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Examples of symmetric informationally complete positive operator-valued measures
(SIC-POVMs) have been constructed in every dimension ≤67. However, it remains
an open question whether they exist in all finite dimensions. A SIC-POVM is usu-
ally thought of as a highly symmetric structure in quantum state space. However,
its elements can equally well be regarded as a basis for the Lie algebra gl(d,C). In
this paper we examine the resulting structure constants, which are calculated from
the traces of the triple products of the SIC-POVM elements and which, it turns out,
characterize the SIC-POVM up to unitary equivalence. We show that the structure
constants have numerous remarkable properties. In particular we show that the ex-
istence of a SIC-POVM in dimension d is equivalent to the existence of a certain
structure in the adjoint representation of gl(d,C). We hope that transforming the
problem in this way, from a question about quantum state space to a question about
Lie algebras, may help to make the existence problem tractable. C© 2011 American
Institute of Physics. [doi:10.1063/1.3555805]

I. INTRODUCTION

Symmetric informationally complete positive operator-valued measures (SIC-POVMs) present
us with what is, simultaneously, one of the most interesting and one of the most difficult and tantaliz-
ing problems in quantum information.1–46 SIC-POVMs are important, practically, with applications
to quantum tomography and cryptography,4, 8, 12, 15, 20, 29 and to classical signal processing.24, 36 How-
ever, without in any way wishing to impugn the significance of the applications which have so far
been proposed, it appears to us that the interest of SIC-POVMs stems less from these particular
proposed uses than from rather broader, more general considerations: the sense one gets that SICs
are telling us something deep and hitherto unsuspected about the structure of quantum state space.
In spite of its being the central object about which the rest of quantum mechanics rotates, and
notwithstanding the efforts of numerous investigators,47 the geometry of the quantum state space
continues to be surprisingly ill-understood. The hope which inspires our efforts is that a solution
to the SIC problem will prove to be the key, not just to the SIC-POVMs narrowly conceived but
to the geometry of state space in general. Such things are, by nature, unpredictable. However, it is
not unreasonable to speculate that a better theoretical understanding of the geometry of quantum
state space might have important practical consequences: not only the applications listed above but
perhaps other applications which have yet to be conceived. On a more foundational level one may
hope that it will lead to a much improved understanding of the conceptual message of quantum
mechanics.7, 43, 45, 48

Having said why we describe the problem as interesting, let us now explain why we de-
scribe it as tantalizing. The trouble is that, although there is an abundance of reasons for sus-
pecting that SIC-POVMs exist in every finite dimension (exact and high-precision numerical
examples1, 2, 5, 11, 16, 19, 28, 39, 46 having now been constructed in every dimension up to 67), and in
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spite of the intense efforts of many people1–46 extending over a period of more than ten years, a
general existence proof continues to elude us. In their seminal paper on the subject, published in
2004, Renes et al.5 say “A rigorous proof of existence of SIC-POVMs in all finite dimensions seems
tantalizingly close, yet remains somehow distant.” They could have said the same if they were
writing today.

The purpose of this paper is to try to take our understanding of SIC mathematics (as it might be
called) a little further forward. The research we report began with a chance numerical discovery made
while we were working on a different problem. Pursuing that initial numerical hint, we uncovered
a rich and interesting set of connections between SIC-POVMs in dimension d and the Lie algebra
gl(d,C). The existence of these connections came as a surprise to us. However, in retrospect it is,
perhaps, not so surprising. Interest in SIC-POVMs has, to date, focused on the fact that an arbitrary
density matrix can be expanded in terms of a SIC-POVM. However, a SIC-POVM in dimension d
does in fact provide a basis, not just for the space of density matrices but for the space of all d × d
complex matrices—i.e., the Lie algebra gl(d,C). Boykin et al.49 have recently shown that there is
a connection between the existence problem for maximal sets of mutually unbiased bases (MUBs)
and the theory of Lie algebras. Since SIC-POVMs share the property of being highly symmetrical
structures in quantum state space with MUBs, it might have been anticipated that there are also some
interesting connections between SIC-POVMs and Lie algebras.

Our main result (proved in Secs. IV–VI) is that the proposition, that a SIC-POVM exists in
dimension d, is equivalent to a proposition about the adjoint representation of gl(d,C), in particular
to the existence of a highly symmetrical basis for this Lie algebra. Our hope is that transforming the
problem in this way, from a question about quantum state space to a question about Lie algebras,
may help to make the SIC-existence problem tractable. But even if this hope fails to materialize we
feel that this result, along with the many other results we obtain, provides some additional insight
into these structures.

In order to state our main results more clearly, we first review the definition of a SIC-POVM
and develop some notation for the elements of the Lie algebra which will be our primary objects of
study.

II. BACKGROUND, NOTATION, AND SUMMARY OF MAIN RESULTS

A. Background on SIC-POVMs

In d dimensional Hilbert space Hd , a SIC-POVM is a set of d2 operators E1, ...,Ed2 of the form

Er = 1

d
�r , (1)

where the �r are rank-1 projectors with the property

Tr(�r�s) =
{

1 r = s
1

d+1 r �= s
. (2)

We will refer to the �r as SIC-projectors, and we say that {�r : r = 1, . . . , d2} is a SIC set.
It follows from this definition that the Er satisfy∑

r

Er = I (3)

[so they constitute a positive operator-valued measure (POVM)] and that they are linearly indepen-
dent (so the POVM is informationally complete).

It is an open question whether SIC-POVMs exist for all values of d. However, examples have
been constructed analytically in dimensions 2–15 inclusive,1, 2, 11, 16, 19, 28, 39, 46 and in dimensions
19, 24, 35, and 48.16, 46 Moreover, high precision numerical solutions have been constructed in
dimensions 2–67 inclusive.5, 46 This lends some plausibility to the speculation that they exist in all
dimensions. For a comprehensive account of the current state of knowledge in this regard and many
new results, see the recent study by Scott and Grassl.46
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All known SIC-POVMs have a group covariance property. In other words, there exists

1. a group G having d2 elements,
2. a projective unitary representation of G on Hd : i.e., a map g → Ug from G to the set of

unitaries such that Ug1Ug2 ∼ Ug1g2 for all g1, g2 (where the notation “∼” means “equals up
to a phase”), and

3. a normalized vector |ψ〉 (the fiducial vector),

such that the SIC-projectors are given by

�g = Ug|ψ〉〈ψ |U †
g (4)

(where we label the projector by the group element g, rather than the integer r as above).
Most known SIC-POVMs are covariant under the action of the Weyl–Heisenberg group (though

not all—see Renes et al.5 and, for an explicit example of a non-Weyl–Heisenberg SIC-POVM,
see Grassl19). Here the group is Zd × Zd , and the projective representation is p → Dp, where
p = (p1, p2) ∈ Zd × Zd and Dp is the corresponding Weyl–Heisenberg displacement operator

Dp =
d−1∑
r=0

τ (2r+p1)p2 |r + p1〉〈r |. (5)

In this expression τ = e
iπ(d+1)

d , the vectors |0〉, . . . |d − 1〉 are an orthonormal basis, and the addition
in |r + p1〉 is modulo d. For more details, see, for example, Ref. 16.

One should not attach too much weight to the fact that all known SIC-POVMs have a group
covariance property as this may only reflect the fact that group covariant SIC-POVMs are much
easier to construct. So in this paper we will try to prove as much as we can without assuming
such a property. One potential benefit of this attitude is that, by accumulating enough facts about
SIC-POVMs in general, we may eventually get to the point where we can answer the question,
whether all SIC-POVMs actually do have a group covariance property.

B. Lie algebras and some notation

The fact that the d2 operators �r are linearly independent means that they form a basis for the
complex Lie algebra gl(d,C) (the set of all operators acting on Hd ). Since the �r are Hermitian,
then i�r forms a basis also for the real Lie algebra u(d) (the set of all anti-Hermitian operators
acting on Hd ). So for any operator A ∈ gl(d,C) there is a unique set of expansion coefficients ar

such that

A =
∑

r

ar�r . (6)

To find the expansion coefficients we can use the fact that

∑
s

Tr(�r�s)

(
d + 1

d
δst − 1

d2

)
= δr t, (7)

from which it follows:

ar = d + 1

d
Tr(�r A) − 1

d
Tr(A). (8)

Specializing to the case A = �r�s , we find

�r�s = d + 1

d

(∑
t

Trst�t

)
− dδrs + 1

d + 1
I, (9)

where

Trst = Tr (�r�s�t ) . (10)
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To a large extent this paper consists of an exploration of the properties of these important quantities,
which we will refer to as the triple products. They are intimately related to the geometric phase, in
which context they are usually referred to as 3-vertex Bargmann invariants (see Mukunda et al.50

and references cited therein). We have, as an immediate consequence of the definition,

Trst = Ttrs = Tstr = T ∗
r ts = T ∗

tsr = T ∗
sr t . (11)

It is convenient to define

Jrst = d + 1

d
(Trst − T ∗

rst ), (12)

Rrst = d + 1

d
(Trst + T ∗

rst ). (13)

So Jrst is imaginary and completely antisymmetric; Rrst is real and completely symmetric. Both
these quantities play a significant role in the theory. It follows from Eq. (9) that

[�r ,�s] =
∑

t

Jrst�t . (14)

So the Jrst are structure constants for the Lie algebra gl(d,C). As an immediate consequence of this
they satisfy the Jacobi identity∑

b

(
Jrsb Jtba + Jstb Jrba + Jtrb Jsba

) = 0, (15)

for all r, s, t, a. The Jacobi identity holds for any representation of the structure constants. In
Secs. III–IX we will derive many other identities which are specific to this particular representation.

Turning to the quantities Rrst , it follows from Eq. (9) that they feature in the expression for the
anticommutator

{�r ,�s} =
∑

t

Rrst�t − 2(dδrs + 1)

d + 1
I . (16)

They also play an important role in the description of quantum state space. Let ρ be any density matrix
and let pr = 1

d Tr(�rρ) be the probability of obtaining outcome r in the measurement described by
the POVM with elements 1

d �r . Then it follows from Eq. (8) that ρ can be reconstructed from the
probabilities by

ρ =
∑

r

(
(d + 1)pr − 1

d

)
�r . (17)

Suppose, now, that the pr are any set of d2 real numbers. So we do not assume that the pr are even
probabilities, let alone the probabilities coming from a density matrix according to the prescription
pr = 1

d Tr(�rρ). Then it is shown in Ref. 34 that the pr are in fact the probabilities coming from a
pure state if and only if they satisfy the following two conditions:

∑
r

p2
r = 2

d(d + 1)
, (18)

∑
r,s,t

Rrst pr ps pt = 2(d + 7)

d(d + 1)2
. (19)

Let us look at the quantities Jrst and Rrst in a little more detail. For each r choose a unit vector
|ψr 〉 such that �r = |ψr 〉〈ψr |. Then the Gram matrix for these vectors is of the form

Grs = 〈ψr |ψs〉 = Krseiθrs , (20)
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where the matrix θrs is antisymmetric and

Krs =
√

dδrs + 1

d + 1
. (21)

Note that the SIC-POVM does not determine the angles θrs uniquely since making the replacements
|ψr 〉 → eiφr |ψr 〉 leaves the SIC-POVM unaltered, but changes the angles θrs according to the
prescription θrs → θrs − φr + φs . This freedom to rephase the vectors |ψr 〉 is not usually important.
However, it sometimes has interesting consequences (see Sec. X). It can be thought of as a kind of
gauge freedom.

The Gram matrix satisfies an important identity. Every SIC-POVM has the 2-design property,5, 17

∑
r

�r ⊗ �r = 2d

d + 1
Psym, (22)

where Psym is the projector onto the symmetric subspace of Hd ⊗ Hd . Expressed in terms of the
Gram matrix this becomes∑

r

Gs1r Gs2r Grt1 Grt2 = d

d + 1

(
Gs1t1 Gs2t2 + Gs1t2 Gs2t1

)
. (23)

Turning to the triple products we have

Trst = Grs Gst Gtr = Krs Kst Ktr eiθrst , (24)

where

θrst = θrs + θst + θtr . (25)

Note that the tensor θrst is completely antisymmetric. In particular θrst = 0 if any of the two indices
are the same. Also note that rephasing the vectors |ψr 〉 leaves the tensors Trst and θrst unchanged.
They are in that sense gauge invariant.

