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Hereditary operators in Lie algebras are investigated. These are operators which are
characterized by a special algebraic equation and their main property is that they generate abelian
subalgebras of the given Lie algebra. These abelian subalgebras are infinite dimensional if the
hereditary operator is not cyclic. As a consequence hereditary operators generate on a
systematic level nonlinear dynamical systems which possess infinite dimensional abelian groups
of symmetry transformations. We show that hereditary operators can be understood as special
Lie algebra deformations with a linear interpolation property. In order to construct new
hereditary operators out of given ones we study the permanence properties of these operators;
this study of permanence properties leads in a natural way to a notion of compatibility. For
local hereditary operators it is shown that eigenvector decompositions are time invariant (such
an eigenvector decomposition is known” to characterize pure multisoliton solutions). Apart
from the well-known equations (KdV, sine-Gordon, etc.), we give—as examples—many new
nonlinear equations with infinite dimensional groups of symmetry transformations.

§1. Introduction

A detailed analysis of the celebrated Korteweg-de Vries equation reveals
that this nonlinear evolution equation possesses an infinite dimensional abelian
group of symmetry transformations. This group of symmetry transformations is
given by the resolvents of the so-called generalized KdV equations. And this
striking property is shared by many other nonlinear evolution equations; Only to
name a few: Burgers equation, sine-Gordon equation, Zakharov-Shabat equations,
Gardner equation etc. Furthermore one discovers that for these equations
(except Burgers equation) the structure of this abelian symmetry group is
intimately connected with the existence (and description) of multisoliton
solutions, *and in addition connected to the existence of infinitely many
conservation laws (via Noether’s theorem or rather a suitable generalization
thereof). ‘

The phenomena related to this observation have in recent years been one of -
the most active areas of research in applied mathematics and theoretical
physics. Looking into the problems encountered in this research with a
somewhat more systematic interest, one realizes that very often it is highly
desirable to construct for a given element K of a Lie algebra its annihilator K*
(or at least a large abelian subalgebra containing K). If one can do this, then, of
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course, integration of the equations for the mfmltesxmal generators of a Lie group
yields a family of commuting flows. '

In this paper we investigate mappings @ havmg the property that (under
additional assumptions) the annihilator K* of a given element K of a Lie algebra
is mapped on itself. In" a canonical way mappings of this kind are given by
hereditary operators @ on a Lie algebra L. These operators have been
considered before.” They are characterized by a certain algebralc equatnon
which implies that @ is a selfmap in K*. :

Other authors™® have also considered special hereditary operators in
connection with Hamiltonian systems. The operators considered in these papers
are special insofar as they always possess a symplectic-implectic factorization®?
(nevertheless these special cases cover the most important evolution equations).

We investigate the permanence properties of hereditary operators.
Unfortunately it turns out that the set of these operators does not have a nice
mathematical structure. Nevertheless we can give certain methods: to construct
new ones out of given ones (theorem 3.2). In special cases this method has been
applied before®® without discovering its Lie algebra aspects.

In the last part of the paper we apply the methods developed so far to
construct out of simple hereditary operators complicated new: ones, thus
generating on a systematic level many new classes of nonlinear evolution
equations (of integro-differential type) having the property that they possess
infinite dimensional abelian symmetry groups. These classes contain the well-
known equations but also many new ones not yet considered in the literature.

In order to make the paper more coherént we have moved some information
about hereditary operators to the Appendix. In the first part of the Appendix we
clarify the interrelation between hereditary operators and special deformations of
Lie products on a given vector space .L. We call these deformations linear
deformations of compatible Lie products. They are the tangential structure of -
what we call compatible deformations. To be more precise: TwoiLie products
[,Joand [,]in a vector space L are said to be compatible if their sum [, ]1 [ Jo

+[, is again a Lie product; and an isomorphism @:(L, [, lo)— (L, [, 1) is sald to
be a linear deformation if (I+@):(L,[,])~(L,[,]) is again a Lie-algebra
homomorphism. This property then ylelds a lmear mterpolatlon property for a
continuous family of Lie products.

