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Abstract We present the calculation of the light neutral
CP-even Higgs mass in the MSSM for a heavy SUSY spec-
trum by resumming enhanced terms through fourth logarith-
mic order (N3LL), keeping terms of leading order in the top
Yukawa coupling αt , and NNLO in the strong coupling αs . To
this goal, the three-loop matching coefficient for the quartic
Higgs coupling of the SM to the MSSM is derived to order
α2
t α

2
s by comparing the perturbative EFT to the fixed-order

expression for the Higgs mass. The new matching coefficient
is made available through an updated version of the program
Himalaya. Numerical effects of the higher-order resum-
mation are studied using specific examples, and sources of
theoretical uncertainty on this result are discussed.
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1 Introduction

In the MSSM (the minimal supersymmetric (SUSY) exten-
sion of the Standard Model (SM)), the mass of the lightest
CP-even Higgs boson is predicted to be of the order of the
electroweak scale. More precisely, at the tree-level, the Higgs
boson mass is restricted to be smaller than or equal to the mass
of the Z boson, Mh ≤ MZ . In viable parameter regions of the
MSSM, the loop corrections to the mass of the light CP-even
Higgs boson must therefore be large in order for the MSSM
to accommodate for the measured Higgs mass value of [3],

Mh = (125.09 ± 0.32) GeV. (1)

It has been known for a long time that these loop corrections
are indeed large, predominantly due to contributions from
top quarks and their super-partners, the “stops” [4–10]. To be
specific, in the limit where the superpartners are much heavier
than the electroweak scale, the pole mass of the light CP-even
Higgs boson, including the dominant one-loop contribution,
reads [11],

M2
h = M2

Z cos2 2β + 6g4
t v

2

(4π)2

[
ln

m2
t̃

m2
t

+ X2
t

m2
t̃

− X4
t

12m4
t̃

]
, (2)

where mt is the top-quark mass, m2
t̃

= mt̃1mt̃2 is the aver-
age of the two stop masses mt̃i (i = 1, 2), gt is the SM top
Yukawa coupling, v ∼ 246 GeV is the vacuum expectation
value of the SM, Xt = At − μ/ tan β is the stop mixing
parameter, At is the trilinear Higgs–stop coupling, μ is an
MSSM superpotential parameter and tan β = vu/vd is the
ratio of the up- and down-type MSSM Higgs boson VEVs.
Eq. (2) illustrates that a heavy SUSY spectrum logarithmi-
cally enhances the corrections to the Higgs mass, and that
the effect of the stop mixing parameter maximally enhances
the Higgs mass at |Xt/mt̃ | = √

6. Including higher order
effects, it turns out that the stop masses must be larger than
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mt̃i � 1 TeV in order to predict the physical Higgs mass of
Eq. (1) in scenarios with degenerate SUSY mass parameters
and arbitrary stop mixing [12–16].

For stop masses larger than about 1 TeV, logarithmic cor-
rections like the ln(m2

t̃
/m2

t ) term in Eq. (2) may spoil the pre-
cision of the perturbative fixed-order result. However, using
an effective field theory (EFT) approach, the leading (next-
to-leading, etc.) powers of these logarithmic terms can be
resummed to all orders in the coupling constants. Terms of
order v2/M2

S , where MS is the typical SUSY particle mass,
are usually neglected in an EFT calculation, which is justi-
fied at MS � 1 TeV [15]. Their inclusion can be achieved
by taking into account higher-dimensional operators [17], or
through so-called “hybrid” approaches [2,14,15,18–21].

The resummation of the logarithmic terms through an EFT
calculation is achieved by integrating out the SUSY partners
at a high scale μS ∼ MS . This means that the MS parame-
ters of the effective theory (the SM), in particular the quartic
Higgs coupling λ̄, which itself is not a free MSSM parame-
ter, are expressed in terms of the MSSM parameters at that
scale. The SM parameters are then evolved down to a low
scale μt ∼ v through numerical SM renormalization group
running, which implicitly resums all logarithms of ratios of
the high and the low scale, μS/μt . This allows to evaluate the
Higgs pole mass within the SM in terms of SM parameters:

M2
h = λ̄(μt )v̄

2(μt ) + · · · , (3)

where v̄ is the vacuum expectation value of the Higgs field
in the MS scheme, and the ellipsis denotes terms of higher
order in the SM couplings.

The crucial ingredients in the EFT approach are there-
fore the running MSSM parameters, which can be obtained
from spectrum generators such as FlexibleSUSY [18,
22], SARAH/SPheno [20,23–28], SOFTSUSY [29,30], or
SuSpect [31], the β functions of the SM parameters, and
the matching relations of the SM to the MSSM parameters.
In order to consistently resum through first (leading), second
(next-to-leading), . . . , kth logarithmic order (LL, NLL, . . .,
Nk−1LL), one needs to take into account the β function of
the quartic Higgs coupling, βλ, through k-loop order, and the
corresponding matching coefficient �λ through (k−1)-loop
order, while for the other parameters, the corresponding func-
tions are required only at lower orders. While βλ is known
through four loops [39,61], however, the matching coefficient
�λ has been available only through two loops [1,12,13,17].
The logarithmic order for the resummed expression of the
Higgs mass has thus been limited to the third logarithmic
order (NNLL) up to now.

In this paper, we show how the three-loop matching coeffi-
cient for the quartic Higgs coupling can be extracted from the
three-loop fixed-order expression [33,34] for the Higgs pole
mass in the MSSM. The latter has recently been implemented

into the Himalaya library [35]. We make the three-loop
threshold correction to the quartic Higgs coupling available
in Himalaya 2.0.1, which can be downloaded from

https://github.com/Himalaya-Library

This result allows us to study the impact of the resummation
to fourth logarithmic order on the numerical prediction of
the Higgs boson mass in the decoupling limit of the MSSM
by implementing the three-loop correction into HSSUSY, an
EFT spectrum generator from the FlexibleSUSY pack-
age.

2 Formalism

As briefly described in the introduction, there are different
approximation schemes commonly used to calculate the light
CP-even Higgs boson mass in the MSSM: The fixed-order,
the EFT, and the hybrid calculation. The fixed-order calcu-
lation includes the SUSY effects through an expansion in
terms of couplings up to a fixed order. In this expansion, log-
arithmic corrections appear, which may be large if there is
a large split between the SUSY and the electroweak scale,
MS � v. The fixed-order calculation is therefore a suitable
approximation as long as MS ∼ v. In an EFT calculation, an
expansion in powers of v̄2/M2

S is performed, and the leading
(sub-leading, …) powers of such logarithms are resummed to
all orders in the couplings. An EFT calculation is therefore
a suitable approximation if MS � v, but becomes invalid
when MS ∼ v.

In the following sections, we describe both the fixed-order
and the EFT calculation in more detail, in order to prepare
for the extraction of the three-loop correction to the quartic
Higgs coupling of the Standard Model later in Sect. 3.

