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Hereditary operators in Lie algebras are investigated. These are operators which are 
characterized by a special algebraic equation and their main property is that they generate abelian 
subalgebras of the given Lie algebra. These abelian subalgebras are infinite dimensional if the 
hereditary operator is not cyclic. As a consequence hereditary operators generate on a 
systematic Ievel nonlinear dynamical systems which possess infinite dimensional abelian groups 
of symmetry transformations. We show that hereditary operators can be understood as special 
Lie algebra deformations with a linear interpolation property. In order to construct new 
hereditary operatorsout of given ones we study the permanence properties of these operators; 
this study of permanence properties Ieads in a natural way to a notion of compatibility. For 
local hereditC\ry operators it is shown that eigenvector decompositions aretime invariant (such 
an eigenvector decomposition is knownu to characterize pure multisoliton solutions). Apart 
from the well-known equations ( KdV, sine-Gordon, etc. ), we give- as examples- many new 
nonlinear equations with infinite dimensional groups of symmetry transformations. 

§ 1. lntroduction 

A detailed analysis of the celebrated Korteweg-de Vries equation reveals 
that this nonlinear evolution equation possesses an infinite dimensional abelian 
group of symmetry transformations. This group of symmetry transformations is 
given by the resolvents of the so-called generalized KdV equations. And this 
striking property is shared by many other nonlinear evolution equations; Only to 
name a few: Burgers equation, sine-Gordon equation, Zakharov-Shabat equations, 
Gardner equation etc. Furthermore one discovers that for these equations 
(except Burgers equation) the structure of this abelian symmetry group is 
intimately connected with the existence (and description) of multisoliton 
solutions, -and in addition connected to the existence of infinitely many 
conservation laws (via Noether's theorem or rather a suitable generalization 
thereof). · 

The phenomena related to this observation have in recent years been one of · 
the most active areas of research in applied mathematics and theoretical 
physics. Looking into the problems encountered in this research with a 
somewhat more systematic interest, one realizes that very often it is highly 
desirable to construct for a given element K of a Lie algebra its annihilator K.l. 
(or at least a large abelian subalgebra containing K). If one can do this, then, of 
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course, integration of the equations for the infinitesimal generators ofa Lie group 
yields a family of commuting flows. 

In this paper we investigate mappings f/J having the property. that ( under 
additional assumptions) the annihilator KJ. of a given element K of a Lie algebra 
is mapped on itself. In· a canonical way mappings of this kind are given by 
hereditary operators (/) on a Lie algebra L. These operators' have been . 
considered before.•> They are characterized by. a certain algebraic equation 
which implies .that (/) is a selfmap in KJ.. 

Other authors">.s> have also considered special hereditary operators in 
connection with Hamiltonian systems. The Operators considered in these papers 
are special insofar as they always possess a symplectic-implectic fa~torization2>.a> 
(nevertheless these special cases cover the most important evolution equations). 

We investigate · the permanence properties of hereditary: operators. 
Unfortunately it tums out that the set of these operators does not: have a nice 
mathematical structure. Nevertheless we can give certain methods:to construct 
new ones out of given ones (theorem 3.2). In special cases this method has been 
applied before2>.a> without discoveririg its Lie · algebra aspects. 

In the last part of the paper we apply the methods developed so far to 
construct out of simple hereditary operators complicated new; ones, thus 
generating on a systematic Ievel many new classes of nonlinear evolution 
equations (of integro-differential type) having the property that they possess 
infinite dimensional abelian symmetry groups. These classes contain the well
known equations but also many new ones not yet considered in theiliterature. 

In order to make the paper more coherent we have moved some information 
about hereditary operatörs to the Appendix. In the first part of the lA.ppendix we 
clarify the interrelation be~ween hereditary operators and special deformations of 
Lie products on a given vector spac~ . . L. We call these deformations linear 
deformations of compatible Lie products. They are the tangential structure of 
what we call compatible deformations. Tobemore pr~cise: Two:Lie products 
[, ]o and [,]in a· vector space L are said tobe compatible if their sum [, ]. = [, ]o 

. def + [,] is again a Lie product; and an isomorphism (}):(L, [, ]o)-+ (L, (,]) is sald to 
be a linear deformation if (/ + (/) ):(L, [, ]. )-+ (L, [, ]) is again a Lie-algebra . . ,. 
homomorphism. This property then yields. a linear int~p>olation property for a 
continuous family of Lie products. """ 

To the second part of .the Appendix we have mov~d some of the tedious 
calculations which arisein the study of the permanence properties.' 