To the second part of the Appendix we have moved some of the tedious
calculations which arise in the study of the permanence properties.

§ 2. Hereditary operators

Consider a vector space L (over R or C) and let a Lie productf [, ] be given



The Lie Algebra Structure of Nonlinear Evolution Equations 863

in L. A linear map @:L— L is called a hereditary operator if
0*[a, b]+[0(a), @(5)]— 0{[a, ®(b)]+[D(a), b]}=0 (2-1)

for all ¢, b€EL. A simple calculation shows that Lie algebra isomorphisms
transfer hereditary operators into hereditary operators.

In order to see what hereditary operators can do for the construction of
annihilators or abelian subalgebras, we define that a linear map @:L— L is said
to commute with a€ L if

O[a, bl=[a, @(b)]  for all bEL. (2-2)

Now, if (D is hereditary and commutes with ¢, then for this special a, two terms
of (2-1) cancel and we get:

[@(a), @(b)]—@[@(a), ]=0 (2-3)

for all b€ L. Hence, if a hereditary @ commutes with an element a€ L, then it
commutes with @(a) (immediate consequence of (2-3)). If @ is in addition
injective, then @ commutes with @(a) if and only if it commutes with a. To see
this, we observe that if @ commutes with @(a) then we get from (2-1)
0*[a, b]— Ola, O(b)]= 0{®[a, b]—[a, ®(5)]}=0.
Since @ is injective, this gives
®la, b]—[a, ®(b)]=0,
and @ must commute with a.
Let us list some of the consequences of these observations:
2.1 Consequences: Let @ commute with a. ]
(i) @ maps a* (the annihilator of a) into a*, hence {®"(a)lnE No}Ca*.

(ii) If @ is in addition hereditary, then the linear haull of {®"(a)|lnE No} is
an abelian subalgebra of (L,[,]).

(iii) If @ is invertible and hereditary, then the linear hull of {®"(a)|lnEZ}
is an abelian subalgebra of (L,[,]).

The assertion (i) is completely trivial. In case (ii) we know from the
preceding argument th# @ commutes with all the @"(a). Hence

[0"(a), @™(a)]=O™[0"(a), a]= ®"*"[a, a]=0,
and (iii) follows by almost the same argument.
§3. Permanence properties

In order to construct as many hereditary operators as possible it is desirable
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to study the structural properties of the set of these operatoré. But
unfortunately these operators are neither a vector space nor a semigroup. But
some structural properties are coming out of the notion of compatibility. Two
hereditary operators @, ¥ are called compatible if @+ ¥ is again ‘hereditary.
One easily sees that two operators @ and ¥ are compatible if and only if, for all
a, b€ L, we have '

‘Bmmam=wﬂmwxﬂ+mewn+wuwwLﬂ+w,wwm‘\'
— O ¥(a, bl— ¥0[a, b]-[¥(a), D(b)]—[0(a), (”(b)]
=0. | . (31)
To show this one abbreviates ‘
Ao(a, )= 0%[a, b]+[0(a), 0(5)]- Of[a, O(B)]+[0(a), 8]} . (3-2)
and one obtains in a straightforward way: 7
Aosv(a, b)—Aola, b)— Av(a, b)=—Bow(a, b).
Since Be,v is linear in the variables @ and ¥, this shows that whenever ¥; and
¥, are compatible hereditary operators such that ¥, and ¥, are compatible with
@ then, A ¥1+A. ¥ is again compatible with @ (for arbitrary scalars Ai, Az).

We need a technical lemma. The proof consists of a straightforward (but
cumbersome) calculation and can be found in the Appendix.

