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The Lie transformation group model
of visual perception

PETER C. DODWELL
Queen's University, Kingston, Ontario, Canada

The Lie transformation group model of neuropsychology (LTG/NP) purports to represent and
explain how the locally smooth processes observed in the visual field, and their integration into
the global field of visual phenomena, are consequences of special properties of the underlying
neuronal complex. These properties are modeled by a specific set of mathematical structures
that account both for local (infinitesimal) operations and for their generation of the "integral
curves" that are visual contours. The purpose of this tutorial paper is to expound, as nontech·
nically as possible, the mathematical basis for LTG/NP, and to evaluate that model against a
reasonable set of criteria for a neuropsychological theory. It is shown that this approach to
spatial vision is closer to the mainstream of current theoretical work than might be assumed;
recent experimental support for LTG/NP is described.

I. INTRODUCTION

In recent years, a variety of mathematical models
have been proposed as theoretical tools for the anal
ysis and understanding of perceptual processes. Such
models differ in many ways, for example, in the sort
of mathematics involved, type of implementation,
abstractness, and degree of generality. Among these,
geometrical models have not been prominent, al
though they would seem to offer the ideal vehicle for
expressing the essential nature of spatial vision, and
pattern recognition in particular (Dodwell, 1982).
The purpose of this paper isto introduce and discuss
a geometrically based model that, if valid, has great
potential for deepening our understanding of per
ceptual processes. I say "introduce" advisedly; al
though the model has been in existence for well over
a decade, it has attracted little attention and, until
quite recently, has not led to any specifically new
lines of experimental research. Why this should be so
we shall shortly see. The model is the Lie transfor
mation group model of neuropsychology, or LTG/NP.

The model warrants serious attention because it
claims both to represent and explain a detailed and
specific set of relationships between physiology and
perceptual phenomena, on the one hand, and to
bridge a major theoretical gap between local pro
cesses of coding and global processes of pattern syn
thesis, on the other.

In 1966, W. C. Hoffman published a paper show
ing how the mathematical theory of continuous
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transformation groups could be applied to visual
space perception and pattern recognition (Hoffman,
1966). Since then, the model has been revised and
considerably extended, to apply not only to elemen
tary aspects of vision, but also to most forms of brain
function. I The original paper was technically too dif
ficult for most psychologists to comprehend, being
couched in a mathematical terminology and invoking
concepts with which most of us (and indeed many
mathematicians) are unfamiliar. Subsequent publica
tions (e.g., Hoffman, 1970, 1977, 1980) have both
broadened and deepened the ideas, and also drawn
on ever higher and more abstract levels of mathemat
ical theory. While the mathematical treatment is both
technical and refined, the ideas underlying it are not
in themselves difficult to understand. The main pur
pose of the present paper is to expound the elemen
tary part of the theory in a form that should make it
accessible to psychologists by explaining the nature
of the mathematical concepts and operations in
volved. A second and, to my mind, equally impor
tant aim is to show how the model relates very di
rectly to some contemporary notions about transfor
mation and invariance under transformation. In this
sense, Hoffman's ideas are much closer to the main
stream of perceptual theorizing than has generally
been realized.

Hoffman (1977) coined the phrase "Lie Transfor
mation Group Approach to Neuropsychology"
(LTG/NP) for his model. Sophus Lie was the Nor
wegian mathematician who, late in the 19th century,
developed the theory of continuous transformation
groups. The LTG/NP model has, until recently, had
remarkably little impact in psychology, almost cer
tainly because the level of mathematical knowledge
required to understand even the first paper is fairly
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high. However, within the last few years several exper
imental papers have appeared which test various
aspects of LTG/NP (see Section VIII below). This
trend will no doubt continue, and so it seems desir
able to make available an exposition of the model
that describes its basic nature without too much tech
nical detail. While this presentation will be restricted
to the very basic elements, which I shall call the "prim
itive model," a recent statement of LTG/NP, to
gether with critiques and summaries of relevant ex
perimental work, is to be found in Paillard (1977),
which is the best comprehensive introduction to this
approach to visual processing.

In general, it can be said that LTG/NP exploits the
geometrical character of both the visual field and the
neural machinery of the retina, retinocortical path
ways, and visual cortex (Dodwell, 1982; Hoffman &
Dodwell, Note 1). It seeks to relate microgenetic pro
cesses in the visual field, which are reflected in strictly
localized activities within the nervous system (activity
of individual neurons) to more macroscopic aspects
of both the visual scene and the neural activities
which underlie pattern processing. Thus, while the
model is couched in abstract terms, the interpretation
postulated for it, both psychophysically and neuro
psychologically, is quite immediate.

The plan of the paper is to describe first the math
ematical background needed to comprehend the
nature of the model. This is done as straightfor
wardly as possible, only some basic elements of al
gebra, coordinate geometry, and the first steps in dif
ferential calculus being assumed. Secondly, the inter
pretation of these mathematical ideas in the
LTG/NP model is introduced, together with discus
sion of the neuropsychological processes claimed to
be the substrate of perceptual events. This is the heart
of the matter, as LTG/NP's claim to be worthy of
serious attention is based on the postulate that
mathematical "operators" of the model are to be
identified as the formal equivalents of elements
within already-known anatomical structures of the
visual nervous system whose physiological activities
are-at least in part-well understood.

In the final sections, I shall discuss the sorts of evi
dence that are claimed to support the model, outline
some of the new experimental findings gathered ex
plicitly within the framework it provides, and evalu
ate it briefly as a neuropsychological theory.

II. MATHEMATICAL PROLEGOMENA

1. What Is a Continuous Transformation Group?
We start with the basically simple concept of a

transformation. A transformation is an operation
taking some geometric object, such as a point, line, or
figure, into some other (usually similar)· object, the
simplest such operation being a translation, say along
a horizontal line. A continuous transformation does

this operation smoothly (continuously) by a series of
infinitesimally small steps "glued together" locally in
some fashion. A transformation group is a set of
transformations having the mathematical properties
of a group, namely that any two transformations suc
cessively applied are themselves a transformation,
there is an inverse (canceling) transformation, and an
identity (null) transformation. A series of transforma
tions can be applied in any way, so long as order is
preserved; the group is said to be "associative." Ex
ample: Translations of a point along a line in either
direction satisfy these conditions. A continuous
transformation group is one in which the transfor
mations are performed smoothly (continuously)
rather than in discrete steps. Example: The opera
tions of sliding a point along a line smoothly so that
it traverses all intermediate points between its start
ing and final positions satisfy these conditions. Sim
ilarly, the smooth rotations of a line about a point
would form a continuous transformation group be
cause each rotation 6 deg, of any magnitude, can be
canceled by rotation -6 deg (a rotation of 0 deg is
the "null" transformation), and rotations can be
added (and subtracted) to give new rotations. In con
trast, the rotations of an equilateral triangle into it-
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Figure 1. Examples of continuous and discontinuous transfor
mation groups. In the former, the transformation process Is by a
sequence of (Infinitesimally) small steps, whereas In the latter the
transformation Is a discrete, step function.
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Figure 2. (a) Illustration of the concept of a smooth curve
(function) In the plane, and Its tangent vector at a point; the func
tloft can be generated by a sequence of tangents at (Infinitesimally)
close positions along tbe curve. (b) Sequences of vectoR, lined up
head-to-tail, generate smooth ("Iutegral") curves In the plane.
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motion (speed and direction) could be expressed as a
vector. This is the local, instantaneous characteriza
tion of the ball's path; the vector will change over
time as the ball moves. One could describe the path
of the ball in terms of those successively changing
vectors. But there are many paths which the ball
could take, depending on the point at which it is
dropped into the river, and on the pattern and direc
tion of flow of the river's current. Thus, there are po
tentially many different paths which could be
given this vectorial representation, and their com-

d d dy
dx[f(x» =dx(y) =dx'

2. What Is a Manifold?
Basically, a manifold is a surface; in the case of a

two-dimensional manifold, the intuitive notion of a
smooth surface (one without cuts or holes in it) fairly
adequately defines the concept. Although a manifold
may have an arbitrarily high number of dimensions,
we shall be concerned only with the concept of a two
dimensional manifold, and one that is differentiable
that is, a manifold on which smooth, continuous
operations can be performed, like drawing with the
head of a pencil across a sheet of paper. A manifold
can have associated with it one or more vectorjie/ds,
which are the agents mediating locally such smooth
operations.

