣∣∣ νt = i, ντD = j

]
.

Using (C33) to simplify the above expression we obtain (C32). The credit spread in state i is

si = yi − ri =
c

Bi

− rP,i. (C36)

Substituting (23) into the above equation and simplifying gives (25). Equation (26) follows from applying Ito’s Lemma to (C36)

and identifying the diffusion term. From (23), we can show that, in state i, the elasticity of the bond price with respect to

earnings is given by (27).

Proof of Proposition 5

Using the same approach we used to derive (23), we can derive (28). Applying Ito’s Lemma to (28), we obtain

dRt|νt−=i =
dSt + (1 − η) (Xt − c)dt

St−

∣∣∣∣
νt−=i

= µR,idt + σB,id
R,i

dBid
X,t + σB,s

R,i
dBs

X,t + σP
R,idNP

i,t,

where

µR,i =
Ai(X) +

∑2
j=1

[
Xq′D,ijθi + 1

2
X2q′′D,ijσ2

X,i

] [
(1 − η) c

rP,j
− Aj

(
XD,j

)]

Si

+

(
Sk

Si

− 1

)
λi +

Ai(X)

Si

, k 6= i,
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and σB,id
R,i

, σB,s
R,i

and σP
R,i are given in (32), (35) and (31), respectively. Therefore,

−Et

[
dR

dπ

π

∣∣∣∣ νt− = i

]
=

{
γρXC,iσ

B,s
R,i

σC − σP
R,i (ωi − 1) λi

}
dt,

and because the levered equity risk premium is given by

Et [dR − rdt| νt− = i] = −Et

[
dR

dπ

π

∣∣∣∣ νt− = i

]
,

we obtain (29). Overall levered stock return volatility in state i is given by combining the variances from Brownian and Poission

shocks to obtain (34).

Proof of Weakly Countercyclicality of the Default Boundary

Suppose the default boundary is strongly procyclical, i.e. XD,1 < XD,2. Then the 8 linear equations used to find h11,1, h11,2, h12,1, h12,2,

s1,1, s1,2, s2,1, s2,2 are not linearly independent (this is easy to see by writing the linear equations in matrix form and checking

that the determinant is zero), implying that the Arrow-Debreu default claims are not unique. Hence, by reductio ad absurdum

the default boundary must be weakly countercyclical.
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Figure 1: Risk-Adjustment Factors and Expected Consumption Growth

This figure shows the 4-year risk-adjustment factors, Rij(4), i, j ∈ {1, 2},
as a function of the expected consumption growth rate in state 1, g1.
State 1 is a recession and state 2 is a boom. Leverage is held constant
at 43% and the default boundaries are chosen optimally. Risk aversion
is equal to 10 and the elasticity of intertemporal substitution is 1.5. All
remaining parameters are as in Table III.

−0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025 0.03

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

g
1

 

 
R

11
(4)

R
12

(4)

R
21

(4)

R
22

(4)

Figure 2: Risk-Adjustment Factors and Leverage

This figure shows the 4-year risk-adjustment factors, Rij(4), i, j ∈ {1, 2},
as a function of leverage, where the default boundaries are chosen op-
timally. State 1 is a recession and state 2 is a boom. Risk aversion is
equal to 10 and the elasticity of intertemporal substitution is 1.5. All
remaining parameters are as in Table III.

0.2 0.25 0.3 0.35 0.4
0.8

1

1.2

1.4

1.6

1.8

2

Leverage

 

 

R
11

(4)

R
12

(4)

R
21

(4)

R
22

(4)

48



Figure 3: Time-Adjustment Factors and Leverage

This figure shows the 4-year time-adjustment factors, Tij(4), i, j ∈ {1, 2},
as a function of leverage, where the default boundaries are chosen op-
timally. State 1 is a recession and state 2 is a boom. Risk aversion is
equal to 10 and the elasticity of intertemporal substitution is 1.5. All
remaining parameters are as in Table III.
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Figure 4: The Term Structure of Credit Spreads

This figure shows the term structure of credit spreads. The default
boundaries are chosen optimally and leverage is exogenously set equal
to 43%. State 1 is a recession and state 2 is a boom. Risk aversion is
equal to 10 and the elasticity of intertemporal substitution is 1.5. All
remaining parameters are as in Table III.
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Table I Summary of Models in the Literature

Leland GJL HMM Lucas CC BY CF CDG This paper
Structural Model Features

default risky corporate debt X X X X X

endogenous default boundary X X X X

dynamic capital structure X X X

stochastic earnings growth rates X X

Consumption-Based Model

recursive preferences X X X

habit-formation preferences X X

stochastic dividend growth rate X X X

stochastic consumption growth rate X X X

Pricing Implications

credit spread X X X X X

equity risk premium X X X X X X

impact of default risk on equity risk premium X

cross-market predictability X X

This table compares features of structural models which are used to price corporate debt: Leland (1994), Goldstein, Ju, and Leland (2001)
(GJL), Hackbarth, Miao, and Morellec (2006) (HMM), consumption-based models which are used to price the aggregate stock market: Lucas
(1978), Campbell and Cochrane (1999) (CC), Bansal and Yaron (2004) (BY), Calvet and Fisher (2005a) (CF), and models which are used to
price both corporate debt and the aggregate stock market: Chen, Collin-Dufresne, and Goldstein (2006) (CDG) and this paper. The comparison
table is divided into 3 panels. The first panel focuses on the features of structural models, the second on the features of consumption-based
models, while the third focuses on the pricing implications of the various models.
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Table II