3.1 Lemma Let @ be invertible.

(i)  We have :
071 4s(0-(a), 0-(b))= PAon(a, b). 33)
(i) If @ and ¥ are hereditary, then we obtain | |
Ave-(a, )= WO Bog(07(a), 0-1()). S

(ili) If @ and ¥ are commuting herveditary operators, then we :have
Avola, b)=— ¥OBv.o(a, b). o (35)

These identities in fact yield the permanence properties for hereditary operators
‘which are listed in the following: ‘

3.2 THEOREM Let @ and ¥ be hereditary operators.

(i) If @ is invertible, then @' is agaz'h'heredz'tary

(ii) If @ and ¥ are compatible and if @ is tnvertible, then o
hereditary.

(ili) Let @ be invertible and ¥ be injective. Then WO ' is kerea’z'tary if
and only if ¥+ O is hereditary, i.e., they are compatible.
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(iv) If ¥ and @ are commuting and compatible, then ® ¥ is hereditary.
- Proof (i) is a direct consequence of (3+3). Assertions (ii) and (iii) follow
immediately from (3-4) and (iv) is a consequence of (3-5).

As a corollary we get that all polynomials ¢(®) in a hereditary operator @ are
again hereditary. This fact even goes over to meromorphic functions in @, if they
make sense.

§4. Application to (nonlinear) evolution equations

General remarks

Let S be a topological vector space and C*(S, S) the space of infinitely many
times differentiable functions S— S. Differentiable always means Hadamard-
differentiable.” This is assumed in order to ensure that derivatives are linear
maps and that the chain-rule holds.

We are interested in evolution equations of the form

u(t):=K(u(t)), u(t)€S,KEC™(S,S).’ (4-1)

For simplicity we assume that the initial value problem for (4-1) is very well
posed. This means that for every & S there is a unique solution u(¢), tER,
with #(#=0)=uo such that u(¢) is differentiable with respect to #. It is useful
to consider the resolvent map Rk(t) given by

Rx(1)
uo—— u(t).

Because of translation invariance with respect to # we have
Rx(t)eRx(7)=Rx(t+ 1), Rk(0)=1. (4-2)

Thus R«(t) defines a differentiable one-parameter abelian group of
transformations in S. From (4:1) we obtain

%R«(zhxom(t). | (4-3)

Hence, K is the infinitesimal generator of that group. Furthermore Rx(f) is
differentiable (differentiability with respect to the initial value). So, for every u
€ S there is a linear map Lx(¢, #):S— S given by

La(t, u)v:a—imm(t)(uﬂv) (4-4)

- being the resolvent of the linearization (perturbation-equation, tangential
equation) of (4:1):
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=] Kt ud=Re(D@. 45

The family L«(¢, ) has a group structure (comlng out of (4- 2)) which is given by
the formula:

LK(z,RK(rxu))oLK(z, w)=La(t+1, ). C (46)

Furthermore
Lelt, ) K()= K(Rel )(2)) @

since #: is a solution of (4+5).

Roughly speaking, Lie algebras are important for evolution equatlons because
the tangential equation (4-5) can-be written in commutator form. In'order to see
this we denote the constant function Ss- v for vES by 1,.€ C*( S‘ S). If we
define a Lie product in C°°( S,S ) by '

G, Hl(s)=

=2 (GloteH(N-Hs+eGlN), ()

where sES and G, HEC=(S, S), then the tangentlal equatlon (4 5) can be |
written as :

v(t)g-[K lool(2(8)),  u(t)=Re(2)(2). ; (4-9)

An immediate consequence of that formula is that, if Re( t) is a second
resolvent group (with infinitesimal generator G) then the transformations
Rc(t) and Rx(r) commute if and only if [K, G]=0.

That means if [K, G]=0, then G can be understood as the mfm1tes1mal'
generator of a flow commuting with (4-1). Therefore G is then called the
infinitesimal generator of a symmetry of (4:1). This notion is also adopted if
G is not the generator of a resolvent group (or in other words if the initial value
problem for u.= G(u) is not very well posed). Because even in this case G yields
important information about invariant manifolds, namely: .