3. What Is a Vectorfield?
A (bound) vector is a directed line carrying infor

mation about position, direction, and magnitude, or
strength. A familiar example is the tangent vector to
a point moving on a smooth curve (or trajectory)
with a given velocity; in this case, the tangent vector
to the curve at that point gives the slope, or the in
stantaneous velocity with which the point is moving
(see Figure 2a). Conversely, it is possible to think of
a sequence of tangent vectors generating (successively
in time) the path along which the point is moving.
This idea is also illustrated in Figure 2b. Think of a
ball floating down a river, whose surface is clearly a
type of manifold; at any instant in time, the ball's

self about its center would be a discontinuous group;
only rotations n X 120° (n = ± 0, I, 2 ...) would
count as transformations within the group, and these
are clearly discrete steps. In any case, the character
istic of a group is that the operation(s) allowed do(es)
not lead to any new sorts of state or entity: the group
has a self-consistent, enclosed quality; mathemati
cians say it exhibits "closure."

While Lie's theory of continuous transformation
groups is based on these rather straightforward ideas,
it explores their ramifications into highly abstract
realms. We shall be concerned only with the very
basic types of continuous, or Lie, transformation
groups and their elementary applications. Even so, a
certain level of mathematical understanding is re
quired to grasp the significance of the approach; I
shall assume an understanding of the concepts of
such simple functions as y =f(x), and F(x,y) =0, and
basic differentiation,

Several specific geometric entities which need explicit
description are presumed to underlie the action of Lie
transformation groups, the first of these being a
manifold.
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plete set would constitute a vectorfield. More for
mally, a vectorfield is the set of vectors associated
with all points on a surface or manifold, which po
tentially can generate all possible paths or trajectories
on that manifold. It is intuitively clear from the river
example that the sorts of path that can be traced out
will depend on the characteristics, or structure, of the
manifold on which the vectorfield operates. To cor
rect the possible misapprehension that a vector or
vectorfield has to be associated with real movement,
the example of a magnetic field of force is appropri
ate; in this case, the shape and strength of the mag
netic field (for example, shown by tapping iron
filings on a piece of paper over the pole of a magnet)
also are properly defined in terms of vectors and vec
torfields. In every case, the important point is that
the vectors express the local properties of the field in
question. Strictly speaking, the vectors give the best
local linear approximation to the field properties at
any given position.

As the example in Figure 2 suggests, the vectors
(and vectorfields) may be related by an equation that
expresses the values of the vectors at every point in
the field. If so, the vectorfield has a well-defined
structure. An example using a familiar function il

lustrates the relationships between the vectors that
are elements in a vectorfield, the structure of that
field, and the equation (a so-called differential equa
tion) that expresses vector properties as a function of
their position in the field.

The equation for a circle of radius r, centered at
the origin of coordinates, is:

y

x y
,

Y

1 0 x

2 0 x

0 1 0

1 1 -I
X 2 1 -2

-I I 1

2 1 2

0 2 0

1 2 -0.5

2 2 -I

Line elements for the equation y': - x/yo

Figure J. Numerical example of how the differential equation
(dy/dx) = (-x/y), generates tangent vecton to circles at all posi
tions. The vectorfield with global circular structure is thereby gen
erated (y' is also used for the symbol dy/dx, as in this figure).

pending on the choice of r. Figure 4 illustrates an
other vectorfield and its characteristic differential
equation.

Thus, we see that the concepts of vector and vec
torfield nicely encompass the dual characteristics of
local operations and global structure on a manifold.
Not every manifold and its associated vectorfield(s)
will have such simple properties as those outlined
above, but these examples express the important prin
ciples involved, and provide a sufficient basis for our
purposes.

4. Lie Operators and Lie Orbits
(l) We turn now to the consideration of those special

properties of vectorfields that constitute the basis for

y

In familiar terms, Equation 1 gives the locus of all
points on the circle, or of all points that are exactly a
distance r from the origin.

Differentiating Equation 1 with respect to x, we
obtain the expression:

~ [ x l + y l - r J = 0

so
dy

2x + 2ydx =0

or
dy x

(2)dx= -y

This is a simple differential equation, and ex
presses the fact that for all points in the field the
slope dy/dx of the function (1) is -x/y, regardless of
the value of r. A numerical example is shown in Fig- ,

fi
. y = cos x - y.

ure 3: Obviously the structure of this vector leld IS

determined by Equation 2, and we can think of the Figure 4. Another structured vectorfield and its generating dif.

vectors as the generators of particular circles, de- ferentialequation,dy/dx=cos x-y.
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a Lie transformation group and its implementation.
The infinitesimal (local) generator of a smooth

transformation is a differential operator, or Lie op
erator, of the form

a a
2= [f(x,y) ax +g(x,y)ai, (3)

which operates on some function, F. F is an equa
tion, of the sort familiar in analytical geometry,
which expresses a relationship between two (or more)
variables. In the two-dimensional case, F is, for our
purposes, the equation of a simple curve or set of
curves, like Equation 1. Expression 3 looks formi
dable, and is the statement for a general first-order
two-dimensional operator, but it is, in fact, a straight
forward generalization from the ideas expressed in Fig
ure 2. The expression dy/dx, or (d/dx)[f(y»), repre
sents the slope of the function (Figure 2a), that is, the
rate at which y is changing per unit change in x. The
expression reads: "differentiate with respect to x"
and is a vector operator: it means "find the slope of
the function f(x)", which is the equivalent of "find
the vector that best expresses the function f(x) locally
(at some point)." Or, more exactly: "find the vector
that gives the best linear approximation to f(x) 10
ally." In just the same way, the Lie operator, 2 (Ex
pression 3), is a local vector operator. The partial
differential operators a / a x and a / a y take com
ponents of a vector such as dy/ dx along two orthog
onal directions and can be thought of as the hori
zontal and vertical components of dy/dx in Fig
ure 2a. The expression a / a x reads: "partial differ
entiation with respect to x, it being understood that
other variables, such as y, are treated as constants
in this operation." Similarly, a / ay reads: "partial
differentiation with respect to y." The expression 2
can be thought of as the general local vector operator
that measures the total rate of change in some func
tion F, expressing this in terms of two components in
orthogonal directions. A fuller discussion of these
ideas, one that is both elegant and straightforward,
can be found in Bruter (1977).