§ 2. Hereditary operators 

Consider a vector space L ( over R or C) and Iet a Lie product [ , ] be given 
r . 
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in L. A linear map (/):L- L is called a hereditary oPerator if 

lb 2 [a, b]+[lb(a), lb(b)]-lb{[a, lb(b)]+[lb(a), b]}=O (2·1) 

for all a, bEL. A simple calculation shows that Lie algebra isomorphisms 
transfer hereditary operators into hereditary operators. 

In order to see what hereditary operators can do for the construction of 
annihilators or abelian subalgebras, we define that a linear map (/):L- L is said 
to commute with aE L if 

lb[a, b]= [a, lb(b)] for all bEL. (2·2) 

Now, if (/) is hereditary and commutes with a, then for this special a, two terms 
of ( 2 ·1) cancel and we get: 

[<Z>(a), <Z>(b)]- <l>[lb(a), b]=O (2·3) 

for all bE L. Hence, if a hereditary 0 commutes with an element aE L, then it 
commutes with <l>(a) (immediate consequence of (2·3)). If 0 is in addition 
injective, then (/) commutes with 0( a) if and only if it commutes with a. To see 
this, we observe that if (/) commutes with <l>(a) then we get from (2·1) 

lb2 [a, b]- lb[a, <D(b)]= 0{ lb[a, b]- [a, lb(b)]}=O. 

Since (/) is injective, this gives 

<l>[a, b]- [a, <l>(b)]=O, 

and (/) must commute with a. 
Let us Iist some of the consequences C:>f these observations: 

2.1 Consequences: Let (/) commute with a. 

(i) (/) maps aJ. (the annihilator of a) into a\ hence { q,n(a)lnENo}CaJ.. 

(ii) // (/) is in addition hereditary, then the linear hull of { q,n(a)lnENo} is 
an abelian subalgebra of (L, [, ]). 

(iii) // (/) is invertible and hereditary, then the linear hull of { q,n(a)lnEZ} 
is an abelian subalgebra of (L, [, ]). 

The assertion ( i) is completely trivial. In case ( ii) we know from the 
preceding argument th81 (/) commutes with all the <l>n( a). Hence 

[lbn(a), q,m(a)]= q,m[<l>n(a), a]= q,n+m[a, a]=O, 

and (iii) follows by almost the same argument. 

§ 3. Permanence properties 

In order to construct as many hereditary operators as possible it is desirable 
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to study the structural properties of the set of these operators. But 
unfortunately these operators are neither a vector space nor a semi~oup. But 
some structural properties · are coming out of the notion of compatibility. Two 
hereditary operators l/J, lJI are called compatible if l/J + lJI is again !hereditary. 
One easily sees that two operators l/J and lJI are compatible if and only if, for all 
a, bEL, we have 

· B~.w(a, b)= lJI{[l/J(a), b]+[a, l/J(~)]}+l/J{[lJI(a), b]+[a, lJI(b)]}, 

- l/J lJI [a, b]- lJI(/J [a, b]- [ lJI( a), l/J( b)]- [ l/J( a), lJI( b )] 

'=0. 

To show this one abbreviates 

. (3·1) 

A~(a, b)= l/J 2 [a, b]+[l/J(a), <P(b)]-l/J{[a, l/J(b)]+[l/J(a), b]} (3·2) 

and one obtains in a Straightforward way: 

A~+v(a, b)-A~(a, b)-Aw(a, b)=-B~.v(a, b). 

Since B~.v is linear in the variables l/J and lJI, this shows that when~ver lJI. and 
lJI2 are compatible hereditary operatorssuchthat lJI. and lJI2 are compatible with 
l/J then, A1 lJI1 +A2 lJI2 is again compatible with l/J (for arbitrary scalars A1, A2). 

W e need a technical Iemma. The proof consists of a Straightforward (.but 
cumbersome) calculation and can be found in the Appendix. 

3.1 Lemma Let l/J be invertible. 

(i) Wehave 

l/J-1 A~( l/J-1(a), l/J- 1(b))= l/JA~-,(a, b). 

( ii) I! l/J and lJI are hereditary, then we obtain 

A"~-,(a, b)= lJ!l/J- 1 B~.rp(l/J- 1 (a), l/J-1(b)). 