Let [K, G]=0, then ‘
Ker(G)={s€S|G(s)=0} (4410
‘isa submanifold of S which is invariant under the flow given by (4-1).

To prove that we show that, for € Ker(G), we have } '

) a—i” G(u+eu)=0.

But this quantity is equal to [G, K](u)+i| K(u+eG(u))=[G, K](u)

Now, let us assume that @ is a hereditary operator in C(S, S) commuting
with K. Denote K,= 0"(K), then we know that
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{KnlnENo}

(or even { Kn|nEZ} if @ invertible) is an abelian subalgebra of C=(S, S). If the
initial value problem is very well posed for the following equations

ue= Kn(u), (4-11)

then the products of the resolvents R«.(?), mE No or Z, are an abelian symmetry
group (often of infinite dimension) for all these equations. But the importance of
O for the investigation of (4-1) does not stop at this point. There is another way
of describipg, in terms of @, submanifolds of S which are invariant under the flow
given by (4-1). For suitable examples these submanifolds correspond to the so-
called soliton-solutions.”” Let us call the operator @ local if there are operators
@(u):S— S, depending on »E€ S, such that

(OK ) u)=0(u)K(u)

forall u€ S and all KEC*(S, S). Anelement wE S is said to be an eigenvector
of (@, u) with eigenvalue A if

(Olw)(u)=/lw .

If @ is local, this is equivalent to @(z)w=Aw.

41. THEOREM Let @:C*(S, S)— C*(S,S) be a local hereditary operator
which commutes with K. Then for arbitrary scalars ar,* @n, A1, ", An, the
set

{sESIK(s)=§lakwk, we eigenvectors of (@, s) with eigenvalues Ax}

is invariant under the flow given by Eq. (4-1).

Proof Define that w(¢) is Lx(#, w)w. Then using (4-9) and the fact
that @ commutes with K we get for u(#)=Rx(t)(u):

(@ Luol 1)~ A )} == D )0 )= ho( 1))

=2 | K(u(t)+e(@luaa 1))~ ero(1)).
Hence, w(t) is an eigenvector of (@, u(¢)) with éigenvalue A if and only if w is
eigenvector of (@, u) with eigenvalue A. Combining this with (4:7) we have the
proof. ’

4.2. Examples
-We are looking for (nonlinear) integro-differential equations admitting an
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abelian group of symmetries of infinite dimension. We start with a rather simple
hereditary operator of the form

@a,p = d@l +B¢z

having the property that @ is hereditary for all scalars ¢ and 5. Then we
choose the solution space S for the evolution equations in such a way that, say
ao P11+ D: is invertible. This operator is certainly compatible with @, since
Qaosot Pas= Dayras+s is again hereditary by assumption. Therefore, by
application of theorem 3.2, we are led to the conclusion that ‘

o =(a¢1+ﬂ¢2)(a’owl+ﬂo¢2)-l

is again hereditary. At this point we should remark that in general lfor a given
concrete integro-differential operator the proof of hereditariness is a very
cumbersome calculation. Guessing those integro-differential operators which are
hereditary (most of them are not) is even more hopeless. ;

All the operators, which we are dealing with, will be of such a form that they
commute (with respect to the Lie algebra C*(S, S)) with Ko, where Ko(u)= ux
(derivative of #). Hence,

Kn=0"Ko, n€ Nolor nE€Z if @ is invertible)

is an abelian Lie algebra (in general of infinite dimension). Or, in other words,
the evolution equations

u:=Kn(u)

describe commuting flows and each of these flows has an infinite dimensional
abelian group of symmetry transformations. The operator @ 1s recursion
operator for these equations in the sense of Olver.?