We shall be concerned only with very simple
examples of operators of the form P. For instance,
when f(x,y)= 1 and g(x,y)=0 in Equation 3, we get
the operator 9?x = a / a x, which is the expression for
the vector which translates a point, or set of points,
along or parallel to the x axis; or, we can say it ex
presses a rate of change in the x direction only. Sim
ilarly, when f(x,y) = 0 and g(x,y) = 1, we get the op
erator9!y = a / a y, which is the generator of vertical
(y axis) excursions. Repeated application of one of
these operators leads to smooth translations, in the
horizontal direction for a / a x and in the vertical
direction for a / a y. In general, repeated application
of an operator fl? generates an orbit or trajectory, as
indicated in Figure 2b, although we shall not deal

with the details of mathematical integration that this
involves. A basic tenet of LTG/NP is that the vector
field operations generate, or "admit," only a re
stricted set of continuous transformation groups,
and that these constrain visual processing in a funda
mental way. The vectorfield in Figure 3 obviously
"admits" rotational transformation, for example; it
also "generates" circular orbits.

III. NEUROPSYCHOLOGICAL

INTERPRETATION

Clearly, the simple and complex cortical receptive
field units discovered by Hubel and Wiesel (1962)
have vector-like properties, for each unit has associ
ated with it a position, direction, and (probably)
magnitude. Hoffman identifies these units as the
elements of a vectorfield, or set of vectorfields, on
the visual cortical manifold. The structure of that
manifold will determine the nature of the vector
fields, and thus the basic paths, trajectories, or orbits
that can occur and those vectorfields, in turn, control
the Gestalt properties of visual space (for an elabora
tion of this idea, see Hoffman & Dodwell, Note 1).

It is true that a great deal of structure (cytorarchi
tecture) has been identified within the visual cortex
(e.g., Hubel & Wiesel, 1977), structure that has to do
with orientation columns, ocular dominance slabs,
and the like. All this vast amount of new knowledge
about the cortex and its organization, however, tells
us extraordinarily little about how the local processes
embodied in individual neuronal activity are inte
grated into coherent operations which generate
macroscopic properties of vision. A fundamental
postulate of LTG/NP is that the integrative process
is best understood by treating the cortex as a mani
fold on which vectorfields operate, by interpreting the
local vectorial operations, in terms of neural pro
cessing Ii la Hubel and Wiesel, and in turn to model
the integrative neural action as a function of the pos
tulated vectorfields and their global properties. The
latter are embodied in the mathematical structure
outlined in 113 and 114.

Invoking the concept of a vectorfield allows one to
proceed naturally from a local process, the vector,
embodied in individual neuronal activity, to paths or
trajectories across parts or even the whole of the rele
vant manifold, as described in the previous section.
That is the neuropsychological aspect of the theory:
the perceptual aspect interprets those trajectories in
some cases as visual contours or, in others, as the
basis of a certain class of continuous transformations
which occur naturally in the visual field. Both aspects
are illustrated in the example of Figure 3, although
the formal basis for the relevant class of Lie orbits
has not yet been developed. The best way to do this is
through closer scrutiny of the sorts of perceptual pro-
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cessing the visual system must sustain in order to be
biologically efficient.

IV. PERCEPTUAL STRUCTURE: ORBITS
OF THE PRIMITIVE MODEL

1. Translation
It is very well known in visual science that the hori

zontal and vertical directions play fundamental roles
both psychophysically at threshold and for pattern
recognition. LTG/NP has a novel explanation of
why this should be so; horizontal and vertical lines
are a basic pair of Lie orbits, that is to say, they are
the orbits generated by iterative action of the simplest
Lie operators, 2. and ~ (section 114). But why
should the Lie operators and orbits be relevant, and
why should we expect them to play any role, let alone
a dominant role, in visual processing? To answer
this question, we must consider again the concept
of transformations and the role they play in pattern
processing and recognition. As J. J. Gibson (1950)
so forcetldly argued, as observers in a natural en
vironmerlt "we are continually in motion, and the
very fact of that motion imposes richness and variety
on the visual input, or, as Gibson would say, on the
optic array. Gibson was fundamentally uninterested
in the internal aspects of the coding of the optic ar
ray, and that is a weakness in his approach. If we
think of even the simplest self-produced movement
of eye or head, there are concomitant changes in the
retinal image which must have profound effects on
the neural coding and representation of the array.
Gibson may be right in claiming that most (if not
all) the information for veridical perception is out
there, but surely is wrong in ignoring the sheer extent
and potential problems of computing the trans
formations and the invariances that are detected de
spite them-or perhaps, in some cases, because of
them. In one sense, LTG/NP offers precisely the
solution of the problem of detecting invariances un
der transformation that Gibson neglected, because
it proposes mechanisms for computing them. 2

An important aspect of visual motion and the at
tendant computations it implies on the' 'neural image"
is simple translation, which may be separated into
horizontal and vertical components. Because of the
way we are constructed, the way we move around
in the world, and the near-universal presence of grav
itational cues, these components dominate trans
latory movement, although frequently both com
ponents will occur in conjunction with one another.
At all events, a/;:>x and a/ ay are the operators
which most fittingly defme the transformation groups
of simple translation. It should be noted that these
are transformations that do not normally disrupt
pattern recognition (PR); that is, they are transfor
mations under which PR is invariant. Ecologically,
it is clear why this condition must hold. As the or-

ganism moves around in its environment, it has to
be able to ignore or cancel out such transformations.
Whether engraved by evolutionary pressure or ac
quired through perceptual learning, the computation
of these transformations, and their "cancellation,"
have to be fundamental properties of a coherent
and stable visual processor (Dodwell, 1970).

Thus, we have arrived at the following ideas: First,
we have identified a pair of transformation groups
under which PR is known to be stable, or invariant;
they are characterized by the simple Lie operators,
2. and 2 y, which, in turn, generate orbits (hori

zontal and vertical contours-section 114). Second,
if the processing of visual images under translation
involves the transformation groups of !l!. and 2 y ,

this implies a certain structure for the associated
vectorfields. From this point, we infer that, if the
visual cortical manifold has that structure (not to
the exclusion of other structures, of course), its pres
ence should be discernible in phenomena of spatial
vision and pattern and object recognition. This is
the sense in which LTG/NP explains the salient role
of horizontal and vertical directions in PR.

2. Dilation and Rotation
Translation, of course, is not the only visual trans

formation under which PR must remain invariant.
It must not be disrupted as objects approach or re
cede, and also (within limits) must remain invariant
under rotations in the frontal plane.

How can these transformations be characterized,
and are there Lie operators that generate them?
Again following Gibson's lead, we imagine an or
ganism locomoting straight ahead; the optical "flow"
will be an expansion along lines emanating from a
point at the straight-ahead position (see Figure 5).
The Lie operator that generates such an expanding
field, ~ is x(a/ax) +y(a/ay), which is obtained
from Equation 3 by setting f(x,y) =x and g(x,y) =y;
the associated orbits are a star of radial lines. The
Lie operator for frontal r o t a t i o n ~ , is - y(a/ ax) +
x(a/ay), and it generates a series of concentric cir
cles (bullseye). These two sets of orbits are shown in
the second panel of Figure 6 and, as for the first
pair, express transformations under which PR is
(within reasonable limits) invariant. Notice that the
orbits are mutually orthogonal (if superimposed they
would always meet at right angles) as are the hori
zontal and vertical pair. The basic Lie orbits of the
primitive theory always occur in such mutually or
thogonal pairs (Figure 6; see also section V).