Aggregate Parameter Estimates

To calibrate the model to the aggregate US economy,
we use quarterly real non-durable plus service con-
sumption expenditure from the Bureau of Economic
Analysis and quarterly earnings data from Standard
and Poor’s, provided by Robert J. Shiller. The per-
sonal consumption expenditure chain-type price in-
dex is used to deflate nominal earnings. All estimates
are annualized and based on quarterly log growth
rates for the period from 1947 to 2005.

Mean Std. dev.
Real consumption growth 0.0333 0.0099
Real earnings growth 0.0343 0.1072

Table III

Calibrated Parameter Values

This table lists parameter values used in the empirical analysis.
State 1 is a recession and state 2 is a boom.

Parameter Symbol State 1 State 2
Consumption growth rate gi 0.0141 0.0420
Consumption growth volatility σC,i 0.0114 0.0094
Earnings growth rate θi -0.0401 0.0782
Earnings growth volatility σs

X,i 0.1334 0.0834

Correlation ρXC 0.1998 0.1998
Actual long-run probabilities fi 0.3555 0.6445
Actual convergence rate to long-run p 0.7646 0.7646
Annual discount rate β 1% 1%
Tax rate η 15% 15%
Recovery rate αi 70% 90%
Idiosyncratic earnings growth volatility σid

X 32% 32%
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Table IV

Corporate Bond Market

This table reports the results for the corporate bond market implied by the model. The
coupon and default boundary are chosen optimally at date zero and depend on the initial
state of the economy. The first two columns are generated when the economy is initially
in state one and the last two columns when it is initially in state two. Three values of the
elasticity of intertemporal substitution, ψ, are considered.

Initial state/Current state
1/1 1/2 2/1 2/2

Credit spread, si (b.p)
ψ = 0.1 317.478 259.892 529.501 426.123
ψ = 0.75 215.606 195.157 254.773 228.639
ψ = 1.5 196.708 179.997 222.986 202.745
Credit spread volatility, σs,i (b.p)
ψ = 0.1 229.747 174.493 410.035 301.901
ψ = 0.75 64.120 52.522 80.360 64.648
ψ = 1.5 46.545 38.446 55.850 45.536
Arrow-Debreu default claim, qD,i (%)
ψ = 0.1 20.044 10.645 30.808 17.302
ψ = 0.75 42.691 36.769 47.627 41.044
ψ = 1.5 52.523 47.946 56.296 51.398
4-year actual default probability, pD,i(4) (%)
ψ = 0.1 18.771 12.396 32.496 23.319
ψ = 0.75 2.986 1.533 5.711 3.185
ψ = 1.5 1.455 0.674 2.804 1.447
4-year time-adjustment, Ti(4)
ψ = 0.1 0.604 0.444 0.649 0.482
ψ = 0.75 0.903 0.871 0.906 0.872
ψ = 1.5 0.939 0.923 0.941 0.923
4-year Risk-adjustment, Ri(4)
ψ = 0.1 1.021 1.014 1.013 1.013
ψ = 0.75 1.288 1.389 1.268 1.297
ψ = 1.5 1.348 1.529 1.348 1.437
Optimal leverage (%)
ψ = 0.1 59.259 54.893 70.848 66.549
ψ = 0.75 45.566 40.746 52.316 47.065
ψ = 1.5 41.796 37.280 47.578 42.642
Optimal default boundaries, XD,i

ψ = 0.1 0.382 0.371 0.486 0.472
ψ = 0.75 0.213 0.193 0.258 0.234
ψ = 1.5 0.175 0.157 0.210 0.189
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Table V

Long-Run Risk

This table contains the risk-distortion factor ω, the convergence
rate of the Markov chain to its long-run risk-neutral distribution p̂,

and the long-run risk-neutral distribution (f̂1, f̂2) for risk aversion
of 10 and three values of the elasticity of intertemporal substitu-
tion, ψ.

ω p̂ f̂1 f̂2

ψ = 0.1 1.000 0.765 0.355 0.645
ψ = 0.75 1.377 0.732 0.511 0.489
ψ = 1.5 1.424 0.733 0.528 0.472

Table VI

Equity Market

This table reports the results of the model for the equity market. The coupon and
default boundaries are chosen optimally at date zero and depend on the initial state
of the economy. The first two columns are generated when the economy is initially in
state one and the last two columns when it is initially in state two. All equity market
values are computed with zero idiosyncratic volatility. The default-free levered equity
premium is computed by assuming debt is risk-free. Three values of the elasticity of
intertemporal substitution, ψ, are considered.