Finally, we have the following expressions for Jrst and Rrst :

Jrst = 2i

d
√

d + 1
sin θrst , (26)

Rrst = 2(d + 1)

d
Krs Kst Ktr cos θrst. (27)

Like the triple products, Jrst and Rrst are gauge invariant.
For later reference let us note that the matrix Jr , with matrix elements

(Jr )st = Jrst , (28)

is the adjoint representative of �r in the SIC-projector basis,

ad�r �s = [�r ,�s] =
∑

t

Jrst�t . (29)

It can be seen that all the interesting features of the tensor Grs (respectively, the tensors Trst ,
Jrst , and Rrst ) are contained in the order-2 angle tensor θrs (respectively, the order-3 angle tensor
θrst ). It is also easy to see that, for any unitary U , the transformation,

�r → U�rU †, (30)

leaves the angle tensors invariant. This suggests that we shift our focus from individual SIC-POVMs
to families of unitarily equivalent SIC-POVMs—SIC-families, as we will call them for short.
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C. Overview and main results

We begin our investigation in Sec. III by giving necessary and sufficient conditions for an arbi-
trary tensor θrs (respectively, θrst ) to be the rank-2 (respectively, rank-3) angle tensor corresponding
to a SIC-family. We also show that either angle tensor uniquely determines the corresponding SIC-
family. Finally we describe a method for reconstructing the SIC-family, starting from a knowledge
of either of the two angle tensors.

In Secs. IV–VI we prove the central result of this paper: namely, that the existence of a SIC-
POVM in dimension d is equivalent to the existence of a certain very special set of matrices in the
adjoint representation of gl(d,C). In Sec. IV we show that, for any SIC-POVM, the adjoint matrices
Jr have the spectral decomposition

Jr = Qr − QT
r , (31)

where Qr is a rank d − 1 projector which has the remarkable property of being orthogonal to its
own transpose,

Qr QT
r = 0. (32)

We refer to this feature of the adjoint matrices as the Q–QT property. In Sec. IV we also show that
from a knowledge of the J matrices it is possible to reconstruct the corresponding SIC-family. In
Sec. V we characterize the general class of projectors which have the property of being orthogonal
to their own transpose. Then, in Sec. VI, we prove a converse of the result established in Sec. IV.
The Q–QT property is not completely equivalent to the property of being a SIC set. However, it
turns out that it is, in a certain sense, very nearly equivalent. To be more specific, let Lr be any set of
d2 Hermitian operators which constitute a basis for gl(d,C) and let Cr be the adjoint representative
of Lr in this basis. Then the necessary and sufficient condition for the Cr to have the spectral
decomposition,

Cr = Qr − QT
r , (33)

where Qr is a rank d − 1 projector such that Qr QT
r = 0 is that there exists a SIC set �r such that

Lr = εr (�r + α I ) for some fixed number α ∈ R and signs εr = ±1. In particular, the existence of
a Hermitian basis for gl(d,C) having the Q–QT property is both necessary and sufficient for the
existence of a SIC-POVM in dimension d.

In Sec. VII we digress briefly and consider sl(d,C) (the Lie algebra consisting of all trace-
zero d × d complex matrices). As we have explained, this paper is motivated by the hope that a
Lie algebraic perspective will cast light on the SIC-existence problem, rather than by an interest
in Lie algebras as such. We focus on gl(d,C) because that is the case where the connection with
SIC-POVMs seems most straightforward. However a SIC-POVM also gives rise to an interesting
geometrical structure in sl(d,C), as we show in Sec. VII.

In Sec. VIII we derive a number of additional identities satisfied by the J and Q matrices.
The complex projectors Qr , QT

r , and the real projector Qr + QT
r define three families of

subspaces. It turns out that there are some interesting geometrical relationships between these
subspaces, which we study in Sec. IX.

Finally, in Sec. X we show that, with the appropriate choice of gauge, the Gram matrix corre-
sponding to a Weyl–Heisenberg covariant SIC-family has a feature analogous to the Q–QT property,
which we call the P–PT property. It is an open question whether this result generalizes to other SIC-
families, not covariant with respect to the Weyl–Heisenberg group.

III. THE ANGLE TENSORS

The purpose of this section is to establish the necessary and sufficient conditions for an arbitrary
tensor θrs (respectively, θrst ) to be the order-2 (respectively, order-3) angle tensor for a SIC-family.
We will also show that either one of the angle tensors is enough to uniquely determine the SIC-
family. Moreover, we will describe explicit procedures for reconstructing the family, starting from a
knowledge of one of the angle tensors.
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We begin by considering the general class of POVMs (not just SIC-POVMs) which consist of
d2 rank-1 elements. A POVM of this type is thus defined by a set of d2 vectors |ξ1〉, . . . , |ξd2〉 with
the property ∑

r

|ξr 〉〈ξr | = I . (34)

Note that
∑

r

∥∥|ξr 〉
∥∥2 = d, so the vectors |ξr 〉 cannot all be normalized. In the particular case of a

SIC-POVM all the vectors have the same norm
∥∥|ξr 〉

∥∥ = 1√
d

. However in the general case they may
have different norms.

Given a set of such vectors consider the Gram matrix

Prs = 〈ξr |ξs〉 . (35)

Clearly the Gram matrix cannot determine the POVM uniquely since if U is any unitary operator,
then the vectors U |ξr 〉 will define another POVM having the same Gram matrix. However, the
theorem we now prove shows that this is the only freedom. In other words, the Gram matrix fixes the
POVM up to unitary equivalence. The theorem also provides us with a criterion for deciding whether
an arbitrary d2 × d2 matrix P is the Gram matrix corresponding to a POVM of the specified type.
As a corollary this will give us a criterion for deciding whether an arbitrary tensor θrs is specifically
the order-2 angle tensor for a SIC-family.

Theorem 1: Let P be any d2 × d2 Hermitian matrix. Then the following conditions are equiv-
alent.

(1) P is a rank-d projector.
(2) P satisfies the trace identities

Tr(P) = Tr(P2) = Tr(P3) = Tr(P4) = d. (36)

(3) P is the Gram matrix for a set of d2 vectors |ξr 〉 (not all normalized) such that |ξr 〉〈ξr | is a
POVM, satisfying in particular Eqs. (34) and (35).

Suppose P satisfies these conditions. To construct a POVM corresponding to P let the d column
vectors,

ξ̂ =

⎛
⎜⎜⎜⎝

ξ11

ξ12
...

ξ1d2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

ξ21

ξ22
...

ξ2d2

⎞
⎟⎟⎟⎠ , . . . ,

⎛
⎜⎜⎜⎝

ξd1

ξd2
...

ξdd2

⎞
⎟⎟⎟⎠ , (37)

be any orthonormal basis for the subspace onto which P projects. Define

|ξr 〉 =
d∑

a=1

ξ ∗
ar |a〉, (38)

where the vectors |a〉 are any orthonormal basis for Hd . Then P is the Gram matrix for the
vectors |ξ1〉, . . . , |ξd2〉. Moreover, the necessary and sufficient condition for any other set of vectors
|η1〉, . . . , |ηd2〉 to have Gram matrix P is that there exists a unitary operator U such that

|ηr 〉 = U |ξr 〉 (39)

for all r .

Proof: We begin by showing that (3) ⇒ (1). Suppose |ξ1〉, . . . |ξd2〉 is any set of d2 vectors such
that |ξr 〉〈ξr | is a POVM so that the completeness relation Eq. (34) holds, and let Prs = 〈ξr |ξs〉 be the
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Gram matrix. Then P is a Hermitian. Moreover, P2 = P since

∑
t

Prt Pts = 〈ξr |
(∑

t

|ξt 〉〈ξs |
)

|ξr 〉 = 〈ξr |ξs〉 = Prs . (40)

By taking the trace of the completeness relation, we conclude that P is a rank-d projector.
We next show that (1) ⇒ (3). Let P be a rank-d projector, and let the d column vectors ξ̂ from

Eq. (37) be an orthonormal basis for the subspace onto which it projects. So for all a, b, and for all
r, s we have ∑

r

ξ ∗
arξbr = δab and

∑
a

ξarξ
∗
as = Prs . (41)

Now let |ξ1〉, . . . |ξd2〉 be the vectors defined by Eq. (38), and the conditions Eq. (34) and Eq. (35)
follow easily, showing that the |ξr 〉 are a POVM with the requisite Gram matrix.

We next turn to condition (2). The fact that (1) ⇒ (2) is immediate. To prove the reverse
implication observe that condition (2) implies

Tr(P4) − 2Tr(P3) + Tr(P2) = 0 . (42)

Since P is a Hermitian, this is equivalent to Tr(X∗ X ) = 0, where X = P(I − P); hence, X = 0 and
P is a rank-d projector.

It remains to show that the POVM corresponding to a given rank-d projector is unique up to
unitary equivalence. To prove this let P be a rank-d projector, let |ξr 〉 be the vectors defined by
Eq. (38), and let |η1〉, . . . , |ηd2〉 be any other set of vectors such that 〈ηr |ηs〉 = Prs for all r, s; also
let ηar = 〈ηr |a〉. Then

∑
r

η∗
arηbr = 〈a|

(∑
r

|ηr 〉〈ηr |
)

|b〉 = δab (43)

(because |ηr 〉〈ηr | is a POVM) and

d∑
a=1

ηarη
∗
as = Prs (44)

(because the |ηr 〉 have Gram matrix P). So the d column vectors η̂, defined in analogy with Eq. (37),
are an orthonormal basis for the subspace onto which P projects. But the column vectors ξ̂ are also
an orthonormal basis for this subspace. So there must exist a d × d unitary matrix Uab such that

ηar =
d∑

b=1

Uabξbr (45)

for all a, r . Defining

U =
d∑

a,b=1

U ∗
ab|a〉〈b|, (46)

we have |ηr 〉 = U |ξr 〉 for all r . �
In the case of a SIC-POVM we have

|ξr 〉 = 1√
d

|ψr 〉, (47)

where the vectors |ψr 〉 are normalized, and

Prs = 1

d
Grs = 1

d
Krseiθrs , (48)
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where G is the Gram matrix of the vectors |ψr 〉 and θrs is the order-2 angle tensor. In the sequel, we
will distinguish these matrices by referring to G as the Gram matrix and P as the Gram projector.
We have

Corollary 2: Let θrs be a real antisymmetric tensor. Then the following statements are equivalent.

1. θrs is an order-2 angle tensor corresponding to a SIC-family.
2. θrs satisfies ∑

t

Krt Ktsei(θr t +θts ) = d Krseiθrs (49)

for all r, s.
3. θrs satisfies ∑

r,s,t

Krs Kst Ktr ei(θrs+θst +θtr ) = d4, (50)

∑
r,s,t,u

Krs Kst Ktu Kur ei(θrs+θst +θtu+θur ) = d5. (51)

Let �r and �′
r be two different SIC-sets and let θrs and θ ′

rs be corresponding order-2 angle
tensors. Then there exists a unitary U such that

�′
r = U�rU †, (52)

for all r if and only if

θ ′
rs = θrs − φr + φs, (53)

for some arbitrary set of phase angles φr (in other words two SIC-sets are unitarily equivalent if
and only if their order-2 angle tensors are gauge equivalent).

A SIC-family can be reconstructed from its order-2 angle tensor θrs by calculating an orthonor-
mal basis for the subspace onto which the Gram projector,

Prs = 1

d
Krseiθrs , (54)

projects, as described in Theorem 1.

Remark: The sense in which we are using the term “gauge equivalence” is explained in the
paragraph immediately following Eq. (21).

Note that condition (2) imposes d2(d2 − 1)/2 independent constraints (taking account of the
antisymmetry of θrs). Condition (3), by contrast, only imposes two independent constraints. It is
to be observed, however, that the price we pay for the reduction in the number of equations is that
Eqs. (50) and (50) are, respectively, cubic and quartic in the phases, whereas Eq. (49) is only
quadratic.

Proof: Let θrs be an arbitrary antisymmetric tensor and define

Prs = 1

d
Krseiθrs . (55)

The antisymmetry of θrs means that P is automatically Hermitian. So it follows from Theorem 1
that a necessary and sufficient condition for Prs to be a rank-d projector, and for θrs to be the order-2
angle tensor of a SIC-family, is that∑

t

Krt Ktsei(θr t +θts ) = d Krseiθrs (56)

for all r, s.
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To prove the equivalence of conditions (1) and (3) note that the conditions Tr(P) = Tr(P2) = d
are an automatic consequence of P having the specified form. So it follows from Theorem 1 that θrs

is the order-2 angle tensor of a SIC-family if and only if Eqs. (50) and (51) are satisfied.
Now let �r and �′

r be two SIC-sets and let θrs and θ ′
rs be order-2 angle tensors corresponding to

them. Then there exist normalized vectors |ψr 〉 and |ψ ′
r 〉 such that �r = |ψr 〉〈ψr | and �′

r = |ψ ′
r 〉〈ψ ′

r |
for all r , and 〈ψr |ψs〉 = Krseiθrs and 〈ψ ′

r |ψ ′
s〉 = Krseiθ ′

rs for all r, s.
Suppose, first of all, that there exists a unitary U such that �′

r = U�rU †. Then there exist phase
angles φr such that |ψ ′

r 〉 = eiφr U |ψr 〉 for all r , which is easily seen to imply that θ ′
rs = θrs − φr + φs

for all r, s. So θrs and θ ′
rs are gauge equivalent.

