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The main purpose of this paper is to give an external characteriza-

tion of the Levitzki radical of a Jordan ring 31 as the intersection of a

family of prime ideals 21. This characterization coincides with that

of associative rings which was given by Babic in [l].

Applying this characterization, it is easy to see that the Levitzki

radical of a Jordan ring contains the prime radical of the same ring.

For associative rings the same statement is well known, since the

prime radical in associative rings is called the Baer radical. If the

minimal condition on ideals holds on Jordan ring 21, then the Levitzki

radical, P(2l), and the prime radical, P(2l) of 21 coincide.

Throughout this paper, any Jordan ring 21, that is a (nonassocia-

tive) ring satisfying

(1) ab = ba, and

(2) a2iab) =aia2b) for all a, b in 21, and any of its subrings satisfy

the conditions,

(3) 2a = 0 implies a = 0 and

(4) if a is in a subring C of 21 then there exists a unique element x

in C such that 2x = a.

In a Jordan ring, the following identity (*) is well known. One can

find the proof in [3].

(*) R(.xy)l  =   RxRyz + R„Rzx + RZRXy  —  RxRzRy  ~  RVRZRX

where, for any element u in 21, R„ is the formal multiplication of u

in the ring 21, i.e., aRu = au for all a in 21.

If A, B are subsets of 21, A Ub denotes the set of finite sums of ele-

ments of the form a Ub where a is in A and b is in B and aUb = 2 iab)b — ab2.

If A and P are ideals in 2T, then A3, iAB)B+AiBB) and A UB are
ideals in 21. The first two are proved in [5]. To prove A Ub is an

ideal, let a be an element in A and b, c be elements in P and aU(b.C)

= \aiUb+c— Ub— Uc) = iab)c+iac)b — ibc)a. Assume that both A and

B are ideals in 21, and applying (*) one can easily check that for any

u in 21, iaU(b,c))-u=aU(b',C)+aU(b,c>)—a'U(b,c) where a' = au, b' = bu,

and c' = cu. Letting c — b one sees that A Ub is an ideal in 21 if A and

P are. It is proved in [4] that if A is an ideal in 21, then A3 = A Ua-

If 21 is a Jordan ring, we denote 2T3 by 2fi, and, inductively 2li+i = 21?

for each i. We also denote 2l(o> as 21 and, inductively 2l(t+u =2l(i)2I«)
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for each i. The ring 31 is said to be nilpotent if there exists a positive

integer k such that 21* = 0, where Sl* is the set of all finite sums of all

products of k elements from A, under any association, and is said to

be solvable if there exists a positive integer t such that 2I(« =0. It is

clear if 21 is nilpotent then 21 is solvable. It is also clear that 2Imc:2I(m)

for all m. Note that for each m 2fm is an ideal in 21.

Lemma A. Let 21 be a Jordan ring which is generated by a set of n

generators. Then there exists a natural number f(n, m) so that 21/<n'm)

C2Im.

This lemma is a key lemma in the paper [5]. Since the proof is

lengthy we shall not provide it here.

Theorem B. If % is a Jordan ring which is finitely generated then 21

is nilpotent if 21 is solvable.

Proof. 2F"("-"!)c:2Lnc:2I(m).

Definition 1. A Jordan ring 21 is locally nilpotent if every finitely

generated subring is solvable.

Corollary (to Theorem B). Let 21 be a Jordan ring. Then 21 is

locally nilpotent if and only if 21 is locally solvable.

Lemma C. Let 21 be a finitely generated Jordan ring. Then, for any

natural number m, 2Im is also finitely generated.

This lemma is given in [5]. However, since it is needed in the proof

of Theorem 1 of this article, we shall give the proof of the lemma here.

Proof. If X = {xi, x2, ■ • • , xn} is a set of generators of 21 let Y be

the set of all commutative (but not associative) words of x's which

are in 2li and which are of X-length less than/(w, 2), where/(w, 2) is

the natural number such that 2F(n'2)C2f.2= (2Ii2fi)2Ii. Since A is a

finite set, Y is a finite subset in 2fi. We want to show that 2li is gen-

erated by Y, thus 2Ii is finitely generated. The proof of the lemma is

then completed by induction on m.

