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The lift on a small sphere in a slow shear flow 

By P. G. SAFFMAN 

California Institute of Technology, Pasadena, California 

(Received 29 October 1964) 

It is shown that a sphere moving through a very viscous liquid with velocity V 
relative to a uniform simple shear, the translation velocity being parallel to the 

streamlines and measured relative to the streamline through the centre, experi- 

ences a lift force 81.2 pVa2~8/v8 + smaller terms perpendicular to the flow direction, 

which acts to deflect the particle towards the streamlines moving in the direction 

opposite to V .  Here, a denotes the radius of the sphere, K the magnitude of the 

velocity gradient, and p and v the viscosity and kinematic viscosity, respectively. 

The relevance of the result to the observations by Segr6 & Silberberg (1962) 

of small spheres in Poiseuille flow is discussed briefly. Comments are also made 

about the problem of a sphere in a parabolic velocity profile and the functional 

dependence of the lift upon the parameters is obtained. 

1. Introduction 

Interest in the motion of small particles carried along by Poiseuille flow through 

straight tubes has been stimulated in the past by observations (going back to 

Poiseuille 1836) that the blood corpuscles in the capillaries tend to keep away 

from the walls. Although Goldsmith & Mason (1962) have pointed out that the 

deformation of non-rigid particles will produce a lateral migration across 

streamlines, and Bretherton (1962b) has shown that rigid particles of an extreme 

shape may likewise migrate, the remarkable observations of Segr6 & Silberberg 

(1962), that small neutrally buoyant spheres of various sizes in Poiseuille flow 

through a tube slowly migrate laterally to a position distant 0.6 tube radii from 

the axis, have demonstrated convincingly the existence of a lateral force on 

rigid spherical particles. 

For motion at small Reynolds number, it was pointed out by the author 

(1956b), and more fully by Bretherton (1962b) that no sideways force on a single 

rigid spherical particle can be derived on the basis of the creeping flow equations 

whatever the velocity profile and relative size of particle and tube, provided of 

course that the velocity is unidirectional. The calculation of small inertia effects 

is therefore relevant to an understanding of this type of phenomenon, and indeed 

the quantitative measurements by Segr6 & Silberberg of the migration rate indi- 

cate strongly that the effect is one of inertia, and not due for example to non- 

Newtonian effects. The full problem is one of great difficulty, as not only is the 

effect of inertia to be calculated for a particle in a parabolic velocity profile, 

but also the presence of the tube walls must be taken into account. The walls 

are clearly all important to the existence of the phenomenon, if only because 

without walls the particle would never know (so to speak) when it was the 
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386 P. G .  h’affman 

appropriate distance from the axis. However, the wall effect acts in two different 

ways. First, the extra drag due to the walls will make the particle lag behind 

the fluid; this relative velocity will be viscosity independent when the viscosity 

is large, and will depend only on the relative size of particle and tube and the 

distance from the wall. Secondly, the flow field around the particle is altered by 

the presence of the walls and the inertial effects will differ from those for a particle 

in an unbounded flow, especially when the particle is near the walls. 
In  the present work, we shall confine attention to the first effect of the wall and 

consider the force on a particle in an unbounded shear flow when the particle 

has a relative velocity parallel to the streamlines. This is not to say that the 

second effect of the wall is unimportant even when the particle is in the middle 

of the tube, but rather that the entire problem is too difficult and we can only deal 

with one aspect at the present time. Also, we shall concentrate on the case of 

simple shear as the force can then be calculated explicitly, but general remarks 

will be made about the force when the velocity profile is parabolic, and in par- 

ticular the functional dependence of the force on the various parameters will be 

evaluated. 

To be precise, we take Cartesian co-ordinates Oxyz, which are also labelled 

0z1x2x3 when it is convenient to use tensor notation, with origin moving with 
the particle so that the motion is steady. The velocity at infinity is taken to be 

where e, is a unit vector along Ox,, K is the velocity gradient, and V is the relative 

velocity of particle and fluid measured on the streamline through the centre. 

The sphere is also allowed to rotate with angular velocity S2 = (0, a, 0) about the 

y-axis. The equations of motion can be written 

where q = (q,, p2, p3) is the velocity, v is the kinematic viscosity, the fluid is sup- 

posed incompressible, and all pressures, stresses and forces are for ease of writing 
‘viscosity reduced’, i.e. the values given are the actual ones divided by the vis- 

cosity, unless the contrary is explicitly stated. For example, the actual pressure 

is p multiplied by the viscosity. The boundary conditions are 

u = (KZ+ V)e, ,  (1.1) 

v2q-vp = v-l(q.V)q, v . q  = 0, (1.2) 

q+U as r - too,  q=S2Ar on r = a ,  (1  -3) 

where r = (5, y, z) and a is the radius of the particle. 