Initial state/Current state
1/1 1/2 2/1 2/2

Unlevered equity premium (%)
ψ = 0.1 0.304 0.157 0.304 0.157
ψ = 0.75 1.860 1.217 1.860 1.217
ψ = 1.5 2.458 1.632 2.458 1.632
Default-free levered equity premium (%)
ψ = 0.1 1.034 0.423 2.191 0.677
ψ = 0.75 5.617 3.034 8.306 3.979
ψ = 1.5 6.288 3.480 8.715 4.359
Levered equity premium (%)
ψ = 0.1 0.966 0.415 1.589 0.624
ψ = 0.75 4.892 2.744 6.227 3.286
ψ = 1.5 5.372 3.104 6.470 3.566
Levered equity volatility (%)
ψ = 0.1 42.63 22.30 71.68 34.73
ψ = 0.75 36.72 20.30 45.94 24.16
ψ = 1.5 35.30 19.69 42.20 22.63
Locally risk-free rate (%)
ψ = 0.1 14.385 42.514 14.385 42.514
ψ = 0.75 2.807 6.564 2.807 6.564
ψ = 1.5 1.744 3.650 1.744 3.650
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Table VII

Model Comparison—Corporate Bond Market

This table provides a comparison between stripped down versions of our model. In Models 1a and 1b
there is no intertemporal risk, the first and second moments of consumption and earnings growth rates do
not switch. In Model 2 the first and second moments of earnings growth switch but the first and second
moments of consumption growth do not. In Model 3 the first and second moments of both earnings and
consumption growth switch. In Model 1a the representative agent has power utility whereas in Models
1b, 2 and 3 she has Epstein-Zin-Weil utility.

Initial Current 1a 1b 2 3
state state

Risk aversion, γ 10.00 10.00 10.00 10.00
EIS, ψ 0.10 0.75 0.75 0.75
Credit spread, si (b.p.) 1 1 144.36 178.87 187.59 243.88

1 2 159.46 221.21
2 1 219.05 280.09
2 2 184.88 252.18

Arrow-Debreu default claim 1 1 5.80 30.85 31.69 41.45
qD,i (%) 1 2 28.07 35.89

2 1 35.45 45.24
2 2 31.41 39.18

4-year actual default probability 1 1 5.75 2.39 2.20 1.88
pD,i(4) (%) 1 2 0.72 0.58

2 1 3.41 2.96
2 2 1.28 1.34

4-year Risk-adjustment, Ri(4) 1 1 1.02 1.04 1.06 1.36
1 2 1.06 1.45
2 1 1.04 1.30
2 2 1.03 1.28

4-year time-adjustment, Ti(4) 1 1 0.39 0.85 0.85 0.91
1 2 0.84 0.87
2 1 0.86 0.91
2 2 0.85 0.87

Leverage (%) 1 1 43.00 43.00 43.00 43.00
1 2 38.39 38.39
2 1 47.96 47.97
2 2 43.00 43.00

Default Boundary, XD,i 1 1 0.28 0.22 0.22 0.21
1 2 0.19 0.18
2 1 0.25 0.24
2 2 0.22 0.22

Coupon, c 1 0.45 1.27 1.58 0.83
2 1.83 0.97

Distortion factor, ω 1 1 1.00 1.00 1.00 1.38
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Table VIII

Model Comparison—Equity Market

This table provides a comparison between stripped down versions of our model. In Models 1a
and 1b there is no intertemporal risk, the first and second moments of consumption and earnings
growth rates do not switch. In Model 2 the first and second moments of earnings growth switch
but the first and second moments of consumption growth do not. In Model 3 the first and second
moments of both earnings and consumption growth switch. In Model 1a the representative agent
has power utility whereas in Models 1b, 2 and 3 she has Epstein-Zin-Weil utility. All equity market
values are computed with zero idiosyncratic volatility.

Initial Current 1a 1b 2 3
state state

Risk aversion, γ 10.00 10.00 10.00 10.00
EIS, ψ 0.10 0.75 0.75 0.75
Unlevered equity premium (%) 1 1 0.21 0.21 0.26 1.86

1 2 0.17 1.22
2 1 0.26 1.86
2 2 0.17 1.22

Levered equity premium, (%) 1 1 0.36 0.42 0.52 4.63
1 2 0.29 2.63
2 1 0.61 5.57
2 2 0.33 3.03

Locally risk-free rate, (%) 1 33.79 5.33 5.33 2.81
2 5.33 6.56

Table IX

Cross-Market Comovement

We simulate 100 panels each containing 3000 firms and 5 years of
daily data. For each panel, we regress the equally-weighted credit
spread on the value-weighted jump component of levered equity
volatility. Standard errors are reported in parenthesis.

EIS, ψ 0.75 0.75 1.5 1.5
Initial state 1 2 1 2
Coefficient 1.447 1.903 1.786 2.296

(0.052) (0.061) (0.055) (0.079)
R2 0.476 0.546 0.645 0.645
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