(3·3) 

(3·4) 

(iii) lf l/J and lJI are commuting hereditary operators, then we .have 

A rp~( a, b) =- lJ!l/JB'P.~( a, b ). (3·5) 

These .identities in fact yield the permanence properties for hereditary operators 
· which are listed in the following: 

3.2 THEOREM Let (/J and lJI be hr;reditary operators. 

(i) II l/J is invertible, then l/J-1 is agai~ hereditary. 

(ii) II l/J and lJI are compatible and i! l/J is invertible, then lJ!l/J- 1 is 
hereditary. 

(iii) Let l/J be invertible and lJI be injective. Then lJ!l/J- 1 is hereditary i! 
and only if lJI + l/J is hereditary, i.e., they are comPatible:. 
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(iv) II lJI and f/J are commuting and compatible, then f/J lJf is hereditary. 

Proof (i) is a direct consequence of (3·3). Assertions (ii) and (iii) follow 
immediately from (3·4) and (iv) is a consequence of (3·5). 

As a corollary we get that all polynomials ~( f/J) in a hereditary operator f/J are 
again hereditary. This fact even goes over to meromorphic functions in f/J, if they 
make sense. 

§ 4. Application to ( nonlinear) evolution equations 

General remarks 

Let S be a topological vector space and C""( S, S) the space of infinitely many 
times differentiable functions S- S. Differentiable always means Hadamard
differentiable.6> This is assumed in order to ensure "that derivatives are linear 
maps and that the chain-rule holds. 

We are interested in evolution equations of the form 

u( t )t = K( u( t) ), u(t)ES, KE C""(S, S) .. (4·1) 

For simplicity we assume that the initial value problern for (4·1) is very weil 
posed. This means that for every uoES there is a unique solution u(t), tER, 
with u( t = 0) = uo such that u( t) is differentiable with respect to uo. I t is useful 
to consider. the resolvent map RK( t) given by 

Because of translation invariance with respect to t we have 

(4·2) 

Thus RK( t) defines a differentiable one-parameter abelian group of 
trans forma tions in S. From ( 4 ·1) we obtain 

d dtRK( t)=KoRK( t). (4·3) 

Hence, K is the infinitesimal generator of that group. Furthermore RK(t) is 
differentiahte (differentiability with respect to the initial value). So, for every u 
ES there is a linear map LK ( t, u ): S- S given by 

(4·4) 

· being the resolvent of the linearization (perturbation · equation, tangeQtial 
equation) of (4·1): 
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v(t )t = ! lc=o ~( u{t) + Ev(t )), u(t) = RK( t ){ u). (4·5) 

The family LK ( t, · u) has a group structure ( coming out of ( 4 • 2)) which is given by 
the formula: 

(4·6) 

Furthermore 
(4·7) 

since Ut is a solution of ( 4 · 5). 
Roughly speaking, Lie algebras are important for ev9lution equat~ons because 

the tangential eq~ation (4·5) can·be written in comrnutator form. In!order to see 
this we denote.the constant function S3s-+ v for vES by lvE c-(S:, S). If we 
define a Lie product in c-( S, S) by · 

. [G, H](s)=·11 {G(s+EH(s))_-H(s+EG(s))}, (4·8) 
def dE c""o 

where sES and G, HE Cao(S, S), then the tangential equation (4·5) can be 
written as 

v( t )t = [K, lvw]( u( t) ), u(t)=RK(t)(u). (4•.9) 

An immediate consequence of that formula is· that, if Re( t) is a second 
resolvent group ( with infinitesimal generator ·c) then the tran:Sformations 
Rc(t) and RK( r) commute if and only if [K, G]=O. 

That means if [K, G]=O, then G can be understood as the ~nfinitesimal 
generator of a flow commuting with (4·1). Therefore G is then called the 
infinitesimal generator of a symmetry of (4·1). This notion is al~o adopted if 
G is not the generator of a resolvent group (or in other words if the: initial value 
problern for Ut = G( u) is not very weil posed). Because even in this dase G yields 
important information about invariant manifolds, nainely: 

Let [K, G]=O, then 

Ker( G)={sESIG(s)=O} (4·10) 

· is a submaniiold of S which is invariant under the flow given ~ ( 4 ·1 ). 

To prove that we show that, for uEKer( G), we have 

-*-1 G(u+Eut)=O. 
uE c""o 

Butthis quantity is equal to [G, K](u)t ~ lc=oK(u+EG(u))=[G, f(](u). 