Three Reynolds numbers can be defined namely 

R, = Ka2/v, €2, = Valv, Rn = Qa2/v, (1.4) 

and it is assumed that each of these is small compared with unity. As there is 

more than one Reynolds number, i t  will be convenient to think of small Rey- 

nolds number as being due to large viscosity and to obtain the effects of inertia as 

an expansion in inverse powers of the viscosity. The principal result of this note 

is that there is a lift force in the z-direction of amount 

(1.6) K v d K i / V *  -k O( V-*) 

for K > 0. If K < 0, the force is of the same magnitude but in the opposite direc- 

tion. Numerical evaluation of an integral gives K = 81.2. 
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The lift on a small sphere in a slow shear flow 387 

The effect of inertia cannot be obtained by straightforward iteration of (1.2),  

for it is readily found like the case of a body in a uniform stream that the terms 

of order v-l and smaller are unable to satisfy the boundary condition at infinity. 

Although the technique of matching inner and outer expansions is available to 

overcome this problem (Kaplun & Lagerstrom 1957; Proudman & Pearson 

1957), the case of bodies in shear flow is rendered difficult by.the fact that 

fundamental solutions of the Oseen-like equation for the outer expansion are 

hard to obtain?. However, recent work by Childress (1964) on the question 

of Stokes drag in a rotating fluid has made clearer the fact that in some cases 

only general properties of the outer expansion are needed to determine the inner 

expansion to first order and that these can be obtained even though the explicit 

form of the outer expansion is hard to find. The present work depends entirely 

on this being true for a particle in a shear flow. 

The plan of the work is as follows. After stating the zeroth-order term in the 

inner expansion, we shall find in genera1 terms the force due to the first-order 

term and show that it involves two unknown constants whose values are to be 

determined by matching with the outer expansion. The outer expansion is then 

discussed and it is shown that the constants can be determined to lowest order 

from quite general considerations and that no detailed analysis beyond the 

solution of a linear first-order ordinary differential equation is called for in order 

to obtain the force. Finally, the relevance of the theory to the Segr6 & Silberberg 

experiment is considered, and a qualitative discussion of the force in a parabolic 

profile is given. In  an appendix, it is pointed out that, for a spheroid freely 

rotating without translation in a simple shear, the first approximation to the 

effect of inertia may be calculated by iteration of the equations, so that an 
sseumption made previously by the author (1966 b)  ia all right. 

2. The inner expansion 

The solution of (1.2) can be expanded formally as 

q(r) = q(O)(r) + q(l)(r) + . . . , p ( r )  = p(O)(r) +p(l)(r) + . . . , (2.1) 

successive terms being of higher order in the reciprocal of the viscosity. The 

zeroth-order velocity and pressure satisfy the creeping flow equations and are 

(see Lamb 1932, p. 596; the notation here is slightly different) 

13, 
Po = ;r;r2n+l’ 

n 

t For the two-dimensional problem of a cylinder moving in a simple shear (Bretherton 
1962a), the bmic equation for the outer expansion can be reduced to a second-order 
equation that describes diffusion from a line source in a shear and fundamental solutions 
are readily obtained by generalizing some results of Townsend (1861). In  the three- 

dimensional problem, this simplification is not possible because the preeaure cannot be 
eliminated by the use of a stream function, but the problem of the lift can be reduced 
to the solution of a single fourth-order equation, related to diffusion from a point source in 
a shear flow. 

2.5-2 
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388 P. G. Saffmun 

where 

p1 = -#VaX, p2 = - 5 K a 3 X Z ,  $1 = - $ v U 3 X ,  $2 = -$Ka'XZ, 2'1 = ( Q - Q K ) U 3 y .  

(2.4) 

This velocity field satisfies the boundary conditions on the sphere and at infinity. 

(We take it for granted that the appropriate boundaiy condition on the zeroth- 

order inner expansion at infinity is (1.3), as the correctness of this assertion cap 

be verified from the working at a later stage.) The corresponding force on the 

sphere is 

and the torque is 
(2.5) 

(2.6) 

(2.7) 

(2.8) 
and the boundary condition 

q(l) = 0 on r = a. 