Another remark seems to be appropriate at this point: F()r a given
complicated evolution equation it seems absolutely hopeless to guess ‘whether or
not this equation has infinitely many symmetries (hidden symmetries).
Therefore our procedure for generating these equations on a systematic basis
seems to be some progress in the right direction. '

First we make some remarks about the notation we are adoptmg Let &
denote the predual of the tempered distributions on R, i.e., &% is the space of
infinitely many times differentiable functions R— C such that all, inéluding 0-th,
derivatives vanish rapidly (faster than any polynomial) at £o0. By & we denote
the space of infinitely many times differentiable functions where the derivatives
are only required to vanish rapidly at —oo and to be of at most polynomial growth
at +o. Let ¢ >0, then we mean the following spaces by &,, #,™:

F:={pELle(x)exp(—6x)ESL),
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s ={p€F lo(x)exp(—ox)EF").

The differential operator ¢— ¢ is denoted by D and D™ :. % - is its inverse,
i.e.,

(Do)x)= [o(6)dE, o~

Now, let S be any of these function spaces under consideration. We only deal
with local operators @:C>(S, S)- C™(S, S), i.e., we stdart with linear operators
?(u):S—S (depending C* on u<€S) and define an operator @:C7(S, S)
-C(S, S) by

(OK)u)=0(u)K(u). (4-12)
Such an operator @ is hereditary if and only if

_aa? _o{w(“+5@(u)”)w"¢(u)0(u+ev)w}

is, for all u, v, wE S, symmetric in the variables » and w. This formula was
discovered in an earlier paper.” We know" that the operator @:C(S, S)

- (S, S) (where S=%, ¥, #s: or ¥s~) given by the operator-valued
function

$l(u)—7I+BD+aDuD" (4- 13)

is hereditary for arbitrary scalars a, B, v. The proof for that fact was only given
for the case S=4. But since the proof only depends on the algebraic propertles
of D, it goes over unchanged to the present situation. Hence,

O(u)=0(u)D'=yD*+BI+aDuD™? (4-14)

is hereditary for S=.%. But this operator leaves C*(S, S) invariant if S is
replaced by any of the subspaces ¥, %s, & s . Therefore (4-14) defines a
hereditary operator for all these spaces. Looking at the formula

p(x)=(D—el{explex) [o(&)exn(— et g,

one discovérs that (D—el) is, for 0<e<d, invertible in %: as well as in &5~
Obviously (D—e€l) is among the operators given by (4-13), therefore

Os(u)=O(u)(D—el)"', 0<e<é ; (4-15)

is hereditary in &» as well as in.%:".
A very simple calculation" shows that all these operators 0., @., ®; commute
(in the sense of formula (2-2)) with the function K& C*(S, S) given by Ko(u)
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=u.. This has as an immediate' consequence that for @=®,, @, or @s the
functions ‘

K.=0"Ko, n€N, (or nEZ if that makes sense)

are forming an infinite dimensional abelian Lle algebra. Or,in other words, the
evolution equations ‘

u=0"(w)ux ‘ ' (4-16)

are describing commuting flows. Among these equations one fmds Burger s
equation (z:= ®1(w)ux for f=a=1, 7=0) but also many others not yet dis-
covered in the literature. Among these

U= 0 w)uzr=yu+pBus+aluD'u)z, USESF"
ue= Os(u)uz, uES s .

Using - the substitutions v=D"'u or v=(D—e&l)'u, one can rewrlte these
equations as: :

Uzt = Y0z + Bvzz+ a(vvz)z, Ué?-, ‘ A (4.17)
(v2—€v)e=7yvr+ Bvzz+ a(v02) 2 — 2000z, vE\Sﬁ“. (4-18)

It certainly seems impossible to guess that all these equatlons possess infinite
dimensional abelian symmetry groups.