Now, Iet us assume that 0 is a hereditary operator in CO(S, S) commuting 
with K. Denote Kn= 0n(K), then we know that 1 
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{KnlnENo} 

(or even {KnlnEZ} if (]) invertible) is an abelian Subalgebra of coo(S, S). If the 
initial value problern is very weil posed for the following equa tions 

Ut=Kn(u), (4·11) 

then the products of the resolvents R«m( t ), mE No or Z, are an abelian symmetry 
group (often of infinite dimension) for all these equations. But the importance of 
f/J for the investigation of (4·1) does not stop at this point. There isanother way 
of describipg, in terms of f/J, submanifolds of S which are invariant under the flow 
given by (4·1). For suitable examples these submanifolds correspond to the so
called soliton-solutions.1

),
7

) Let us call the operator (]) local if there are operators 
f/J(u):S-S, depending on uES, suchthat 

( 0K)( u) = f/J( u)K( u) 

for all uE S and all K E Coo( S, S ). An element wES is said to.be an eigenvector 
of ( (]), u) with eigenvalue A if 

(01w)(u)=Aw. 

lf f/J is local, this is equivalent to f/J(u)w=Aw. 

4:1. THEOREM Let 0:COO(S, S)- COO(S, S) be a local heredUary operator 
which commutes with K. Then for arbitrary scalars a.,-··an, A.,. .. ,An, the 

set 
m 

{sESjK(s)= I! a~tWk, W~t eigenvectors of ( f/J, s) with eigenvalues A~t} 
/tel . 

is invariant und er the flow given by Eq. ( 4 ·1 ). 

Proof Define that w(t) is L«(t, u)w. Then using (4·9) and the fact 
that f/J commutes with K we get for u( t) = R« ( t )( u ): 

ft { ( 01w(t)( u(t))-Aw( t)} = Jt { 0( u(t) )w(t)-Aw(t)} 

= ~ l, .. =o K( u(t) + E( f/J1w(t)( u( t))- Ellw( t) ). 

Hence, w( t) is. an eigenvector of ( f/J, u( t)) with eigenvalue A if and only if w is 
eigenvector of ( f/J, u) with eigenvalue A. Combining this with (4·7) we have the 
proof. 

4.2. Examples 

We are looking for ( nonlinear) integro-differential equations admitting an 
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abelian group of symmetries of infinite dimension. W e start with a r~ther simple 
hereditary operator of the form 

0a,P = a(/)I + ß(/)2 

having the property that 0a,P is hereditary for all scalars a and ß .: Then we 
choose the solution space S for the evolution equations in such a way that, say 
ao 01 + ßo 02 is invertible. This operator is certainly compatible with 0a,P since 
0ao.Po + 0a,P = 0a0+a,Po+P · is again hereditary, by assumption. Therefore, by 
application of theorem 3.2, we are led to the conclusion that 

(/) = ( a01 + ß(/)2 )( ao 01 + ßo 02 t 1 

is again hereditary. At this point we should remark that in general :for a given 
concrete integro-differential operator the proof of hereditariness is a very 
cumbersome calculation. Guessing thos~ integro-differential operators which are 
hereditary (most of them are not) is even more hopeless. 

All the operators, which we are dealing with, will be of such a formthat they 
commute (with respect to the Lie algebra Coo(S, S)) with Ko, where Ko(u)=ux 
(derivative of u). Hence, 

Kn = (/)nKo, nENo(or nEZ if (/) is invertible) 

is an abelian Lie algebra (in general of infinite dimension). Or, in other words, 
the evolution equations 

describe commuting flows and each of these flows has an infinite dimensional 
abelian group of symmetry transformations. The operator (/) is recursion 
operator for these equations in the sense of Olver.8

> 

Another remark seems to be appropriate at this point: F9r a given 
complicated evolution equation it seems absolutely hopeless to guess iwhether or 
not this equation has infinitely many symmetries (hidden sYn1metries). 
Therefore our procedure for generating these equations on a systeJißatic basis 
seems to be some progress in the righ t direction. 