The integration of (2.7) is fairly straightforward (Saffman 1956a), but rather 

laborious. Here, we are mainly interested in the force, and in particular the lift, 

on the sphere and much of the heavy algebra can then be by-passed. It is shown 

in appendix A that the force F(l) on the particle due to q(I), p(l) is given by 

F(0) = 6naVe,, 

M(0) = 87ra3(& - Q) e,. 

The first-order inner expansion satisfies 

V2q(U - VpCl) = v-l(q(0). V) q(0) = Q/v, say; V.q(l)  = 0; 

p%dS q(l)dS d q(l)dS 1 (r. q(0)dS 
FCU = - f -f __ R + R a j T - ; /  -____ R Y (2.9) 

where the integrals are over any sphere r = R concentric with the particle. It 
is also shown in appendix A that, from (2.7), the integrals regarded as functions 

of R satisfy the ordinary differential equations 

(2.10) 

(2.11) 
1 p(1) r d S  d p(l)rdS 

dR2 R 'dR/ ___ R = A/r(V.Q)dS. V 

Now Q is the sum of homogeneous polynomials in x, y, z multiplied by negative 

integral powers of r .  The right-hand sides of (2.10) and (2.11) can therefore be 

expressed as 

f QdS = Za, Rn, s r(V. Q) dS = Zb,Rn. (2.12) 

Direct calculation shows that except for a, and b,, a, and b, are zero for n 2 - 1. 

Equations (2.10) and (2.1 1) can be integrated immediately to give 

(2.13) +A+BR3, 
jp? = b,R"+l 

qmdS 1 a,Rn+l 1 

Y (n+ l ) (n -2 )  

bnRn+l +CR+D+aBR3, (2.14) +-c = -x ___ 
fT Y n ( n + l )  v n(n+ l ) (n -2 )  

where A, B, C and D are unknown constant vectors. The non-vanishing of 

a, and b, implies that q(l) is O(r)  for large r so that the boundary condition at 

infinity cannot be satisfied. 
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The lift on a small sphere in a slow shearJlow 389 

The vectors B and C are arbitrary, and come from solutions of the homo- 

geneous equation (2.7) with Q = 0. Indeed, C comes from a uniform stream 

of velocity Clan, and B is associated with a uniform pressure gradient and the 

associated parabolic profile. The only other term in the complementary function 

that can make non-zero contributions to the pressure and velocity integrals is a 

' Stokeslet ' with pressure field s . r/r3,  say, which would contribute +m and 

fns to (2.13) and (2.14) respectively. Thus the vectors A and D are arbitrary 

to the extent of a Stokeslet but they are otherwise determined for it can be shown 

(see appendix A) that 

(2.15) 
Ica,Bn+l 1 b Rn+l 

-- ___ + ; Z L .  
v n - f l  n + l  

2A-D = - 
V 

By virtue of the boundary condition (2.8), the expression (2.14) must vanish 

when r = a, giving one relation between the arbitrary vectors. The other equa- 

tions to determine them will come from the hypothesis that the inner expansion 

matches an outer expansion in some overlap domain. The substitution of (2.13) 

and (2.14) into (2.9) and evaluation for R = a, where the first term in (2.15) and 

last term of (2.9) both vanish, gives 

(2.16) 

The x-component of the term in curly brackets has been evaluated and was found 

to be, after some algebra, 

(2.17) 

But in order to find the lift, it is also necessary to determine the z-component of 
B and C, and we shall now consider how these may be found. It will turn out 
that in fact C is O(v-4) and is the dominant term. For future reference, i t  should 

be stressed that C is determined by the part of the inner expansion which matches 

a uniform stream at infinity. It should also be noticed that there are no logarith- 

mic terms in the first-order inner expansion for our problem. 

3. The outer expansion for simple shear 

We can imagine the body removed and replaced by a distribution of 
body forces f(r) in the region r < a, where the force field f has to be chosen so 

that q = 0 on the surface r = a. Since no fluid crosses the boundary, two sets 
of forces will produce the same motion outside r = a if their moments of all 

orders are the same. In  particular, the body may be replaced by point forces, 
couples, etc., at the origin provided the moments of the point forces, etc., are 

equal to the moments of the actual surface stresses on the body. The equation 
of motion can now be written as 

1 
V p - V 2 q + ; ( q . V ) q  = f = ,PB(r)+,P.VG(r)+,P.VVS(r)+ ...,f (3.1) 

7 We employ the notation that .P .aa.. . a, where a occurs n - 1 times, is a vector with 
i-component PpjI  ., ,,a,ar . . . a,. 
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390 P. G. Saffmun 

where nP is a nth order tensor, S(r) is the three-dimensional delta function, and 