One obtains other classes of equations by considering other‘; hereditary
operators. The operator @:C~(S, S)-C~(S, S) given by the operator-valued
function ‘ :

O w)=pI +yD*+B2u+usD™")+ a(u*+ u-D"'u) (4-19)

is, for arbitrary scalsrs a, B, 7, o, hereditary in.#, %, as well as'in %" (see
Ref.1) formula H4). Application of theorem 3.2 yields a new class of heredltary
operators

O )= pD 2+ 7+ B(2u+ uzD"") D+ a(P+ uD-'u)D* = (4-20)

in %~ (and in & if 0=0). One easily sees that for 0<e<dJ the operator (D?
—¢&?]) is invertible i in Fs and &»~. Hence

Ol )= O u)( D*— €)™ | (42

defines .a new class of hereditary operators in %°: and %»". Again all these
hereditary operators commute with Ko(%)=wu.. Therefore all the equations

ue=0"(u)uz, n€ Nolor nEZ if that makes sense) - (4-22)

describe commuting flows, for @ equal to either @i, @s or Q. A?mong‘these
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equations one finds the KdV, the modified KdV, the Gardner equation and the
sine-Gordon equation (see Ref. 1) for details). But apart from these well-known
equations many other evolution equations not yet discovered as soliton equations
belong to that class.

If the linear structure in the function spaces under consideration is restricted
to the reals (i.e., scalars=R), then

. Q(u)=vyI+iBD+ioauD ' Re(#%-), a,B, YER (4-23)

is again a class of hereditary operators (see Ref. 1), formula H6). Heré Re(i-)
stands for the real-linear operator given by :

v—'%( @+ uv), @, v complex conjugate.

Then, running again through the (now almost boring) factorization procedure one
obtains new classes of hereditary operators. All these then commute with Ko(z)
=uz. Hence the equations u:=®"(u)ux do have infinite dimensional abelian
symmetry groups. Apart from the nonlinear Schrédinger equation one finds
among these equations many new ones.

"§5. Concluding remarks

First of all, we like to emphasize that our approach yields much more
nonlinear evolution equations with infinite dimensional abelian symmetry groups
than the previous sections might indicate. ‘

For example

Vze = Q1 Vzz + a2 Sin(v) + @s( vzz cos(v)— vz? sin(v))

+a4(21)x sin(v)+vx;[: sin(v(é))dé) (5-1)

admits an infinite dimensional (rather complicated) abelian symmetry group for
arbitrary scalars a, -, .. This is easily seen: Consider a special case of
(4-19), namely ’

U(u)=(D*+4uzD u+41?).
This operator is injective and especially we obtain"

%sin(z u(é‘)dé)= V() us . (5-2)

If we like to check this relatibn, we shbuld keep in mind that we are dealing with
functions vanishing at —<o, hence
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_1(2u(x)sin(2 J’u(é‘)d«,f))= —cos(Z Iu(f)df)-i-l .

Now, consider the equation #:=(®@(u)+¢& ¥(u)) ¥~ '(u)ux, where (D(u) is given
by (4-19). Insertion of (5-2) and substitution

v(x)=2 [u(&)dE

then yields (5-1) (after renaming the scalar parameters). ‘Another équation one
easily obtains out of a similar factorization of (4-19) is the following modified
BBM equation:

Ut uxxt+u1_3( uux+(uur)rz_7uxzr)+ UzUzz=0. ‘ (5'3)

Secondly, let us briefly emphasize the importance of theorem 4.1 in connection with
multisoliton solutions. Let @(«) be one of the hereditary operators of the last
sections and consider u:=@(u)uz. We start by discussing the meaning of the
decomposition given in theorem 4.1 for m=1. We then have the conclusion that
u¢ is an eigenvector of @(u) with eigenvalue A. Comparing that information with
the evolution equation we get (if the kernel of @ is empty) u.=Au.. Hence, u(t)
must be a travelling wave solution with speed A. Now, in case that the solution
space under consideration is either % or %, multisoliton solutions are solutions
which decompose asymptotically (#=+0) into travelling wave solutions, with
rapidly vanishing overlap. Thus, if ®(«) is a local operator (or even semilgcal),
these solutions are solutions belonging to the manifold described in theorem 4.1.
And the elgenvalues are the asymptotic speeds of the travelling wave solutions.
By the way, the same manifold describes Novikov's generalized multlsohton
solutions.”'®

Those equations we obtained from (4-13) have in general no multisoliton
solutions whereas those obtained otherwise do have (for sultable a,B,7)
multisoliton solutions.