First we make some remarks about the notation we are adopt(ng. Let .9' 
denote the predual of the tempered distributions on R, i.e., .9' is the space of 
infinitely many times differentiahte functions R- C suchthat all, including 0-th, 
derivatives vanish rapidly (faster than any polynomial) at ±oo. By ,9'7 we denote 
the space of infinitely many times differentiable functions where the ~derivatives 
are only required to vanish rapidly at -oo and tobe of at most polynomial growth 
at +oo. Let a >0, then we mea~ the following s~aces by g,, ,9?8 -=; 

g 8 = { qJE;9jqJ(x )exp(- ax )€;9}, 
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.98-={~Eg-j~(x)exp{ -8x)Eg-}. 

The differential Operator~- ~r is denoted by D and n-l :.9;... -.9- is its inverse, 
i. e., 

r 

(D- 1 ~)(x)= jrp(~)d~, ~E.9-. 

Now, Iet S be any of these function spaces under consideration. We only deal 
with local Operators (/):Coo(S, S)-+ coo(S, S), i.e., we start with linear Operators 
f/J( u ): S-+ S ( depending COO on uE S) and define an opera tor (/): COO( S, S) 
-+ COO(S, S) by 

( f/JK)( u) = f/J( u)K( u). (4·12) 

Such an operator (/) is hereditary if and only if 

Je t =O { (/) ( U + E (/) ( U) V) W - (/) ( U) (/) ( U + EV) ~} 

is, for all u, v, wES, symmetric in the variables v and w. This formula was 
discovered in an earlier paper.0 We know1

> that the operator f/J:COO(S, S) 
-+COO(S, S) (where 5=.9', y-, .9'8 or .9'a-) given by the operator-valued 
function 

f/J1( u) = rl + ßD+ aDuD-1 (4·13) 

is hereditary for arbitrary scalars a, ß, r. The proof forthat factwas only given 
for the case S =.9'. But since the proof only depends on the algebraic properties 
of D, it goes over unchanged to the present situation. Hence, 

(4·14) 

is hereditary for s =.9'. But this Operator leaves coo( s' s) invariant if s is 
replaced by any of the subspaces y-, .9' 8, .9' 8-. Therefore ( 4 ·14) defines a 
hereditary operator for all these spaces. Looking at the formula 

r 

9'(X )=(D-EI){exp(ex) /.:<~)exp( -e~)d~}. 

one discovers that (D-c/) is, for O~E~o, invertible in!/'8 as well as in!/'8-. 
Obviously (D-EI) is among the operators given by (4·13), therefore 

(/)3( u) = f/J1( u)( D- El)- 1, (4·15) 

is hereditary in .9' 8 as weil as in .9' 8-. 

A very simple calculation° shows that all these operators f/J1, f/J2, 03 commute 
(in the sense of formula (2·2)) with the function KoE C"'(S, S) given by Ko( u) 
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= u.r. This has as an immediate· consequence. that for 0= 0., 02: or 0s the 
functions 

Kn= 0nKo, nENo (or nEZ if that makes sense) 

are forming an infinite dimensional abelian Lie algebra. Or, in other words, the 
evolution equations 

(4·16) 

are describing commuting flows. Among these equations one fin~s Burger's 
equation (ut=0.(u)u.r for ß=a=-~, r~O) but also many other~ ~ot yet dis
covered in the literature. Among these 

Ut = 02( u)U.r::::: ru+ ßu.r+ a( uD- 1 U).r, U~ 

uE.9'~-. 

Using the substitutions v=n-•u or v=(D-Elt1u, one can rewrite these 
equations as: 

V.rt= rv.r+ßV.r.r+a( VV.r).r, V~, 

( V.r- "EV )t = rv.r + ßV.r.r + a( VV.r ).r- 2aEVV.r, ve,9' ~- . 

(4·17) 

(4·18) 

It certainly seems impossible to guess that all these equations possess infinite 
dimensional abelian symmetry groups. 

One obtains other classes of equations by considering other: hereditary 
operators. The operator 0:Coo(S, S)- COO(S, S) given by the ope~ator-valued 
function 

(4·19) 

is, for arbitrary scalars a, ß, r, p, hereditary in.9',._9'-,.9'~ as weil as:in..9'~- (see 
Ref.1) formula H4). Application of theorem 3.2 yields a new dass of hereditary 

' . 