,P = ( -  l)n-l frr ... rdV, (3.2) s 
r occurring n - 1 times in the integrand. 

equations, 
To zero order in the viscosity, i.e. with the force as given by the creeping flow 

(3.3) ,P = - CfmVe,, 

0 0 1  0 0 1  

2p = 4?rU3( f i -&K)  ( 0 0 0) -5Q7ffZ3K (0 0 0). (3.4) 

- 1  0 0 1 0 0  

and so on, the odd-order tensors involving V and the even order ones K and a. 
The antisymmetrical part of ,P is the couple 8nu3(9~ - SZ) about the y-axis. 

In  the usual way for the determination of outer expansions, we introduce a 

strained co-ordinate 

where S 3 0 as v -+ 00, and write 
(3.5) 

q = U+q'(Z), (3.6) 

Z = Sr, 

where q' -+ 0 as Z --f co and q' -+ 0 as v -+ co for Z fixed. In  terms of the strained 
co-ordinate, equation (3.1) becomes 

vStp-vS2T2qf +K(~"aq'p~+q;e,)+ vsaqf/az+-t(qf . 2 ) q f  

= VS~,PS(E)+VS~~P.~S(Z)+VS~~P.~~ a(:)+ ..., (3.7) 

C . q ' =  0. (3.8) 

after multiplication throughout by v. The equation of continuity remains 

The straining factor is determined by the requirement that the viscous and 
inertia terms be of comparable order, from which it follows that 

v s 2  = 1, s = v-3. (3.9) 

Then to lowest order, i.e. in the limit v -+ co with 9: fixed, we see that q' satisfies 

(3.10) 
the equation 

5p' -t2q' +K(Z"8qf/a2+q~e,) = - (677uV/v3)e1S(Z), 

where p' = vip and we have used the fact that to lowest order the force on the 
particle is the Stokes drag. (The right-hand side of (3.10) can also be obtained by 
remarking that the outer expansion is equivalent to shrinking the body to a point, 
so that to lowest order the body is equivalent to a point-force of magnitude 

equal to the drag.) According to (3.10), q' is O(v-*) and inspection of (3.7) implies 
heuristically that the error in using (3.10) is O(v-l). 

Before we solve (3.10), an intuitive discussion would appear to be useful. The 

velocity q' is analytic except at F' = 0, where it has the behmiour [obtained by 
retaining only the highest-order derivativesin (3.10) and using Vz( I/?) = - 4nS(P)] 

(3.11) 
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The lift on a small sphere in a slow shear flow 391 

This is the velocity field in strained co-ordinates of a Stokeslet. Furthermore, 

the equation is elliptic (the elimination of the pressure by means of the continuity 

equation gives an equation in which the highest derivatives are of the biharmonic 

form) with coefficients that are polynomials in 4, y" and 2. The solution will be 
expressible for i -= 00 as a series of polynomials in 2, y", 2, each being multiplied 

by a power of P (and possibly also powers of log i) .  Symbolically, we may write 

where the H are homogeneous functions of degree zero in &, dy", ~ 4 2 ,  andH(O) 

is given by (3.11). The dependence on K* follows from the fact that i has the 

dimensions of K-* and the solution of (3.10) is linearly proportional to aV/u*. 
For definiteness, and without loss of generality, we take K > 0. If K < 0, we simply 

reverse the y- and z-axes. The H are determined completely in principle by 

(3.10) and the boundary condition q' -+ 0 as P -f co, although their actual 

calculation is a matter of great difficulty. 

The matching technique to be employed now relies on the hypothesis that 

the outer expansion near i = 0 fits the inner expansion (see $2) in the vicinity of 
T = 00. Writing (3.12) in unstrained co-ordinates, we have 

(3.13) 

and the terms O(u-l) or larger must agree with those in the first two terms of the 

inner expansion as r --f 00. Note that since the H are homogeneous of degree zero, 

they are in fact functions not of the argument K * r / d  but only of the direction r 
and are independent of u. 

Neglecting terms smaller than O(u-l), we have from (3.13) that 

where the integrals are numbers. The first term, which is independent of v, 

matches the Stokeslet in the zeroth-order inner expansion. The second term, 

being O(v-*), must match terms from the first-order inner expansion, and 

comparison with (2.14) shows that to O(v-*) 

B = 0. 
R2 ' 

(3.15) 

The third term in (3.14) will match the contribution from a, and b, in (2.14). 