The set of SM MS parameters relevant to our calculation
will be denoted as

X̄ = {λ̄, ᾱt , ās, v̄} , (4)

where

ᾱt = ḡ2
t

4π
, ās = ḡ2

3

(4π)2 , (5)

λ̄ denotes the quartic Higgs coupling, ḡt the SM top Yukawa
coupling, ḡ3 the strong gauge coupling, and v̄ the vacuum
expectation value of the Higgs field in the SM. Furthermore,
we use the following set of MSSM parameters, renormalized
in the DR

′
scheme [36],

Y = {αt , as, v,mt̃1 ,mt̃2 , Xt ,mg̃,mq̃} , (6)
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with

αt = y2
t

4π
, as = g2

3

(4π)2 , v =
√

v2
u + v2

d ,

mq̃ =
⎛
⎝ ∏

f ∈{u,d,c,s,b}

2∏
n=1

m f̃n

⎞
⎠

1/10

, (7)

whereas yt denotes the MSSM top Yukawa coupling, g3 the
strong gauge coupling, vu and vd the vacuum expectation
values of the neutral up- and down-type Higgs bosons, Xt =
At −μ/ tan β the stop mixing parameter,mg̃ the gluino mass,
and mq̃ the average mass of all squarks but the stops. The
running stop masses mt̃1 ≤ mt̃2 are the eigenvalues of the
stop mass matrix:

Mt =
(
m2

t + m2
Q,3 mt Xt

mt Xt m2
t + m2

U,3

)
, (8)

with the SUSY breaking parameters mQ,3 and mU,3. Note
that, due to the SUSY constraints, Y does not contain a sep-
arate parameter for the quartic Higgs coupling.

2.1 Fixed-order calculation

In the Standard Model, the pole mass of the Higgs boson can
be expressed as a series expansion in terms of the SM cou-
plings and logarithms. The dominant terms in the expansion
are those which involve the strong and the top Yukawa cou-
pling. In the following, we consider only corrections to the
tree-level Higgs mass of the form O(ᾱ2

t ā
n
s ) with n ≥ 0, in

which case the pole mass of the Higgs boson can be expressed
in terms of MS parameters as

M2
h = v̄2(μt )

⎡
⎣λ̄(μt )

+κᾱ2
t (μt )

∞∑
n=0

n+1∑
p=0

κnāns (μt )c
(n,p)
SM l̄ pμt

⎤
⎦ , (9)

where

l̄μt = ln
μ2
t

m̄2
t
, m̄2

t = ḡ2
t v̄

2

2
= 2πᾱt v̄

2, (10)

and μt is the renormalization scale. The auxiliary parameter
κ = 1 has been introduced to label the orders of perturbation
theory. The c(n,p)

SM are pure numbers; through three-loop order
(n = 2), the non-logarithmic coefficients read [37–39]

c(0,0)
SM =c(1,0)

SM = 0 ,

c(2,0)
SM =−1888

9
+ 160ζ3 + 7424

45
ζ 2

2

− 1024

3
Li4

(
1

2

)
− 512

9
Li22

(
1

2

)
− 1024

9
Li2

(
1

2

)
ζ2,

(11)

where

ζ2 = π2

6
= 1.64493 . . . , ζ3 = 1.20206 . . . ,

Li2

(
1

2

)
= 0.582241 . . . , Li4

(
1

2

)
= 0.517479 . . . .

(12)

The logarithmic coefficients (p 
= 0) can be easily obtained
from the renormalization-group (RG) invariance of M2

h and
the RG-equations (RGEs) of the parameters [37],

μ
d

dμ
x̄i (μ) = βx̄i (X̄(μ)) , (13)

with x̄i ∈ X̄ . The terms in the SM β functions that are relevant
for our discussion read

βās = −14κ ā2
s − 52κ2ā3

s + · · · ,

βᾱt = −ᾱt

[
16κ ās + 216(κ ās)

2 + 1238.7(κ ās)
3 + · · ·

]
,

βλ̄ = −κᾱ2
t

[
12 + 64κ ās + 8

(
133

3
− 16ζ3

)
(κ ās)

2

− 16616.3(κ ās)
3 + · · ·

]
.

(14)

In the MSSM one can write an analogous expression for
the light CP-even Higgs boson mass in terms of the MSSM
parameters. Neglecting sub-leading terms of v2/M2

S , one
obtains the expansion in the decoupling limit, which reads

M2
h = M2

Z cos2 2β

+κv2(μt )α
2
t (μt )s

4
β

∞∑
n=0

n+1∑
p=0

κnans (μt )c
(n,p)
MSSM(Y (μt )) l

p
μt ,

(15)

with

lμt = ln
μ2
t

m2
t

, m2
t = y2

t v
2
u

2
= 2παtv

2
u = 2παtv

2s2
β,

sβ = sin β. (16)

The coefficients c(n,p)
MSSM have been calculated analytically

through n = 1 and can be extracted from Refs. [40–43]. The
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result for n = 2 was obtained in Refs. [33,34] in terms of
“hierarchies”, i.e., expansions in various limits of the MSSM
particle spectrum.1 The c(n,p)

MSSM contain logarithmic terms of
the form ln(mt/MS) which spoil the convergence properties
of the purely fixed-order result of Eq. (15) if MS � mt .
To make this more explicit, let us introduce a second scale
μS 
= μt by perturbatively evolving the running MSSM
parameters in Eq. (15) from μt to μS , using the correspond-
ing β functions defined in analogy to Eq. (13). This means
that we apply the replacement

yi (μt ) = yi (μS)

+
∞∑
n=1

n∑
p=1

κnd(n,p)
i (Y (μS))l

p
t S, lt S = ln

μ2
t

μ2
S

(17)

to Eq. (15) for all MSSM parameters yi ∈ Y , where the
d(n,p)
i are determined by the perturbative coefficients of the

respective β functions. After re-expanding in κ , this results
in a relation of the form

M2
h = M2

Z cos2 2β

+κv2(μS)α
2
t (μS)s

4
β

∞∑
n=0

n+1∑
p=0

n+1−p∑
k=0

κnans (μS)

×c(n,p,k)
MSSM (Y (μS)) l

p
μt l

k
t S . (18)

In a fixed-order calculation, the perturbative expansion is
truncated at finite order in κ . Keeping terms through order
κN , we will denote this result as

M2
h,FO,N (μt , μS) . (19)

For mt � MS , any choice of μt and μS will result in large
logarithms in Eq. (19). This is avoided in the EFT approach
which allows to resum the (leading, sub-leading, etc. pow-
ers of) logarithms lt S to all orders in perturbation theory.
This will be the subject of the next section. Of course, a re-
expansion of the EFT result must take the fixed-order form
of Eq. (19) again. Comparison of this re-expanded result to
the fixed-order three-loop result will allow us to derive the
three-loop matching coefficient for λ̄ in Sect. 3.