A monomial w = x!1Xi2 • • • x<t; t,-=l, 2, • • • , n is said to be of

length k, which is denoted by l(m) =k, regardless of what is the asso-

ciation. If a is an element in 2ti = (2121)21, then there exist monomials

a,-, bi, d such that a= YL't-i (a-i-bi)• d = Ui-\-u2-\- • • • +ut. Noted ut

itself is also an element of 2fi for each i.

If u is one of those Ui's and l(u) ^f(n, 2) then, by Lemma A, wG2f2

= (21i2Ii)2Ii, i.e. u=1£i(ri-si)-ti where n, sit hE% and l(u) +l(sd
+l(ti)=l(u). We could repeat the process on r,-, s,- and tt. Thus we

may assume l(u) <f(n, 2). But that is to say u is a member of Y and
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a is an element in the subalgebra of 2Ii which is generated by F. Thus

F generates 2li.

Induction on m can be easily carried out.

Definition 2. Let 21 be a Jordan ring. An ideal / in 21 is a locally

nilpotent (locally solvable) ideal if /, considered as a ring itself, is

locally nilpotent (locally solvable).

Lemma D. Let I be a locally solvable ideal in a Jordan ring 21. If the

factor ring 21 = 21// is also locally solvable, then 21 is locally solvable.

Lemma E. The sum of all locally solvable ideals in a Jordan ring 21

is a locally solvable ideal in 21.

Definition 3. The maximal locally solvable ideal, P(2l), of a

Jordan ring 21 is called the Levitzki radical of 21.

Definition 4. A Jordan ring 21 is Levitzki-semisimple (or P-semi-

simple) if the Levitzki radical of 21 is 0, i.e., P(2l) =0.

Theorem F. Every Jordan ring 21 has a Levitzki radical. The factor

ring 2I/Z,(2I) of 21 over its Levitzki radical P(2I) is Levitzki-semisimple.

Lemmas D, E, and Theorem F are given in [5]. The proofs are

similar to the corresponding statements in associative rings.

Recently Babic gave (in [l]) an external characterization of the

Levitzki radical, P(P), for an associative ring R as the intersection

of the family of prime ideals {Pi} in R whose factor rings {R/Pi}

are Levitzki-semisimple. We shall show the same characterization

holds for Jordan rings.

Definition 5. An ideal P in 21 is a prime ideal if whenever A, B

are ideals in 21 such that A UBQP then either 4CPor5CP.

Theorem 1. The Levitzki radical L of a Jordan ring 21 is the inter-

section of all prime ideals Pa of 21 for which 2f/Pa is Levitzki-semi-

simple.

Proof. Let P = f)Pa, where the intersection is taken over all prime

ideals Pa of 21 for which 2l/P<« is Levitzki-semisimple.

For each Pa, LQPa, otherwise L+Pa/Pa=L/Lr\Pa is a nonzero

locally nilpotent ideal in the P-semisimple ring 2I/PQ. Thus PCfl„P„
= P.

It remains to show that PCI. If x^L, then xG(? where Q is a

prime ideal of 21 such that 21/0; is P-semisimple. Since x€JEP, the

principal ideal (x) generated by x is not locally nilpotent, in other

words, there exists a finitely generated subring S (generated by n

elements) of (x) which is not nilpotent. By Lemma C, for any integer
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m, Sm is finitely generated. Hence Sm is not nilpotent, otherwise

5/(n'm)c:5OT forces 5 to be nilpotent, which is a contradiction.

Let © be the collection of all ideals Q in 21 such that SmQQ for all

positive integers m. The set © is not empty and can be ordered by

inclusion. We shall apply Zorn's lemma to obtain an ideal Q which

is a maximal element in ©. For this, it is only necessary to verify that

the union of an ascending chain {Qi} in © is again in ©.