It has been implicitly assumed that there are no logarithmic terms in (3.13) 

to O(u-l) because there are no such terms in (2.14) for them to match with. 

It is known that they occur to higher order in the drag, and this is also probably 

true for the lift-force in a shear flow. It should be stressed that (3.14) does not 

determine C to order v-1 as (3.12) is in error to this order. For work to this accu- 

racy, i t  would be necessary to retain further terms in the equation (3.10). The 

expression (2.17) does not therefore give all the terms that are O(v-l). 
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392 P. B. Saffman 

It now follows from (2.16) that the (viscosity reduced) force on the particle is 

(3.16) 

where the second term is to be found by solving (3.10) and forming the expan- 

sion (3.12). In  the next section, we shall show how this can be done for the lift 

component without obtaining a complete solution. It can be said that the object 

of the calculation is to determine the part of the flow in the neighbourhood of 

P = 0 which is analytic there and which appears to the inner expansion as a 

uniform translation of the fluid at infinity. It is the average value of q' through- 
out a small sphere centred on ? = 0. 

4. The lift 

of the velocity field, defined byj- 

We introduce the three-dimensional Fourier transform r(k) = ( Fl, r,, I?,) 

In  Fourier space, equation (3.10) becomes 

~ { - k , ( a I ' / a k ~ ) +  r3el]-ikII +k2r = - (3aV/4?r2v))el, (4.2) 

where n(k) is the transform of p' and k = (k l ,  k,, k3).  For the lift or transverse 

force in the z-direction, it is sufficient to determine q; or equivalently r3. The 

transform of the continuity equation is 

k . r =  0. (4.3) 

Taking the scalar product of (4.2) with k using (4.3), and noting that 

k.ar/ak, = - r3, 

- i ~ n  = - ( 3 ~ ~ / 4 ~ 2 ~ + )  k, - 2Kk1 r3, we obtain 

where k = Ikl. 
(4.4) 

It follows immediately from (4.2) that r3 satisfies 

The solution of (3.10) must have the Stokeslet singularity (3.11) at P = 0 but 

otherwise should be finite and tend to zero as ?+m. The Fourier transform of 

the Stokeslet is most easily obtained by letting K -+ 0 in (4.5). The condition 
that q; - q13 is bounded is equivalent to 

being integrable over the entire k-space. 

(1964). 
This technique seems to have been used first in problems of this type by Childress 

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
19

 N
ov

 2
01

8 
at

 2
3:

54
:5

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s .

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

65
00

08
24

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022112065000824


The lift on a small sphere in a slow shear $ow 393 

Equation (4.5) is readily integrated and gives 

In  order that r3 should vanish as k -+ 00, the bottom limit of integration should 

be + 00 for k, > 0 and - 00 for k, < 0. It is convenient to change variable and 

write 
(4.8) t = (u - k3)/kl7 

It is easy to show that the expression (4.6) is then integrable. The inversion 

formula (4.1) now gives q; as a Fourier integral, from which we can form an 

expansion like (3.12) about i = 0. The term independent of i in this expansion 

is the value of q; - qi3 at i = 0, namely 

since Hi1) is independent of the direction of F. Hence from (3.16), the lift force 

L in the positive z-direction is 

= K ~ u ~ K * / v + ,  say, (4.11) 

after substituting (4.9), integrating with respect to the magnitude of k, and re- 

writing. The value of K has been obtained by numerical integration and is 

81-2t. It will be remembered that the actual force is pL.  To lowest order, the lift 

force would produce a transverse velocity W given by 

W = L/6na = K Va1~*/6nv4, (4.12) 

if the particle were free to move. 

The result (4.11) may be compared with that found by Bretherton (1962a, 

equation (lo))$, which with the present notation gives a lift force per unit length 

on a circular cylinder of radius a of about 

74.5 (log KU2/V)-2 + O(bg KU2/V)-3.  (4.13) 

If V is very large, the result (4.1 1)  will become invalid, essentially because the 

step from (3.7) to (3.10) requires that V/(VK)* < 1. Thus the analysis does not 

give the lift on a sphere moving through a fluid when there is a small shear with 

t The double integral waa reduced to a single integral by a series of complicated trans- 
formations, which waa kindly evaluated numerically by Dr Klaus Jacob of the Booth 
Computing Centre at Caltech. 