Conversely, suppose there exist phase angles φr such that θ ′
rs = θrs − φr + φs . Define |ψ ′′

r 〉 =
e−iφr |ψ ′

r 〉. Then 〈ψ ′′
r |ψ ′′

s 〉 = Krseiθrs = 〈ψr |ψs〉 for all r, s. So it follows from Theorem 1 that there
exists a unitary U such that |ψ ′′

r 〉 = U |ψr 〉 for all r . Consequently, �′
r = |ψ ′′

r 〉〈ψ ′′
r | = U�rU † for

all r ; hence, �r and �′
r are unitarily equivalent. �

We now turn to the order-3 angle tensors. We have

Theorem 3: Let θrst be a real completely antisymmetric tensor. Then the following conditions
are equivalent.

1. θrst is the order-3 angle tensor for a SIC-family.
2. For some fixed a and all r, s, t

θars + θast + θatr = θrst, (57)

and for all r, s ∑
t

Krt Ktseiθrst = d Krs . (58)

3. For some fixed a and all r, s, t,

θars + θast + θatr = θrst, (59)

∑
r,s,t

Krs Kst Ktr eiθrst = d4, (60)

∑
r,s,t,u

Krs Kst Ktu Kur ei(θrst +θtur ) = d5. (61)

Let �r and �′
r be two different SIC-sets and let θrst and θ ′

rst be the corresponding order-3 angle
tensors. Then the necessary and sufficient condition for there to exist a unitary U such that

�′
r = U�rU † (62)

for all r is that θ ′
rst = θrst for all r, s, t (in other words two SIC-sets are unitarily equivalent if and

only if their order-3 angle tensors are identical).
Let θrst be the order-3 angle tensor corresponding to a SIC-family. Then the order-2 angle

tensor is given by (up to gauge freedom)

θrs = θars (63)

for any fixed a, from which the SIC-family can be reconstructed using the method described in
Theorem 1.

Remark: Unlike the order-2 tensor, the order-3 angle tensor is gauge invariant. This means that
it provides what is, in many ways, a more useful characterization of the SIC-family. For that reason
we will be almost exclusively concerned with the order-3 tensor in the remainder of this paper.
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Proof: The fact that (1) ⇒ (2) is an immediate consequence of the definition of the order-3
angle tensor and condition (2) of Corollary 2. To prove that (2) ⇒ (1) let θrst be a completely
antisymmetric tensor such that condition (2) holds. Define

θrs = θars (64)

for all r, s. Then Eq. (58) implies

∑
t

Krt Ktsei(θr t +θts ) = eiθrs

(∑
t

Krt Ktseiθrst

)∗
= d Krseiθrs (65)

for all r, s. It follows from Corollary 2 that θrs is the order-2 tensor and θrst is the order-3 angle
tensor of a SIC-family.

The equivalence of conditions (1) and (3) is proved similarly.
It remains to show that two SIC-sets are unitarily equivalent if and only if their order-3 angle

tensors are identical. To see this let �r = |ψr 〉〈ψr | and �′
r = |ψ ′

r 〉〈ψ ′
r | be two different SIC-sets

having the same order-3 angle tensor θrst . Let θrs (respectively, θ ′
rs) be the order-2 angle tensor

corresponding to the vectors |ψr 〉 (respectively, |ψ ′
r 〉). Choose some fixed index a. We have

θ ′
ar + θ ′

sa + θ ′
rs = θar + θsa + θrs (66)

for all r, s. Consequently, θ ′
rs = θrs + φr − φs for all r, s, where φr = θar − θ ′

ar . So θ ′
rs and θrs are

gauge equivalent. It follows from Corollary 2 that �r and �′
r are unitarily equivalent.

Conversely, suppose that �r and �′
r are unitarily equivalent and let θrs and θ ′

rs be order-2 angle
tensors corresponding to them. It follows from Corollary 2 that θrs and θ ′

rs are gauge equivalent. It
is then immediate that the order-3 angle tensors are identical. �

Finally, let us note that when expressed in terms of the triple products, Eq. (58) reads∑
t

Trst = d K 2
rs, (67)

while Eq. (60) reads ∑
r,s,t

Trst = d4 . (68)

For Eq. (61) we have to work a little harder. We have∑
r,s,t,u

1

K 2
r t

Trst Ttur = d5, (69)

from which it follows:

d5 =
∑

r,s,t,u

(−dδr t + d + 1
)
Trst Ttur = (d + 1)

∑
r,s,t,u

Trst Ttur − d5 . (70)

Consequently,

∑
s,u

Tr
(
Ts Tu

) =
∑

r,s,t,u

Trst Ttur = 2d5

d + 1
. (71)

This equation can be alternatively written

∑
r,s

Tr
(
Tr Ts

) = 2d5

d + 1
, (72)

where Tr is the matrix with matrix elements (Tr )uv = Truv .
When they are written like this, in terms of the triple products, the fact that Eq. (67) implies

Eqs. (68) and (71) becomes almost obvious. The reverse implication, by contrast, is rather less
obvious.
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IV. SPECTRAL DECOMPOSITIONS

Let Tr , Jr , and Rr be the d2 × d2 matrices whose matrix elements are

(Tr )st = Trst (Jr )st = Jrst (Rr )st = Rrst , (73)

where Jrst and Rrst are the quantities defined by Eqs. (12) and (13). So Jr is the adjoint representation
matrix of �r . In this section we derive the spectral decompositions of these matrices. To avoid
confusion we will use the notation |ψ〉 to denote a ket in d dimensional Hilbert space Hd and
‖ψ〉〉 to denote a ket in d2 dimensional Hilbert space Hd2 . In terms of this notation the spectral
decompositions will turn out to be,

Tr = d

d + 1
Qr + 2d

d + 1
‖er 〉〉〈〈er‖, (74)

Jr = Qr − QT
r , (75)

Rr = Qr + QT
r + 4‖er 〉〉〈〈er‖. (76)

In these expressions the vector ‖er 〉〉 is normalized, and its components in the standard basis are all
real. Qr is a rank d − 1 projector such that

Qr‖er 〉〉 = QT
r ‖er 〉〉 = 0 (77)

and which has, in addition, the remarkable property of being orthogonal to its own transpose (also a
rank d − 1 projector),

Qr QT
r = 0. (78)

Explicit expressions for ‖er 〉〉 and Qr will be given below.
It will be convenient to define the rank 2(d − 1) projector

R̄r = Qr + QT
r . (79)

We have

R̄r = J 2
r , (80)

Rr = R̄r + 4‖er 〉〉〈〈er‖. (81)

Since Qr is a Hermitian we have

QT
r = Q∗

r , (82)

where Q∗
r is the matrix whose elements are the complex conjugates of the corresponding elements

of Qr . So R̄r is twice the real part of Qr and −i Jr is twice the imaginary part.
In Sec. VI we will show that Eq. (75) is essentially definitive of a SIC-POVM. To be more

specific, let Lr be any set of d2 Hermitian matrices which constitute a basis for gl(d,C), and let
Cr be the adjoint representative of Lr in that basis. Then we will show that Cr has the spectral
decomposition

Cr = Qr − QT
r , (83)

where Qr is a rank d − 1 projector which is orthogonal to its own transpose if and only if the Lr are
a family of SIC-projectors up to multiplication by a sign and shifting by a multiple of the identity.

Having stated our results let us now turn to the task of proving them. We begin by deriving the
spectral decomposition of Tr . Multiplying both sides of the equation,

�r�s = d + 1

d

∑
t

Trst�t − K 2
rs I, (84)

Downloaded 18 Mar 2011 to 131.215.220.185. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



022202-13 Lie algebraic significance symmetric informational J. Math. Phys. 52, 022202 (2011)

by �r we find

�r�s = (d + 1)2

d2

∑
t

(Tr )2
st�t − d + 1

d

∑
t

Trst K 2
r t I − K 2

rs�r . (85)

Then some elementary algebra shows that∑
t

Trst K 2
r t = 2d

d + 1
K 2

rs, (86)

and hence

�r�s = d + 1

d

∑
t

(
d + 1

d
(Tr )2

st − K 2
rs K 2

r t

)
�t − K 2

rs I . (87)

Comparing with Eq. (84) we deduce

(Tr )2
st = d

d + 1
Trst + d

d + 1
K 2

rs K 2
r t . (88)

Now define

‖er 〉〉 =
√

d + 1

2d

∑
s

K 2
rs‖s〉〉, (89)

where the basis kets ‖s〉〉 are given by (in column vector form)

‖1〉〉 =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ , ‖2〉〉 =

⎛
⎜⎜⎜⎝

0
1
...
0

⎞
⎟⎟⎟⎠ , . . . , ‖d2〉〉 =

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ . (90)

It is easily verified that ‖er 〉〉 is normalized. Equation (88) then becomes

T 2
r = d

d + 1
Tr + 2d2

(d + 1)2
‖er 〉〉〈〈er‖. (91)

Using Eq. (86) and some simple algebra we find

〈〈s‖Tr‖er 〉〉 = 2d

d + 1
〈〈s‖er 〉〉, (92)

so ‖er 〉〉 is an eigenvector of Tr with eigenvalue 2d
d+1 .

Also define

Qr = d + 1

d
Tr − 2‖er 〉〉〈〈er‖ . (93)

So in terms of the order-3 angle tensor the matrix elements of Qr are

Qrst = d + 1

d
Krs Krt

(
Kst e

iθrst − Krs Krt
)
. (94)

Qr is Hermitian (because Tr is Hermitian) and is easily verified to be idempotent; hence, it is a
projection operator. That Qr has rank d − 1 follows from taking the trace of Tr .

We have thus proved that the spectral decomposition of Tr is

Tr = d

d + 1
Qr + 2d

d + 1
‖er 〉〉〈〈er‖, (95)

where Qr is a rank d − 1 projector, as claimed.
We next prove that QT

r ‖er 〉〉 = 0. The fact that the components of ‖er 〉〉 in the standard basis are
all real means

〈〈s‖T T
r ‖er 〉〉 = 〈〈er‖Tr‖s〉〉 = 2d

d + 1
〈〈s‖er 〉〉. (96)
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So ‖er 〉〉 is an eigenvector of T T
r as well as Tr , again with the eigenvalue 2d

d+1 . In view of Eq. (93) it
follows that QT

r ‖er 〉〉 = 0.
Turning to the problem of showing that Qr is orthogonal to its own transpose, we have

Qr QT
r = (d + 1)2

d2
Tr T T

r − 4‖er 〉〉〈〈er‖ . (97)

It follows from Eq. (24) that

〈〈s‖Tr T T
r ‖t〉〉 =

∑
u

Trsu Trtu = Grs Grt

∑
u

Gsu GtuGur Gur . (98)

In view of Eq. (23) (i.e., the fact that every SIC-POVM is a 2-design) this implies

〈〈s‖Tr T T
r ‖t〉〉 = 2d

d + 1
|Grs |2|Grt |2 = 4d2

(d + 1)2
〈〈s‖er 〉〉〈〈er‖t〉〉, (99)

which gives us an expression for Tr T T
r and we conclude that Qr QT

r = 0.
Equations (75) and (76) are immediate consequences of the results already proved and the

definitions of Jr and Rr .
We defined the J matrices to be the adjoint representatives of the SIC-projectors, considered as

a basis for the Lie algebra gl(d,C), and that is certainly a most important fact about them. However,
the results of this section show that, along with the vectors ‖er 〉〉, they actually determine the whole
structure. Specifically, we have

Qr = 1

2

(
Jr + J 2

r

)
, (100)

Rr = J 2
r + 4‖er 〉〉〈〈er‖, (101)

Tr = d

2(d + 1)

(
Jr + J 2

r + 4‖er 〉〉〈〈er‖
)
. (102)

Moreover, if we know the T matrices then we know the order-3 angle tensor, which in view of
Theorem 3 means we can reconstruct the SIC-projectors. Since the vectors ‖er 〉〉 are given, once
and for all, this means that the problem of proving the existence of a SIC-POVM in dimension d is
equivalent to the problem of proving the existence of a certain remarkable structure in the adjoint
representation of gl(d,C) (as we will see in more detail in Sec. VI).

In Sec. I we began with the concept of a SIC-POVM and then defined the J matrices in terms
of it. However, one could, if one wished, go in the opposite direction and take the Lie algebraic
structure to be primary, with the SIC-POVM being the secondary, derivative entity.