3. Relations Between Generator and Orbit
We have talked of trajectories or orbits, which

are smooth curves, expressible in simple mathematical
equations, and of Lie operators that generate such
orbits, operators which in our case also have simple
mathematical expressions. What is the relationship
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/

and again the output is identically zero (Le., zero
under any conceivable values of x and y).

This relationship between the operators and their
orbits is basic to an understanding of how pattern
recognition and Lie group transformations are re
lated. So far I have argued that these are "natural"
transformations, and that vision is "transparent" to
them. It is not the case that we are unaware of them,
but they do not disrupt our perception of the visual

LIE OPERATOR(S) LTG's ORBITS

OPTICAL FLOW PATTERN I OILATlON) FOR APPROACH.

Flllure S. Action of tbe dilation operator .p., and Its transfor·
matlon Ilroup, In a real·world situation. Tbe visual field expands
from tbe "stralllbt·abead" point of aim for landlnllan aircraft.
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between the generators and the orbits they generate?
Can one be found from the other? The answer to
that second question is yes, but to prove it would take
us much beyond the scope of this paper, although
a straightforward example is hinted at in Equations 2
and 3 and Figure 3. 3 The general relationship be
tween any function F that describes a trajectory and
the Lie operator Ii! that generates that trajectory is
simple: it is that PF==O. In words: if the results of
applying operator P to the function F is identically
zero, then the operator is the one which generates
that function. Example: F1 = Y- b = 0, which is the
equation of a horizontal straight line (y=b). We
stated above that a/ax is the operator that generates
horizontal straight lines. In terms of the relationship
just described, then, the application of a/ax to F1

should give an output equal to zero. Operating on
F1 with a/ax gives the expression

(partial differentiation with respect to x,y being con
sidered constant; the result is 0). On the other hand,
applying a/ay to F1 gives:

a a
ay(F1) = a/y- b) = 1.

To take the example of a circle again:

Operating on this with Po yields the expression

LIE OPERATOR(S) LTG', ORBITS
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Flllure 6. Tbe Lie operaton of tbe primitive Lie tbeory are
sbown In tbree ortbogonal pain on tbe left·band side of A, B, and
C, respectively. Tbe transformation Ilroups that tbey Implement
and tbe orbits tbey Ilenerate (on tbe rlllbt) are also Illustrated.
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world. In section VI, I will show that the orbits them
selves have important properties as patterns.

So far, I have argued that there are certain types
of perceptual transformation to which any perceiving
organism is subject, because those transformations
are rooted in some very fundamental aspects of the
organism's relations to its physical environment. It
has been shown that the transformations, both at
the microgenetic and the macroscopic levels, can be
characterized by a particular type of mathematical
transformation and transformation group. The next
question to ask, obviously, is: Are there other trans
formations of the same general class which can be
applied to visual processing, and which have such a
straightforward interpretation in terms of interac
tions between the perceiving organism and its en
vironment.

V. LIE ALGEBRA AND
PA'ITERN RECOGNITION

1. What Is a Lie Algebra?
The two sets of orthogonal Lie operators identified

above (Figures 6a and 6b), and their associated or
bits, are elements in a formal system called a "Lie
algebra." In looking for other pairs of orbits that
might be relevant in vision, we could approach the
question from the ecological point of view, as before,
by asking whether there are other "natural" or "eco
logically valid" transformations which, because of
their importance and ubiquity, could be expected to
be ingrained in the visual system's structure. Or we
can ask the question: Does the formal system of
which the first two pairs are members suggest other
operators and orbits? This is a mathematical cri
terion, but in its own way it is quite compelling, be
cause, under an appropriate rule of combination,
it turns out that there is a limited set of pairs of op
erators. It would take us far afield to go into details
here, but the following outline gives the flavor of
what is involved.

Lie operators can be combined in various ways;
for example, they can be applied serially (one fol
lowed by another) or they can be put together in
linear combinations; for example, a(aI ax) +(j(aI ay)
is a linear combination of the two simple operators
alax and alay, forming the operator for an oblique
translation. In addition, there is a rule for the "com
position" of Lie operators called "Commutation"
which represents in a certain respect the product of
different vectorfield elements. The law of composi
tion is

[.$l;,Sljl = fE;~ - ~.$l;.

In this expression, ~ and ~ are any two Lie op
erators defined as in Equation 3. The new operator
[ ~ , S l j l , it turns out, also satisfies the same defini-

tion. That is, it too is a Lie operator. If a set of Lie
operators has, in addition, the property that the com
position of any two of the operators always pro
duces another member of the set, we say that the
set-already endowed with the group properties dis
cussed in section II1-forms a Lie algebra.

The importance of this conception for us is two
fold: first, the number of possible operators in the
system is fixed and finite (because, by commuting
pairs of them, one comes back to another member
of the original group of operators). Second, it sug
gests that one should try to establish whether or not
such algebraic relationships have a plausible visual
interpretation. If so, it means that there is a delimited
class of vectorfield structures and their associated
orbits that define the basic properties of visual space
and object transformations within it. That is to say,
it should be the case that orbits generated by other
members of this group, and particularly by the sim
plest of those member pairs, should have some clear
representation in visual patterns and should share
some properties with the two pairs of orbits already
discussed.

2. The Third Orbit Pair
The next pair of operators to consider generate

sets of rectangular hyperbolas, and these form the
third fundamental pair of the primitive theory. In
the first instance, their inclusion was suggested by
the algebraic structure indicated by the nature of the
first two pairs; ~ , ~ and P o , ~ ' The operators
and their orbits are shown as panel C of Figure 6.
What is their interpretation in terms of visual pro
cessing? Hoffman identifies the operators with prop
erties of binocular space which, in its simple and
general form, is hyperbolic (Luneburg, 1946; Indow,
1979). Although the interpretation is a little less
obvious than for the first two pairs, one can, never
theless, consider these rectangular hyperbolas as
the plane projections·of hyperbolic orbits in bin
ocular space (Hoffman, 1966). As will be discussed
later, this orbit pair does share some of the properties
of the first two pairs, and so can be considered to
be a reasonable candidate for inclusion in a model
of visual processing.

3. Extension to Other Operators and Orbits
How much furthel1 can one take this process of

choosing operators by a mathematical criterion,
and then of looking for a perceptual interpretation?
The answer is quite far, but we shall not pursue the
matter. To indicate where it can lead, however, it
is obvious that another dimension that enters in a
very fundamental way into visual perception is time.
If we allow operations in time, then the relevant
differential operator is aI at.