operators 

0s( u)=pD-2 + rl +ß(2u+ u.rn-• )D-2 +a( u2 + u.rb- 1 u)D-2 (4·20) 

in._9'- (and in.9' if p=~). One easily sees that for O<c:S:8 the operator (D2 

- E2 I) is invertible in .9' 11 and .9' 11-. Hence 

(4·21) 

defines .a new dass of hereditary operators in .9'~ and .9'~-. Aga~n all these 
hereditary operators commute with Ko( u) = U.r. Therefore all the equations 

ut= 0n(.u)u.r, nENo(or nEZ if that ;makes sense) (4·22) 

descfibe commuting flows, for 0 equal to either 04, 0s or 0s. Among · these 
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equations one finds the KdV, the modified KdV, the Gardner equation and the 
sine-Gordon equation (see Ref. 1) for details). But apart from these well-known 
equations many other evolution equations not yet discovered as soliton equations 
belong to that dass. 

If the linear structure in the function spaces under consideration is restricted 
to the reals (i.e., scalars= R), then 

. fb1(u)= rl + ißD+ iauD- 1 Re(ii· ), a, ß, rER (4·23) 

is again a dass of hereditary operators (see Ref. 1), formula H6). Here Re( u·) 
stands for the real-linear operator given by 

v- ~ ( üv+ uv), ü, iJ complex conj~gate. 

Then, running again through the (now almost boring} factorization procedure one 
obtains new classes of hereditary operators. Allthese then commute with Ko( u) 
= U.r. Hence the equations Ut = fbn( u)ux do have infinite dimensional abelian 
symmetry groups. Apart from the nonlinear Schrödinger equation one finds 
among these equations many new ones. 

§ 5. Concluding remarks 

First of all, we like .to emphasize that our approach yields much more 
nonlinear evolution equations. with infinite dimensional abelian symmetry groups 
than the previous sections might indicate. 

For example 

V.rt = a1 V.r.r + a2 sin( v) + as( V.r.r cos( v)- V.r 
2 sin( v)) · 

+ a.(2vx sin( v)+ V.r.r j_: sin( v(~))d~) (5·1} 

admits an infinite dimensional (rather complicated) abelian symmetry group for 
arbitrary scalars a1, · · ·, a.. This is easily seen: Consider a special case of 
(4·19), namely 

1JI( u)=(D2 +4u.rD-1u+4u2
). 

This operator is injective and especially we obtain 1> 

.r 
~ sin(2 ju(~)d~ )= 1JI(u)-1u.r. (5·2) 

-CD 

If we like to check this relation, we should keep in mind that we are dealing with 
functions vanishing at - oo, hence 
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:c :c 

n-l( 2u(x )sin(2 ju(~)d~) )= -cos( 2 fu(~)d~ )+ 1. 
-~ -~ 

Now, consider the equation Ut=((l)(u)+c-W(u)) q:r- 1(u)u:c, where (l)(u) is given 
by (4·19). Insertion of (5·2) and substitution 

:c 

v(x )~2 ju(~)d~ 
-~ I 

then yields (5·1) (after renaming the scalar parameters). Another equation one 
easily obtains out of a similar factorization of ( 4 ·19) is the following modified 
BBM equation: 

Ut.- U:c:ct + Ux- 3( UU:c+ ( UU:c)xx- YU:c:c:c) + U:cU:c:c= Ü • (5·3) 

Secondly, Iet us briefly emphasize the importance of theorem 4.1 in connection with 
multisoliton solutions. Let (1)( u) be one of the hereditary operator~ of the last 
sections and consider Ut = (1)( u) u:c. We start by discussing the meftning of the 
decomposition given in theorem 4.1 for m= 1. We then have the conclusion that 
Ut is an eigenvector of (1)( u) with eigenvalue ll. Comparing that infonnation with 
the evolution equation we get (if the kernel of (]) is empty) Ut=llu:c. :Hence, u(t) 
must be a travelling wave solution with speed ll. Now, in case that:the solution 
space under consideration is either .!7 or .!7 8, multisoliton solutions are solutions 
which decompose asymptotically (t= ±oo) into traveiiing ~ave solutions,. with 
rapidly vanishing overlap. Thus, if (/)( u) is a local operator (or evern semi~al), 
these solutions are solutions belonging to the manifold described in theorem 4.1. 
And the eigenvalues are the asymptotic speeds of the travelling wave solutions. · 
By the way, the same manifold describes Novikov's generalized :multisoliton 
solutions.9>.to> 

Those equa tions we obtained from ( 4 ·13) ha ve in general no 'multisoliton 
solutions whereas those obtained otherwise do have (for suit~ble a, ß, r) 
multisoliton solutions. 