$ There is a misprint in this equation, a minus sign being omitted before the second 
term. 
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394 P. G. Bagman 

K < v /V2;  this is another problem, which must be solved in a different way. 
Sufficient conditions for the validity of (4.12) may be written as 

R ~ ~ R ; ,  R ~ < I ,  ~~4 1. (4.14) 

It is interesting that to O(v+), the lift force is independent of the rotation of 
the particle. Indeed, a further inspection of equation (3.7) for the outer ex- 

pansion shows that the rotation enters into the lift through the integation of 

the term involving V on the left-hand side and the term containing ,P on the 
right-hand side, since by simple symmetry arguments the interaction of simple 
shear and particle rotation cannot produce a force but only a couple. Since each 
of these terms is smaller by a factor v-4 than those retained in (3.10), the outer 
expansion contributes a term O ( v 4 )  to the lift force which is smaller than 

L = nVQa3/v, (4.15) 

as given by the iterated inner expansion (2.17). The result (4.15) was given by 
Rubinow & Keller (1961) and applied by them to the Segr6 & Saberberg pheno- 
menon, but the present work shows that unless the rotation speed is very much 
greater than the rate of shear, and for a freely rotating particle R = QK, the 
lift force due to particle rotation is less by an order of magnitude than that due to 

the shear when the Reynolds number is small. 
It is worth mentioning that the equation for rl (and r,) can also be integrated 

and rl expressed as an integral of r3 and known functions. The extra drag 
proportional to V&d/v* can then be written as an integral like (4.11), but the 
expression is considerably more complicated and at the present stage the result 
does not appear to justify the apparently great labour of computation. 

5. Discussion 

Let us now consider the extent to which the previous analysis may apply to 
the motion of a single particle in Poiseuille flow through a tube of radius b. 
The velocity profile in the tube is 

(5.1) 

where u, is the mean velocity andp the distance from the axis. The tube Reynolds 
number Re is defined as Su,blv. A particle of radius a whose centre is at station 
p sees locally a shear of magnitude 4ump/b2. If, therefore, the particle lags behind 
the fluid with relative velocity V ,  measured relative to the streamline through 
the centre, the result (4.11) implies a (viscosity reduced) force 

u = 2um( 1 - p2/b2),  

2K Va2(u,p/vb2)* towards the axis, (5.2) 

and an equivalent inwards velocity 

KV umpa2 4 
3n ( vb2 ) - _ _ _  (5.3) 

If, on the other hand, the particle goes faster than the fluid, the inertial effect 
will move the particle away from the axis of the tube. 
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The lift on a small sphere in a slow shear $ow 395 

Three conditions must be satisfied before (5.2) or (5 .3)  can be thought relevant. 
First, the neglect of profile curvature must be reasonable, and an estimate for 
this condition to be valid can be obtained as follows. According to the general 
ideas of inner and outer expansions and the details of $3, the domain of the outer 
expansion is K&/Y* > 1, and we require that the profile curvature be negligible 
over a sizable portion of the outer domain. In  other words, the departure from 
linearity of the profile over a region of linear dimension v*/K* should be small, 
which gives from (5.1) 

PV*/K* >> V / K ,  i.e. P(K/v)*  = 2*(p/b)s Re4 >> 1. (5.4) 

Thus the tube Reynolds number must be large compared with unity and the 
particle not too close to the axis. Secondly, for the wall effect to be negligible 
except in so far as it  determines V ,  the wall must lie well inside the outer domain 

which implies 

If (5.4) is satisfied, the right-hand side of (5.5) will be small comparedwithunity. 
And thirdly, the particle Reynolds number must be small, i.e. 

K*a a p * 
- = 2 * -  - Re < 1. 
V* b b  0 

The first and third conditions are somewhat restrictive, as they imply large 

tube Reynolds numbers and very small particles, and hence it turns out that 
quantitative application to the Segr6 & Silberberg effect is limited. However 
the results (5.2) and (5.3) are in qualitative agreement with some observations 
by Oliver (1962), who watched particles in Poiseuille flow through a vertical 
tube with relative velocities produced by buoyancy effect. He found that down- 
ward settling particles in downward flowing liquid moved towards the wall, and 

upwards settling particles moved towards the axis, in agreement with (6 .2)  

and (5.3). Although the condition (5.4) was satisfied in these experiments, the 
value of a/b was about 2 so that (5.6) was violated except for particles very close 
to the axis and the theory is not strictly applicable, but the agreement is 

encouraging. On the other hand, Oliver also found that the effect of particle 
rotation, which was stopped by using eccentrically weighted spheres, was the 
opposite of that predicted by (4.15).  