2.2 EFT calculation

The idea behind the EFT calculation is to resum the loga-
rithms of the form lt S in Eq. (18) (“large logarithms”) by
integrating out the heavy (i.e., SUSY) particles. As a result,

1 As has been shown recently, the three-loop calculation of the Higgs
mass in the MSSM in the DR

′
scheme is consistent with supersym-

metry [44–46]; see also Refs. [47,48] concerning the consistency of
dimensional reduction [49] and perturbative calculations in SUSY.

one obtains a relation between the parameters of the effective
theory (the SM) and the full theory (the MSSM) of the form

x̄i (μ) = fi (Y (μ), μ) . (20)

In particular, one obtains a relation between λ̄ and the MSSM
parameters, which means that the Higgs mass in the SM,
given by Eq. (9), is fixed in terms of the parameters Y . The
fi in Eq. (20) are known in terms of perturbative expansions,
neglecting terms of the order v2/M2

S . They depend explicitly
on the renormalization scale μ in the form of ln(μ/MS).
Therefore, if Eq. (20) is employed at the scale μ ∼ MS , no
large logarithms appear in the matching. For our purpose, the
relevant matching relations of Eq. (20) take the form

λ̄ = M2
Z

v2 cos2 2β + κα2
t s

4
β(�λ)α2

t

+ κ2α2
t ass

4
β(�λ)α2

t as
+ κ3α2

t a
2
s s

4
β(�λ)α2

t a2
s
+ · · · ,

ās = as
(

1 + κas(�as)as + κ2a2
s (�as)a2

s
+ · · ·

)
,

ᾱt = αt s
2
β

(
1 + κas(�αt )as + κ2a2

s (�αt )a2
s
+ · · ·

)
,

v̄ = v + · · · ,

(21)

where the perturbative coefficients (�xi ) can be found in
Refs. [12,50,51], except for (�λ)α2

t a2
s
, which will be one of

the central results of this paper. Explicit expressions for the
degenerate-mass case will be given in Sect. 3.3. The depen-
dence on the renormalization scale μ, indicated in Eq. (20),
has been suppressed here.

Assuming that the numerical values for the yi (μS ∼ MS)

are known,2 Eq. (20) provides numerical values for the MS
SM parameters x̄i (μS). Then one may use the numerical
solution of the SM MS RGEs of Eq. (13) to evolve the
x̄i (μS) down to μt ∼ Mt . In solving the RGEs numeri-
cally, one effectively resums large logarithms of the form
lt S = ln(μt/μS). This is in contrast to the fixed-order calcu-
lation, where these large logarithms appear explicitly in M2

h
up to a fixed order, see Eq. (19). The x̄i (μt ) are then inserted
into Eq. (9) in order to calculate M2

h up to terms of order
v2/M2

S . We denote this result as

M2
h,EFT(μt , μS) . (22)

The only fixed-order logarithms involved in this result are
of the form ln(μS/MS) from Eq. (20), and ln(μt/m̄t ) from
Eq. (9). They can be made small by choosing μS ∼ MS and
μt ∼ m̄t , respectively.

2 In practice, they are obtained from a spectrum generator, using a
specific MSSM scenario, constrained by the experimental values for
the SM parameters; see also Sect. 4.
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2.3 Re-expanding the EFT result

The perturbative version of the approach described in the
previous section would be to first evolve the x̄i (μ) perturba-
tively from μ = μt to μS , i.e., to solve Eq. (13) in the form
Eq. (17), which explicitly introduces large logarithms of the
form lt S :

M2
h = v̄2(μS)

⎡
⎣λ̄(μS)

+κᾱ2
t (μS)

∞∑
n=0

n+1∑
p=0

n+1−p∑
k=0

κnāns (μS)c
(n,p,k)
SM l pμt l

k
t S

⎤
⎦ .

(23)

Subsequently, one expresses the x̄i (μS) by the yi (μS)

through Eq. (20). This last step only introduces small loga-
rithms of the form ln(μS/MS). Re-expanding in κ , one thus
arrives at a result which coincides with Eq. (18). If we keep
terms through order κN , this result will be denoted as

M2
h,EFT,N (μt , μS) . (24)

Obviously, the following formal relation applies:

M2
h,EFT(μt , μS) = M2

h,EFT,N (μt , μS) + O(κN+1) , (25)

if the same order in the perturbative expansions of the β-
functions, the matching relations, and the SM expression for
M2

h is used in deriving the results on both sides of this equa-
tion. Since the perturbative expression for M2

h is unique, we
also have

M2
h,FO,N (μt , μS) = M2

h,EFT,N (μt , μS) , (26)

with the fixed-order result of Eq. (19). These relations will
be used in the next section to extract the three-loop matching
relation for the quartic Higgs coupling λ̄(μS).

The goal of this paper is to calculate the light CP-even
Higgs pole mass of the MSSM in the decoupling limit
including the fixed-order through O(α2

t a
2
s ) (N3LO), as well

as resummation in α2
t α

n
s through fourth logarithmic order

(N3LL). This calculation requires to include

• the four-loop β function for λ̄ to order κ4ᾱ2
t ā

3
s ;

• the three-loop β function for ᾱt to order κ3ᾱt ā3
s ;

• the two-loop β function for ās to order κ2ā3
s ;

• the three-loop matching relation for λ̄ to order κ3ᾱ2
t ā

2
s ;

• the two-loop matching relation for ᾱt to order κ2ᾱt ā2
s ;

• the one-loop matching relation for ās to order κ ā2
s ;

• the three-loop SM contributions to the Higgs mass,
Eq. (9), to order κ3ᾱ2

t ā
2
s .

Currently, all of the necessary expressions are known, except
for the three-loop matching relation for λ̄ to order ᾱ2

t ā
2
s . In

the next section, we will derive this quantity from the H3m
result, i.e., the known fixed-order corrections of O(α2

t a
2
s ) for

M2
h from Refs. [33,34].

3 Extraction of the three-loop matching coefficient

3.1 General procedure

Using Eqs. (9), (11), (14) and (21), and setting μt = μS , the
three-loop SUSY QCD result for M2

h,EFT,3(μS, μS) can be
written in the following form:

M2
h,EFT,3(μS, μS) = M2

h,EFT,2(μS, μS)

+ κ3v2α2
t a

2
s s

4
β

{
368 l3St

+
[
80 + 48(�as)as + 96(�αt )as

]
l2St

−
[
64ζ3 + 1028

3
+ 16(�as)as + 128(�αt )as

− 6(�αt )
2
as − 12(�αt )a2

s

]
lSt

+ 16(�αt )as − 9(�αt )
2
as − 6(�αt )a2

s

+ (�λ)α2
t a2

s
+ c(2,0)

SM

}
, (27)

where lSt = ln(μ2
S/m

2
t ) and, as before, the μS dependence

of αt , as , �αt , �as and �λ is suppressed. The only unknown
term on the r.h.s. of Eq. (27) is the three-loop matching coeffi-
cient for the quartic Higgs coupling (�λ)α2

t a2
s
. Assuming that

the three-loop fixed-order result M2
h,FO,3(μS, μS) is known,

we could insert Eq. (26) into (27) and solve for the unknown
matching coefficient:

M2
h,FO,3(μS, μS) − M2

h,EFT,3(μS, μS)

∣∣∣∣
(�λ)

α2
t a

2
s
=0

= κ3v2α2
t a

2
s s

4
β(�λ)α2

t a2
s
. (28)

Note that all large logarithms lSt cancel on the l.h.s. of
Eq. (28). Thus, we may write Eq. (28) as

κ3v2α2
t a

2
s s

4
β(�λ)α2

t a2
s

= M2
h,FO,3(μS, μS)

− M2
h,EFT,2(μS, μS) − �M2

h,3(μS) , (29)

where,

�M2
h,3(μS) = κ3v2α2

t a
2
s s

4
β

[
16(�αt )as

− 9(�αt )
2
as − 6(�αt )a2

s
+ c(2,0)