Another interesting observation isthat the equations obtained out of (4·19) 
and (4·23) do have infinitely many conservation laws. This is not ttue for those 
equations obtained from (4·13). Because, in contrast to the second: case, in the 
first case (1)( u)D is a symplectic operator (or rather its inverse is :symplectic). 
Symplectic operators are Lie algebra homomorphisms relating the Lie algebra of 
gradients of covector fields with the Lie algebra given by (4·8) (fo~ details see 
Refs. 2) and 3) and especially a forthcoming paper10 where the Lie algebra aspects 
of bi-Hamiltonian systems in the sense o( MagrP 2> are extensively treated). 

A theory very similar to the theory presented in this paper can be built up for 
dynamical systems with infinite dimensional non-abelian symmetry; groups.11

> 
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Finally, we like toremarkthat the transfer of hereditariness by Lie algebra 
isomorphisms corresponds to the well-known Bäcklund transformations. 
Concrete examples for that-again without mention of the Lie algebra aspects 
-are given in a forthcoming paper!3

> 

Appendix 

Linear deformations 

Consider in a vector space L( over R or C) two Lie-products [ , ] and [ , ]o. 
They are called compatible if [, l1 defined by 

[a, b]1 = [a, b]o+ [a, b] 

is again a Lie product. In this case an isomorphism-into (J):(L, [, ]o)- (L, [,]) is 
called a linear de/ormation of (L[,]) if (/ + (J)):(L, [, ].)- (L, [,]) is a 
homomorphism. 

lt is very easy to see that, if [ , ]o and [ , ] are compatible, then [a, b]a,p= a[a, 
b]o+ß[a, b] defines a Lie-product for all scalars a, ß. Furthermore, if (J) is such 
a linear deformation, then (ßl + a(J) ):( L, [, ]a.P- ( L, [, ]) is a homomorphism. 

It is quite easy to characterize alllinear deformations: 

6.1. THEOREM Let (J):~- L be linear, then the following are equivalent: 
(i) (J) is a linear de/ormation ( with respect to (L, [, ]). 
(ii) (J) is injective and hereditary. 

Proof 
(i)~(ii): That (J) has to be injective is an immediate consequence of 

the definition. For a, bEL we must have (/ + 0)( [a, b]+ [a, b]o)= [(/ + (J) ).( a), 
(I+ (J))(b)]. Since (J):(L, [, ]o)-(L, [,]) is an isomorphism, we can replace [a, b]o 
by (J)- 1[0(a), (J)(b)]. This replacement yields: 

[a, b]+0[a, b]+[0(a), 0(b)]+0- 1[0(a), 0(b)] 

=[a, b]+[0(a), b]+[a, 0(b)]+[0(a), (J)(b)]. 

The terms of order 0 and 2 in (J) cancel and the application of (J) to the first order 
terms yields Eq. (2·1). 

(ii)~(i): First, we remark that (2·1) implies that 0(L) is a subalgebra of L. 
Hence the definition 

[a, b ]o = 0-1 
[ 0( a ), 0( b)] 

makes sense. Obviously [, ]o is a Lie-product and (J):(L, [, ]o)-(L,[,]) is an 
isomorphism-into. A straighttorward calculation gives: 
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(I+tJ>)[a, b].=(I+tJ>){[a, b]+[a, b]o} 

= [a, b]+.[tl>(a), tl>(b)]+ l])-•.~l])(a), tl>(b)]+ tl>[a, b]. 

Insertion of ( 2 ·1) into the last term makes that equal to: 

=[a, b]+[tJ>(a), tl>(b)]+[a, tJ>(b)]+[tl>(a), b] 

=[(I+ t1> )( a), (I+ tJ> )( b )]. 