V. THE Q–QT PROPERTY

Sections V–IX are devoted to a study of the J matrices which, as we will see, have numerous
interesting properties. We begin our investigation by trying to get some additional insight into what
we will call the Q–QT property: namely, the fact that the J matrices have the spectral decomposition

Jr = Qr − QT
r , (103)

where Qr is a rank d − 1 projector which is orthogonal to its own transpose. We wish to characterize
the general class of matrices which are of this type. The following theorem provides one such
characterization.

Theorem 4: Let A be a Hermitian matrix. Then the following statements are equivalent.

1. A has the spectral decomposition

A = P − PT, (104)

where P is a projector which is orthogonal to its own transpose.
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2. A is pure imaginary and A2 is a projector.

Proof: To show that (1) ⇒ (2) observe that the fact that P is Hermitian means PT = P∗, where
P∗ is the matrix whose elements are the complex conjugates of the corresponding elements of P. So
Eq. (104) implies that the components of A are pure imaginary. Since P PT = 0 it also implies that
A2 is a projector.

To show that (2) ⇒ (1) observe that the fact that A2 is a projector means that the eigenvalues of
A = ±1 or 0. So A = P − P ′, where P and P ′ are orthogonal projectors. Since A is pure imaginary
AT = A∗ = −A. Now, PT and (P ′)T are also orthogonal projectors. So if PT|ψ〉 = |ψ〉 and |ψ〉 is
normalized, we must have

1 = 〈ψ |PT|ψ〉 = 〈
ψ

∣∣(PT − (P ′)T
)∣∣ψ 〉 = 〈ψ |P ′|ψ〉 − 〈ψ |P|ψ〉 . (105)

Since 0 ≤ 〈ψ |P|ψ〉 ≤ 1, and similarly for P ′, we must have 〈ψ |P ′|ψ〉 = 1, implying P ′|ψ〉 = |ψ〉.
Similarly P ′|ψ〉 = |ψ〉 implies PT|ψ〉 = |ψ〉. Therefore P ′ = PT. �

We also have the following statement, inspired in part by Ref. 51.

Theorem 5: The necessary and sufficient condition for a matrix P to be a projector which is
orthogonal to its own transpose is that

P = SDST, (106)

where S is an any real orthogonal matrix and D has the block-diagonal form

D =
n⊕

j=1

σ, (107)

with

σ = 1

2

(
1 −i
i 1

)
. (108)

In other words D has n copies of σ on the diagonal, where n = rank(P), and 0 everywhere else.

Proof: Sufficiency is an immediate consequence of the fact that σ is a rank-1 projector such that
σσ T = 0.

To prove necessity let d be the dimension of the space and n be the rank of P, and let Prs be
the matrix elements of P in the canonical basis. Now let |a1〉, . . . , |an〉 be an orthonormal basis for
the subspace onto which P projects and let |a∗

r 〉 be the column vector which is obtained from |ar 〉 by
taking the complex conjugate of each of its components. Taking complex conjugates on each side
of the equation P|ar 〉 = |ar 〉 gives P∗|a∗

r 〉 = |a∗
r 〉. So |a∗

1〉, . . . , |a∗
n 〉 is an orthonormal basis for the

subspace onto which PT = P∗ projects. Since PT is orthogonal to P we conclude that 〈ar |a∗
s 〉 = 0

for all r, s.
Next define vectors |b1〉, . . . , |b2n〉 by

|b2r−1〉 = 1√
2

(|a∗
r 〉 − |ar 〉

)
, |b2r 〉 = i√

2

(|a∗
r 〉 + |ar 〉

)
. (109)

By construction these vectors are orthonormal and real. So we can extend them to an orthonormal
basis for the full space by adding a further d − 2n vectors |b2n+1〉, . . . , |bd〉, which can also be
chosen to be real. We have

P =
n∑

r=1

|ar 〉〈ar | = 1

2

n∑
r=1

(
|b2r−1〉〈b2r−1| − i |b2r−1〉〈b2r | + i |b2r 〉〈b2r−1| + |b2r 〉〈b2r |

)
. (110)

So if we define

S =
d∑

r=1

|br 〉〈r |, (111)

then S is a real orthogonal matrix such that P = SDST. �
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This result implies the following alternative characterization of the class of matrices to which
the J matrices belong.

Corollary 6: Let A be a Hermitian matrix. Then the following statements are equivalent.

1. A has the spectral decomposition

A = P − PT, (112)

where P is a projector which is orthogonal to its own transpose.
2. There exists a real orthogonal matrix S such that

A = SDST, (113)

where D has the block-diagonal form

D =
n⊕

j=1

σy, (114)

with σy being the Pauli matrix

σy =
(

0 −i
i 0

)
. (115)

In other words D has n copies of σy on the diagonal, where n = 1
2 rank (A), and 0 every

where else (note that a matrix of this type must have even rank).

Proof: Immediate consequence of Theorem 5. �

VI. LIE ALGEBRAIC FORMULATION OF THE EXISTENCE PROBLEM

This section is the core of the paper. We show that the problem of proving the existence of
a SIC-POVM in dimension d is equivalent to the problem of proving the existence of a Hermi-
tian basis for gl(d,C); all of whose elements have the Q–QT property. The main result is the
following.

Theorem 7: Let Lr be a set of d2 Hermitian matrices forming a basis for gl(d,C). Let Crst be
the structure constants relative to this basis, so that

[Lr , Ls] =
∑

t

Crst Lt , (116)

and let Cr be the matrix with matrix elements (Cr )st = Crst . Then the following statements are
equivalent.

1. Each Cr has the spectral decomposition

Cr = Pr − PT
r , (117)

where Pr is a rank d − 1 projector which is orthogonal to its own transpose.
2. There exists a SIC-set �r , a set of signs εr = ±1 and a real constant α �= − 1

d such that

Lr = εr (�r + α I ) . (118)

Remark: The restriction to values of α �= − 1
d is needed to ensure that the matrices Lr are linearly

independent, and therefore constitute a basis for gl(d,C) (otherwise they would all have zero trace).
The Q–QT property continues to hold even if α does equal −1/d.

It will be seen that it is not only SIC-sets which have the Q–QT property but also any set of
operators obtained from a SIC-set by shifting by a constant and multiplying by an r -dependent sign.
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So the Q–QT property is not strictly equivalent to the property of being a SIC-set; however, it could
be said that the properties are almost equivalent. In particular, the existence of a Hermitian basis
for gl(d,C) having the Q–QT property implies the existence of a SIC-POVM in dimension d, and
conversely.

A. Proof that (2) =⇒ (1)

Taking the trace on both sides of

[�r ,�s] =
∑

t

Jrst�t , (119)

we deduce that summing Jrst over all values of t mush vanish. Then from the definition of Lr in
terms of �r we find that Crst = εrεsεt Jrst . Consequently, Cr = Pr − PT

r , where Pr = εr SQr S and
with S being the symmetric orthogonal matrix with the sign εr at the r th position on the diagonal.
The claim is now immediate.

B. Proof that (1) =⇒ (2)

For this we need to work harder. Since the proof is rather lengthy we will break it into a number
of lemmas. We first collect a few elementary facts which will be needed in the sequel.

Lemma 8: Let Lr be any Hermitian basis for gl(d,C), and let Crst and Cr be the structure
constants and adjoint representatives as defined in the statement of Theorem 7. Let lr = Tr(Lr ).
Then we have the following.

1. The lr are not all zero.
2. The Crst are pure imaginary and antisymmetric in the first pair of indices.
3. The Crst are completely antisymmetric if and only if the Cr are Hermitian.
4. In every case ∑

t

Crst lt = 0 (120)

for all r, s.
5. In the special case that the Cr are Hermitian,∑

r

lr Lr = κ I, (121)

where κ > 0 and is given by κ = 1
d

∑
r l2

r .

Proof: To prove statement (1) observe that if the lr were all zero it would mean that the identity
was not in the span of the Lr —contrary to the assumption that they form a basis.

To prove statement(2) observe that taking Hermitian conjugates on both sides of Eq. (116) gives

− [Lr , Ls] =
∑

t

C∗
rst Lt , (122)

from which it follows that C∗
rst = −Crst . The fact that Csrt = −Crst is an immediate consequence

of the definition.
Statement (3) is now immediate.
Statement (4) is proved by tracing Eq. (119).
To prove statement (5) observe that if the Cr are Hermitian it follows from statements (2) and

(3) that ∑
r

lr Crst = 0 (123)
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for all s, t . Consequently, the matrix
∑

r lr Lr commutes with everything. But the only matrices for
which that is true are multiples of the identity, and it follows that

∑
r lr Lr = κ I for some real κ .

Taking the trace on both sides of this equation we deduce
∑

r l2
r = dκ . The fact that κ > 0 is a

consequence of this and statement (1). �
We next observe that if the Cr have the Q–QT property they must, in particular, be Hermitian.

It turns out that that is, by itself, already a very strong constraint.
Before stating the result, we will explain the essential idea on which it depends. Although

we have not done so before, and will not do so again, it will be convenient to make use of the
covariant/contravariant index notation which is often used to describe the structure constants. Define
the metric tensor Mrs = Tr(Lr Ls) and let Mrs be its inverse. Then

∑
t

Mrt Mts = Mr
s =

{
1 if r = s,
0 if r �= s.

(124)

We can use these tensors to raise and lower indices (we use the Hilbert–Schmidt inner product
for this purpose because the fact that gl(d,C) is not semisimple means that its Killing form is
degenerate52–55). In particular, the matrices

Lr =
∑

t

Mrs Ls (125)

are the basis dual to the Lr , meaning Tr(Lr Ls) = Mr
s . Suppose we now define structure constants

C̃rst by

[Lr , Ls] =
∑

t

C̃rst Lt (126)

(so in terms of the Crst we have C̃ t
rs = Crst ). It follows from the relation

C̃rst = Tr
(
[Lr , Ls]Lt

) = Tr
(
Lr [Ls, Lt ]

)
(127)

that the C̃rst are completely antisymmetric for any choice of the Lr . If we now require that the
matrices Cr be Hermitian it means that not only the C̃rst but also the Crst must be completely
antisymmetric. Since the two quantities are related by

C̃rst =
∑

u

Crsu Mut , (128)

this is a very strong requirement. It means that the Lr must, in a certain sense, be close to orthonormal
(relative to the Hilbert–Schmidt inner product). More precisely, it means we have the following
lemma.

Lemma 9: Let Lr , Crst , and Cr be defined as in the statement of Theorem 7 and let lr = Tr(Lr ).
Then the Cr are Hermitian if and only if

Tr(Lr Ls) = βδrs + γ lr ls, (129)

where β and γ are real constants such that β > 0 and γ < 1
d .

If this condition is satisfied we also have∑
r

lr Lr = β

1 − dγ
I, (130)

∑
r

l2
r = dβ

1 − dγ
. (131)

Proof: To prove sufficiency observe that, in view of Eq. (128), the condition means

C̃rst = βCrst + γ lt

∑
u

Crsulu . (132)
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From Lemma 8, and the fact that β �= 0, this implies Crst = 1
β

C̃rst . Since the C̃rst are completely
antisymmetric we conclude that the Crst must be also, hence the Cr are Hermitian.

To prove necessity let C̃r (respectively, M) be the matrix whose matrix elements are C̃rst (re-
spectively, Mst ). Then Eq. (128) can be written as C̃r = Cr M . Taking the transpose (or, equivalently,
the Hermitian conjugate) on both sides of this equation we find C̃r = MCr , implying [M, Cr ] = 0
for all r . Since the Lr are a basis for gl(d,C) we deduce [M, adA] = 0 for all A ∈ gl(d,C).
Equation (129) is a straightforward consequence of this, the fact that gl(d,C) has the direct sum
decomposition C I ⊕ sl(d,C), the fact that sl(d,C) is simple, and Schur’s lemma.52–55 With similar
reasoning, Eqs. (130) and (131) follow immediately from Lemma 8. We omit these details and refer
the reader to the aforementioned references.

It remains to establish the bounds on β and γ . Let A = ∑
r ar Lr be any nonzero element of

sl(d,C). Then
∑

r ar lr = 0, so in view of Eq. (129) we have

0 < Tr(A2) = β
∑

r

a2
r . (133)

It follows that β > 0. Also, using Lemma 8 once more, we find

lr = 1

κ

∑
s

lsTr(Lr Ls) = βlr

κ
+ γ lr

κ

∑
s

l2
s = lr

(
β

κ
+ dγ

)
. (134)

Since the lr cannot all be zero this implies β

κ
= 1 − dγ . And since β

κ
> 0 we have γ < 1

d . �
Equation (129) only depends on the Cr being Hermitian. If we make the assumption that the Cr

have the Q–QT property we get a stronger statement.

Corollary 10: Let Lr , Crst , and Cr be as defined in the statement of Theorem 7. Suppose that
the Cr have the spectral decomposition Cr = Pr − PT

r , where Pr is a rank d − 1 projector which is
orthogonal to its own transpose. Then, we have the following.