SM

]
. (30)
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The matching coefficient (�λ)α2
t a2

s
obtained in this way

is defined in the MS scheme and expressed in terms of
the MSSM DR

′
parameters αt and as , in accordance with

Eq. (21).3 Inverting the matching relations for αt and as ,

as = ās
{

1 − κ ās
[
�as)as − κ2ā2

s ((�as)a2
s

− 2(�as)as
]}

,

αt s
2
β = ᾱt

{
1 − κ ās(�αt )as − κ2ā2

s

[
(�αt )a2

s

−(�as)as (�αt )as − (�αt )
2
as

]}
, (31)

it can also be expressed in terms of SM MS parameters
according to,

λ̄ = M2
Z

v̄2 cos2 2β + κᾱ2
t (�λ)ᾱ2

t
+ κ2ᾱ2

t ās(�λ)ᾱ2
t ās

+ κ3ᾱ2
t ā

2
s (�λ)ᾱ2

t ā2
s
+ · · · , (32)

where,

(�λ)ᾱ2
t

= (�λ)α2
t
,

(�λ)ᾱ2
t ās

= (�λ)α2
t as

− 2(�λ)α2
t
(�αt )as ,

(�λ)ᾱ2
t ā2

s
= (�λ)α2

t a2
s

+ (δλ)α2
t a2

s
, (33)

and

(δλ)α2
t a2

s
= −(�λ)α2

t as

[
(�as)as + 2(�αt )as

]
+ (�λ)α2

t

[
3(�αt )

2
as − 2(�αt )a2

s
+ 2(�αt )as (�as)as

]
.

(34)

3.2 Tree-loop fixed-order result

Equation (28) shows how the three-loop matching coeffi-
cient for the quartic Higgs coupling can be extracted from the
three-loop fixed-order result for the MSSM Higgs mass. The
latter has been calculated in Refs. [33,34] in the form of a set
of expansions around various limiting cases for the SUSY
masses (“hierarchies”). Since the explicit formulæ for this
result are available in theMathematica packageH3m [54],
we will refer to it as the “H3m result” in what follows. In all
of the different expansions, terms of O(v2/M2

S) have been
neglected. The calculation was performed in the DR scheme
with an on-shell renormalization condition for the ε-scalars
were m2

ε = 0.4 We refer to this renormalization scheme as
the “H3m scheme”.

3 To convert (�λ)α2
t a2

s
from the MS to the DR

′
scheme, an additional

explicit three-loop conversion term of O(α2
t a

2
s ) for λ would be neces-

sary, analogous to the one-loop conversion terms of Refs. [52,53].
4 The authors also provide their result in a modified DR (MDR) scheme,
where heavy SUSY particles automatically decouple.

3.2.1 Transformation to DR
′

In order to be able to seamlessly combine the three-loop result
in the H3m scheme with existing lower-order calculations, it
is necessary to convert it to the more commonly used DR

′

scheme, where mε completely decouples from the model. To
do that, we need to reconstruct themε-terms in theH3m result.
This can be done by noting that, up to two-loop O(α2

t as),
the analytic form of the corrections to the Higgs mass are
identical in the DR, the DR

′
, and the H3m scheme for mε =

0. Since the DR
′

result is independent of mε to all orders
in perturbation theory, we can convert the known two-loop
O(α2

t as) DR
′

expression to the DR scheme by shifting the
stop masses according to Refs. [36,41,55]. Expanding the
resulting expression to O(α2

t a
2
s ) generates all mε-dependent

terms up this order in the DR scheme. From there, we can
convert the stop masses and mε to the H3m scheme, using
the formulæ of Ref. [34]. This generates a non-vanishing
term at O(α2

t a
2
s ), which is non-zero even when the on-shell

condition mε = 0 is applied. For mε = 0, this term reads5

(�M2
h )H3m→DR

′ = 8κ3v2α2
t a

2
s s

4
β

m2
t̃1
m2

t̃2
�3

12

[
− 6

(
1 + lSg̃

)
m2

g̃

+10
(
1 + lSq̃

)
m2

q̃ +
2∑

i=1

(1 + lSt̃i )m
2
t̃i

]

×
[
(�3

12 + �12X
4
t )

2∑
i=1

m2
t̃i

− 2�3
12X

2
t

+ 4m2
t̃1
m2

t̃2
X4
t ln

(
mt̃2

mt̃1

)]
, (35)

with lSx = ln
(
μ2
S/m

2
x

)
and �12 = m2

t̃1
−m2

t̃2
. Adding these

terms to the H3m result provides the three-loop Higgs mass
corrections in the DR

′
scheme:

M2
h

∣∣∣
DR

′ = M2
h

∣∣∣
H3m

+ (�M2
h )H3m→DR

′ . (36)

We checked that the resulting DR
′
expression is renormaliza-

tion scale independent by using the corresponding stop mass
β functions in the DR

′
scheme. Furthermore, we explicitly

verified the cancellation of the lSt terms in Eq. (28) up to
higher orders in the hierarchy expansions of the H3m result.

3.2.2 Reconstruction of the logarithmic terms

After transforming the H3m result into the DR
′

scheme
according to Eq. (36), it can be inserted into Eq. (28). This
results in the three-loop matching coefficient for the quartic
Higgs coupling, expressed in terms of the H3m-hierarchies

5 Note that the limit mt̃1 → mt̃2 in Eq. (35) is well-defined.
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defined in Ref. [34]. We denote this result as (�λH3m)α2
t a2

s
in

what follows.
Due to renormalization group invariance of the MSSM

Higgs mass, we can actually derive the logarithmic terms
of the form ln(μ2/M2

S) in �λ for general MSSM particle
masses by requiring that

μ
d

dμ

[
M2

h,FO,2(μ,μ) + �M2
h,3(μ,μ)

+κ3v2α2
t (μ)a2

s (μ)s4
β(�λ(μ))α2

t a2
s

]
= O(κ4) , (37)

with �M2
h,3 from Eq. (30), and using the three-loop MSSM

β functions. We refer to the corresponding matching coeffi-
cient which includes the exact mass dependence of the log-
arithmic terms reconstructed in this way as (�λEFT)α2

t a2
s
.

Note that only the non-logarithmic term of the fixed-order
three-loop result of Ref. [34] enters this result. Of course,
expanding (�λEFT)α2

t a2
s

in terms of the H3m hierarchies up
to the appropriate orders, we recover (�λH3m)α2

t a2
s

as defined
above.