So, (I+ l])):(L, [, ].)--+ (L,[,]) is a homomorphism if [, ]. is a Lie-product. To se,e 
this one easily calcul~tes with the help of (2·1): · 

'[a,[b, c].]. = [a,[b, c]]+ [a,[b, c]o]o- tl>[a,[b, c]] 

+{[a,[b, tl>(c)]+[a,[tl>(b), c]]+[tl>(a), [b, c]]} 

· which clearly implies the 1 acobi identity. . . 
The crucial property of linear deformations is that, for all ll ER, the operator 

I+ ll t1> has to be a homomorphism from the product [ , ] + ll [ , ]o to [ , ]. Here the 
linear dependence in ll is rather special. And, of course, there is a more general 
structure having linear deformations as .tangential structure~ We bri~fly describe 
that structure (without proofs). ' 

In order to do that we assume that L is a topological vector space (if no 
topology is explicitly given we take the finest locally convex one). Let a family of 
Lie-products [ , ].t be given, say for O~ll~l and assume that the familiy is 
di//erentiable isomorphic, i. e., there are continuous linear bijections O(ll):L--+ L 
with 

O(ll)[a, b].t= [O(Il)a, O(ll,b]o 'V a, bEL (A·l) 

suchthat the O(ll) are differentiable in ll. This family of Lie-products is said to 
be a compatible de/ormation of [ , ]o if 

~ [ , h is, for all O~ll~l, again a Lie-product (A·2) · 

and 

~ O(ll) is a homomorphism from (i, ~ [ 1) to (L,[ ]o). r (A·3) 

6.2. THEOREM Let O(ll):(L, L ].t)--+(L, [, ]) be a /amily of bijective iso
morphisms. Then the following are equivalent: 

(i) [, ].t, O~ll~l is a compatible de/ormation o/ the Product [, ]. 

(ii) For every O~ll~l we have 
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(a) [ , ]A and ~ [ , h are compatible Lie-Products; 

(b) ( ~ 8(11) )e(ll)- 1 is hereditary with resPect to [, ]o. 

The proof of Iemma 3.1 

Let us give here the details. of the calculations leading to the identities 
collected in Iemma 3.1: 

(i) is a simple verification. 

(ii) Put ii= a>- 1( a), b = a>-1( b ). A straighttorward calculation yields: 

qt([)- 1([a, qt([)- 1(b)]+ [ qt([)- 1(a), b])= lf!a>- 1
([([)( ii), qt( b)]+ [ qt( ii), ([)( b)]) 

= qt([)- 1
(- B~."( ii, b)+ qt( [ a>( ii), b] + [ ii, a>( b)]) 

+ ([) ( [ qt ( ii ) ' b] + [ ii' qr ( b)]) - ([) qr [ ii ' b] - qt([) [ ii' b] 

=- qt([)- 1 B~.v( ii, b)+ qt{ [ lf/( ii), b]+ [ii, qr ( b)]- qt[ii, b]} 

+ lJf([)- 1 qt{[([)(ii),b]+[ii, ([)(b)]-a>[ii, b]} 

=- qt([)- 1 B~.v( ii, b)- Av( ii, b)+ [ qt( ii), qt( b)] 

-( qta>- 1 )2A~(ii,b)+( qta>- 1)2 [a>(ii), a>(b)]. 

Hence: 

qt([)- 1 B~."( a>- 1( a ), a>-1( b)) = A"~-~ ( a, b)- A "( a>- 1
( a ), a>- 1( b)) 

-( qr([)-1)2A~(a>-l(a), a>-l(b)), 

and this gives ( 3 · 4) since qr and ([) are assumed to be hereditary. 

(iii) For commuting hereditary operators ([), qt we calculate 

[ qt([)(a), qt([)(b)]=- qt2 [a>(a), a>(b)]+ qt{[ qt([)(a), ([)(b)]+ [a>(a), qt([)(b)]} 

= q/2
([)

2 [a, b]- q/2 ([){[a, ([)(b)]+[a>(a), b]} 

- q/([)2
{[ qt( a ), b] + [a, qt( b)]} 

+ lfl([){[([)qt(a), b]+[ q/(a), a>(b)] 

+[a>(a), qt(b)]+[a, qt([)(b)]}. 

Insertion of this into 

yields: 

A"~(a, b)=( qt([))2 [a, b]-a>qt{[a, qt([)(b)] +[ qt([)(a), b]} 

+ [ qt([)( a), qt([)( b)] 

A"~(a, b)=2( ?fl(/))
2 [a, b]-( qt([)) lfl{[a, ([)(b)]+ [a>(a), b]} 

-( qt([))d>{{'lfl(a), b]+[a, lf!(b)]} 
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+ WCD{[ W(a), a>(b)]+[a>(a), W(b)]} 

=- Wa>B".~( a, b). 

For several reasons tbe autbor is indebted to tbe referee. , First of all 
because bis constructive remarks improved tbis paper considerably, secondly 
because be brougbt tbe importent references 4) and 5) to bis attention. 
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