THE LEWY COUNTEREXAMPLE AND THE LOCAL EQUIVALENCE PROBLEM FOR G-STRUCTURES

V.W. GUILLEMIN & S. STERNBERG

1. Let G be a Lie subgroup of GL(n). Let M_1 and M_2 be differential manifolds of dimension n (in this paper all data will be assumed to be C^{∞}), and let \mathcal{F}_i , i=1, 2, be the principal frame bundle on M_i . A sub-bundle, P_i , of \mathcal{F}_i with structure group G is called a G-structure on M_i . The G-structure on M_1 is said to be equivalent to the G-structure on M_2 if there exists a diffeomorphism $f: M_1 \to M_2$ such that the induced diffeomorphism $f^*: \mathcal{F}_1 \to \mathcal{F}_2$ carries P_1 into P_2 .

It is usually difficult to decide when two G-structures are equivalent; however the problem is a little simpler if we suppose that one of the structures, say P_1 , is locally transitive, and look only at the local problem. Then the following is a necessary condition for the two structures to be locally equivalent:

* At every point $m_1 \in M_1$ and every point $m_2 \in M_2$ there exists a power series mapping ρ (in local coordinates with origins at m_1 and m_2) such that ρ formally effects a local equivalence between P_1 and P_2 .

It might seem that (*) is not much of an improvement over the original problem; however, by techniques of homological algebra it can be converted into a much simpler statement about the vanishing of certain canonically defined tensors on P_2 (cf. [1], [2], [4]). The main problem therefore is to show that condition (*) is sufficient. This is known to be true in the following important cases:

- 1) G is of finite type.
- 2) The data are real analytic.

According to a recent result of Malgrange (unpublished) it is known to be true when G is elliptic. According to a result of the first author it is true when P_1 is flat. The purpose of this note is to show that condition (*) isn't always sufficient. In fact we will show that in certain cases the solution of the equivalence problem depends on the solution of a system of linear inhomogeneous partial differential equations resembling the Lewy counterexample [3]. These equations are determined, all the data in them are C^{∞} and they have no solutions even in the weak (distribution) sense.

2. Let X_1 , X_2 and X_3 be globally defined vector fields on R^3 satisfying the following commutation relations: $[X_1, X_2] = X_3$, $[X_1, X_3] = X_1$, $[X_2, X_3] = -X_2$. (Take for example the standard basis of so(3) and identify R^3 with a subset of SO(3) under the mapping exp: so(3) \rightarrow

SO(3).) Let $X_i = \sum_{j=1}^3 C_{ij} \frac{\partial}{\partial x_j}$. Let $(x_1, x_2, x_3, y_1, y_2)$ be coordinates on R^5 and consider on R^5 the moving frame:

$$X_1, X_2, X_3, \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}.$$

We will define a G-structure on R^5 which has this moving frame as a global cross-section and has for a structure group the group of all 5 \times 5 matrices of the form

(2.1)
$$\left(\begin{array}{c|cc} & I & 0 \\ \hline a, & b, & c \\ -b, & a, & d \end{array} \right)$$

where the upper left hand block in (2.1) is the 3×3 identity matrix and the lower right hand block the 2×2 identity matrix. The G structure, which we will denote by P_1 , is obtained by letting the matrices (2.1) act in all possible ways on the moving frame:

$$X_1, X_2, X_3, \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}.$$

We will first of all determine the local diffeomorphisms of \mathbb{R}^5 into itself which preserve P_1 .

Let f be such a diffeomorphism, and let f have the form:

$$x'_{i} = f_{i}(x, y),$$
 $i = 1, 2, 3,$
 $y'_{\alpha} = \varphi_{\alpha}(x, y),$ $\alpha = 1, 2.$

From the condition

$$f^* \frac{\partial}{\partial y_{\alpha}} = \frac{\partial}{\partial y_{\alpha}} \qquad \alpha = 1, 2,$$

we get

$$\frac{\partial \varphi_{\alpha}}{\partial y_{\beta}} = \delta^{\alpha}_{\beta}, \qquad \frac{\partial f_{i}}{\partial y_{\beta}} = 0.$$

Thus

Next applying f_* to X_i we get

$$(2.3) f_*X_i = f_*\left(\sum_{j=1}^3 c_{ij}\frac{\partial}{\partial x_j}\right)$$

$$= \sum_{j=1}^3 c_{ij}\left(\sum_{k=1}^3 \frac{\partial f_k}{\partial x_j}\frac{\partial}{\partial x_k} + \sum_{\alpha=1}^2 \frac{\partial \phi_\alpha}{\partial x_j}\frac{\partial}{\partial y_\alpha}\right)$$

$$= \sum_{k=1}^3 \mathcal{L}_{x_i} f_k \frac{\partial}{\partial x_k} + \sum_{\alpha=1}^2 \mathcal{L}_{x_i} \phi_\alpha \frac{\partial}{\partial y_\alpha}.$$

However, f_*X_i must be the form

$$X_i + \sum_{\alpha=1}^2 h_{\alpha i} \frac{\partial}{\partial y_{\alpha}},$$

where $h_{\alpha i}$ is a 2 × 3 matrix of the form

$$\begin{pmatrix} a, & b, & c \\ -b, & a, & d \end{pmatrix}$$
.