We can reach a high level of generality by consid
ering all the simple operators that might funCtion
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TABLE 1 , VISUAL CONSTANCIES VERSUS THE CORRESPONDING LIE

TRANSFORMATION GROUPS

x = hotlzontal distance trom the perceptual center on \\ hatever frame of reference i ~ appli

cable: y "" corresponding vertical distance: T =e'r,

t = lime measured from the Observer's present in cortical (neuropsycholollcal) umts, c' ==
maximum 00\\ valoolt): of corlu:.ll slgf\olls

Figure 7. Hoffman's table of tbe basic constancies and tbe cor·
responding Lie transformation group and perceptual Invarlance
(from Hoffman, 1977).

in "plane-time," which, in mathematical language,
is described as R 2

X T. The so-called general linear
group for R2 x Tis

VI. PATTERN RECOGNITION

production of Table 1 from Hoffman (1977), indi
cates some of the fundamental Lie derivatives and
their relationship to what Hoffman calls the con
stancies. It should be clear that what Hoffman called
a constancy has here been related to invariance under
transformation in the Oibsonian sense. The full mul
tiplication table for the Lie algebra of mature visual
perception (Hoffman, 1977) consists of 17 "elemen
tary" operators similar in form to those shown in
Table 1, together with their products [g:;,Qj]. Of
course, the Lie products themselves turn out to be
members of the original set, because of the group
property discussed earlier.

This digression serves to indicate the scope of even
the elementary form of the theory. The important
point is that, from considering the general mathe
matical structure of LTOs, one can pick out subsets
which are relevant to perception, and which them
selves form a group in the technical sense.

1. The Recognition of Simple Patterns:
"Matching" or "Cancellation"
It should now be clear that a major postulate of

the LTO theory is that the basic structure of the vi
sual manifold is determined by the simple Lie opera
tors that express its vectorfield components, and that
these, in turn, are at least to a high degree determined
by the ecological and evolutionary constraints under
which visual systems have developed. What I have
called the "primitive model" (not Hoffman's name
for it) asserts that the three-orbit structures of ~ ,
.Py, Po,SE" and P b ' ~ B are embedded in the visual
manifold. I have singled these out just because they
are easy to understand and visualize, and secondly
because if it (the primitive model) should turn out
to be wrong, LTO/NP would lose much of its plaus
ibility (see section VIIIl below).

Having approached the question of vectorfield
structure from the point of view of transformations
and their computation, it is now necessary to intro
duce the problem of pattern recognition, and how
this is dealt with in LTO/NP. The first point to make
is that in LTO/NP recognition of a pattern occurs
by a process of cancellation; to put it more specif
ically, the visual system seeks those differential op
erators which will reduce the output of any path (Le.,
a visual contour) to zero. This is an implementation
of the rule PF =0 (section IV3). In the first instance,
the operators of the primitive model are applied; if
the resultant output (for one of them) is zero, then
the relevant orbit is recognized. Effectively, the sys
tem is set to "resonate" to the simplest structures.
Thus, we have a new definition of what constitutes
a "simple" pattern. If the path output is nonzero
as will certainly be true in the vast majority of nat
urally occurring situations-other "higher" forms
of operator are invoked, as I shall indicate directly.

tat

tax

tay

yax

yat

yay

xax

xat

xay

ax

at

ay

(where ax stands for a / ax, etc.).

Only certain subgroups of these operators and their
combinations appear to be appropriate to percep
tion, but these subgroups can be shown to meet the
criterion for a Lie algebra. Figure 7, which is a re-

Lie Transformation
Lie Derivatives(s)Perceptual Invariance

Group

Shape Constancy
Affine (unimodular)

group SL(2)

Location in the field Horizontal &: vertical a a
£. £=-

of view translation groups ax Y ay
I

a
(Form memory) Time shifts £, =-

at

a a
Orientation Rotation group S02 £. =-y-+x ~

ax ay

Afferent binocular Pseudo-Euclidean a a
£b =y-+x-

perception (hyperbolic) rotations ax ay

a a
£B =x--y-

ax ay

(Efferent binocular Pseudo·Euclidcan

perception) rotations in plane·time
a a

£B1 =t--x-
at ax

a a
£B2 =t--y-

at ay

a a
£, =x-+y-

ax ay
Size Constancy Dilation group

a a
£" =x-+t-

ax at

il a
£'2 =y-+t-

ay at

£m = ~£.

a a
Motion lovariance Lorentz group! of order 2 £ml =r-+x-

ax aT
a a

£m2 =r-+y-
ay aT

£M = -to
(Cyclopean, or cgocentcrcd Rotation groups SO] a a

£MI =x--{-
perception) in plane-time aT ax

J:M2 =Y~-T~
OT ay



erators, but are the so-called "prolongations" of the
basic operators (Hoffman, 1970). Thus, as I shall
describe more fully below, even complex forms are
in an important sense related to-even derived from
the basic orbits of the primitive model.

Theoretically, a curve of any degree of complex
ity can be "matched" by a differential operator of
sufficiently high order. A proof of this statement
would be much beyond us, but the general idea is
not so hard to grasp. It is rather like the situation
in two-dimensional analytical geometry, where it can
be shown that a curve through n points in the plane
can be fully determined with n constants. This means
that the more points there are, the more complicated
the relevant equation will be (including terms in
higher powers of x and y and their products), and
so the more complicated the curve becomes. Readers
familiar with calculus will recognize that the higher
the order of such an equation, the more often it will
have to be differentiated to get rid of its arbitrary
constants. The result is a higher order differential
equation that expresses the "essence" of the form,
just as our simple differential equation

expresses the "essence" of the rotational vectorfield
whose orbits are the circles Xl +yl =rl (section 113).
To quote Hoffman (1970, p. 439): "In addition to
the spatial coordinates themselves, higher and higher
derivatives must be brought in in order to charac
terize more and more complicated orbits, that is,
visual forms. This ... leads to the concept of dif
ferential invariants (Guggenheimer, 1963). Differ
ential invariants are ones that depend not only upon
position in the (visual) manifold but also on the de
rivatives of arbitrarily high order at that point."

Any arbitrarily complex pattern can be "fitted"
with an arbitrarily complex operator. However, it
is important to remember that the complexities are,
in a sense, built upon an original set consisting of
relatively few fundamental operators: One may con
jecture that the visual system, in trying to "match"
an arbitrarily complex curve, will attempt to do so
with the lowest order of differential operators pos
sible, and hence strive for the simplicity of the "good
figures" of Gestalt psychology (Hoffman & Dodwell,
Note 1).

An example of a slightly more complex path and
its generator is a periodic curve such as the sine func
tion. This function can be considered to be generated
by a simple harmonic motion in the vertical dimen
sion and a constant motion in the horizontal dimen
sion (each measured in terms of some "independent
parameter," say t). The operator for the latter is,
of course, 9?x =a I ax, as we have seen earlier; the
operator. for the simple harmonic motion depends
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This process of attempted' recognition occurs
"automatically" for every input pattern imposed
on the visual manifold, and is not to be confused
with the computation of transformations over time.
When the simple operators are applied over time to
more complex patterns, the result will be transforma
tions across the manifold (translations, dilations,
rotations), as previously explained.

2. Recognition of Complex Patterns: Prolongations
and Differential Invananee

The path curves of most patterns are not simple
orbits of the primitive Lie operators. To be of use
as a general theory of visual perception, it must be
possible to explain in similar terms the recognition
of more complex patterns. This can be done, and I
shall attempt to give an outline of the extended model.
However, to expound it fully would go far beyond
the treatment that is appropriate here. The explana
tion of the recognition of more complex patterns is
attained through the notion of the "prolongation"
of simple operators to higher order differential op
erators, and of higher order differential invariance.