Quantitative comparison with the Segr6 & Silberberg results is not possible 
because the relative velocity V is unknown, and there is no obvious way of 
calculating it. Moreover, most of their experiments were at lower values of the 
Reynolds number than permitted by (5.4). However, one feature of their experi- 
ments is consistent with the present theory and this is a systematic decrease in 

the observed annulus radius for Re > 30. Although this might be connected with 
entry-length phenomenon, it is interesting that (5.4) predicts that the pheno- 
menon might start to change when Re is around 10, and also the sign of the change 
is in accord with the theory. 
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396 P .  C. Suflman 

velocity profile 
U = ( a ( y 2 + z 2 ) + ~ z +  P)el, 

where without loss of generality it may be supposed that a > 0. An inner ex- 

pansion can be constructed as in 52, but the force cannot be found without some 

knowledge of the outer expansion. At the present time, no way has been dis- 

covered of overcoming the analytical difficulties involved, but it is possible to 

say something about the dependence of the lift force on the various parameters, 

although the magnitude and sign of the coefficients cannot be determined. We 
make the substitution (3.6) with the flow a t  infinity given by (5.7) but now we 

introduce the strained co-ordinates 

It is now appropriate to inquire about the force on a particle in a parabolic 

(5.7) 

r* = ( a t / v t ) r .  (5.8) 

Note that r* is dimensionless. The equation for q‘ now becomes 

+-- z*-*+q;el +-- --++(q‘.V*)q’ ( ax aq’ 1 a*V~ax*  a+V% 

= ( a / v ) i l P 6 ( r * ) +  (a/v)PzP.V*6(r*)  + ..., (5.9) 

where now the zeroth-order approximation gives (see Simha 1936) 

,P = - 6na( V + tauz) el, (5.10) 

and ,P is still given by (3.4). As discussed in $4, the lift force is proportional to 

a multiplied by the finite residue of q; at r* = 0 after the singularities have been 

subtracted out. By symmetry, the lift must involve a or V and K or R, since there 

will be no lift on a particle in a symmetrical flow field. Hence the contribution 

to the finite residue of q;, which comes from ,P and the dominant terms on the 

left-hand side of (5.9) that do not contain v, and which is O ( d )  if V+#au2 .I: 0, 

does not contribute to the lift. For 

K / ~ P v )  < 1, i.e. 2(p/b) Re* < 1, (5.11) 

the solution of (5.9) will be expressible as a series in ~ / a * d  for finite r*, and the 

leading terms in the lift force will be proportional to 

1 (5.12) 

and 

Note that the condition (5.11) is the converse of (5.4), which can be written as 

a v * / d  < K ,  so that (5.12) may be expected to apply for tube Reynolds numbers 

less than unity. The drift velocities corresponding to the forces (5.12) would be 

proportional to 

( u K / ~ + v # )  ( P  + gaa2), a 3 ~ ( a / v ) f ,  a3Q(a/v)3. (5.13) 

It is interesting that the last two expressions give a velocity proportional to the 

third power of the particle radius, as was in fact observed by Segr6 & Silberberg. 
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The lift on a small sphere in a slow shear flow 397 

It remains to determine the coefficients in (5.13) and the value of V + # a a 2 ,  

but this problem has so far proved intractable. The results (5.13) also predict 

by the dependence on viscosity that the drift velocity should be proportional to 

Re% if V is independent of v. Segr6 & Silberberg found that a reasonable correlation 

existed for the data if the transverse velocity was assumed linearly proportional 

to Re, but the completeness of the data is not such as to rule out a Retdepen- 

dence. The result (5.3) valid for large tube Reynolds numbers gives a Re+- 

behaviour. 

In  a previous attempt to find the lift on a sphere in a parabolic velocity profile, 

the author (1956a, b )  iterated the Navier-Stokes equations assuming in effect 

that B, and C, (see equation (2.16)) were zero. This procedure gives a force 

proportional to - arca4/v. The present work does not invalidate the actual calcula- 

tion, and there is a term of this order in the force, but it is now clear that there 

are larger terms of order v-3 generated by the matching of inner and outer 

expansions. The author’s (1956b) paper was devoted primarily to the effect of 

inertia upon the rotation of a spheroid in a uniform shear and the systematic 

change in orbit due to inertia effects was calculated by iteration, also on the 

assumption that matching with an outer expansion would have no effect to 

lowest order. It is shown in appendix B that this last assumption is in fact valid, 

so that the present work does not lead to a reappraisal of the main conclusions 

of the previous paper. 