3.3 Example: degenerate-mass case

In this paper, we refer to the limit mU,3 = mQ,3 = mg̃ =
mq̃ = MS as the “degenerate-mass case”, where mQ,3 and
mU,3 are soft-breaking parameters of the Lagrangian intro-
duced in Eq. (8). Since we have made the xt dependence
explicit in our result and we neglect all but the leading terms
in αt ∝ m2

t , we can set mt̃1 = mt̃2 = MS in our expressions.
In the degenerate-mass limit, the expression for (�λ)α2

t a2
s

is simple enough to be quoted here. In this case, the matching
coefficients for the top Yukawa coupling, defined by Eq. (21),
are given by,

(�αt )as = −8

3
(−1 + LS + xt ) , (38)

(�αt )a2
s

= 2147 − 1844LS + 420L2
S

27

+ −928 + 160LS

27
xt + 16

9
x2
t , (39)

where LS = ln(μ2
S/M

2
S). This leads to a subtraction term

(see Eq. (30))

�M2
h,3(μS) = κ3v2α2

t a
2
s s

4
β

[
− 2

(
2243 − 2228LS + 708L2

S

)
9

− 2 (−1312 + 736LS) xt
9

− 224x2
t

3
+ c(2,0)

SM

]
, (40)

with c(2,0)
SM from Eq. (11). Using the “h3 hierarchy” of H3m,

where all SUSY masses are assumed to be of comparable

size and the expansion is performed in the mass differences,
the H3m result for the degenerate-mass case reads

M2
h,FO,3 = 8

27
κ3v2α2

t a
2
s s

4
β

[
− 1246 − 2132LS + 1326L2

S

− 504L3
S − 1926ζ3 + 216LSζ3

+ xt
(
−2776 + 400LS − 1464L2

S + 1908ζ3

)
+ x2

t

(
3678 − 6LS + 126L2

S − 1485ζ3

)
+ x3

t

(
2722 + 20LS + 108L2

S − 2259ζ3

) ]
+ O(x4

t ),

(41)

where we set μt = μS . Note that higher orders in xt are not
included in the H3m result. The corresponding shift from the
H3m to the DR

′
scheme is (see Eq. (35))

(�M2
h )H3m→DR

′ = 16κ3v2α2
t a

2
s s

4
β (1 + LS)

(
6 − 6x2

t + x4
t

)
. (42)

Combining Eqs. (40), (41), and (42) according to Eq. (28),
we obtain for the matching coefficient in terms of DR

′
param-

eters

(�λ(μS))α2
t a2

s

= 1

27

{
6082 − 27832LS + 14856L2

S − 4032L3
S

− 15408ζ3 + 1728LSζ3 − 27c(2,0)
SM

+ xt
[
7616LS − 11712L2

S + 32(−940 + 477ζ3)
]

+ x2
t

[
28848 − 2640LS + 1008L2

S − 11880ζ3

]
+ x3

t

[
160LS + 864L2

S + 8(2722 − 2259ζ3)
] }

+ O(x4
t ). (43)

If one re-expresses the one- and two-loop corrections in terms
of SM MS parameters the following shift must be added to
Eq. (43) in the degenerate-mass case,

(δλ(μS))α2
t a2

s
= 1

27

[
26916LS − 18816L2

S − 5904L3
S

− xt
(
−3744 + 14016LS + 18816L2

S

)
− x2

t

(
29652 − 5424LS − 9936L2

S

)
− x3

t

(
−6768 − 13152LS − 2688L2

S

) ]
+ O(x4

t ).

(44)

3.4 Implementation into Himalaya

Recently, the original Mathematica [56] implementation
H3m of the three-loop fixed-order results of Ref. [34] was
translated into the C++ library Himalaya 1.0 [35] in order
to facilitate the combination of these terms with lower-
order codes such as FlexibleSUSY, SARAH/SPheno,
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SOFTSUSY or SuSpect, which typically work in the
DR

′
scheme. Himalaya 2.0.1 extends the functionality of

Himalaya 1.0 to provide the three-loop matching coeffi-
cient (�λ)α2

t a2
s

by implementing Eq. (28), including the con-

version from the H3m to the DR
′

scheme. In addition, we
implemented the shift of Eq. (34) which converts the param-
eters in the matching coefficient from the DR

′
to the MS

scheme. This allows to directly use the result in existing EFT
codes such as HSSUSY [18] or SusyHD [13], where the one-
and two-loop corrections are expressed in terms of SM MS
parameters.

Since the H3m result is given as an expansion in mass hier-
archies, it is important to provide uncertainty estimates due to
missing higher order terms in these expansions. We employ
two largely complementary ways to estimate this uncertainty,
referring to the logarithmic and the non-logarithmic terms,
respectively.

Concerning the logarithmic terms, we proceed as follows.
As described in Sect. 3.2.2, within the DR

′
scheme, there are

two possible extractions of the matching relation for the quar-
tic Higgs coupling. Both of them use the hierarchy expan-
sions of H3m for the non-logarithmic terms. However, while
(�λH3m)α2

t a2
s

uses these expansions also for the logarithmic
terms, (�λEFT)α2

t a2
s

contains their exact mass dependence,
derived from RG invariance (see Sect. 3.2.2). We thus use
the difference of (�λEFT)α2

t a2
s

to (�λH3m)α2
t a2

s
at the scale

μS as an uncertainty estimate:

δexp = α2
t a

2
s s

4
β

∣∣∣(�λH3m)α2
t a2

s
− (�λEFT)α2

t a2
s

∣∣∣ . (45)

For the non-logarithmic terms, on the other hand, we con-
sider the conversion term (δλ)α2

t a2
s

defined in Eq. (34), whose
mass dependence is known exactly. Since the main source of
uncertainty in these expansions occurs for large mixing, we
determine the highest power nmax of xt taken into account
in the specific H3m hierarchy, and use the size of the terms
of order xnt with nmax < n ≤ 4 in the non-logarithmic part
of (δλ)α2

t a2
s

as uncertainty estimate, named δxt . Note that

powers higher than x4
t cannot appear in (�λ)α2

t a2
s

when the
result is expressed in terms of the MSSM top Yukawa cou-
pling. The reason is that the one-loop correction (�λ)α2

t
con-

tains no terms with xn>4
t , and additional loops involving only

(s)quarks, gluons, and gluinos do not introduce any additional
Xt -dependence. To be specific, let us again consider the limit
of degenerate MSSM mass parameters. In this case,H3m uses
the h3 hierarchy described in Sect. 3.3, which includes only
terms through x3

t though. The uncertainty is thus estimated
with the help of the non-logarithmic terms of order x4

t in
(δλ)α2

t a2
s
, given by,

δxt = 1

27
α2
t a

2
s s

4
β × 5735 x4

t . (46)

We combine these two uncertainties linearly and define the
total uncertainty due to the hierarchy expansions as,

δ
(
α2
t a

2
s s

4
β(�λEFT)α2

t a2
s

)
= δxt + δexp. (47)

Technical details on how to calculate the three-loop correc-
tions and the combined uncertainties with Himalaya 2.0.1
can be found in Appendix.

4 Numerical study and comparison with other
calculations

To study the numerical impact of the three-loop matching
coefficient (�λ)ᾱ2

t ā2
s

on the value of the light MSSM Higgs
mass, we have implemented the coefficient into HSSUSY,
a spectrum generator from the FlexibleSUSY package
which follows the EFT approach outlined in Sect. 2.2. It
assumes a high-scale MSSM scenario, where the quartic
Higgs coupling of the SM is evaluated at the SUSY scale μS

by the matching to the MSSM. The scenario assumes that
all SUSY particles have masses around MS and the Stan-
dard Model is the appropriate EFT below that scale. In the
original version of HSSUSY, the quartic Higgs coupling is
determined using the two-loop expressions of O(ᾱs(ᾱt +
ᾱb)

2 + (ᾱt + ᾱb)
3 + ᾱτ (ᾱb + ᾱτ )

2) from Refs. [12,17],
thereby ignoring terms of O(v2/M2

S). The known three- and
four-loop SM MS β functions of Refs. [32,39,57–61] are
used to evolve the SM parameters to the electroweak scale,
where the gauge and Yukawa couplings as well as the Higgs
VEV are extracted from the known low-energy observables
at full one-loop level plus the known two- and three-loop
QCD corrections of Refs. [62–65]. The Higgs boson pole
mass is calculated by default at the scale μt = Mt at the
full one-loop level with additional two-, three- and four-
loop SM corrections of O(ᾱs(ᾱ

2
t + ᾱ2

b) + (ᾱt + ᾱb)
3 + ᾱ3

τ ),
O(ᾱ4

t + ᾱ3
t ᾱs + ᾱ2

t ᾱ
2
s ) and O(ᾱ2

t ᾱ
3
s ) from Refs. [38,39,66].