Another interesting observatlon is that the equations obtained out of (4-19)
and (4-23) do have infinitely many conservation laws. This is not true for those
equations obtained from (4-13). Because, in contrast to the second case, in the
first case @(u)D is a symplectic operator (or rather its inverse is isymplectic).
Symplectic operators are Lie algebra homomorphisms relating the Lie algebra of
gradients of covector fields with the Lie algebra given by (4-8) (for details see
Refs. 2) and 3) and especially a forthcoming paper'” where the Lie algebra aspects
of bi-Hamiltonian systems in the sense of Magri'” are extensively ti'eated).

A theory very similar to the theory presented in this paper can be built up for
dynamical systems with infinite dimensional non-abelian symmetry groups.'"

12)
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Finally, we like to remark that the transfer of hereditariness by Lie algebra
isomorphisms corresponds to the wellknown Bicklund transformations.
Concrete examples for that—again without mention of the Lie algebra aspects
—are given in a forthcoming paper.'®

Appendix

Linear deformations

Consider in a vector space L(over R or C) two Lie- products [,]and [, b.
They are called compatible if [, ]: defined by

(e, 8i=[a, blo+[a, b]

is again a Lie product. In this case an isomorphism-into @:(L, [, bb)=(L,[,]) is
called a linear deformation of (L[,]) if (I+ m) (L,[,1)-(L,[,]) is a
homomorphism.

It is very easy to see that, if [, Jo and [ , ] are compatible, then [a, b]es=[a,
blo+Bla, b] defines a Lie-product for all scalars a, 8. Furthermore, if @ is such
a linear deformation, then (BI+a®):(L, [, las—(L,[,]) is a homomorphism.

It is quite easy to characterize all linear deformations:

6.1. THEOREM Let @:L— L be linear, then the following are equivalent:
(i) @ is a linear deformation (with respect to (L, [,]).
(ii) @ is injective and hereditary.

Proof

(i)=(ii): That @ has to be injective is an immediate consequence of
the definition. For ¢, b€ L we must have (I+ ®@)([a, b]+[a, bl)=[(I+ ®)(a),
(I+@)(b)). Since @:(L,[,1)-(L,[,]) is an isomorphism, we can replace [a, bl
by @~ '[®(a), ®(4)]. This replacement yields:

[a, 5]+ @[a, b]+[®(a), B(5)]+ @ [O(a), ®(b)]
=[a, b]+[0(a), b]+[a, ®()]+[0(a), O(H)].

The terms of order 0 and 2 in @ cancel and the application of @ to the first order
terms yields Eq. (2-1).

(ii)=>(i): First, we remark that (2-1) implies that @(L) is a subalgebra of L.
Hence the definition

[a, blo= @' [@(a), ®(b)]

makes sense. Obviously [, o is a Lie-product and @:(L, [, Jo)— (L[ D is an
isomorphism-into. A straightforward calculatlon gives:
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(I+ ®)[a, b)i=(I+ 0){ta, b]+[a, b)s) |
=[a, b]+[®(a), O(b)]+ O [®(a), D(b)]+ Pla, b).

~ Insertion of (2-1) into the last term makes that equal to:

=[a, b]+[®(a), ®(b)]+[a, ©(b)]+[0(a), b]
=[(I+ @) a), (I+®)b)].

So, (I+@)(L,[,1)~(L,[,]) is a homomorphism if [, ]1 is a Lie- product To see
this one easily calculates with the help of (2-1):

(a6, clili=[a,[b, cl1+[a,[b, clol— ®la,lb, ]
+{[a,[5, @(c)]+[a,[0(d), c]]+[@(a) 2 c]]}

‘Wthh clearly implies the Jacobi identity.