1. For all r , Tr(Lr ) = ε′
r l;

2. For all r, s

Tr(Lr Ls) = d

d + 1
δrs + ε′

rε
′
s

d

(
l2 − 1

d + 1

)
; (135)

3. For some real constant l > 0 and signs ε′
r = ±1,∑

r

ε′
r Lr = dl I . (136)

Proof: The proof relies on the fact55 that the Killing form for gl(d,C) is related to the Hilbert–
Schmidt inner product by Tr(adAadB) = 2dTr(AB) − 2Tr(A)Tr(B). Specializing to the case A =
B = Lr and making use of the Q–QT property, we find d − 1 = dTr(L2

r ) − l2
r . Using Lemma 9 we

deduce

l2
r = dβ − d + 1

1 − dγ
. (137)

It follows that lr = ε′
r l for some real constant l ≥ 0 and signs ε′

r = ±1. The fact that the Lr are a
basis for gl(d,C) means the lr cannot all be zero. So we must in fact have l > 0. Using this result
in Eq. (131) we find β + d2l2γ = dl2, while Eq. (137) implies dβ + dl2γ = d − 1 + l2. This gives
us a pair of simultaneous equations in β and γ . Solving them we obtain

β = d

d + 1
, γ = 1

dl2

(
l2 − 1

d + 1

)
. (138)

Substituting these expressions into Eqs. (129) and (130) we deduce Eqs. (135) and (136). �
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The next lemma says each Lr is a linear combination of a rank-1 projector and the identity.

Lemma 11: Let L be any Hermitian matrix ∈ gl(d,C) which is not a multiple of the identity. Then
rank(adL ) ≥ 2(d − 1). The lower bound is achieved if and only if L is of the form L = ηI + ξ P,
where P is a rank-1 projector and η and ξ are any pair of real numbers. The eigenvalues of adL are
then ±ξ (each with multiplicity d − 1) and 0 (with multiplicity d2 − 2d + 2).

Proof: Let λ1 ≥ λ2 ≥ . . . ≥ λd be the eigenvalues of L arranged in decreasing order, and let
|b1〉, |b2〉, . . . , |bd〉 be the corresponding eigenvectors. We may assume, without loss of generality,
that the |br 〉 are orthonormal. Then adL

(|br 〉〈bs |
) = [

L , |br 〉〈bs |
] = (λr − λs)|br 〉〈bs |. So the eigen-

values of adL are λr − λs . Since L is not a multiple of the identity we must have λr �= λr+1 for some r
in the range 1 ≤ r ≤ d − 1. We then have that λs − λt �= 0 if either s ≤ r < t or t ≤ r < s. There are
2r (d − r ) such pairs s, t . So rank(adL ) ≥ 2r (d − r ) ≥ 2(d − 1). Now suppose that the lower bound
is achieved. Then r (d − r ) = d − 1, implying that r = 1 or d − 1. Also we must have λs = λs+1

for all s �= r . So we have either of the two possibilities, either L = λ2 I + (λ1 − λ2)|b1〉〈b1| or
L = λd−1 I − (λd−1 − λd )|bd〉〈bd |. Either way L and the spectrum of adL are as described. �

The final ingredient needed to complete the proof is as follows.

Lemma 12: Let Lr , Crst , and Cr be as defined in the statement of Theorem 7. Suppose that the
Cr have the spectral decomposition Cr = Pr − PT

r , where Pr is a rank d − 1 projector which is
orthogonal to its own transpose. Let l and ε′

r be as in the statement of Corollary 10. Then there is a
fixed sign ε = ±1 such that

�r = εε′
r Lr − εl − 1

d
I (139)

is a rank-1 projector for all r .

Proof: Define

L ′
r = ε′

r Lr − l − 1

d
I . (140)

Then it follows from Corollary 10 that this has unit trace for all r . Furthermore, we have

Tr(L ′
r L ′

s) = dδrs + 1

d + 1
and

∑
r

L ′
r = d I . (141)

It is also easily seen that if we define C ′
rst = ε′

rε
′
sε

′
t Crst , then

[L ′
r , L ′

s] =
∑

t

C ′
rst L ′

t (142)

and C ′
r = P ′

r − P ′
r

T, where P ′
r is a rank-1 projector which is orthogonal to its own transpose (see

the first part of the proof of Theorem 7). In particular, rank
(
adL ′

r

) = 2(d − 1), and the eigenvalues
of adL ′

r
are all equal to ±1 or 0. So, taking account of the fact that Tr(L ′

r ) = 1, we can use Lemma
11 to deduce that there is a family of rank-1 projectors �′

r and signs ξr = ±1 such that

L ′
r = ξr�

′
r + 1 − ξr

d
I. (143)

If ξr = +1 (respectively, −1) for all r , then Eq. (139) holds with �r = �′
r and ε = +1 (respectively,

−1). Also, if d = 2 then L ′
r is a rank-1 projector irrespective of the value of ξr , so Eq. (139) holds

with �r = L ′
r and ε = +1. The problem therefore reduces to showing that if d > 2 it cannot happen

that ξr = +1 for some values of r and −1 for others. We will do this by assuming the contrary and
deducing a contradiction.

Let m be the number of values of r for which ξr = +1. We are assuming that m is in the range
1 ≤ m ≤ d2 − 1. We may also assume, without loss of generality, that the labeling is such that
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ξr = +1 for the first m values of r and −1 for the rest. So

L ′
r =

{
�′

r if r ≤ m,
2
d I − �′

r if r > m .
(144)

Now define T̃rst = Tr
(
L ′

r L ′
s L ′

t

)
. Equation (141) means that the same argument which led to Eq. (9)

can be used to deduce

L ′
r L ′

s = d + 1

d

(∑
t

T̃rst L ′
t

)
− K 2

rs I . (145)

Since L ′
1 is a projector it follows that

L ′
1L ′

s = (
L ′

1

)2
L ′

s = d + 1

d

(∑
t

T̃1st L ′
1L ′

t

)
− K 2

1s L ′
1 . (146)

By essentially the same argument which led to Eq. (91) we can use this to infer

(
T̃ ′

1

)2 = d

d + 1
T̃1 + 2d2

(d + 1)2
‖e1〉〉〈〈e1‖, (147)

where T̃ ′
1 is the matrix with matrix elements T̃ ′

1rs and ‖e1〉〉 is the vector defined by Eq. (89). As
before ‖e1〉〉 is an eigenvector of T̃ ′

1 with eigenvalue 2d
d+1 . Consequently, the matrix

Q̃1 = d + 1

d
T̃ ′

1 − 2‖e1〉〉〈〈e1‖ (148)

is a projector. But that means Tr(Q̃1) must be an integer. We now use this to derive a contradiction.
It follows from Eq. (144) that

(L ′
r )2 =

{
L ′

r r ≤ m,

2(d−2)
d2 I − d−4

d L ′
r r > m .

(149)

Consequently,

T̃1rr =
{

K 2
1r r ≤ m,

2(d−2)
d2 − d−4

d K 2
1r r > m,

(150)

and so

Tr(Q̃1) = d + 1

d

∑
r

T̃1rr − 2 = d + 1 − 4d2 + 2m(d − 2)

d3
. (151)

So if Tr(Q̃1) is an integer,
(
4d2 + 2n(d − 2)

)
/d3 must also be an integer. But the fact that 1 ≤ m < d2

together with the fact that d > 2 means 4
d < 4d2+2m(d−2)

d3 < 2. If d = 3 or 4 there are no integers in
this interval, which gives us a contradiction straight away. If, on the other hand, d ≥ 5 there is the
possibility 4d2 + 2m(d − 2) = d3, implying

m = d2(d − 4)

2(d − 2)
. (152)

This equation has the solution d = 6, m = 9 (this is in fact the only integer solution, as can be seen
from an analysis of the possible prime factorizations of the numerator and denominator on the right
hand side). To eliminate this possibility define L ′′

r = −L ′
d2+1−r + 2I/d for all r . The following three

properties are easily verified:

Tr(L ′′
r L ′′

s ) = dδrs + 1

d + 1
,

∑
r

L ′′
r = d I, L ′′

r =
{

�r for r ≤ d2 − m,
2
d I − �r for r > d2 − m .

(153)

So we can go through the same argument as before to deduce

d2 − m = d2(d − 4)

2(d − 2)
. (154)
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Equations (152) and (154) have no joint solutions at all with d �= 0, integer, or otherwise. �
To complete the proof of Theorem 7 observe that Eqs. (135) and (139) imply

Tr(�r�s) = dδrs + 1

d + 1
, (155)

so the �r are a SIC-set. Moreover, Lr = εr (�r + α I ), where εr = εε′
r and α = (εl − 1)/d.

VII. THE ALGEBRA sl(d,C)

Thus far, we have focused our attention on gl(d,C), as that is the case where the connection
between the Lie algebras and the SIC-POVMs seems most straightforward. However, it may be worth
mentioning that a SIC-POVM also gives rise to an interesting geometrical structure in sl(d,C).

Let �r be a SIC-set and define

Br =
√

d + 1

2(d2 − 1)

(
�r − 1

d
I

)
. (156)

Hence, Br ∈ sl(d,C). Now let 〈A, A′〉 = Tr(adAadA′) = 2dTr(AA′) be the Killing form55 on
sl(d,C). Then the Br are normalized (〈Br , Br 〉 = 1) and have the overlap 〈Br , Bs〉 = − 1

d2−1 for
r �= s and hence form a regular simplex in sl(d,C). Since sl(d,C) is d2 − 1 dimensional, the Br

are an overcomplete set. However, the fact that the sum over the Br vanishes means that for each
A ∈ sl(d,C) there is a unique set of expansion coefficients ar such that A = ∑

r ar Br and the ar sum
to zero. It is easily checked that the ar can be calculated using d2ar = (d2 − 1)〈A, Br 〉. Similarly,
given any linear transformation M : sl(d,C) → sl(d,C), there is a unique set of numbers Mrs such
that

M Br =
∑

s

Mrs Bs (157)

and summing Mrs over either index vanishes. These Mrs can be calculated similar to the ar using
d2 Mrs = (d2 − 1)〈Bs, M Br 〉. In short, the Br retain many analogous properties of, and can be used
in much the same way as, a basis.

VIII. FURTHER IDENTITIES

In Secs. I–VII we have seen that there are five different families of matrices naturally associated
with a SIC-POVM: namely, the projectors Qr together with the matrices Jr = Qr − QT

r , R̄r =
Qr + QT

r , Rr = Qr + QT
r + 4‖er 〉〉〈〈er‖, and

Tr = d

d + 1
Qr + 2d

d + 1
‖er 〉〉〈〈er‖ (158)

(see Sec. IV). As we noted previously, it is possible to define everything in terms of the adjoint
representation matrices Jr and the rank-1 projectors ‖er 〉〉〈〈er‖, so that Qr = 1

2 Jr (Jr + I ), R̄r = J 2
r ,

Rr = J 2
r + 4‖er 〉〉〈〈er‖, and

Tr = d

2(d + 1)
Jr (Jr + I ) + 2d

d + 1
‖er 〉〉〈〈er‖ . (159)

In that sense the structure constants of the Lie algebra, supplemented with the vectors ‖er 〉〉, determine
everything else.

In Sec. IX we will show that there are some interesting geometrical relationships between the
hyperplanes onto which Qr , QT

r , and R̄r project. In this section, as a preliminary to that investigation,
we prove a number of identities satisfied by the Q, J , and R̄ matrices. We start by computing their
Hilbert–Schmidt inner products.
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Theorem 13: For all r, s we have the following inner products:

Tr
(
Qr Qs

) = d3δrs + d2 − d − 1

(d + 1)2
, Tr

(
Qr QT

s

) = d2(1 − δrs)

(d + 1)2
, (160)

Tr
(
Jr Js

) = 2(d2δrs − 1)

d + 1
, Tr

(
R̄r R̄s

) = 2(d − 1)(d2δrs + 2d + 1)

(d + 1)2
, Tr

(
Jr R̄s

)
s = 0 . (161)

Proof: Let us first calculate some auxiliary quantities. It follows from the definition of Tr that
the matrix P = 1

d G defined by Eq. (48) is a rank-d projector and Eq. (23) (i.e., the fact that every
SIC-POVM is a 2-design) that

Tr(Tr Ts) = d2
(
d(d + 2)δrs + 2d + 3

)
(d + 1)3

and Tr
(
Tr T T

s

) = 2d2(dδrs + d + 2)

(d + 1)3
. (162)

Next, we have the following straightforward consequences of the definitions of Tr , T T
r , and ‖er 〉〉:

〈〈er‖Ts‖er 〉〉 = 〈〈er‖T T
s ‖er 〉〉 = d(3dδrs + d + 4)

2(d + 1)2
and 〈〈er‖es〉〉 = dδrs + d + 2

2(d + 1)
. (163)

Using these results and using the expressions for Qr and QT
r in terms of Tr and ‖er 〉〉 yields the first

two statements. The remaining statements are immediate consequences of these and the fact that
Jr = Qr − QT

r and R̄r = Qr + QT
r . �

Now define

‖v0〉〉 = 1

d

∑
r

‖r〉〉, (164)

where ‖r〉〉 is the basis defined in Eq. (90). The following result shows (among other things) that the
subspaces onto which the Qr (respectively, QT

r and Rr ) project span the orthogonal complement of
‖v0〉〉.