Thus, by including (�λ)ᾱ2
t ā2

s
in the calculation, HSSUSY

provides a resummed Higgs mass prediction in the decou-
pling limit of the MSSM through N3LO+N3LL at O(ᾱ2

t ᾱ
2
s ),

including the full NLO+NLL and the NNLO+NNLL result at
O(ᾱs(ᾱ

2
t +ᾱ2

b)+(ᾱt+ᾱb)
3+ᾱ3

τ ). Unless stated otherwise, we
set μS = MS and μt = Mt in the following numerical anal-
ysis and use Mt = 173.34 GeV and α

SM(5)
s (MZ ) = 0.1184.

In Fig. 1 the effect of (�λEFT)ᾱ2
t ā2

s
on the pure EFT calcu-

lation of HSSUSY is shown as a function of the SUSY scale
MS for degenerate soft-breaking mass parameters, all set
equal to MS . Furthermore, we set μ(μS) = mA(μS) = μS ,
tan β(μS) = 10, At = Xt + μ/ tan β, while all other tri-
linear couplings are set to zero. The upper row shows a sce-
nario with vanishing stop mixing, Xt (μS) = 0, the lower row
shows one with maximal stop mixing, Xt (μS) = −√

6MS .
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Fig. 1 Comparison of the three-loop HSSUSY (EFT) calculation with lower order EFT and fixed-order MSSM calculations from the
FlexibleSUSY package as a function of the SUSY scale. The orange band marks the experimentally measured value of the Higgs mass as
written in Eq. (1)

The left column of Fig. 1 displays the value of the calculated
Higgs boson mass for these two scenarios. The blue dashed
line and the blue solid line show the two- and three-loop
fixed-order calculations of FlexibleSUSY 2.1.0 and Flex-
ibleSUSY 2.1.0 + Himalaya 2.0.1, respectively. The black
dotted, dashed, and red solid line depict the EFT calcula-
tions of HSSUSY with λ̄(μS) calculated at the one-, two-,
and three-loop level, respectively. Here, �λ1L and �λ2L

denote all available one- and two-loop corrections, respec-
tively, and �λ3L = (�λEFT)ᾱ2

t ā2
s
. For comparison, the yel-

low horizontal band shows the current experimental value

for the Higgs mass, see Eq. (1). As was already observed
for example in Refs. [16,18,19], we find that in the range
MS ≥ 1 TeV the fixed-order and the EFT calculations devi-
ate by several GeV. This is to be expected, because the EFT
calculation resums the large logarithmic corrections (in con-
trast to the fixed-order calculation) and above MS � 1 TeV
the neglected terms of O(v̄2/M2

S) are negligible [15,18,20].
As the black dashed and solid red line are hardly distin-

guishable in these plots, we show the shift relative to the one-
and two-loop calculations of HSSUSY in the right column of
Fig. 1. The gray band in Fig. 1d corresponds to the theoretical
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Fig. 2 Comparison of the three-loop HSSUSY (EFT) calculation with lower order EFT and fixed-order MSSM calculations from the
FlexibleSUSY package as a function of the relative stop mixing

uncertainty on the result due to the hierarchy expansions of
the H3m result, evaluated according to Eq. (47); it amounts
to more than 100% of the central shift for maximal mixing.
For Xt = 0, this uncertainty is zero, see Eq. (46), because
we also set μS = MS . This is consistent with the fact that
in this case, the degenerate-mass limit of the H3m result is
exact. The red band shows the “EFT uncertainty” as defined
in Refs. [12,13,16], estimating effects from missing terms of
O(v̄2/M2

S). We see that the impact of (�λEFT)ᾱ2
t ā2

s
is largely

negative with respect to the two-loop threshold correction,
�λ2L , and may reduce the Higgs mass by up to 0.6 GeV
for maximal mixing when considering all values in the grey
uncertainty band. For zero stop mixing, the shift is signifi-
cantly smaller (� 20 MeV).

In Fig. 2, the Higgs mass prediction is shown as a func-
tion of the relative stop mixing parameter xt = Xt/MS for a
scenario with tan β = 10 and MS = 5 TeV, where both the
fixed-order and the EFT approach can accommodate for the
experimentally observed value of Mh , Eq. (1), as long as |xt |
is sufficiently large. The right panel shows again the differ-
ence of the three-loop calculation of HSSUSYwith respect to
the one- and two-loop calculations. In accordance with Fig. 1,
we find that the shift induced by including (�λEFT)ᾱ2

t ā2
s

is
negative by trend, and below about 200 MeV for xt > −2.
Below that value, the effects could be of order 1 GeV, but the
uncertainty of our approximation grows to about 100% in this
case, because are not included in the hierarchy expansions of
the H3m result.

To get an idea of the maximal effect that (�λEFT)ᾱ2
t ā2

s
can

have on the Higgs mass prediction, the blue band of Fig. 3
shows the variation of Mh when the SUSY mass parame-
ters mQ,3, mU,3, mD,3, and mg̃ are varied simultaneously

and independently within the interval [MS/
√

2,
√

2MS] as a
function of MS , including the uncertainty δ((�λEFT)ᾱ2

t ā2
s
).6

The hatched region marks the range of SUSY scales where
the lightest running stop mass is below 1 TeV for at least
one of the scanned points; in this case, the EFT may not
be applicable. For zero stop mixing (left panel), we find
that (�λEFT)ᾱ2

t ā2
s

can have an effect up to ≈ −150 MeV for
MS ≥ 1 TeV. In the region where mt̃1 > 1 TeV, the correc-
tion reduces to −130 MeV at most. The three-loop correction
decreases for larger SUSY scales, mainly due to the fact that
the SM couplings become smaller. For maximal stop mixing,
xt = −√

6, the effect of the three-loop correction is signifi-
cantly larger, and can reach −1.25 GeV formt̃1 � 1 TeV. The
correction becomes particularly large when the soft-breaking
stop-mass parameters mQ,3 and mU,3 become small.