This work was started while acting as a vacation consultant at  the National 

Physical Laboratory, Teddington. I am grateful to Dr J.T.Stuart for re- 

awakening my interest in the subject. 

Appendix A 

Let 

denote the components of the (viscosity reduced) stress tensor due to the first- 

order inner expansion. For convenience, the superscript 1 is dropped. The 

components satisfy the equation 

The force on the particle due to these stresses is 

where R is the radius of any sphere surrounding and concentric with the particle 

and n is the outwards normal. 

We require the following result. For any function 6, 

where the first step states that the surface integral is simply the derivative of 

the volume integral with respect to the radius of the bounding surface, and the 
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398 P. G. Saffmn 

second step is a consequence of the divergence theorem and the fact that 
ni = x,/R when the origin is at the centre of the sphere. 

where we have used x; = R and the continuity equation aqi/axi = 0, and all 

integrals are over r = R. The substitution of ( A  1 )  into ( A 3 )  and use of (A5) 

gives equation (2.9). 

To derive equation (2.10), we integrate (2.7) over the sphere r = R, use the 
result ( A 4 ) ,  and the further result that for any function q5 

on repeated applications of (A4). 

To obtain equation (2.11), we take the divergence of (2.7), multiply by r, 
and integrate over the sphere r = R. The equation follows from use of the identity 

and ( A 4 )  and (A6) .  

( A 4 ) ,  (A6) and ( A 7 )  gives 

xi v2q5 = v y X i  $1 - zaq5iaxi ( A 7 )  

The derivation of equation (2.15) is as follows. Repeated application of 

/ x i z j V 2 q , d S =  R 2 a / R - R /  d qidS &S , 

2.2 -dS aP = R2-]----2R/- d pxidS pxi as s a 3axi d R  R R '  

Then from equation (2.7), 

and (2.15) follows on using (A8) and (Ag), substituting (2.13) and (2.14), and 
carrying out the reduction. 
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The lift on a small sphere in a slow shear flow 399 

Appendix B 

In  general the motion is unsteady, and the equation of motion is 

Let us consider a spheroidal particle freely rotating in a simple shear q1 = KZ 

1 1 aq vzq-vp = - ( q . V )  q+-  - 
V v at 

At infinity, the velocity perturbation for the zeroth-order solution is propor- 

tional to a 3 ~ / r 2 ,  where a now denotes a typical dimension of the body. We suppose 

that the body moves so that there is no couple on it due to the Stokes flow. 

An inner expansion like (2.1) can then be constructed and the small couple due to 

inertia can be calculated (Saffman 1956b). However, the first-order term in the 

inner expansion of the velocity field is proportional to as r -+ 00, which does 
not vanish and hence the boundary condition a t  infinity is violated. 

We neglect buoyancy forces and suppose there is no net force on the particle. 

In  the notation of $3, ,P = 0 and to lowest order 2P is a symmetrical, periodic, 

second-order tensor with terms proportional to a 3 ~ .  In  terms of the dimensionless 

strained co-ordinate 

the equation satisfied by the outer expansion is 
(B 2) ? = Kh- /Y* ,  

Consider now the matching procedure. At any stage, the inner expansion is 

arbitrary to the extent of a solution of the homogeneous equation (Bl), with 

the right-hand side zero, which satisfies the boundary condition of zero velocity 

on the particle. It is almost obvious that the most important flow field that can 

give rise to a couple is one that has a constant rate of strain at infinity, and further 

that this flow field would be generated by matching with the terms in q’ that 

are linearly proportional to 2, y”, x” in the expansion about i = 0. We now argue 

that there are no terms of this type to order v-l. 

The dominant term of order i is proportional to the leading term on the right 

hand side of (B 3) and is therefore of the form 

( K / Y ) ~ ~ K P H ( F ,  ~ t )  +o(v-’), (B 4) 

where H is homogeneous of degree zero in 2, 8, 2. In  unstrained co-ordinates, 
(B4) is proportional to a3dr/v* ,  which is O ( v f )  and therefore makes no contribu- 

tion to the terms in the inner expansion of order v-l. Terms in the inner expansion 

of higher than the fist degree in the unstrained co-ordinates, which can also give 

rise to a couple, can readily be shown by a similar argument to be smaller than 

O(v-%). 
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