We call Expression 3 a simple operator because
it involves only first-order differential terms. An ex
pression like d/dx is a first-order operator because
it is the instruction to differentiate with respect to
x. The expression

is a second-order operator, because it is the instruc
tion to differentiate twice with respect to x. Similarly,
other differential operators can be of second or
higher order, depending on the number of successive
differentiations involved. These same ideas are true
also with respect to partial differentiation, the ex
pressions being fP/ax l ,fP/ayl and a l /axay,a l l
ayax, etc. Just as an expression like dy/dx can be
understood as an expression for the rate at which
y is changing with respect to x, so the expression
dlx/dyl can be thought of as the rate at which the
rate of change of y with respect to x is itself changing
(this will be familiar to many as an expression for
acceleration). Although we did not prove it, it seems
intuitively clear that the differential operators of the
first order, containing only simple expressions in
volving a I a x and a I a y generate smooth and rather
simple curves, and it can be guessed that an operator
involving higher order expressions will generate a
more complex curve. Conversely, we can say that
a complex curve (in our case, a more complicated
visual contour) will have as its "matching" or "can
celing" operator something which involves more
differential terms than the first-order simple aI ax
and a/ay. An important insight is Hoffman's con
jecture that these are not just arbitrary complex op-

dy -x
-=-
dx y

(2)
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on the fact that this motion involves an accelerative
component, so we will expect to find a second-order
differential term in it. In fact, the operators are 9!.,
and p ~ 2 l , respectively, the latter being the so-called
"second prolongation" of the simple operator !L!1 =
y(a/ay). 4 Thus, we see that one step up in compli
cation involves us already in a second-degree oper
ator; the principle is the same for any arbitrarily
high degree of complexity.

It will be immediately apparent that the LTG/NP
model is very powerful; in fact, it can account for
the recognition of any pattern whatsoever, although
there will, of course, be differences in the "ease of
recognition." All one needs to do is to postulate a
sufficiently high level of differential invariance to
"cancel" or "annul" any pattern. That being so,
one might ask what the testable consequences of
the model might be. On the assumption that ease of
discrimination is related to the degree of the oper
ators needed to cancel or recognize a pattern, it clearly
does have some testable consequences. As it has been
outlined here, the primitive model predicts that pat
terns involving only its operators and orbits should
be fundamental in vision, and be the easiest to dis
criminate. One might, for example, expect such pat
terns to be "simple" for the young organism to
learn, and to be particularly salient for the adult
organism. Most of the tests derived so far have, in
fact, addressed questions of this sort. See section VIIIl
below.

VII. LTG/NP AS A THEORY
OF VISUAL PERCEPTION

1. Character of the General Model
I have presented LTG/NP in a manner somewhat

different from Hoffman's, but hope that I have not
done violence to its basic concepts. Although Hoffman
talks of the constancies and the mathematical invar
iances that underlie them, it has become increasingly
clear to me that most psychologists will find an ap
proach via the Gibsonian notion of transformation
and invariance under transformation more con
genial. I like to think that LTG/NP actually com
plements the Gibsonian approach in a very direct
way, by telling us what the general principles of com
putation underlying transformations must be, and
giving clear mathematical expression to their formal
character. In this sense, it supplies a geometry (dif
ferential geometry) of a type which Gibson often
claimed to be seeking, but evidently never found.
This failure of the Gibsonian school to take advan
tage of the formalism supplied by LTG/NP has been
remarked on-and lamented-before (Zusne, 1970).

The LTG/NP explanation of the simple transfor
mations and the orbits they imply is pretty straight
forward, and in a sense has to be true. That is to say,
there is no doubt that the transformations we have

discussed occur continually in a normal visual Or
ganism, and also little doubt that under those trans
formations the perceptual world remains stable. It

is easy enough to see that the same types of continu
ous transformation must apply in the time domain.
In this sense, the primitive model of LTG/NP is akin
to Luneburg's theory of binocular visual space.
Luneburg (1947) was concerned with solving the
problem of a coherent one-to-one mapping between
points in physical space and their representation via
the "bipolar" visual code of two eyes, each with its
own characteristic retinal signature. He did so by
specifying the geometry of a system that implements
such a mapping. Even if wrong in detail, Luneburg's
model, or something closely similar to it, has to be
correct, given the evident fact of useful stereoscopic
binocular vision (Dodwell, 1982). In the same vein,
Hoffman's model specifies processes for mapping
characteristics of the physical world into a dynamic
visual system. This model, or one along closely sim
ilar lines, has to be correct, given the evident fact
of stable spatial vision and pattern recognition under
the vagaries of the perceiver's locomotion. In both
cases, the mathematical formalism involved lends a
striking force and clarity to the conception.

2. Beyond the Primitive Model
A major point of interest, and one which should

engage our attention and discussion, is the question
of how far one·can go beyond the simple orbits of
the primitive model. There are two questions to raise.
The first is: can one attribute ecological or evolu
tionary significance to any transformation other
than the simple ones we have described? Hoffman
argues that one can (Hoffman, 1966, 1970, 1977),
but many psychologists will find his arguments not
completely convincing. Even in the case of the hyper
bolic orbits of the third transformation pair we have
discussed, it is not totally obvious that the orbits
play a necessary role in the normal perceptual en
vironment. It will require a good deal more thought
and experimentation to convince many psychologists
that the more complex orbits and their transforma
tions really do describe cogent factors in normal
visual processing. The second major question con
cerns the recognition of more complex patterns. The
question of how this is to be separated from the gen
eration of the transformation groups themselves has
not always been clearly enunciated. As soon as one
goes beyond the simple transformations of the prim
itive model, there is a real question of the extent to
which transformation groups and orbits have the
dual characteristic (transform generator and visual
contour) we have emphasized. Although the higher
differential invariants needed for the recognition
of complex patterns, such as a face, are derived from
the basic orbits (via prolongation: section VI2), they
do not so easily "fall into place" as natural conse-
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quences of the ecological desideratum of a stable
perceptual environment. On the other hand, the ele
gance of the mathematical solution has strong ap
peal. It specifies just those local characteristics that
are sufficient for pattern recognition to occur. No
tice, however, that the characteristics are local with
respect to the general pattern configuration, not in
the restrictive sense of coding only for a circumscribed
area of the visual field, or retina. Thus, the differen
tial invariants are elaborations on whatever structure
a pattern may have in terms of concatenations of
segments of the basic Lie orbits (cf. Hoffman &

Dodwell, Note 1); they do not exist "in vacuo." The
operation of recognition, however, is still one of
matching, or cancellation, of the visual contours by
whatever level of operator may be required.

While this aspect of the model is powerful and
elegant, one can still ask the question: Is it a true ac
count of visual recognition?

3. Testability of the General Model
There are real problems with testing the validity

of the general model experimentally. As I remarked
earlier, the theory is so powerful that it can be said
to be compatible with any state of affairs so far as
the discrimination of different patterns is concerned.
However, it should be possible to test the notion of
ease of discrimination and simplicity of the operators
by looking for correlations between complexity in
the Lie description of a pattern and its recognizability,
and a beginning on this work has indeed been made
(see section VIII1below).