From (2.1) we get a condition on f_1 , f_2 , f_3 , namely, $f_1(x)$, $f_2(x)$, $f_3(x)$ must define a diffeomorphism of R^3 into itself preserving X_1 , X_2 , X_3 . We also get two conditions on ϕ_1 , ϕ_2 :

$$\mathcal{L}_{X_1}\phi_2 - \mathcal{L}_{X_2}\phi_1 = 0, \qquad \mathcal{L}_{X_1}\phi_2 + \mathcal{L}_{X_2}\phi_1 = 0.$$

These two equations can be more compactly written in complex form:

(2.4)
$$\mathcal{L}_{X_1 + \sqrt{-1}X_2}(\varphi_1 + \sqrt{-1}\varphi_2) = 0.$$

Summing up what has been proved above:

Proposition 1. The diffeomorphisms of P_1 consist of all mappings of R^5 into R^5 of the form:

$$x'_{i} = f_{i}(x),$$
 $i = 1, 2, 3,$
 $y'_{\alpha} = y_{\alpha} + \phi_{\alpha}(x),$ $\alpha = 1, 2,$

where $\tilde{f} = (f_1, f_2, f_3)$ belongs to the (local) Lie group on \mathbb{R}^3 associated with X_1, X_2, X_3 , and ϕ_1, ϕ_2 satisfy (2.4).

It is clear from Proposition 1 that the G-structure described above is transitive. In fact, it is frame transitive (the family of mappings induced on P_1 is transitive) and involutive (cf. [1] for definitions).

Now we consider another G-structure defined on \mathbb{R}^5 as follows. Let

$$X_i' = X_i + \sum_{\alpha=1}^{2} g_{\alpha i}(x) \frac{\partial}{\partial y_{\alpha}}$$

where the $g_{\alpha i}$ are for the moment unspecified functions of x. Let P_2 be the G-structure obtained by applying all the matrices (2.1) to the moving frame

$$X_1', X_2', X_3', \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}.$$

We will consider what is involved in proving that P_1 and P_2 are locally equivalent. We must be able to find a local diffeomorphism f, of R^5 into R^5 with the property:

$$f_*X_i = X_i' + \sum_{\alpha=1}^2 h_{\alpha i} \frac{\partial}{\partial y_{\alpha}},$$
 $i = 1, 2, 3,$ $f_* \frac{\partial}{\partial y_{\alpha}} = \frac{\partial}{\partial y_{\alpha}},$ $\alpha = 1, 2,$

where $(h_{\alpha i})$ is of the form

$$\begin{pmatrix} a, & -b, & c \\ b, & a, & d \end{pmatrix}.$$

By an argument similar to that above we can show that f must have the following form in coordinates:

$$x'_{i} = f_{i}(x),$$
 $i = 1, 2, 3,$ $y'_{\alpha} = y_{\alpha} + \phi_{\alpha}(x),$ $\alpha = 1, 2,$

where the conditions on f_1 , f_2 , f_3 are the same as in Proposition 1, but ϕ_1 , ϕ_2 must satisfy the equation

$$(2.5) (\mathcal{L}_{X_1+\sqrt{-1}})(\phi_1+\sqrt{-1})(\phi_2) = g_1+\sqrt{-1})(g_2, g_1+\sqrt{-1})(g_2, g_1+\sqrt{-1})(g_2, g_1+\sqrt{-1})(g_2, g_2+\sqrt{-1})(g_2, g_1+\sqrt{-1})(g_2, g_2+\sqrt{-1})($$

where

$$g_1 = g_{11}(\dots, f_i(x), \dots) - g_{22}(\dots, f_i(x), \dots),$$

$$g_2 = g_{12}(\dots, f_i(x), \dots) + g_{21}(\dots, f_i(x), \dots).$$

Lewy has shown that one can always choose the right hand side of (2.5) such that even locally it is impossible to find C^1 functions ϕ_1 and ϕ_2 which satisfy (2.5). On the other hand this equation is always formally solvable; so the condition (*) of §1 is certainly satisfied by P_1 and P_2 . We can therefore conclude that (*) does not always guarantee that the two structures are locally equivalent.

Bibliography

- [1] V. W. Guillemin, *The integrability problem for G-structures*, Trans. Amer. Math. Soc. **116** (1965) 544–560.
- [2] V. W. Guillemin & S. Sternberg, Deformation theory of pseudogroup structures, Mem. Amer. Math. Soc. No. 64, 1966.
- [3] H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. 66 (1957) 155–158.
- [4] S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964, Chapter VII.

HARVARD UNIVERSITY