Theorem 14: For all r

Qr‖v0〉〉 = QT
r ‖v0〉〉 = Jr‖v0〉〉 = Rr‖v0〉〉 = 0. (165)

Moreover, the sum of the Jr vanishes, and we have

∑
r

Qr =
∑

r

QT
r = d2

d + 1

(
I − ‖v0〉〉〈〈v0‖

)
, (166)

∑
r

R̄r = 2d2

d + 1

(
I − ‖v0〉〉〈〈v0‖

)
. (167)

Proof: Some of this is a straightforward consequence of the fact that Jr is the adjoint represen-
tative of �r . Since

∑
s �s = d I , we must have∑

s,t

Jrst�t =
∑

s

ad�r �s = 0. (168)

In view of the antisymmetry of the Jrst it follows that the sum over the Jr is zero and hence
Jr‖v0〉〉 = 0. Using the relations

Qr = 1

2
Jr (Jr + I ), QT

r = 1

2
Jr (Jr − I ), R̄r = J 2

r , (169)
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we deduce Qr‖v0〉〉 = QT
r ‖v0〉〉 = R̄r‖v0〉〉 = 0. It remains to prove Eqs. (166) and (167). It follows

from Eq. (93) and some simple algebra that

∑
r

Qrst = d + 1

d

∑
r

Trst − 2
∑

r

〈〈s‖er 〉〉〈〈er‖t〉〉 = d2δst − 1

d + 1
, (170)

from which it follows ∑
r

Qr =
∑

r

QT
r = d2

d + 1

(
I − ‖v0〉〉〈〈v0‖

)
. (171)

Equation (167) follows from this and the fact that Rr = Qr + QT
r . �

IX. GEOMETRICAL CONSIDERATIONS

In this section we show that there are some interesting geometrical relationships between the
subspaces onto which the operators Qr , QT

r , and R̄r project. The original motivation for this work
was an observation concerning the subspaces onto which the R̄r project. R̄r is a real matrix, and so
it defines a 2(d − 2) subspace in Rd2

, which we will denote Rr . We noticed that for each pair of
distinct indices r and s the intersection Rr ∩ Rs is a one-dimensional line. This led us to speculate
that a set of hyperplanes parallel to the Rr might be the edges of an interesting polytope. We continue
to think that this could be the case, but we have unfortunately not been able to prove it. However,
it appears to us that the results we obtained while trying to prove it might have an interest which is
independent of the truth of the motivating speculation.

We will begin with some terminology. Let P be any projector (on either RN or CN ), let P be
the subspace onto which P projects, and let |ψ〉 be any nonzero vector. Then we define the angle
between |ψ〉 and P in the usual way, to be

θ = cos−1

(∥∥P|ψ〉∥∥∥∥|ψ〉∥∥
)

(172)

(so θ is the smallest angle between |ψ〉 and any of the vectors in P).
Now suppose that P ′ is another projector and let P ′ be the subspace onto which P ′ projects.

We will say that P ′ is uniformly inclined to P if every vector in P ′ makes the same angle θ with P .
If θ = 0 this means that P ′ ⊆ P , while if θ = π

2 it means P ′ ⊥ P . Suppose, on the other hand, that
0 < θ < π

2 . Let |u′
1〉, . . . , |u′

n〉 be any orthonormal basis for P ′, and define |ur 〉 = sec θ P|u′
r 〉. Then

〈ur |ur 〉 = 1 for all r . Moreover, if P and P ′ are complex projectors,

〈u′
r + eiφu′

s |P|u′
r + eiφu′

s〉 = 2 cos2 θ
(

1 + Re
(
eiφ〈ur |us〉

))
(173)

for all φ and r �= s. On the other hand it follows from the assumption that P ′ is uniformly inclined
to P that

〈u′
r + eiφu′

s |P|u′
r + eiφu′

s〉 = 2 cos2 θ (174)

for all φ and r �= s. It follows that 〈ur |us〉 = δrs for all r, s. It is easily seen that the same is true if
P and P ′ are real projectors.

Suppose we now make the further assumption that dim(P ′) = dim(P) = n. Then |u1〉, . . . , |un〉
is an orthonormal basis for P , and we have the completeness relation P = ∑

r |ur 〉〈ur | and similar
for P ′. From here it is easily shown that P is uniformly inclined to P ′ with angle θ .

It follows from the completeness relations for P and P ′ that P P ′ P = cos2 θ P and similar with
P and P ′ switched. Either one of these two conditions is not only necessary but also sufficient for
the subspaces to be uniformly inclined. The proof is again straightforward linear algebra using the
completeness relation in terms of the |ur 〉 and |u′

r 〉, so we omit the details.
It will be convenient to summarize all this in the form of a lemma.
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Lemma 15: Let P and P ′ be any two subspaces, real or complex, having the same dimension n.
Let P and P ′ be the corresponding projectors. Then the following statements are equivalent.

(a) P is uniformly inclined to P ′ at angle θ .
(b) P P ′ P = cos2 θ P.

Suppose these conditions are satisfied for some θ in the range 0 < θ < π
2 , and let |u1〉, . . . |un〉

be any orthonormal basis for P . Then there exists an orthonormal basis |u′
1〉, . . . , |u′

n〉 for P ′ such
that P ′|ur 〉 = cos θ |u′

r 〉 and P|u′
r 〉 = cos θ |ur 〉.

Proof: Follows immediately from the above discussion. �
We are now in a position to state the main results of this section. Let Qr (respectively, Q̄r ) be

the subspace onto which Qr (respectively, QT
r ) projects. We then have

Theorem 16: For each pair of distinct indices r , s the subspace Qr has the decomposition
Qr = Q0

rs ⊕ Qrs , where Q0
rs and Qrs are orthogonal and have dimensions dim(Q0

rs) = 1 and
dim(Qrs) = d − 2, respectively. The relations between two such subspaces Qr and Qs are as
follows.

(1) Q0
rs ⊥ Qsr and Qrs ⊥ Q0

sr .

(2) Q0
rs and Q0

sr are inclined at angle cos−1
(

1
d+1

)
.

(3) Qrs and Qsr are uniformly inclined at angle cos−1
(

1√
d+1

)
.

All of the analogous statements from above also hold for Q̄r . Furthermore, the relationship
between the subspaces Qr and Q̄s is as follows.

(1) Q0
rs ⊥ Q̄sr , Qrs ⊥ Q̄0

sr , and Qrs ⊥ Q̄sr .

(2) Q0
rs and Q̄0

sr are inclined at angle cos−1
(

d
d+1

)
.

We will prove this theorem below. Before doing so, however, let us state the other main result of
this section. Let Rr be the subspace onto which the R̄r project. Since R̄r is a real matrix we regard
Rr as a subspace of Rd2

. We have

Theorem 17: For each pair of distinct indices r, s the subspace Rr has the decomposition

Rr = R0
rs ⊕ R1

rs ⊕ Rrs, (175)

where R0
rs , R1

rs , and Rrs are pairwise orthogonal and have the dimensions

dim(R0
rs) = 1 dim(R1

rs) = 1 dim(Rrs) = 2d − 4 . (176)

The relationships between these spaces are as follows.

1. R0
rs = R0

sr .
2. R1

rs ⊥ Rsr and Rrs ⊥ R1
sr .

3. R1
rs and R1

sr are inclined at angle cos−1
(

d−1
d+1

)
.

4. Rrs and Rsr are uniformly inclined at angle cos−1
(√

1
d+1

)
.

In particular, the subspaces R̄r and R̄s intersect in a line.

A. Proof of Theorem 16

Let ‖1〉〉, . . . , ‖d2〉〉 be the standard basis for Hd2 , as defined by Eq. (90). For each pair of distinct
indices r, s define

‖ frs〉〉 = i
√

d + 1Qr‖s〉〉, (177)
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and let ‖ f ∗
rs〉〉 be the conjugate vector. The significance of these vectors is that ‖ frs〉〉〈〈 frs‖ (re-

spectively, ‖ f ∗
rs〉〉〈〈 f ∗

rs‖) will turn out to be the projector onto the one-dimensional subspace Q0
rs

(respectively, Q̄0
rs).

It is easily seen that ‖ frs〉〉 and ‖ f ∗
rs〉〉 are normalized by using Eqs. (89) and (93). By using the

fact that Qr QT
r = 0, and of course since Qr is Hermitian QT

r = Q∗
r , we also have 〈〈 frs‖ f ∗

rs〉〉 = 0 for
all r �= s. Note that, although we require that r �= s in the definitions of ‖ frs〉〉, ‖ f ∗

rs〉〉, the definitions
continue to make sense when r = s. However, the vectors are then zero [as can be seen by setting
r = s in Eq. (94)].

The vectors ‖ frs〉〉, ‖ f ∗
rs〉〉 satisfy a number of additional identities, which it will be convenient

to collect in a lemma.

Lemma 18: Let ‖er 〉〉 be the (real) vector defined by Eq. (89). Then for all r �= s we have

‖ frs〉〉 = −‖ f ∗
sr 〉〉 + i

√
2

d

(
‖es〉〉 − ‖er 〉〉

)
. (178)

Furthermore, we have

Qr‖ frs〉〉 = ‖ frs〉〉, QT
r ‖ frs〉〉 = 0 , (179)

Qs‖ frs〉〉 = − 1

d + 1
‖ fsr 〉〉, QT

s ‖ frs〉〉 = − d

d + 1
‖ f ∗

sr 〉〉 , (180)

〈〈 frs‖ fsr 〉〉 = 〈〈 f ∗
rs‖ f ∗

sr 〉〉 = − 1

d + 1
(181)

〈〈 frs‖ f ∗
sr 〉〉 = 〈〈 f ∗

rs‖ fsr 〉〉 = − d

d + 1
. (182)

Proof: It follows from Eqs. (89) and (93) together with the relation Trts = Tsrt that

〈〈t‖ frs〉〉 + 〈〈t‖ f ∗
sr 〉〉 = i

√
2

d

(〈〈t‖es〉〉 − 〈〈t‖er 〉〉
)
, (183)

which then easily establishes Eq. (178).
Equation (179) is immediate consequences of the definitions and the fact that Qr QT

r = 0.
Turning to the proof of Eq. (180), it follows from Eqs. (92) and (93) that Qs‖es〉〉 = 0. Using this
and the fact that Qs‖ f ∗

sr 〉〉 = 0 in Eq. (178), we find

Qs‖ frs〉〉 = −i

√
2

d
Qs‖er 〉〉 . (184)

Since

‖er 〉〉 =
√

d

2(d + 1)

(
‖r〉〉 + ‖v0〉〉

)
(185)

and taking account of the fact that Qs‖v0〉〉 = 0 [see Eq. (165)], we deduce

Qs‖ frs〉〉 = −i

√
1

d + 1
Qs‖r〉〉 = − 1

d + 1
‖ fsr 〉〉. (186)

The second identity in Eq. (180) follows in the same way by acting on both sides of Eq. (178)
with QT

s .
The last group of identities follows easily from considering quantities such as 〈〈 frs‖Qr‖ fsr 〉〉,

together with the above expressions and taking some complex conjugates. �
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This lemma provides a substantial part of what we need to prove the theorem. The remaining
part is provided by

Lemma 19: For all r �= s

Qr Qs Qr = 1

d + 1
Qr − d

(d + 1)2
‖ frs〉〉〈〈 frs‖, (187)

Qr QT
s Qr = d2

(d + 1)2
‖ frs〉〉〈〈 frs‖ . (188)

Proof: We will only prove the first identity. The second identity has a similar proof. It follows
from Eq. (93) that

Qr Qs Qr = d + 1

d
Qr Ts Qr − 2Qr‖es〉〉〈〈es‖Qr . (189)

In view of Eqs. (185) and (165), and the definition of ‖ frs〉〉, we have

Qr‖es〉〉 =
√

d

2(d + 1)
Qr‖s〉〉 = −i

√
d√

2(d + 1)
‖ frs〉〉 . (190)

Substituting this expression into Eq. (189), we obtain

Qr Qs Qr = d + 1

d
Qr Ts Qr − d

(d + 1)2
‖ frs〉〉〈〈 frs‖ . (191)

The problem therefore reduces to showing

Qr Ts Qr = d

(d + 1)2
Qr . (192)