The question of testability actually involves many
factors, even in terms of the primitive theory. One
problem is that any smooth curve can be approx
imated over some region by a Lie orbit. For example,
any reasonably small portion of a parabola can be
approximated by a segment of a circle, a hyperbola,
or a straight line. It is not absolutely certain even
that the simple Lie orbits of the primitive model are
fundamental. It could be that any smooth curve has
properties of redundancy and "good form" which
make it a candidate for simple processing, just as
such a smooth curve is likely generated by a Lie op
erator, albeit not one from our special set. The ques
tion of approximation to a Lie orbit is a serious one,
particularly as we do not presently know what "lo
cal" means in the field where the Lie operators may
be functioning, or what degree of approximation the
visual system tolerates. But such questions should be
amenable to experimental test.

4. Conditions for Integration of
Locally Defined Codes
The idea that visual forms can be "measured" by

receptive field units of the Hubel and Wiesel type
has been around in psychology for quite some time
(e.g., Dodwell, 1970, 1978; Marr, 1976). It is recog-

nized by these and other authors that the major the
oretical problem is to model the powerful integrative
action of the visual system. The LTG/NP model of
how both the measurement and representation of
local contours is achieved, and of how integration
occurs, is far more profound than other models that
have been proposed, if only because it addresses the
question of how such measurement and integration
can lead to cpherence in the processed image. In ap
proaching the problem of coherence from the point
of view of vectorfield operations, we find there is an
important theorem that proves what the relations
between the local operators have to be in order to
yield orbits or trajectories, which in LTG/NP are,
of course, visual contours. What is required is that
the local vectors can be lined up head to tail in the
manner suggested in Figure 2b, rather than being
scattered across the field in an incoherent fashion.
A vectorfield which has this property of holonomy
of the local vectors, is known as a "contact struc
ture." The theorem of Frobenius states that a neces
sary and sufficient condition for holonomy to hold
is that locally the vectorfield must have a Lie group
structure. Without going into any of the mathemati
cal statement, this means that for vectorfield opera
tions to work at all in vision, it has to be the case
that the structure is like the one we have described.
Recall the dual character of the processing postulated
in LTG/NP. Vectors specify the local (linearly ap
proximating) fit to imposed stimulation, in this sense
being a sort of minimal local template, whereas the
vectorfield specifies global properties (orbits, visual
contours). The theorem of Frobenius sets the mathe
matical condition for this to be possible. I argued
that this structure could be understood as arising
from the ecological and evolutionary constraints
under which a visual organism develops, so we have
the remarkable fact that it cannot be surprising that
LTGs are at the basis of pattern recognition; it has
to be the case, given the constraints of the natural
world within which visual systems develop. This
idea is further elaborated in a recent paper by Hoffman
and Dodwell (Note 1).

One can summarize this discussion by saying, first,
that if vectorfield operations are relevant in vision,
they must generate smooth trajectories which are
interpreted as visual contours; second, if that hap
pens, that the local structure of the vectorfield must
conform to the conditions stated in the theorem of
Frobenius; and third, that this, in turn, means that
the local structure is that of the Lie derivatives and
the transformation groups that they imply.

5. Local Contour Generators
and Cellular Morphology
Hoffman (1968) has identified the so-called "Lie

germs," or the local processes that operate as the
Lie deriv~tives, with various sorts of cell morphology
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in the visual cortex. For instance, he compares Sholl's
(1956) seven principle cortical cell types with the
functions they might perform as local "graphical
integrators" in forming visual contours. Most re
cently, he has extended this form of analysis to con
sideration of how certain empirically determined
models of cortical circuitry (Bishop, Coombs, &

Henry, 1971; Shepherd, 1974) might implement the
integrations required by LTG/NP (Hoffman, 1983).
This aspect of the theory is somewhat speculative,
and it is important to realize that the application
of the mathematics in general to visual processes
does not rest logically upon it. I make the point ex
plicitly because some critics have held that LTG/NP

is worthless unless the identification of the different
cell types' functions could be shown to be correct.
Such an identification would undoubtedly add power
ful support to the model, if proven by physiological
methods, but its plausibility does not rest solely on
that point.

To my mind, there is still something of a gap be
tween the general postulation of cortical cells as func
tional elements of a vectorfield (section IIIl) and
the more detailed speculation about cell morphology,
the nature of local neuronal flows, and their action
in cortical network models. The former aspect of
cell function is well established in the neurophysio
logical literature on single-cell recording in the visual
system; the latter is not. The idea that cells of differ
ent morphological types have different functions is
plausible enough, but there is as yet no evidence at
the functional neurophysiological level (e.g., single
unit recording) to support· the notion of different
orbital integrative action for them. This aspect of
the theory is certainly controversial, and it seems
that with the rapid growth in understanding of the
relation between cellular form and function in con
temporary neuroscience, it should be possible to test
Hoffman's conjectures in the relatively near future.
As that aspect of the theory is not central to under
standing the general mathematical structure, I have
not discussed it in detail.

VIII. APPRAISAL OF LTG/NP

1. Empirical Support
LTG/NP was not conceived "in vacuo"; at the

time of its inception, a large amount of the literature
of the experimental study of vision was held to be
consistent with it, and specific findings such as
MacKay's (1961) complementary after images and
Bhatia and Verghese's (1964) demonstration of
threshold changes in length with speed, as well as
constancy phenomena in general, were quoted as
support for the model (Hoffman, 1966).

The first experimental studies designed to test par
ticular predictions derived from LTG/NP were con
ducted by Caelli (1974). Since then, a number of re-

ports have appeared, or will shortly do so. The ex
periments are of four sorts: (a) those that test spatio
temporal predictions from the theory; (b) those that
test pattern interactions predicted by the theory, in
cluding illusions; (c) those that test "saliency" or
ease-of-discrimination of Lie patterns, and (d) those
that examine adaptational phenomena related specif
ically to Lie patterns.

(a) In two papers, Caelli, Hoffman, and Lindman
(1978a, 1978b) describe experiments on relativistic ef
fects in real and apparent motion perception that are
directly predicted from the Lorentz transformations
of special relativity. These, in turn, are derived from
the Lie orbits in space-time, because the infinitesimal
generators of the Lorentz transformation group are
Lie operators, as defined earlier in section Ill. These
experiments represent a quantum leap forward in un
derstanding and the quantitative modeling of visual
motion phenomena. Experiments by Foster (1975,
1978) also demonstrate the importance of Lie orbits
in the prediction of the paths of apparent motion (see
also Caelli & Dodwell, 1980).

(b) Caelli (1976, 1977) reports experiments on the
recognition of global forms (e.g., a circle) as a func
tion of the alignment of local tangent vectors, and on
the detection of such patterns in visual noise. Of par
ticular interest here is the question of commutability
(section VI); he was able to show that thresholds for
the detection of global patterns formed by the con
junction of orthogonal and commuting operators are
lower than for nonorthogonal and noncommuting
pairs. These are the only experiments so far to ad
dress specifically the algebraic properties of
LTG/NP. Some results with illusory figures, which
also support the model, have been reported by Caelli,
Finlay, and Hall (1975) and Smith (1975), and dis
cussed by Hoffman (Note 2).