5 Conclusions

We have calculated the light CP-even Higgs mass of the
MSSM by including all known fixed-order radiative correc-
tions through O(α2

t α
2
s ), and resumming the logarithmically

enhanced terms for a heavy SUSY spectrum through fourth
logarithmic order in SUSY QCD. The only ingredient enter-
ing this result that was unavailable in the literature up to
now was the three-loop matching coefficient at O(α2

t α
2
s ) for

the quartic Higgs coupling from the SM to the MSSM. We

6 The choice of the interval [MS/
√

2,
√

2MS] ensures that for all
scanned points there exists a suitable mass hierarchy which fits the
parameter point with a moderate uncertainty (�λEFT)ᾱ2

t ā2
s
. In the

scanned parameter region, the most frequently chosen hierarchy is h3
or one of its sub-hierarchies.
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Fig. 3 Variation of Mh when the SUSY mass parameters are varied
within the interval [MS/

√
2,

√
2MS] in HSSUSY for tan β = 10. The

left panel shows Xt = 0 and the right panel Xt = −√
6MS . The blue

band shows the maximal variation of Mh when the three-loop correc-

tion (�λEFT)ᾱ2
t ā2

s
± δ((�λEFT)ᾱ2

t ā2
s
) is included, with respect to the

two-loop calculation. In the hatched region there is mt̃1 (MS) ≤ 1 TeV
for at least one of the scanned parameter points

derived it from the known three-loop corrections to the light
CP-even Higgs boson mass of Refs. [33,34]. The coefficient
is provided both in terms of DR

′
and MS parameters through

its implementation into the public Himalaya library, ver-
sion 2.0.1. This should facilitate its inclusion into spectrum
generators which implement the EFT approach. An uncer-
tainty estimate is provided to account for missing higher
order terms in the mass hierarchy expansions.

Implementing (�λ)α2
t a2

s
through Himalaya 2.0.1 into

HSSUSY, our numerical analysis shows that the three-loop
correction tends to be negative and may decrease the pre-
dicted Higgs boson pole mass by up to 0.6 GeV for maximal
stop mixing. In scenarios with zero stop mixing, the shift is
significantly smaller, dropping to about −25 MeV for SUSY
mass parameters of around 1 TeV. For non-degenerate spec-
tra with mt̃1 � 1 TeV, the three-loop correction can be of the
same size and reach up to −1.25 GeV for low stop masses in
scenarios where a suitable mass hierarchy exists. In scenarios
where no such hierarchy exists the correction may be signifi-
cantly larger, accompanied by a large expansion uncertainty.
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Appendix: Documentation of Himalaya 2.0.1

In this section we summarize technical details concerning
the new functionality of Himalaya 2.0.1.

Changes in Himalaya 2.0.1 In Himalaya 2.0.1, we made
changes to the hierarchy selection and to some three-loop
expressions which may affect the calculated Higgs mass at
three-loop level. We list all of these changes below.

• In Himalaya 1.0.1, all input parameters are assumed
to be given in the “H3m scheme”, see Sect. 3.2, and the
output is provided in the same scheme by default. Since
most MSSM spectrum generators use the DR

′
scheme,

we have changed the definition of the input and output
accordingly: In Himalaya 2.0.1, all input parameters
are assumed to be given in the DR

′
scheme. The output

is provided in the DR
′
scheme by default. Shifts to other

renormalization schemes (H3m, MDR
′
, …) are provided

separately by Himalaya.
• There are parameter scenarios where none of the H3m

hierarchies fits to the SUSY mass spectrum. H3m as well
asHimalaya 1.0.1 used the h3 hierarchy in these cases,
despite the fact that it does actually not fit. It turns out
that the requirement
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mt̃2 > 1.3mq̃ , mg̃ > 1.3mq̃ (48)

is sufficient to avoid these scenarios. Himalaya 2.0.1
will therefore throw an exception if the conditions (48)
are not met.

• For the highest order in (m2
q̃−m2

t̃i
) in the hierarchy expan-

sions of H3m, we found disagreement with the logarith-

mic terms of the EFT approach. We therefore discarded
these orders completely (also the non-logarithmic terms)
in Himalaya.

Input parameters With Himalaya 2.0.1 we extend the
input parameters struct to a more general form. Its new form
is summarized in the following listing:

typedef Eigen::Matrix <double ,2,1> V2;
typedef Eigen::Matrix <double ,3,3> RM33;

struct Parameters {
// DR’-bar parameters
double scale {}; // renormalization scale
double mu{}; // mu parameter , convention of

// [Phys.Rept. 117 (1985) 75 -263]
double g1{}; // GUT -normalized gauge coupling g1 , with

// gY = g1*Sqrt [3/5]
double g2{}; // gauge coupling g2 of SU(2)
double g3{}; // gauge coupling g3 of SU(3)
double vd{}; // VEV of down Higgs , with

// v = Sqrt[vu^2 + vd^2] ~ 246 GeV
double vu{}; // VEV of up Higgs , with

// v = Sqrt[vu^2 + vd^2] ~ 246 GeV
RM33 mq2{RM33::Zero()}; // soft -breaking squared left -handed

// squark mass parameters
RM33 md2{RM33::Zero()}; // soft -breaking squared right -handed

// down -squark mass parameters
RM33 mu2{RM33::Zero()}; // soft -breaking squared right -handed

// up -squark mass parameters
RM33 ml2{RM33::Zero()}; // soft -breaking squared left -handed

// slepton mass parameters
RM33 me2{RM33::Zero()}; // soft -breaking squared right -handed

// slepton mass parameters
RM33 Au{RM33::Zero()}; // trilinear up type squark -Higgs

// coupling matrix
RM33 Ad{RM33::Zero()}; // trilinear down type squark -Higgs

// coupling matrix
RM33 Ae{RM33::Zero()}; // trilinear electron type squark -Higgs

// coupling matrix
RM33 Yu{RM33::Zero()}; // up -type yukawa coupling matrix
RM33 Yd{RM33::Zero()}; // down -type yukawa coupling matrix
RM33 Ye{RM33::Zero()}; // electron -type yukawa coupling matrix

// DR’-bar masses
double M1{}; // bino
double M2{}; // wino
double MG{}; // gluino
double MW{NaN}; // W
double MZ{NaN}; // Z
double Mt{NaN}; // top -quark
double Mb{NaN}; // down -quark
double Mtau{NaN}; // tau lepton
double MA{}; // CP -odd Higgs
V2 MSt{NaN , NaN}; // stops
V2 MSb{NaN , NaN}; // sbottoms

// DR’-bar mixing angles
double s2t{NaN}; // sine of 2 times the stop mixing angle
double s2b{NaN}; // sine of 2 times the sbottom mixing angle

};
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The parameters initialized toNaN are optional and will be cal-
culated internally if not set to a finite value by the user. Note
that all input parameters are interpreted as running MSSM
parameters in the DR

′
scheme at the renormalization scale

scale.

Calling at the C++ level
Since the input parameters and the output of Himalaya

2.0.1 are always defined in the DR
′

scheme, we have
removed the MDR flag in the constructor of theHierarchy
Calculator. The following source code listing shows an
example call of Himalaya 2.0.1:

// create a new parameter point
himalaya :: parameters point;
point.scale = 1000.; // GeV
point.mu = 1000.; // GeV
// fill remaining parameters ...

// create the calculator class
himalaya :: HierarchyCalculator hc(point);

// calculate all three -loop corrections of O(at*as^2)
himalaya :: HierarchyObject hoTop = hc.calculateDMh3L(false);

The HierarchyCalculator class takes the param-
eter point as the only mandatory argument. To calcu-
late the three-loop corrections to the CP-even Higgs mass
matrix or to the quartic Higgs coupling λ, one needs to

call the calculateDMh3L member function of the cre-
ated HierarchyCalculator object. The calculate
DMh3L function takes a boolean argument to calculate the
corrections of O(α2

t a
2
s ) (argument is false) or O(α2

ba
2
s )

(argument is true) to the CP-even Higgs mass matrix. The
function returns a HierarchyObject which contains the
calculated three-loop results.