Let Q1QQ2QQ3Q • ■ • be an ascending chain of elements in ©

and let Q* = UiQi. Clearly Q* is an ideal in 21. Now if SmC.Q* for some

integer m, then SmC.Qj for some j, since Sm is finitely generated. But

this is impossible since SmQ.Qj means Q,E®- Thus we have shown

that Q* is in ©.
If Q is an ideal in 21 which is a maximal element in @, then Q is a

prime ideal in 21. Suppose this is not true, then there exist ideals A',

B' of 21 such that A', B' are not contained in Q but A'Ub' is contained

in Q. The ideals A =A' + Q and B=B' + Q both properly contain Q.
Thus, by the maximality of Q, A and B are not members of ©. Hence,

there exist integers n and m such that SnCA and Sm C.B. Without

loss of generality, we may assume n^m. Then, since SmQSn, Sm is

contained in both A and B. Sm+i = (SmSm)Sm = Sm{JSmQA'UBCAVB'

+ Q = Q. This is impossible.
We now show that the factor ring 21/(2 is Levitzki-semisimple. Let

N = N/Q be a locally nilpotent (solvable) ideal of 21 = 21/(2. If N_t*0,
then we know that N^tQ and thus for some m, N^Sm. Then Sm is

a finitely generated subring of the locally nilpotent ring N. Therefore

Sm is nilpotent, (Sm)n = 0 and thus Sm+nQQ, a contradiction.

So far we have found a prime ideal Q for which 21/M is L-semi-

simple. Thus the proof of the theorem is completed if we show xEQ-

But it is clearly so, for if xEQ then S, which is a subring of (x), will

be contained in Q, which is a contradiction.

Theorem 2. Every L-semisimple ring 21 is isomorphic to a subdirect

sum of prime L-semisimple rings.

Since the ring 21 is Levitzki-semisimple the intersection of the

family {P,|iG/} of prime ideals such that 21/P,- is L-semisimple is

zero. The ring 21 is isomorphic to the subdirect sum of the family

{•Si|iG-f} of prime L-semisimple rings, where 5',=2I/P,- for all t'GL

In [4], the prime radical P(2l) of a Jordan ring is defined to be the

prime radical of the zero ideal in 21. For any ideal I in 21, the prime

radical IQ was shown to be equal to the intersection of all prime ideals

in 21 containing I. Thus P(2f) is the intersection of the family of all

prime ideals in 21, and we have
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Theorem 3. For any Jordan ring the prime radical P(2l) is contained

in the Levitzki radical P(2l).

However, in the presence of the minimal condition for ideals in 21

we find in [5] the following theorem:

Theorem G (Theorem 3 in [5]). // 21 is a locally solvable Jordan

algebra over afield F (or a Jordan ring) in which minimal conditions on

ideals hold, then 21 is nilpotent.

Now if 21 is a Jordan ring in which minimal conditions on ideals

hold then the same condition holds for the factor ring 2l/P(2I). Thus

the Levitzki radical P(2l/P(2l)) of 2I/P(21) is a nilpotent ideal in

2f/P(2l). However, Theorem 8 of [4] stated that a Jordan ring / is

Q-semisimple, (i.e., R(J)=0) if and only if it contains no nonzero

nilpotent ideals. Thus it amounts to say P(2l/P(2l)) =0, i.e., 2l/P(2Q

is P-semisimple. We have proved:

Theorem 4. If Wis a Jordan ring in which the minimal condition on

ideals holds, then the Levitzki radical, P(2l), and the prime radical,

P. (21), of 21 coincide.

Corollary. If 21 is a Jordan ring satisfying D.C.C. on quadratic

ideals then P(2f)=P(2t).

References

1. A. M. Babic, The Levitzki radical, Dokl. Akad. Nauk. SSSR 126 (1959), 242-
243. (Russian)

2. N. J. Divinsky, Rings and radicals, University of Toronto Press, Toronto,

Canada, 1965.

3. R. D. Schafer, An introduction to non-associative algebras, Academic Press,

New York, 1966.

4. C. E. Tsai, The prime radical in a Jordan ring, Proc. Amer. Math. Soc. 19

(1968), 1171-1175.
5. K. A. Zevlakav, Solvability and nilpotence of Jordan rings, Algebra i Logika

Sem. 5 (1966), 37-58. (Russian)

Michigan State University

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