(c) Dodwell, Wilkinson, and von Grunau (in press)
and Wilkinson and Dodwell (1980) have examined
the prediction that patterns made up of the simple
Lie orbits (see Figure 6) should be salient and easy to
discriminate for young organisms. In a series of ex
periments with kittens, this prediction was sup
ported; we were also able to show that, in general,
Lie patterns are easier for the kitten to discriminate
than are non-Lie patterns of similar manifest com
plexity. Dodwell, Humphrey, and Muir (1983) have
shown that babies at 4 months of age also respond to
the organizational properties of a "fragmented" Lie
pattern-what we now call a vectorgraph. Caelli and'
Dodwell (1982) have studied vectorgraph recogni
tion; a vectorgraph is a two-dimensional pattern
made up of short line segments, as illustrated in Fig
ure 8. These can represent a vectorfield more or less
fully, as each element has both a defined position and
orientation (compare with Figure 3). We found that
ease of discrimination, and the fineness of "tuning"
of local position and orientation codes, is strongly
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Figure 8. Examples of veetorgnpbs, wllicb are partial rep,.n
tations of vectorfields specified by position and orientation codes
(compare wltb Figure 3). Tbe vectorgrapbs sbown vary from one
wltb random position and orientation codes (a), tbrougb figures
embodying some of tbe one-parameter transformation groups (c
and d), to a "vectonketcb" of a face (e).

affected by (global) vectorfield structure, and that
the vectorfields of one-parameter transformation
groups such as translation, dilation, and rotation (in
effect, vectorfields of the Lie orbits of the primitive
model) are especially powerful in this regard. In a
second study (Dod'Yell & Caelli, Note 3), we have
shown that the effects on local coding stand up, essen

tially, even under an imposed transformation of the
vectorgraph such as rotation.

(d) Using a McCollough-effect paradigm, we have
shown (Dodwell, Note 4; Emerson, Humphrey, &

Dodwell, Note 5) that the Lie patterns of Figure 6 can
be used to induce whole-field pattern-contingent
color aftereffects, and that three independent after
effects, generated by the three orbit pairs of the prim
itive model, can be demonstrated simultaneously in
the same subject. These effects are found only when
the color-pattern combinations are those appropriate
to the theoretically related pairs of patterns. This is
the first demonstration that the three Lie pairs of the
primitive model may be three independent pattern-

generating "channels," on the basis of which further
shape recognition operations are elaborated, as des
cribed earlier in section V12.

Thus, we see that, although the experimental work
has been confined mainly to a few laboratories and
investigators (the list is not exhaustive of all relevant
work, incidentally), there is now considerable new
support for LTG/NP. While no one of these experi
ments is in itself a critical test of the model, in the
sense that no other interpretation of the outcome is
possible, their cumulative effect is to strengthen the
claims of the model as a serious candidate for the
status of an overall structure within which processes
of pattern recognition can be described and under
stood.

2. Theoretical Status
First, I must emphasize that LTG/NP, as de

scribed here. is very much a model of what I have
elsewhere termed "level 2" processing (Dodwell,
1978). It is a level that goes beyond the consideration
of merely local processes that might, for instance. be
embodied in the actions of single neurons. It deals
with organizational and transformational (field-like)
effects in vision, but at a level short of what we can
identify as full cognitive functioning. While the
LTG/NP model described here is compatible with a
more general mathematical theory of cognitive func
tioning (Hoffman, 1980), it is not dependent on that
theory; its validity is to be assessed independently of
that theory.

It is surprising, or at least I am surprised, that the
LTG/NP has had so little influence in psychology,
because. when measured against a reasonable set of
criteria for a neuropsychological theory,5 it comes
out rather well (Dodwell. 1977). In evaluating the
theory from a very general point of view (Dodwell,
1977), I followed Mario Bunge's (1963) work on the
evaluation of scientific theories to a great extent. Any
reasonable neuropsychological theory of perception
would need to account for many of the phenomena in
visual perception. and the theory would have to have
some depth. That is to say. it should be able to relate
different aspects of visual processing to each other.
This LTG/NP certainly does, in giving us a very ex
plicit account of how one can go from the local fea
ture detector to more global operations. In fact, it
does a more adequate job of this than any other I can
think of. It also bridges the gap between the two
cornerstones of spatial vision, pattern and object per
ception-principles of, invariance, on the one hand,
and processes of local coding or filtering, on the
other. A model must have predictive power, and
LTG/NP certainly has this. We have discussed the
difficulties of testing its more complex aspects. but
certainly in its simple form it yields testable predic
tions. Then, a theory must have extensibility. How
ever precise the original formulation of a model may
be, it must be possible to show that it has wide ap-
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plication over the field of enquiry in question. There
is little doubt that on this score, too, LTG/NP comes
out rather well. A model must also show originality,
and one need spend little time in arguing that for
LTG/NP. Clearly, in bringing to bear a powerful
and original mathematical theory, it constitutes an
original contribution to visual perception. A model
should also be parsimonious, provided that
parsimony is not bought at the expense of richness of
application. L TG/N~ is parsimonious in the sense
that it develops from a few rather precise ideas about
the genesis of perceptual events, and, despite this, it
has a very rich field of application. Finally, a theory
to be taken seriously must have "world view com
patibility." LTG/NP sits very comfortably with our
notion that there are neural processes underlying the
perception of visual contours and patterns, and from
that point of view does not strain our credulity.

LTG/NP meets the criteria reasonably well. It has
had little impact, first because the theory is difficult,
and second, because it was not couched in language
that is familiar to psychologists, or at least not in
language that was obviously compatible with the
mainlines of psychological theorizing in the field of
vision. I have aimed to do two things in this paper:
first, to make the mathematical ideas, and hence the
model, more accessible to psychologists, and second,
to show that the theory actually does fall right in the
mainstream of current thinking on the importance
of transformations in perception, and also the re
newed interest in the prominence of Gestalt-like fac
tors, which transcend the detection of local features.
I believe it is generally true that inability to forge a
convincing theoretical path from the local to the
global is a weakness of most psychological theorizing

about perception (Dodwell, 1982); it is a weakness
which I have tried to show can be overcome by the
LTG/NP model as a theory of how visual contours
are detected, represented, and integrated. Vectors and
vectorfields surely have an obvious relevance in vision;
what we have lacked heretofore is a general model of
their action and a theory of how that model is embod
ied in a real visual system and real visual activity.
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NOTES

I. The terms model and theory are used in this paper as follows:

a (mathematical) theory is the abstract and symbolic expression of
a formalism, or "uninterpreted calculus" (Campbell, 1920). A

model of that theory is its embodiment in some real mechanical,

electronic, biological, or other system. The term "theory" is also
used in a more general sense; one can hold the theory that a par

ticular model applies in some given situation. Thus, Hoffman

holds the theory that the LTG model applies to visual processing.

2. "Computing an invariance" does not necessarily entail the
sort of explicit computation that might be carried out in a digital

machine. It could, for example, be embodied in an analog process
that "matches" or "resonates to" a particular input pattern. See
section VI below.

3. Under some reasonable assumptions, it can be shown that

Q'R = -y(a / ax) + x(aLay) implies -y(dy/dx)+ x=O, or dy/dx=
(-x/y), which was shown earlier to be the differential equation
generating the circular vectorfield of Figure 3.

4. In general, the first prolongation of a basic Lie operator,
p (I), involves an additional variable, y', so its transformation

group can be characterized byp(ll =p+p(X,y,y')(a/ ay), etc. The

expression PIl) for the second prolongation of !.I'l is y(a/ay)+
y'(a / a y') + y"(a / a y"), where y' and y" are symbols for differ

entiation with respect to the independent parameter t.

5. See Footnote I for my distinction between model and two
senses of the word "theory." Here I am using "theory" in its
second (general) sense.

(Invited paper, accepted for publication March 28, 1983.)