To convert the three-loop results to other renormaliza-
tion schemes, the HierarchyObject class provides new
member functions which return additive shifts from the DR

′

to any other scheme. The new member functions are listed
in the following sub-section.

The following source code listing represents a complete
example which illustrates how the three-loop correction of
O(α2

t a
2
s ) to the CP-even Higgs mass matrix and to the quartic

Higgs coupling can be calculated with Himalaya 2.0.1.
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#include "HierarchyCalculator.hpp"
#include <cmath >

himalaya :: Parameters make_point(double MS , double xt , double tb)
{

himalaya :: Parameters pars;

const double MS2 = MS*MS;
const double Xt = xt*MS;
const double beta = std::atan(tb);

pars.scale = MS;
pars.mu = MS;
pars.g1 = 0.46;
pars.g2 = 0.65;
pars.g3 = 1.166;
pars.vd = 246* std::cos(beta);
pars.vu = 246* std::sin(beta);
pars.mq2 << MS2 , 0, 0,

0, MS2 , 0,
0, 0, MS2;

pars.md2 << MS2 , 0, 0,
0, MS2 , 0,
0, 0, MS2;

pars.mu2 << MS2 , 0, 0,
0, MS2 , 0,
0, 0, MS2;

pars.ml2 << MS2 , 0, 0,
0, MS2 , 0,
0, 0, MS2;

pars.me2 << MS2 , 0, 0,
0, MS2 , 0,
0, 0, MS2;

pars.Au(2,2) = Xt + pars.mu/tb;
pars.Yu(2,2) = 0.862;
pars.Yd(2,2) = 0.133;
pars.Ye(2,2) = 0.101;
pars.MA = MS;
pars.M1 = MS;
pars.M2 = MS;
pars.MG = MS;

return pars;
}

int main()
{

// create parameter point
const auto point = make_point (2000, std::sqrt (6.), 20);

// create calculator object
himalaya :: HierarchyCalculator hc(point);

// calculate 3-loop corrections O(at^2*as^2)
const auto ho = hc.calculateDMh3L(false);

// get 3-loop contribution to CP -even Higgs mass matrix
const auto dMh_3L = ho.getDMh (3);

// get 3-loop contribution to lambda
const auto delta_lambda_3L = ho.getDLambda (3);

// get uncertainty for 3-loop lambda
const auto delta_lambda_3L_uncertainty = ho.getDLambdaUncertainty (3);

}
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New member functions of HierarchyObject.
Below we list all member functions of Hierarchy

Object that are new in Himalaya 2.0.1.

getDMhDRbarPrimeToMDRbarPrimeShift()
Returns the additive shift to convert the Higgs mass
matrix from the DR

′
scheme at three-loop level to the

MDR
′

scheme.
getDMhDRbarPrimeToH3mShift() Returns the
additive shift to convert the Higgs mass matrix from the
DR

′
scheme at three-loop level to the H3m scheme. In

matrix form, the shift is given by:

(
�M2

h,11

)
H3m→DR

′ = Cμ2X2
t

{
m4

t̃1
− 2m2

t̃1
m2

t̃2
ln

(
m2

t̃1

m2
t̃2

)
− m4

t̃2

}
,

(49)
(
�M2

h,12

)
H3m→DR

′ = CμXt

{
− m4

t̃1

(
At Xt + 3m2

t̃2

)

+ 2Atm
2
t̃1
m2

t̃2
Xt ln

(
m2

t̃1

m2
t̃2

)

+ Atm
4
t̃2
Xt + m6

t̃1
+ 3m2

t̃1
m4

t̃2
− m6

t̃2

}
, (50)

(
�M2

h,21

)
H3m→DR

′ = (
�M2

h,12

)
H3m→DR

′ , (51)

(
�M2

h,22

)
H3m→DR

′ = C

{
�12

[
m2

t̃1

(
A2
t X

2
t + 4Atm

2
t̃2
Xt − m4

t̃2

)

− m4
t̃1

(
2At Xt + m2

t̃2

)
+
(
m3

t̃2
− Atmt̃2 Xt

)2 + m6
t̃1

]

−2A2
t m

2
t̃1
m2

t̃2
X2
t ln

(
m2

t̃1

m2
t̃2

)}
, (52)

with

C = −8α2
t a

2
s v

2s2
β

m2
t̃1
m2

t̃2
�3

12

×
{

−6(lSg̃ + 1)m2
g̃ + 10(lSq̃ + 1)m2

q̃ +
2∑

i=1

(1 + lSt̃i )m
2
t̃i

}
.

(53)

getDLambda(int loops)Returns the correction to
the matching relation of λ at n-loop(s) including prefac-
tors. n can be 0, 1, 2, 3, where n = 3 corresponds to
(�λEFT)α2

t a2
s
.

getDLambdaDRbarPrimeToMSbarShift(int
loops) Returns the additive shift (δλ)α2

t a2
s

of Eq. (34),
which accounts for the effect of a parameter conversion in
λ at n-loop(s) from the DR

′
to the MS scheme, including

prefactors. n can be 0, 1, 2, 3, where n = 3 corresponds
to the shift for (�λEFT)α2

t a2
s
.

getDLambdaUncertainty(int loops) For
loops = 3 the function returns the uncertainty
δ((�λEFT)α2

t a2
s
) according to Eq. (47), including the pref-

actors. For loops 
= 3 the function returns zero.
getDMh2EFT(int loops)Returns M2

h,EFT,<loops>
according to Eq. (23) at n-loop(s). n can be 0, 1, 2, 3,
where n = 3 includes the contribution of (�λEFT)α2

t a2
s
.

The three-loop result getDMh2EFT(3) can be used to
extract (�λ)α2

t a2
s

from an alternative fixed-order calcu-
lation, following the procedure introduced in this paper.
See below for an example.

Extracting (�λ)α2
t a2

s
from alternative three-loop calcula-

tions of the Higgs mass
The results for matching coefficient (�λEFT)α2

t a2
s

pre-
sented in this paper rely on the H3m result for the three-loop
Higgs mass. By using the member functions getDMh2EFT
(int) and getDLambda(int) of the Hierarchy
Object, it is possible to extract the three-loop correc-
tion (�λ)α2

t a2
s

from any other three-loop fixed-order DR
′

O(α2
t a

2
s ) expression for the Higgs mass. These two mem-

ber functions return the following three-loop contributions

getDMh2EFT(3) = M2
h,EFT,3

∣∣∣∣
(�λ)

α2
t a

2
s
=0

+ κ3v2α2
t a

2
s s

4
β(�λEFT)α2

t a2
s

− M2
h,EFT,2, (54)

getDLambda(3) = κ3α2
t a

2
s s

4
β(�λEFT)α2

t a2
s
. (55)

with M2
h,EFT,n and (�λEFT)α2

t a2
s

defined in Sect. 3. By com-
bining these functions with an alternative three-loop calcu-
lation M2

h,EFT,3 as

(�λalt)α2
t a2

s
v2 = M2

h,EFT,3 − M2
h,EFT,2

− getDMh2EFT(3) + v2 × getDLambda(3)
(56)

= M2
h,EFT,3 − M2

h,EFT,3(μt , μS)

∣∣∣∣
(�λ)

α2
t a

2
s
=0

(57)

one can extract the corresponding three-loop correction
(�λalt)α2

t a2
s
.
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