Using Eq. (93) we find

〈〈a‖Qr Ts Qr‖b〉〉 = (d + 1)2

d2
〈〈a‖Tr Ts Tr‖b〉〉 + 2(d + 1)

d
K 2

ra K 2
rb〈〈er‖Ts‖er 〉〉

−1

2

(
2(d + 1)

d

) 3
2 (

K 2
ra〈〈er‖Ts Tr‖b〉〉 + K 2

rb〈〈a‖Tr Ts‖er 〉〉
)

. (193)

Using the definitions of Tr , ‖er 〉〉 and Eq. (23) (the 2-design property) we find, after some algebra,

〈〈a‖Tr Ts Tr‖b〉〉 = d2

(d + 1)2

(
K 2

raTrsb + K 2
rbTras + K 2

rs Trab + K 2
ra K 2

rb

)
, (194)

〈〈er‖Ts Tr‖b〉〉 = 2

(
d

2(d + 1)

) 3
2 (

2K 2
rs K 2

rb + K 2
rb + Trsb

)
, (195)

〈〈a‖Tr Ts‖er 〉〉 = 2

(
d

2(d + 1)

) 3
2 (

2K 2
rs K 2

ra + K 2
ra + Tras

)
, (196)

〈〈er‖Ts‖er 〉〉 = d

2(d + 1)

(
3K 2

rs + 1
)
. (197)

Substituting these expressions into Eq. (193), we deduce Eq. (192).
The proof of the second identity is essentially identical, except that it also uses the fact that

GraGas GsbGbr = (d + 1)Tras Trsb (in view of the fact that r �= s). �
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Now define the rank d − 1 projectors

Qrs = Qr − ‖ frs〉〉〈〈 frs‖, QT
rs = QT

r − ‖ f ∗
rs〉〉〈〈 f ∗

rs‖, (198)

and let Q0
rs , Qrs , Q̄0

rs , and Q̄rs be, respectively, the subspaces onto which ‖ frs〉〉〈〈 frs‖, Qrs ,
‖ f ∗

rs〉〉〈〈 f ∗
rs‖, and Q∗

rs project. It is immediate that we have the orthogonal decompositions

Qr = Q0
rs ⊕ Qrs, Q̄r = Q̄0

rs ⊕ Q̄rs . (199)

Using Lemma 18 we find

Qsr‖ frs〉〉 = Qrs‖ fsr 〉〉 = 0, (200)

implying that Q0
rs ⊥ Qsr and Qrs ⊥ Q0

sr , and

∣∣〈〈 frs‖ fsr 〉〉
∣∣ = 1

d + 1
, (201)

which means that Q0
rs and Q0

sr are inclined at angle cos−1
(

1
d+1

)
. Using Lemma 18 together with

Lemma 19 we find

Qrs Qsr Qrs = Qr Qs Qr − ‖ frs〉〉〈〈 frs‖Qs Qr − Qr Qs‖ frs〉〉〈〈 frs‖ = 1

d + 1
Qrs, (202)

which in view of Lemma 15 implies that Qrs and Qsr are uniformly inclined at angle cos−1
(

1√
d+1

)
.

This proves the first part of the theorem; the related statements are proved similarly. This completes
the proof of Theorem 16. �

B. Proof of Theorem 17

Define

‖grs〉〉 = 1√
2

(‖ f ∗
rs〉〉 + ‖ frs〉〉

)
, ‖ḡrs〉〉 = i√

2

(‖ f ∗
rs〉〉 − ‖ frs〉〉

)
. (203)

By construction the components of ‖grs〉〉 and ‖ḡrs〉〉 in the standard basis are real, so we can regard
them as ∈ Rd2

. Clearly they are orthonormal. It is also readily verified, using Lemma 18, that they
are +1 eigenvectors of R̄r . Therefore,

Rrs = R̄r − ‖grs〉〉〈〈grs‖ − ‖ḡrs〉〉〈〈ḡrs‖ (204)

is a rank 2d − 4 projector. If we define R0
rs , R1

rs , and Rrs to be, respectively, the subspaces onto
which ‖grs〉〉〈〈grs‖, ‖ḡrs〉〉〈〈ḡrs‖, and Rrs project we have the orthogonal decomposition

Rr = R0
rs ⊕ R1

rs ⊕ Rrs . (205)

It follows from Eq. (178) and its conjugate equation that ‖grs〉〉 = −‖gsr 〉〉, which implies that
R0

rs = R0
sr for all r �= s. It is also easily verified, using Lemma 18, that

∣∣〈〈ḡrs‖ḡsr 〉〉
∣∣ = d − 1

d + 1
, (206)

from which it follows that R1
rs and R1

sr are inclined at angle cos−1
(

d−1
d+1

)
. We next observe that

Rrs = Qrs + QT
rs . (207)

Using Lemma 18 once again we deduce Rrs‖ḡsr 〉〉 = Rsr‖ḡrs〉〉 = 0, which implies that R1
rs ⊥ Rsr

and Rrs ⊥ R1
sr . Finally, we know from Theorem 16 that QT

rs Qsr = Qrs QT
sr = 0, hence

Rrs Rsr Rrs = Qrs Qsr Qrs + QT
rs QT

sr QT
rs = 1

d + 1
Rrs . (208)

In view of Lemma 15 it follows that Rrs and Rsr are uniformly inclined at angle cos−1
(

1√
d+1

)
.
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C. Further identities

We conclude this section with another set of identities involving the vectors ‖ frs〉〉, ‖ f ∗
rs〉〉, ‖grs〉〉,

and ‖ḡrs〉〉.
Define

‖ēr 〉〉 =
√

2d

d − 1
‖er 〉〉 −

√
d + 1

d − 1
‖v0〉〉, (209)

where ‖v0〉〉 is the vector defined by Eq. (164). It is readily verified that 〈〈ēr ‖ēr 〉〉 = 1 and 〈〈ēr‖v0〉〉 = 0,
so ‖ēr 〉〉 and ‖v0〉〉 are orthonormal basis for the two-dimensional subspace spanned by ‖er 〉〉, ‖v0〉〉.
Note that

Qr‖ēr 〉〉 = QT
r ‖ēr 〉〉 = R̄r‖ēr 〉〉 = 0 . (210)

We then have

Theorem 20: For all r

Qr = 1

d + 1

∑
s �=r

‖ frs〉〉〈〈 frs‖, (211)

R̄r = 2

d + 1

∑
s �=r

‖ḡrs〉〉〈〈ḡrs‖ = 2

d + 1

∑
s �=r

‖grs〉〉〈〈grs‖, (212)

1

d − 1

∑
s �=r

‖ fsr 〉〉〈〈 fsr‖ = QT
r + ‖ēr 〉〉〈〈ēr‖ + 1

d2 − 1

(
I − ‖v0〉〉〈〈v0‖

)
, (213)

2

d + 1

∑
s �=r

‖gsr 〉〉〈〈gsr‖ = R̄r , (214)

2

d − 3

∑
s �=r

‖ḡsr 〉〉〈〈ḡsr‖ = R̄r + 4(d − 1)

d − 3
‖ēr 〉〉〈〈ēr‖ + 4

(d + 1)(d − 3)

(
I − ‖v0〉〉〈〈v0‖

)
. (215)

Proof: The first identity follows from the definition of ‖ frs〉〉 and the fact that Qr‖r〉〉 = 0 [as
can be seen by setting r = s in Eq. (94)]. By similar reasoning, we also have

1

d + 1

∑
s �=r

‖ frs〉〉〈〈 f ∗
rs‖ = −Qr QT

r = 0 . (216)

A similar relation holds by taking the complex conjugate on both sides. By manipulating the
expressions relating ‖grs〉〉 in terms of ‖ frs〉〉 (and similar relations),

2

d + 1

∑
s �=r

‖grs〉〉〈〈grs‖ = R̄r . (217)

The middle expression in Eq. (212) is proved similarly.
To prove the second group of identities we have to work a little harder. Using Eqs. (89) and (93)

we find∑
s �=r

〈〈a‖ fsr 〉〉〈〈 fsr‖b〉〉 = (d + 1)3

d2

∑
s

(
Tsar Tsrb − K 2

sa K 2
sr Tsrb − K 2

sr K 2
sbTsar + K 2

sa K 4
sr K 2

sb

)
.

(218)
After some algebra we find∑

s

Tsar Tsrb = d
d+1

[(√
d−1
d+1 〈〈a‖ēr 〉〉 + 1

d

)(√
d−1
d+1 〈〈ēr‖b〉〉 + 1

d

)
+ Trba

]
, (219)
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∑
s

K 2
sa K 2

sr Tsrb = d
d+1

[(√
d−1
d+1 〈〈a‖ēr 〉〉 + 2d+1

d(d+1)

)(√
d−1
d+1 〈〈ēr‖b〉〉 + 1

d

)
+ 1

d+1 Trba

]
, (220)

∑
s

K 2
sr K 2

sbTsar = d
d+1

[(√
d−1
d+1 〈〈a‖ēr 〉〉 + 1

d

)(√
d−1
d+1 〈〈ēr‖b〉〉 + 2d+1

d(d+1)

)
+ 1

d+1 Trba

]
, (221)

∑
s

K 2
sa K 4

sr K 2
sb = d

(d+1)

[
d+2
d+1

(√
d−1
d+1 〈〈a‖ēr 〉〉 + 1

d

)(√
d−1
d+1 〈〈ēr‖b〉〉 + 1

d

)
+ dδab

(d+1)3 + d+2
(d+1)3

]
,

(222)
where we used Eq. (23) to derive the first expression. Substituting these expressions into Eq. (218)
and using

〈〈a‖QT
r ‖b〉〉 = d + 1

d

(
Trba −

(√
d − 1

d + 1
〈〈a‖ēr 〉〉 + 1

d

) (√
d − 1

d + 1
〈〈ēr‖b〉〉 + 1

d

))
, (223)

we deduce Eq. (213).
Equation (214) is an immediate consequence of Eq. (212) and the fact that ‖gsr 〉〉 = −‖grs〉〉.
To prove Eq. (215) observe that it follows from Eqs. (213) and (214) that

1

2

∑
s �=r

(
‖ fsr 〉〉〈〈 f ∗

sr‖ + ‖ f ∗
sr 〉〉〈〈 fsr‖

)
= R̄r − (d − 1)‖ēr 〉〉〈〈ēr‖ − 1

d + 1

(
I − ‖v0〉〉〈〈v0‖

)
. (224)

Hence
2

d − 3

∑
s �=r

‖ḡsr 〉〉〈〈ḡsr‖ = R̄r + 4(d − 1)

d − 3
‖ēr 〉〉〈〈ēr‖ + 4

(d + 1)(d − 3)

(
I − ‖v0〉〉〈〈v0‖

)
. (225)

�

X. THE P–PT PROPERTY

In Secs. II–IX the Q–QT property has played a prominent role. In this section we show that
in the particular case of a Weyl–Heisenberg covariant SIC-POVM, and with the appropriate choice
of gauge, the Gram projector [defined in Eq. (48)] has an analogous property, which we call the
P–PT property. Specifically, one has P PT = PT P = ‖h〉〉〈〈h‖, where ‖h〉〉 is a normalized vector
whose components in the standard basis are all real. In odd dimensions the components of ‖h〉〉 in
the standard basis can be simply expressed in terms of the Wigner function of the fiducial vector.
It could be said that the projectors P and PT are almost orthogonal (by contrast with the projectors
Qr and QT

r which are completely orthogonal). More precisely, P has the spectral decomposition
P = P̄ + ‖h〉〉〈〈h‖, where P̄ is a rank (d − 1) projector with the property P̄ P̄T = 0. This means that
the matrix JP = P − PT is a pure imaginary Hermitian matrix with the property that J 2

P is a real
rank 2d − 2 projector (c.f. the discussion in Sec. V).

Although we are mainly interested in the P–PT property as it applies to SIC-POVMs, it should
be noted that it actually holds for any Weyl–Heisenberg covariant POVM (with the appropriate
choice of gauge), which we now consider.

Let us begin by fixing notation. Let |0〉, . . . , |d − 1〉 be an orthonormal basis for d-dimensional
Hilbert space and let X and Z be the operators whose action on the |r〉 is

X |a〉 = |a + 1〉 , Z |a〉 = ωa|a〉, (226)

where ω = e
2π i
d and the addition of indices in the first equation is mod d. We then define

the Weyl–Heisenberg displacement operators by (adopting the convention used in, for example,
Ref. 16)

Dp = τ p1 p2 X p1 Z p2 , (227)

Downloaded 18 Mar 2011 to 131.215.220.185. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



022202-31 Lie algebraic significance symmetric informational J. Math. Phys. 52, 022202 (2011)

where p is the vector (p1, p2) (p1, p2 being integers) and τ = e
(d+1)π i

d . Generally speaking the decision
to insert the phase τ p1 p2 is a matter of convention, and many authors define it differently or else omit
altogether. However, for the purposes of this section it is essential, as a different choice of phase at
this stage would lead to a different gauge in the class of POVMs to be defined below, and the Gram
projector would then typically not have the P–PT property.