The crucial property of linear deformations is that, for all A€ R, the operator
I+A® has to be a homomorphism from the product [,]+A[, o to [,]. Here the
linear dependence in A is rather special. And, of course, there is a more general
structure having linear deformations as tangentlal structure. We briefly describe
that structure (without proofs). h

In order to do that we assume that L is a topological vector space (if no
topology is explicitly given we take the finest locally convex one). Let a family of
Lie-products [, ] be given, say for 0<A<1 and assume that the familiy is
differentiable isomorphic, i. e., there are continuous linear buectlons 6(A):L- L
with

0(A)[a, b:=[6(A)a, 8(A3be  Va,bEL - (AD)

such that the 8(A) are differentiable in A. This family of Lie- products is said to
be a compatible deformatzon of [, 1o 1f

ﬁ[ , s, for all OS/lsl, again a Lie-product _ (A-2)
::md '
d . . - d |
—0(/1) is a homomorphism from ( L, —[ ]) to (L[ ]o . ; (A-3)

6.2. THEOREM Let G(AN(L,[,])~(L,[,]) be a family of bz]ectzve iso-
morphisms. Then the following are equzvalent

i I, ]A,OSASI is a compatible deformatzon of the product [, ]

(ii) For every 0<A<1 we have
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(a) [,]and 7‘3—[ , )1 are compatible Lie-products;

(b) (%H(A))H(A)" is hereditary with respect to [, .

The proof of lemma 3.1

Let us give here the details, of the calculations leading to the identities
collected in lemma 3.1:

(i) is a simple verification.
(ii) Put a=0 ' (a),b=0 ' (b). A straightforward calculation yields:
O [a, TO ' (B)]+[¥O ' (a), b])= PO\ ([@(a), T(H)]+[¥(a), D(H)])
= PO (—Boy(d,b)+ ¥([@(a),b)+[a, ®(5)])
+o([¥(a), bl+[a, w(b))-o¥l[a, b]l- wola, b)
=— YO~'Bow(a, b)+ ([ ¥(a),b6)+[a, ¥(&)]- ¥([a, b}
+ PO~ w{[0(a), b]+[a, ¢(5)]-ola, b1}
=— YO 'Bow(d, b)—Av(d, b)+[¥(a), ¥(5)]
— (PO Aol @, 5)+( T P[0(a), ®(b)].
Hence:
YO~ Bow( D '(a), 7' (b))=Awo(a, b)— Ax(D ' (a), ®'(b))
—( PO 'VAs(@ ' (a), D'(b)),
and this gives (3-4) since ¥ and @ are assumed to be hereditary.
(iii) For commuting hereditary operators @, ¥ we calculate
[¥0(a), ¥O(B)]=— ¥*[0(a), D(b)]+ T{[¥D(a), D(b)]+[D(a), TD(b)])
= U2 Q% aq, b]— T2 0{[a, O(5)1+[P(a), b])
— YO [ ¥(a), b]+[a, ¥(b)]}
+ FO{[0 ¥ (a), b]+[ ¥(a), D(b)]
+[@(a), T(5)]+[a, TO(5)]).
Insertion of this into
Ave(a, b)=( ¥0)[a, b]— 0 ¥{[a, ¥O(5)] +[ ¥O(a), b]}
+[¥D(a), ¥O(b)]
yields:

Avola, b)=2( ¥0)[a, b]—( ¥0) ¥{[a, D(b)]+[®(a), b]}
—(¥0)0{[¥(a), b]+[a, ¥ ()]}
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+ TO([ ¥(a), O(B)]+[0(a), T(B)])
=— UOByr.(a, b).

For several reasons the author is indebted to the referee. First of all
because his constructive remarks improved this paper considerably, secondly
because he brought the importent references 4) and 5) to his attention.

1)
2)
3)
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