Note that τ 2 = τ d2 = ω in every dimension. If the dimension is odd we can write τ = ω
d+1

2 . So
τ is a dth root of unity. However, if the dimension is even, τ d = −1. This has the consequence that

Dp+du = (−1)u1 p2+u2 p1 Dp. (228)

So in even dimension p = q (mod d) does not necessarily imply Dp = Dq [although the operators
are, of course, equal if p = q (mod 2d)]

In every dimension (even or odd) we have the following properties for all p, q, and n:

D†
p = D−p ,

(
Dp

)n = Dnp , Dp Dq = τ 〈p,q〉 Dp+q . (229)

In the last expression 〈p, q〉 is the symplectic form 〈p, q〉 = p2q1 − p1q2.
Now let |ψ〉 be any normalized vector (not necessarily a SIC-fiducial vector) and define |ψp〉 =

Dp|ψ〉. Let

L =
∑
p∈Z2

d

|ψp〉〈ψp| . (230)

It is easily seen that
[
Dp, L

] = 0 for all p.
We now appeal to the fact that there is no nontrivial subspace of Hd which the displacement

operators leave invariant. To see this assume the contrary. Then there would exist nonzero vectors
|φ〉, |χ〉 such that 〈φ|Dp|χ〉 = 0 for all p. Writing the left-hand side out in full this gives

d−1∑
a=0

ωp2a〈φ|a + p1〉〈a|χ〉 = 0 (231)

for all p1, p2. Taking the discrete Fourier transform with respect to p2, we have 〈φ|a + p1〉〈a|χ〉 = 0
for all a, p1, implying that either |φ〉 = 0 or |χ〉 = 0—contrary to assumption. We can therefore use
Schur’s lemma55 to deduce that L = k I for some constant k. Taking the trace on both sides of this
equation we infer that k = d. We conclude that 1

d |ψp〉〈ψp| is a POVM. We refer to POVMs of this
general class as Weyl–Heisenberg covariant POVMs. We refer to the vector |ψ〉 which generates the
POVM as the fiducial vector (with no implication that it is necessarily a SIC-fiducial).

Now consider the Gram projector

P =
∑

p,q∈Z2
d

Pp,q‖p〉〉〈〈q‖, (232)

where Pp,q = 1
d 〈ψp|ψq〉 and where we label the matrix elements of P and the standard basis kets

with the vectors p, q, rather than with the single integer indices r, s as in the rest of this paper. We
know from Theorem 1 that P is a rank-d projector.

Using Eq. (229) we have

〈〈p‖P‖q〉〉 = 1

d

d−1∑
a=0

τ p1 p2+q1q2ωaq2−(q1+a)p2〈ψ |a + q1 − p1〉〈a|ψ〉 . (233)

Some further algebra shows that

〈〈p‖P PT‖q〉〉 = 〈〈p‖h〉〉〈〈h‖q〉〉, (234)

where ‖h〉〉 is the vector with components

〈〈p‖h〉〉 = 1√
d

d−1∑
a=0

τ p1 p2ωp2a〈ψ | − a − p1〉〈a|ψ〉 . (235)
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It is easily verified that ‖h〉〉 is normalized and that 〈〈p‖h〉〉 is real.
Finally, suppose that the dimension is odd. Then the Wigner function of the state |ψ〉 is56, 57

W (p) = 1

d
〈ψ |DpUP D†

p|ψ〉 = 1

d
〈ψ |D2pUP|ψ〉, (236)

where UP is the parity operator, whose action on the standard basis is UP|a〉 = | − a〉. It is straight-
forward to show

〈〈p‖h〉〉 =
√

dW (−2−1p), (237)

where 2−1 = (d + 1)/2 is the multiplicative inverse of 2 considered as an element of Zd : i.e., the
unique integer 0 ≤ m < d such that 2m = 1 (mod d).

XI. CONCLUSION

A curious fact about SIC-POVMs is that, although they are characterized by their being highly
symmetric structures, they do not wear this property on their sleeve (so to speak). If one casually
inspects the components of a SIC-fiducial, without knowing in advance that that is what they are,
there does not seem to be anything special about them at all. Indeed, so far from there being any
obvious pattern to the components, they seem, to a casual inspection, like a completely random
collection of numbers. Moreover, this is just as true of an exact fiducial as it is of a numerical one
(see, for instance, the tabulations in Scott and Grassl46). It is only when one looks at them through the
right pair of spectacles, and takes the trouble to calculate the overlaps Tr(�r�s), that the symmetry
becomes apparent. The situation is a little reminiscent of a hologram, which only takes on the aspect
of a meaningful image when it is viewed in the right way. If one wanted to summarize the content of
this paper in a nutshell it could be said that we have exhibited some other pairs of spectacles—other
ways of looking at a SIC—which cause its inner secrets (or at any rate some of its inner secrets) to
become manifest.

Rather than focusing on the SIC-vectors |ψr 〉, as is usually done, we have focused on the angle
tensors θrs and θrst and on the T , J , and R matrices defined in terms of them. This is an important
change of emphasis because, rather than being tied to any particular SIC, these quantities characterize
entire families of unitarily equivalent SICs. Like the components of a SIC-fiducial, the angle tensors
appear, to a casual inspection, like a random collection of numbers. However, if one examines the
spectra of the T , J , and R matrices one realizes that, underlying the appearance of randomness,
there is a high degree of order. If one then goes on to examine the geometrical relationships between
the subspaces onto which the Q, QT, and R̄ matrices project, as we did in Sec. IX, one finds yet more
instances of structure and order. To our minds what is particularly interesting about all of this is that
none of it is obviously suggested by the defining property of a SIC, that Tr(�r�s) = 1/(d + 1) for
r �= s.

In the course of this paper we have several times expressed the hope that the Lie algebraic
perspective on a SIC will lead to a solution to the existence problem. Of course that is only a hope,
and it may not be fulfilled. However, we feel on rather safer ground when we suggest that the solution
is likely to come, if not from this investigation, then from one which is like it to the extent that it
focuses on a feature of a SIC which is not immediately apparent.

Specializing to the case of a Weyl–Heisenberg covariant SIC, a fiducial vector |ψ〉 is a solution
to the equations

∣∣〈ψ |Dp|ψ〉∣∣2 = dδp,0 + 1

d + 1
. (238)

Allowing for the arbitrariness of the overall phase of |ψ〉 and taking |ψ〉 to be normalized, this
gives us d2 − 1 conditions on only 2d − 2 independent real parameters. The equations are thus
overdetermined and very highly overdetermined when d is large. Nevertheless, they have turned out
to be soluble in every case which has been investigated to date. It seems likely that progress will
depend on finding the structural feature which is responsible for this remarkable fact. The motivation
for this paper is the belief that it may be structural features of the Lie algebra gl(d,C) which are

Downloaded 18 Mar 2011 to 131.215.220.185. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



022202-33 Lie algebraic significance symmetric informational J. Math. Phys. 52, 022202 (2011)

responsible. That suggestion may or may not be correct. But if it turns out to be incorrect, the
amount of effort which has been expended on this problem over a period of more than ten years, so
far without fruit, suggests to us that the solution will depend on finding some other structural feature
of a SIC, which is not obvious and which has hitherto escaped attention.
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13 I. Bengtsson and Å. Ericsson, Open Syst. Inf. Dyn. 12, 187 (2005).
14 R. König and R. Renner, J. Math. Phys. 46, 122108 (2005).
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18 A. Klappenecker, M. Rötteler, I. Shparlinski, and A. Winterhof, J. Math. Phys. 46, 082104 (2005).
19 M. Grassl, "Electron. Notes Discrete Math. 20, 151 (2005).
20 M. A. Ballester, e-print arXiv:quant-ph/0507073?.
21 D. Gross, “Finite phase space methods in quantum information,” Diploma thesis, Universität Potsdam, Potsdam, 2005.

Available online at http://gross.qipc.org/diplom.pdf.
22 S. Colin, J. Corbett, T. Durt, and D. Gross, J. Opt. B: Quantum and Semiclassical Opt. 7, S778 (2005).
23 C. Godsil and A. Roy, Eur. J. Comb. 30, 246 (2009).
24 S. D. Howard, A. R. Calderbank, and W. Moran, EURASIP J. Appl. Signal Process. 2006, 85685 (2006).
25 A. J. Scott, J. Phys. A 39, 13507 (2006).
26 T. Durt, e-print arXiv:quant-ph/0604117.
27 S. T. Flammia, J. Phys. A 39, 13483 (2006).
28 M. Grassl, presented at MAGMA 2006 Conference, Technische Universität Berlin, Berlin, Germany, 30 July–2 August

2006. Available at http://magma.maths.usyd.edu.au/Magma/2006.
29 I. H. Kim, Quantum Inf. Comput. 7, 730 (2007).
30 D. M. Appleby, Opt. Spect. 103, 416 (2007).
31 L. Bos and S. Waldron, N. Z. J. Math. 36, 113 (2007).
32 A. Roy and A. J. Scott, J. Math. Phys. 48, 072110 (2007).
33 O. Albouy and M. R. Kibler, J. Russ. Laser Res. 28, 429 (2007).
34 D. M. Appleby, H. B. Dang, and C. A. Fuchs, e-print arXiv:0707.2071.
35 M. Khatirinejad, J. Algebr. Comb. 28, 333 (2008).
36 B. G. Bodmann, P. G. Casazza, D. Edidin, and R. Balan, in Proceedings of 42nd Annual Conference on Information

Sciences and Systems, CISS 2008, Princeton University, Princeton, NJ, USA, 19–21 March 2008), p. 721.
37 M. R. Kibler, J. Phys. A 41, 375302 (2008).
38 I. Bengtsson and H. Granström, Open Syst. Inf. Dyn. 16, 145 (2009).
39 M. Grassl, presented at Seeking SICs: A Workshop on Quantum Frames and Designs, Perimeter Institute, Waterloo, 2008.

Available at http://pirsa.org/08100069.
40 M. Grassl, Lect. Notes Comput. Sci. 5393, 89 (2008).
41 M. Fickus, J. Fourier Anal. Appl. 15, 413 (2009).
42 D. M. Appleby, AIP Conf. Proc. 1101, 223 (2009).
43 C. A. Fuchs and R. Schack, e-print arXiv:0906.2187.
44 D. M. Appleby, e-print arXiv:0909.5233.

Downloaded 18 Mar 2011 to 131.215.220.185. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1023/A:1005009727232
http://www.mat.univie.ac.at/ neum/papers/physpapers.html
http://info.phys.unm.edu/�egingroup count@ "0223C
elax 
elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 126 count@ egroup spacefactor accent@spacefactor uppercase {gdef 0{~}}endgroup setbox 	hr@@ hbox {0}dimen z@ wd 	hr@@ 0caves/reports/reports.html
http://dx.doi.org/10.1063/1.1737053
http://dx.doi.org/10.1088/1464-4266/6/9/L01
http://dx.doi.org/10.1103/PhysRevA.70.052321
http://dx.doi.org/10.1007/s10701-005-9008-x
http://dx.doi.org/10.1007/s11080-005-5721-3
http://dx.doi.org/10.1063/1.2146188
http://dx.doi.org/10.1103/PhysRevA.72.022343
http://dx.doi.org/10.1063/1.1896384
http://dx.doi.org/10.1063/1.1998831
http://dx.doi.org/10.1016/j.endm.2005.05.060
http://gross.qipc.org/diplom.pdf
http://dx.doi.org/10.1088/1464-4266/7/12/051
http://dx.doi.org/10.1016/j.ejc.2008.01.002
http://dx.doi.org/10.1155/ASP/2006/85685
http://dx.doi.org/10.1088/0305-4470/39/43/009
http://dx.doi.org/10.1088/0305-4470/39/43/007
http://magma.maths.usyd.edu.au/Magma/2006
http://dx.doi.org/10.1134/S0030400X07090111
http://dx.doi.org/10.1063/1.2748617
http://dx.doi.org/10.1007/s10946-007-0032-5
http://dx.doi.org/10.1007/s10801-007-0104-1
http://dx.doi.org/10.1088/1751-8113/41/37/375302
http://dx.doi.org/10.1142/S1230161209000116
http://pirsa.org/08100069
http://dx.doi.org/10.1007/978-3-540-89994-5
http://dx.doi.org/10.1007/s00041-009-9064-2
http://dx.doi.org/10.1063/1.3109944


022202-34 Appleby, Flammia, and Fuchs J. Math. Phys. 52, 022202 (2011)
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